1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027 |
- //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the implementation of the scalar evolution analysis
- // engine, which is used primarily to analyze expressions involving induction
- // variables in loops.
- //
- // There are several aspects to this library. First is the representation of
- // scalar expressions, which are represented as subclasses of the SCEV class.
- // These classes are used to represent certain types of subexpressions that we
- // can handle. We only create one SCEV of a particular shape, so
- // pointer-comparisons for equality are legal.
- //
- // One important aspect of the SCEV objects is that they are never cyclic, even
- // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
- // the PHI node is one of the idioms that we can represent (e.g., a polynomial
- // recurrence) then we represent it directly as a recurrence node, otherwise we
- // represent it as a SCEVUnknown node.
- //
- // In addition to being able to represent expressions of various types, we also
- // have folders that are used to build the *canonical* representation for a
- // particular expression. These folders are capable of using a variety of
- // rewrite rules to simplify the expressions.
- //
- // Once the folders are defined, we can implement the more interesting
- // higher-level code, such as the code that recognizes PHI nodes of various
- // types, computes the execution count of a loop, etc.
- //
- // TODO: We should use these routines and value representations to implement
- // dependence analysis!
- //
- //===----------------------------------------------------------------------===//
- //
- // There are several good references for the techniques used in this analysis.
- //
- // Chains of recurrences -- a method to expedite the evaluation
- // of closed-form functions
- // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
- //
- // On computational properties of chains of recurrences
- // Eugene V. Zima
- //
- // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
- // Robert A. van Engelen
- //
- // Efficient Symbolic Analysis for Optimizing Compilers
- // Robert A. van Engelen
- //
- // Using the chains of recurrences algebra for data dependence testing and
- // induction variable substitution
- // MS Thesis, Johnie Birch
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "scalar-evolution"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/GlobalAlias.h"
- #include "llvm/Instructions.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Operator.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Assembly/Writer.h"
- #include "llvm/DataLayout.h"
- #include "llvm/Target/TargetLibraryInfo.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ConstantRange.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/InstIterator.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include <algorithm>
- using namespace llvm;
- STATISTIC(NumArrayLenItCounts,
- "Number of trip counts computed with array length");
- STATISTIC(NumTripCountsComputed,
- "Number of loops with predictable loop counts");
- STATISTIC(NumTripCountsNotComputed,
- "Number of loops without predictable loop counts");
- STATISTIC(NumBruteForceTripCountsComputed,
- "Number of loops with trip counts computed by force");
- static cl::opt<unsigned>
- MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
- cl::desc("Maximum number of iterations SCEV will "
- "symbolically execute a constant "
- "derived loop"),
- cl::init(100));
- // FIXME: Enable this with XDEBUG when the test suite is clean.
- static cl::opt<bool>
- VerifySCEV("verify-scev",
- cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
- INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
- INITIALIZE_PASS_DEPENDENCY(LoopInfo)
- INITIALIZE_PASS_DEPENDENCY(DominatorTree)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
- INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
- char ScalarEvolution::ID = 0;
- //===----------------------------------------------------------------------===//
- // SCEV class definitions
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // Implementation of the SCEV class.
