LangIntro.rst 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709
  1. ==============================
  2. TableGen Language Introduction
  3. ==============================
  4. .. contents::
  5. :local:
  6. .. warning::
  7. This document is extremely rough. If you find something lacking, please
  8. fix it, file a documentation bug, or ask about it on llvm-dev.
  9. Introduction
  10. ============
  11. This document is not meant to be a normative spec about the TableGen language
  12. in and of itself (i.e. how to understand a given construct in terms of how
  13. it affects the final set of records represented by the TableGen file). For
  14. the formal language specification, see :doc:`LangRef`.
  15. TableGen syntax
  16. ===============
  17. TableGen doesn't care about the meaning of data (that is up to the backend to
  18. define), but it does care about syntax, and it enforces a simple type system.
  19. This section describes the syntax and the constructs allowed in a TableGen file.
  20. TableGen primitives
  21. -------------------
  22. TableGen comments
  23. ^^^^^^^^^^^^^^^^^
  24. TableGen supports C++ style "``//``" comments, which run to the end of the
  25. line, and it also supports **nestable** "``/* */``" comments.
  26. .. _TableGen type:
  27. The TableGen type system
  28. ^^^^^^^^^^^^^^^^^^^^^^^^
  29. TableGen files are strongly typed, in a simple (but complete) type-system.
  30. These types are used to perform automatic conversions, check for errors, and to
  31. help interface designers constrain the input that they allow. Every `value
  32. definition`_ is required to have an associated type.
  33. TableGen supports a mixture of very low-level types (such as ``bit``) and very
  34. high-level types (such as ``dag``). This flexibility is what allows it to
  35. describe a wide range of information conveniently and compactly. The TableGen
  36. types are:
  37. ``bit``
  38. A 'bit' is a boolean value that can hold either 0 or 1.
  39. ``int``
  40. The 'int' type represents a simple 32-bit integer value, such as 5.
  41. ``string``
  42. The 'string' type represents an ordered sequence of characters of arbitrary
  43. length.
  44. ``code``
  45. The `code` type represents a code fragment, which can be single/multi-line
  46. string literal.
  47. ``bits<n>``
  48. A 'bits' type is an arbitrary, but fixed, size integer that is broken up
  49. into individual bits. This type is useful because it can handle some bits
  50. being defined while others are undefined.
  51. ``list<ty>``
  52. This type represents a list whose elements are some other type. The
  53. contained type is arbitrary: it can even be another list type.
  54. Class type
  55. Specifying a class name in a type context means that the defined value must
  56. be a subclass of the specified class. This is useful in conjunction with
  57. the ``list`` type, for example, to constrain the elements of the list to a
  58. common base class (e.g., a ``list<Register>`` can only contain definitions
  59. derived from the "``Register``" class).
  60. ``dag``
  61. This type represents a nestable directed graph of elements.
  62. To date, these types have been sufficient for describing things that TableGen
  63. has been used for, but it is straight-forward to extend this list if needed.
  64. .. _TableGen expressions:
  65. TableGen values and expressions
  66. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  67. TableGen allows for a pretty reasonable number of different expression forms
  68. when building up values. These forms allow the TableGen file to be written in a
  69. natural syntax and flavor for the application. The current expression forms
  70. supported include:
  71. ``?``
  72. uninitialized field
  73. ``0b1001011``
  74. binary integer value.
  75. Note that this is sized by the number of bits given and will not be
  76. silently extended/truncated.
  77. ``7``
  78. decimal integer value
  79. ``0x7F``
  80. hexadecimal integer value
  81. ``"foo"``
  82. a single-line string value, can be assigned to ``string`` or ``code`` variable.
  83. ``[{ ... }]``
  84. usually called a "code fragment", but is just a multiline string literal
  85. ``[ X, Y, Z ]<type>``
  86. list value. <type> is the type of the list element and is usually optional.
  87. In rare cases, TableGen is unable to deduce the element type in which case
  88. the user must specify it explicitly.
  89. ``{ a, b, 0b10 }``
  90. initializer for a "bits<4>" value.
  91. 1-bit from "a", 1-bit from "b", 2-bits from 0b10.