- //
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void SCEV::dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- #endif
- void SCEV::print(raw_ostream &OS) const {
- switch (getSCEVType()) {
- case scConstant:
- WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
- return;
- case scTruncate: {
- const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
- const SCEV *Op = Trunc->getOperand();
- OS << "(trunc " << *Op->getType() << " " << *Op << " to "
- << *Trunc->getType() << ")";
- return;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
- const SCEV *Op = ZExt->getOperand();
- OS << "(zext " << *Op->getType() << " " << *Op << " to "
- << *ZExt->getType() << ")";
- return;
- }
- case scSignExtend: {
- const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
- const SCEV *Op = SExt->getOperand();
- OS << "(sext " << *Op->getType() << " " << *Op << " to "
- << *SExt->getType() << ")";
- return;
- }
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
- OS << "{" << *AR->getOperand(0);
- for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
- OS << ",+," << *AR->getOperand(i);
- OS << "}<";
- if (AR->getNoWrapFlags(FlagNUW))
- OS << "nuw><";
- if (AR->getNoWrapFlags(FlagNSW))
- OS << "nsw><";
- if (AR->getNoWrapFlags(FlagNW) &&
- !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
- OS << "nw><";
- WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
- OS << ">";
- return;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
- const char *OpStr = 0;
- switch (NAry->getSCEVType()) {
- case scAddExpr: OpStr = " + "; break;
- case scMulExpr: OpStr = " * "; break;
- case scUMaxExpr: OpStr = " umax "; break;
- case scSMaxExpr: OpStr = " smax "; break;
- }
- OS << "(";
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- OS << **I;
- if (llvm::next(I) != E)
- OS << OpStr;
- }
- OS << ")";
- switch (NAry->getSCEVType()) {
- case scAddExpr:
- case scMulExpr:
- if (NAry->getNoWrapFlags(FlagNUW))
- OS << "<nuw>";
- if (NAry->getNoWrapFlags(FlagNSW))
- OS << "<nsw>";
- }
- return;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
- OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
- return;
- }
- case scUnknown: {
- const SCEVUnknown *U = cast<SCEVUnknown>(this);
- Type *AllocTy;
- if (U->isSizeOf(AllocTy)) {
- OS << "sizeof(" << *AllocTy << ")";
- return;
- }
- if (U->isAlignOf(AllocTy)) {
- OS << "alignof(" << *AllocTy << ")";
- return;
- }
- Type *CTy;
- Constant *FieldNo;
- if (U->isOffsetOf(CTy, FieldNo)) {
- OS << "offsetof(" << *CTy << ", ";
- WriteAsOperand(OS, FieldNo, false);
- OS << ")";
- return;
- }
- // Otherwise just print it normally.
- WriteAsOperand(OS, U->getValue(), false);
- return;
- }
- case scCouldNotCompute:
- OS << "***COULDNOTCOMPUTE***";
- return;
- default: break;
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- Type *SCEV::getType() const {
- switch (getSCEVType()) {
- case scConstant:
- return cast<SCEVConstant>(this)->getType();
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return cast<SCEVCastExpr>(this)->getType();
- case scAddRecExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr:
- return cast<SCEVNAryExpr>(this)->getType();
- case scAddExpr:
- return cast<SCEVAddExpr>(this)->getType();
- case scUDivExpr:
- return cast<SCEVUDivExpr>(this)->getType();
- case scUnknown:
- return cast<SCEVUnknown>(this)->getType();
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default:
- llvm_unreachable("Unknown SCEV kind!");
- }
- }
- bool SCEV::isZero() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isZero();
- return false;
- }
- bool SCEV::isOne() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isOne();
- return false;
- }
- bool SCEV::isAllOnesValue() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isAllOnesValue();
- return false;
- }
- /// isNonConstantNegative - Return true if the specified scev is negated, but
- /// not a constant.
- bool SCEV::isNonConstantNegative() const {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
- if (!Mul) return false;
- // If there is a constant factor, it will be first.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
- if (!SC) return false;
- // Return true if the value is negative, this matches things like (-42 * V).
- return SC->getValue()->getValue().isNegative();
- }
- SCEVCouldNotCompute::SCEVCouldNotCompute() :
- SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
- bool SCEVCouldNotCompute::classof(const SCEV *S) {
- return S->getSCEVType() == scCouldNotCompute;
- }
- const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
- FoldingSetNodeID ID;
- ID.AddInteger(scConstant);
- ID.AddPointer(V);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
- return getConstant(ConstantInt::get(getContext(), Val));
- }
- const SCEV *
- ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
- IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
- return getConstant(ConstantInt::get(ITy, V, isSigned));
- }
- SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
- unsigned SCEVTy, const SCEV *op, Type *ty)
- : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
- SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scTruncate, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate non-integer value!");
- }
- SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scZeroExtend, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot zero extend non-integer value!");
- }
- SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scSignExtend, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot sign extend non-integer value!");
- }
- void SCEVUnknown::deleted() {
- // Clear this SCEVUnknown from various maps.
- SE->forgetMemoizedResults(this);
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
- // Release the value.
- setValPtr(0);
- }
- void SCEVUnknown::allUsesReplacedWith(Value *New) {
- // Clear this SCEVUnknown from various maps.
- SE->forgetMemoizedResults(this);
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
- // Update this SCEVUnknown to point to the new value. This is needed
- // because there may still be outstanding SCEVs which still point to
- // this SCEVUnknown.
- setValPtr(New);
- }
- bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue() &&
- CE->getNumOperands() == 2)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
- if (CI->isOne()) {
- AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType();
- return true;
- }
- return false;
- }
- bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- if (StructType *STy = dyn_cast<StructType>(Ty))
- if (!STy->isPacked() &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(1)->isNullValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
- if (CI->isOne() &&
- STy->getNumElements() == 2 &&
- STy->getElementType(0)->isIntegerTy(1)) {
- AllocTy = STy->getElementType(1);
- return true;
- }
- }
- }
- return false;
- }
- bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(0)->isNullValue() &&
- CE->getOperand(1)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- // Ignore vector types here so that ScalarEvolutionExpander doesn't
- // emit getelementptrs that index into vectors.
- if (Ty->isStructTy() || Ty->isArrayTy()) {
- CTy = Ty;
- FieldNo = CE->getOperand(2);
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // SCEV Utilities
- //===----------------------------------------------------------------------===//
- namespace {
- /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
- /// than the complexity of the RHS. This comparator is used to canonicalize
- /// expressions.
- class SCEVComplexityCompare {
- const LoopInfo *const LI;
- public:
- explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
- // Return true or false if LHS is less than, or at least RHS, respectively.
- bool operator()(const SCEV *LHS, const SCEV *RHS) const {
- return compare(LHS, RHS) < 0;
- }
- // Return negative, zero, or positive, if LHS is less than, equal to, or
- // greater than RHS, respectively. A three-way result allows recursive
- // comparisons to be more efficient.
- int compare(const SCEV *LHS, const SCEV *RHS) const {
- // Fast-path: SCEVs are uniqued so we can do a quick equality check.
- if (LHS == RHS)
- return 0;
- // Primarily, sort the SCEVs by their getSCEVType().
- unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
- if (LType != RType)
- return (int)LType - (int)RType;
- // Aside from the getSCEVType() ordering, the particular ordering
- // isn't very important except that it's beneficial to be consistent,
- // so that (a + b) and (b + a) don't end up as different expressions.
- switch (LType) {
- case scUnknown: {
- const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
- const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
- // Sort SCEVUnknown values with some loose heuristics. TODO: This is
- // not as complete as it could be.
- const Value *LV = LU->getValue(), *RV = RU->getValue();
- // Order pointer values after integer values. This helps SCEVExpander
- // form GEPs.
- bool LIsPointer = LV->getType()->isPointerTy(),
- RIsPointer = RV->getType()->isPointerTy();
- if (LIsPointer != RIsPointer)
- return (int)LIsPointer - (int)RIsPointer;
- // Compare getValueID values.
- unsigned LID = LV->getValueID(),
- RID = RV->getValueID();
- if (LID != RID)
- return (int)LID - (int)RID;
- // Sort arguments by their position.
- if (const Argument *LA = dyn_cast<Argument>(LV)) {
- const Argument *RA = cast<Argument>(RV);
- unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
- return (int)LArgNo - (int)RArgNo;
- }
- // For instructions, compare their loop depth, and their operand
- // count. This is pretty loose.
- if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
- const Instruction *RInst = cast<Instruction>(RV);
- // Compare loop depths.
- const BasicBlock *LParent = LInst->getParent(),
- *RParent = RInst->getParent();
- if (LParent != RParent) {
- unsigned LDepth = LI->getLoopDepth(LParent),
- RDepth = LI->getLoopDepth(RParent);
- if (LDepth != RDepth)
- return (int)LDepth - (int)RDepth;
- }
- // Compare the number of operands.
- unsigned LNumOps = LInst->getNumOperands(),
- RNumOps = RInst->getNumOperands();
- return (int)LNumOps - (int)RNumOps;
- }
- return 0;
- }
- case scConstant: {
- const SCEVConstant *LC = cast<SCEVConstant>(LHS);
- const SCEVConstant *RC = cast<SCEVConstant>(RHS);
- // Compare constant values.
- const APInt &LA = LC->getValue()->getValue();
- const APInt &RA = RC->getValue()->getValue();
- unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
- if (LBitWidth != RBitWidth)
- return (int)LBitWidth - (int)RBitWidth;
- return LA.ult(RA) ? -1 : 1;
- }
- case scAddRecExpr: {
- const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
- const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
- // Compare addrec loop depths.