  92. ``value``
  93. value reference
  94. ``value{17}``
  95. access to one bit of a value
  96. ``value{15-17}``
  97. access to an ordered sequence of bits of a value, in particular ``value{15-17}``
  98. produces an order that is the reverse of ``value{17-15}``.
  99. ``DEF``
  100. reference to a record definition
  101. ``CLASS<val list>``
  102. reference to a new anonymous definition of CLASS with the specified template
  103. arguments.
  104. ``X.Y``
  105. reference to the subfield of a value
  106. ``list[4-7,17,2-3]``
  107. A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
  108. Elements may be included multiple times.
  109. ``foreach <var> = [ <list> ] in { <body> }``
  110. ``foreach <var> = [ <list> ] in <def>``
  111. Replicate <body> or <def>, replacing instances of <var> with each value
  112. in <list>. <var> is scoped at the level of the ``foreach`` loop and must
  113. not conflict with any other object introduced in <body> or <def>. Only
  114. ``def``\s and ``defm``\s are expanded within <body>.
  115. ``foreach <var> = 0-15 in ...``
  116. ``foreach <var> = {0-15,32-47} in ...``
  117. Loop over ranges of integers. The braces are required for multiple ranges.
  118. ``(DEF a, b)``
  119. a dag value. The first element is required to be a record definition, the
  120. remaining elements in the list may be arbitrary other values, including
  121. nested ```dag``' values.
  122. ``!con(a, b, ...)``
  123. Concatenate two or more DAG nodes. Their operations must equal.
  124. Example: !con((op a1:$name1, a2:$name2), (op b1:$name3)) results in
  125. the DAG node (op a1:$name1, a2:$name2, b1:$name3).
  126. ``!dag(op, children, names)``
  127. Generate a DAG node programmatically. 'children' and 'names' must be lists
  128. of equal length or unset ('?'). 'names' must be a 'list<string>'.
  129. Due to limitations of the type system, 'children' must be a list of items
  130. of a common type. In practice, this means that they should either have the
  131. same type or be records with a common superclass. Mixing dag and non-dag
  132. items is not possible. However, '?' can be used.
  133. Example: !dag(op, [a1, a2, ?], ["name1", "name2", "name3"]) results in
  134. (op a1:$name1, a2:$name2, ?:$name3).
  135. ``!listconcat(a, b, ...)``
  136. A list value that is the result of concatenating the 'a' and 'b' lists.
  137. The lists must have the same element type.
  138. More than two arguments are accepted with the result being the concatenation
  139. of all the lists given.
  140. ``!listsplat(a, size)``
  141. A list value that contains the value ``a`` ``size`` times.
  142. Example: ``!listsplat(0, 2)`` results in ``[0, 0]``.
  143. ``!strconcat(a, b, ...)``
  144. A string value that is the result of concatenating the 'a' and 'b' strings.
  145. More than two arguments are accepted with the result being the concatenation
  146. of all the strings given.
  147. ``str1#str2``
  148. "#" (paste) is a shorthand for !strconcat. It may concatenate things that
  149. are not quoted strings, in which case an implicit !cast<string> is done on
  150. the operand of the paste.
  151. ``!cast<type>(a)``
  152. If 'a' is a string, a record of type *type* obtained by looking up the
  153. string 'a' in the list of all records defined by the time that all template
  154. arguments in 'a' are fully resolved.
  155. For example, if !cast<type>(a) appears in a multiclass definition, or in a
  156. class instantiated inside of a multiclass definition, and 'a' does not
  157. reference any template arguments of the multiclass, then a record of name
  158. 'a' must be instantiated earlier in the source file. If 'a' does reference
  159. a template argument, then the lookup is delayed until defm statements
  160. instantiating the multiclass (or later, if the defm occurs in another
  161. multiclass and template arguments of the inner multiclass that are
  162. referenced by 'a' are substituted by values that themselves contain
  163. references to template arguments of the outer multiclass).