- const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
- if (LLoop != RLoop) {
- unsigned LDepth = LLoop->getLoopDepth(),
- RDepth = RLoop->getLoopDepth();
- if (LDepth != RDepth)
- return (int)LDepth - (int)RDepth;
- }
- // Addrec complexity grows with operand count.
- unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
- // Lexicographically compare.
- for (unsigned i = 0; i != LNumOps; ++i) {
- long X = compare(LA->getOperand(i), RA->getOperand(i));
- if (X != 0)
- return X;
- }
- return 0;
- }
- case scAddExpr:
- case scMulExpr:
- case scSMaxExpr:
- case scUMaxExpr: {
- const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
- const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
- // Lexicographically compare n-ary expressions.
- unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
- for (unsigned i = 0; i != LNumOps; ++i) {
- if (i >= RNumOps)
- return 1;
- long X = compare(LC->getOperand(i), RC->getOperand(i));
- if (X != 0)
- return X;
- }
- return (int)LNumOps - (int)RNumOps;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
- const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
- // Lexicographically compare udiv expressions.
- long X = compare(LC->getLHS(), RC->getLHS());
- if (X != 0)
- return X;
- return compare(LC->getRHS(), RC->getRHS());
- }
- case scTruncate:
- case scZeroExtend:
- case scSignExtend: {
- const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
- const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
- // Compare cast expressions by operand.
- return compare(LC->getOperand(), RC->getOperand());
- }
- default:
- llvm_unreachable("Unknown SCEV kind!");
- }
- }
- };
- }
- /// GroupByComplexity - Given a list of SCEV objects, order them by their
- /// complexity, and group objects of the same complexity together by value.
- /// When this routine is finished, we know that any duplicates in the vector are
- /// consecutive and that complexity is monotonically increasing.
- ///
- /// Note that we go take special precautions to ensure that we get deterministic
- /// results from this routine. In other words, we don't want the results of
- /// this to depend on where the addresses of various SCEV objects happened to
- /// land in memory.
- ///
- static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
- LoopInfo *LI) {
- if (Ops.size() < 2) return; // Noop
- if (Ops.size() == 2) {
- // This is the common case, which also happens to be trivially simple.
- // Special case it.
- const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
- if (SCEVComplexityCompare(LI)(RHS, LHS))
- std::swap(LHS, RHS);
- return;
- }
- // Do the rough sort by complexity.
- std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
- // Now that we are sorted by complexity, group elements of the same
- // complexity. Note that this is, at worst, N^2, but the vector is likely to
- // be extremely short in practice. Note that we take this approach because we
- // do not want to depend on the addresses of the objects we are grouping.
- for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
- const SCEV *S = Ops[i];
- unsigned Complexity = S->getSCEVType();
- // If there are any objects of the same complexity and same value as this
- // one, group them.
- for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
- if (Ops[j] == S) { // Found a duplicate.
- // Move it to immediately after i'th element.
- std::swap(Ops[i+1], Ops[j]);
- ++i; // no need to rescan it.
- if (i == e-2) return; // Done!
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Simple SCEV method implementations
- //===----------------------------------------------------------------------===//
- /// BinomialCoefficient - Compute BC(It, K). The result has width W.
- /// Assume, K > 0.
- static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
- ScalarEvolution &SE,
- Type *ResultTy) {
- // Handle the simplest case efficiently.
- if (K == 1)
- return SE.getTruncateOrZeroExtend(It, ResultTy);
- // We are using the following formula for BC(It, K):
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
- //
- // Suppose, W is the bitwidth of the return value. We must be prepared for
- // overflow. Hence, we must assure that the result of our computation is
- // equal to the accurate one modulo 2^W. Unfortunately, division isn't
- // safe in modular arithmetic.
- //
- // However, this code doesn't use exactly that formula; the formula it uses
- // is something like the following, where T is the number of factors of 2 in
- // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
- // exponentiation:
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
- //
- // This formula is trivially equivalent to the previous formula. However,
- // this formula can be implemented much more efficiently. The trick is that
- // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
- // arithmetic. To do exact division in modular arithmetic, all we have
- // to do is multiply by the inverse. Therefore, this step can be done at
- // width W.