  164. If the type of 'a' does not match *type*, TableGen aborts with an error.
  165. Otherwise, perform a normal type cast e.g. between an int and a bit, or
  166. between record types. This allows casting a record to a subclass, though if
  167. the types do not match, constant folding will be inhibited. !cast<string>
  168. is a special case in that the argument can be an int or a record. In the
  169. latter case, the record's name is returned.
  170. ``!isa<type>(a)``
  171. Returns an integer: 1 if 'a' is dynamically of the given type, 0 otherwise.
  172. ``!subst(a, b, c)``
  173. If 'a' and 'b' are of string type or are symbol references, substitute 'b'
  174. for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
  175. ``!foreach(a, b, c)``
  176. For each member of dag or list 'b' apply operator 'c'. 'a' is the name
  177. of a variable that will be substituted by members of 'b' in 'c'.
  178. This operation is analogous to $(foreach) in GNU make.
  179. ``!foldl(start, lst, a, b, expr)``
  180. Perform a left-fold over 'lst' with the given starting value. 'a' and 'b'
  181. are variable names which will be substituted in 'expr'. If you think of
  182. expr as a function f(a,b), the fold will compute
  183. 'f(...f(f(start, lst[0]), lst[1]), ...), lst[n-1])' for a list of length n.
  184. As usual, 'a' will be of the type of 'start', and 'b' will be of the type
  185. of elements of 'lst'. These types need not be the same, but 'expr' must be
  186. of the same type as 'start'.
  187. ``!head(a)``
  188. The first element of list 'a.'
  189. ``!tail(a)``
  190. The 2nd-N elements of list 'a.'
  191. ``!empty(a)``
  192. An integer {0,1} indicating whether list 'a' is empty.
  193. ``!size(a)``
  194. An integer indicating the number of elements in list 'a'.
  195. ``!if(a,b,c)``
  196. 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
  197. ``!cond(condition_1 : val1, condition_2 : val2, ..., condition_n : valn)``
  198. Instead of embedding !if inside !if which can get cumbersome,
  199. one can use !cond. !cond returns 'val1' if the result of 'int' or 'bit'
  200. operator 'condition1' is nonzero. Otherwise, it checks 'condition2'.
  201. If 'condition2' is nonzero, returns 'val2', and so on.
  202. If all conditions are zero, it reports an error.
  203. For example, to convert an integer 'x' into a string:
  204. !cond(!lt(x,0) : "negative", !eq(x,0) : "zero", 1 : "positive")
  205. ``!eq(a,b)``
  206. 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
  207. on string, int and bit objects. Use !cast<string> to compare other types of
  208. objects.
  209. ``!ne(a,b)``
  210. The negation of ``!eq(a,b)``.
  211. ``!le(a,b), !lt(a,b), !ge(a,b), !gt(a,b)``
  212. (Signed) comparison of integer values that returns bit 1 or 0 depending on
  213. the result of the comparison.
  214. ``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)``
  215. The usual shift operators. Operations are on 64-bit integers, the result
  216. is undefined for shift counts outside [0, 63].
  217. ``!add(a,b,...)`` ``!mul(a,b,...)`` ``!and(a,b,...)`` ``!or(a,b,...)``
  218. The usual arithmetic and binary operators.
  219. Note that all of the values have rules specifying how they convert to values
  220. for different types. These rules allow you to assign a value like "``7``"
  221. to a "``bits<4>``" value, for example.
  222. Classes and definitions
  223. -----------------------
  224. As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
  225. 'records') in TableGen are the main high-level unit of information that TableGen
  226. collects. Records are defined with a ``def`` or ``class`` keyword, the record
  227. name, and an optional list of "`template arguments`_". If the record has
  228. superclasses, they are specified as a comma separated list that starts with a
  229. colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
  230. needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
  231. the record ends with a semicolon.
  232. Here is a simple TableGen file:
  233. .. code-block:: text
  234. class C { bit V = 1; }
  235. def X : C;
  236. def Y : C {
  237. string Greeting = "hello";
  238. }
  239. This example defines two definitions, ``X`` and ``Y``, both of which derive from
  240. the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
  241. definition also gets the Greeting member as well.
  242. In general, classes are useful for collecting together the commonality between a
  243. group of records and isolating it in a single place. Also, classes permit the
  244. specification of default values for their subclasses, allowing the subclasses to
  245. override them as they wish.
  246. .. _value definition:
  247. .. _value definitions:
  248. Value definitions
  249. ^^^^^^^^^^^^^^^^^
  250. Value definitions define named entries in records. A value must be defined
  251. before it can be referred to as the operand for another value definition or
  252. before the value is reset with a `let expression`_. A value is defined by
  253. specifying a `TableGen type`_ and a name. If an initial value is available, it
  254. may be specified after the type with an equal sign. Value definitions require
  255. terminating semicolons.
  256. .. _let expression:
  257. .. _let expressions:
  258. .. _"let" expressions within a record:
  259. 'let' expressions
  260. ^^^^^^^^^^^^^^^^^
  261. A record-level let expression is used to change the value of a value definition
  262. in a record. This is primarily useful when a superclass defines a value that a
  263. derived class or definition wants to override. Let expressions consist of the
  264. '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
  265. value. For example, a new class could be added to the example above, redefining
  266. the ``V`` field for all of its subclasses:
  267. .. code-block:: text
  268. class D : C { let V = 0; }
  269. def Z : D;
  270. In this case, the ``Z`` definition will have a zero value for its ``V`` value,
  271. despite the fact that it derives (indirectly) from the ``C`` class, because the
  272. ``D`` class overrode its value.
  273. References between variables in a record are substituted late, which gives
  274. ``let`` expressions unusual power. Consider this admittedly silly example:
  275. .. code-block:: text
  276. class A<int x> {
  277. int Y = x;
  278. int Yplus1 = !add(Y, 1);
  279. int xplus1 = !add(x, 1);
  280. }
  281. def Z : A<5> {
  282. let Y = 10;
  283. }
  284. The value of ``Z.xplus1`` will be 6, but the value of ``Z.Yplus1`` is 11. Use
  285. this power wisely.
  286. .. _template arguments:
  287. Class template arguments
  288. ^^^^^^^^^^^^^^^^^^^^^^^^
  289. TableGen permits the definition of parameterized classes as well as normal
  290. concrete classes. Parameterized TableGen classes specify a list of variable
  291. bindings (which may optionally have defaults) that are bound when used. Here is
  292. a simple example:
  293. .. code-block:: text
  294. class FPFormat<bits<3> val> {
  295. bits<3> Value = val;
  296. }
  297. def NotFP : FPFormat<0>;
  298. def ZeroArgFP : FPFormat<1>;
  299. def OneArgFP : FPFormat<2>;
  300. def OneArgFPRW : FPFormat<3>;
  301. def TwoArgFP : FPFormat<4>;
  302. def CompareFP : FPFormat<5>;
  303. def CondMovFP : FPFormat<6>;
  304. def SpecialFP : FPFormat<7>;
  305. In this case, template arguments are used as a space efficient way to specify a
  306. list of "enumeration values", each with a "``Value``" field set to the specified
  307. integer.
  308. The more esoteric forms of `TableGen expressions`_ are useful in conjunction
  309. with template arguments. As an example:
  310. .. code-block:: text
  311. class ModRefVal<bits<2> val> {
  312. bits<2> Value = val;
  313. }
  314. def None : ModRefVal<0>;
  315. def Mod : ModRefVal<1>;
  316. def Ref : ModRefVal<2>;
  317. def ModRef : ModRefVal<3>;
  318. class Value<ModRefVal MR> {
  319. // Decode some information into a more convenient format, while providing
  320. // a nice interface to the user of the "Value" class.
  321. bit isMod = MR.Value{0};
  322. bit isRef = MR.Value{1};
  323. // other stuff...
  324. }
  325. // Example uses
  326. def bork : Value<Mod>;
  327. def zork : Value<Ref>;
  328. def hork : Value<ModRef>;
  329. This is obviously a contrived example, but it shows how template arguments can
  330. be used to decouple the interface provided to the user of the class from the
  331. actual internal data representation expected by the class. In this case,
  332. running ``llvm-tblgen`` on the example prints the following definitions:
  333. .. code-block:: text
  334. def bork { // Value
  335. bit isMod = 1;
  336. bit isRef = 0;
  337. }
  338. def hork { // Value
  339. bit isMod = 1;
  340. bit isRef = 1;
  341. }
  342. def zork { // Value
  343. bit isMod = 0;
  344. bit isRef = 1;
  345. }
  346. This shows that TableGen was able to dig into the argument and extract a piece
  347. of information that was requested by the designer of the "Value" class. For
  348. more realistic examples, please see existing users of TableGen, such as the X86
  349. backend.
  350. Multiclass definitions and instances
  351. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  352. While classes with template arguments are a good way to factor commonality
  353. between two instances of a definition, multiclasses allow a convenient notation
  354. for defining multiple definitions at once (instances of implicitly constructed
  355. classes). For example, consider an 3-address instruction set whose instructions
  356. come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
  357. (e.g. SPARC). In this case, you'd like to specify in one place that this
  358. commonality exists, then in a separate place indicate what all the ops are.
  359. Here is an example TableGen fragment that shows this idea:
  360. .. code-block:: text
  361. def ops;
  362. def GPR;
  363. def Imm;
  364. class inst<int opc, string asmstr, dag operandlist>;
  365. multiclass ri_inst<int opc, string asmstr> {
  366. def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  367. (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
  368. def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  369. (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
  370. }
  371. // Instantiations of the ri_inst multiclass.
  372. defm ADD : ri_inst<0b111, "add">;
  373. defm SUB : ri_inst<0b101, "sub">;
  374. defm MUL : ri_inst<0b100, "mul">;
  375. ...
  376. The name of the resultant definitions has the multidef fragment names appended
  377. to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
  378. inherit from multiple multiclasses, instantiating definitions from each
  379. multiclass. Using a multiclass this way is exactly equivalent to instantiating
  380. the classes multiple times yourself, e.g. by writing:
  381. .. code-block:: text
  382. def ops;
  383. def GPR;
  384. def Imm;
  385. class inst<int opc, string asmstr, dag operandlist>;
  386. class rrinst<int opc, string asmstr>
  387. : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  388. (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
  389. class riinst<int opc, string asmstr>
  390. : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
  391. (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
  392. // Instantiations of the ri_inst multiclass.
  393. def ADD_rr : rrinst<0b111, "add">;
  394. def ADD_ri : riinst<0b111, "add">;
  395. def SUB_rr : rrinst<0b101, "sub">;
  396. def SUB_ri : riinst<0b101, "sub">;
  397. def MUL_rr : rrinst<0b100, "mul">;
  398. def MUL_ri : riinst<0b100, "mul">;
  399. ...
  400. A ``defm`` can also be used inside a multiclass providing several levels of
  401. multiclass instantiations.
  402. .. code-block:: text
  403. class Instruction<bits<4> opc, string Name> {
  404. bits<4> opcode = opc;
  405. string name = Name;
  406. }
  407. multiclass basic_r<bits<4> opc> {
  408. def rr : Instruction<opc, "rr">;
  409. def rm : Instruction<opc, "rm">;
  410. }
  411. multiclass basic_s<bits<4> opc> {
  412. defm SS : basic_r<opc>;
  413. defm SD : basic_r<opc>;
  414. def X : Instruction<opc, "x">;
  415. }
  416. multiclass basic_p<bits<4> opc> {
  417. defm PS : basic_r<opc>;
  418. defm PD : basic_r<opc>;
  419. def Y : Instruction<opc, "y">;
  420. }
  421. defm ADD : basic_s<0xf>, basic_p<0xf>;
  422. ...
  423. // Results
  424. def ADDPDrm { ...
  425. def ADDPDrr { ...
  426. def ADDPSrm { ...
  427. def ADDPSrr { ...
  428. def ADDSDrm { ...
  429. def ADDSDrr { ...
  430. def ADDY { ...
  431. def ADDX { ...
  432. ``defm`` declarations can inherit from classes too, the rule to follow is that
  433. the class list must start after the last multiclass, and there must be at least
  434. one multiclass before them.
  435. .. code-block:: text
  436. class XD { bits<4> Prefix = 11; }
  437. class XS { bits<4> Prefix = 12; }
  438. class I<bits<4> op> {
  439. bits<4> opcode = op;
  440. }
  441. multiclass R {
  442. def rr : I<4>;
  443. def rm : I<2>;
  444. }
  445. multiclass Y {
  446. defm SS : R, XD;
  447. defm SD : R, XS;
  448. }
  449. defm Instr : Y;
  450. // Results
  451. def InstrSDrm {
  452. bits<4> opcode = { 0, 0, 1, 0 };
  453. bits<4> Prefix = { 1, 1, 0, 0 };
  454. }
  455. ...
  456. def InstrSSrr {
  457. bits<4> opcode = { 0, 1, 0, 0 };
  458. bits<4> Prefix = { 1, 0, 1, 1 };
  459. }
  460. File scope entities
  461. -------------------
  462. File inclusion
  463. ^^^^^^^^^^^^^^
  464. TableGen supports the '``include``' token, which textually substitutes the
  465. specified file in place of the include directive. The filename should be
  466. specified as a double quoted string immediately after the '``include``' keyword.
  467. Example:
  468. .. code-block:: text
  469. include "foo.td"
  470. 'let' expressions
  471. ^^^^^^^^^^^^^^^^^
  472. "Let" expressions at file scope are similar to `"let" expressions within a
  473. record`_, except they can specify a value binding for multiple records at a
  474. time, and may be useful in certain other cases. File-scope let expressions are
  475. really just another way that TableGen allows the end-user to factor out
  476. commonality from the records.
  477. File-scope "let" expressions take a comma-separated list of bindings to apply,
  478. and one or more records to bind the values in. Here are some examples:
  479. .. code-block:: text
  480. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
  481. def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
  482. let isCall = 1 in
  483. // All calls clobber the non-callee saved registers...
  484. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
  485. MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
  486. XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
  487. def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
  488. "call\t${dst:call}", []>;
  489. def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
  490. "call\t{*}$dst", [(X86call GR32:$dst)]>;
  491. def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
  492. "call\t{*}$dst", []>;
  493. }
  494. File-scope "let" expressions are often useful when a couple of definitions need
  495. to be added to several records, and the records do not otherwise need to be
  496. opened, as in the case with the ``CALL*`` instructions above.
  497. It's also possible to use "let" expressions inside multiclasses, providing more
  498. ways to factor out commonality from the records, specially if using several
  499. levels of multiclass instantiations. This also avoids the need of using "let"
  500. expressions within subsequent records inside a multiclass.
  501. .. code-block:: text
  502. multiclass basic_r<bits<4> opc> {
  503. let Predicates = [HasSSE2] in {
  504. def rr : Instruction<opc, "rr">;
  505. def rm : Instruction<opc, "rm">;
  506. }
  507. let Predicates = [HasSSE3] in
  508. def rx : Instruction<opc, "rx">;
  509. }
  510. multiclass basic_ss<bits<4> opc> {
  511. let IsDouble = 0 in
  512. defm SS : basic_r<opc>;
  513. let IsDouble = 1 in
  514. defm SD : basic_r<opc>;
  515. }
  516. defm ADD : basic_ss<0xf>;
  517. Looping
  518. ^^^^^^^
  519. TableGen supports the '``foreach``' block, which textually replicates the loop
  520. body, substituting iterator values for iterator references in the body.
  521. Example:
  522. .. code-block:: text
  523. foreach i = [0, 1, 2, 3] in {
  524. def R#i : Register<...>;
  525. def F#i : Register<...>;
  526. }
  527. This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
  528. may be nested. If there is only one item in the body the braces may be
  529. elided:
  530. .. code-block:: text
  531. foreach i = [0, 1, 2, 3] in
  532. def R#i : Register<...>;
  533. Code Generator backend info
  534. ===========================
  535. Expressions used by code generator to describe instructions and isel patterns:
  536. ``(implicit a)``
  537. an implicitly defined physical register. This tells the dag instruction
  538. selection emitter the input pattern's extra definitions matches implicit
  539. physical register definitions.