- //
- // The next issue is how to safely do the division by 2^T. The way this
- // is done is by doing the multiplication step at a width of at least W + T
- // bits. This way, the bottom W+T bits of the product are accurate. Then,
- // when we perform the division by 2^T (which is equivalent to a right shift
- // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
- // truncated out after the division by 2^T.
- //
- // In comparison to just directly using the first formula, this technique
- // is much more efficient; using the first formula requires W * K bits,
- // but this formula less than W + K bits. Also, the first formula requires
- // a division step, whereas this formula only requires multiplies and shifts.
- //
- // It doesn't matter whether the subtraction step is done in the calculation
- // width or the input iteration count's width; if the subtraction overflows,
- // the result must be zero anyway. We prefer here to do it in the width of
- // the induction variable because it helps a lot for certain cases; CodeGen
- // isn't smart enough to ignore the overflow, which leads to much less
- // efficient code if the width of the subtraction is wider than the native
- // register width.
- //
- // (It's possible to not widen at all by pulling out factors of 2 before
- // the multiplication; for example, K=2 can be calculated as
- // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
- // extra arithmetic, so it's not an obvious win, and it gets
- // much more complicated for K > 3.)
- // Protection from insane SCEVs; this bound is conservative,
- // but it probably doesn't matter.
- if (K > 1000)
- return SE.getCouldNotCompute();
- unsigned W = SE.getTypeSizeInBits(ResultTy);
- // Calculate K! / 2^T and T; we divide out the factors of two before
- // multiplying for calculating K! / 2^T to avoid overflow.
- // Other overflow doesn't matter because we only care about the bottom
- // W bits of the result.
- APInt OddFactorial(W, 1);
- unsigned T = 1;
- for (unsigned i = 3; i <= K; ++i) {
- APInt Mult(W, i);
- unsigned TwoFactors = Mult.countTrailingZeros();
- T += TwoFactors;
- Mult = Mult.lshr(TwoFactors);
- OddFactorial *= Mult;
- }
- // We need at least W + T bits for the multiplication step
- unsigned CalculationBits = W + T;
- // Calculate 2^T, at width T+W.
- APInt DivFactor = APInt(CalculationBits, 1).shl(T);
- // Calculate the multiplicative inverse of K! / 2^T;
- // this multiplication factor will perform the exact division by
- // K! / 2^T.
- APInt Mod = APInt::getSignedMinValue(W+1);
- APInt MultiplyFactor = OddFactorial.zext(W+1);
- MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
- MultiplyFactor = MultiplyFactor.trunc(W);
- // Calculate the product, at width T+W
- IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
- CalculationBits);
- const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
- for (unsigned i = 1; i != K; ++i) {
- const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
- Dividend = SE.getMulExpr(Dividend,
- SE.getTruncateOrZeroExtend(S, CalculationTy));
- }
- // Divide by 2^T
- const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
- // Truncate the result, and divide by K! / 2^T.
- return SE.getMulExpr(SE.getConstant(MultiplyFactor),
- SE.getTruncateOrZeroExtend(DivResult, ResultTy));
- }
- /// evaluateAtIteration - Return the value of this chain of recurrences at
- /// the specified iteration number. We can evaluate this recurrence by
- /// multiplying each element in the chain by the binomial coefficient
- /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
- ///
- /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
- ///
- /// where BC(It, k) stands for binomial coefficient.
- ///
- const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
- ScalarEvolution &SE) const {
- const SCEV *Result = getStart();
- for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
- // The computation is correct in the face of overflow provided that the
- // multiplication is performed _after_ the evaluation of the binomial
- // coefficient.
- const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
- if (isa<SCEVCouldNotCompute>(Coeff))
- return Coeff;
- Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SCEV Expression folder implementations
- //===----------------------------------------------------------------------===//
- const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
- "This is not a truncating conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- FoldingSetNodeID ID;
- ID.AddInteger(scTruncate);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
- // trunc(trunc(x)) --> trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
- return getTruncateExpr(ST->getOperand(), Ty);
- // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getTruncateOrSignExtend(SS->getOperand(), Ty);
- // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
- // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
- // eliminate all the truncates.
- if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- bool hasTrunc = false;
- for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
- const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
- hasTrunc = isa<SCEVTruncateExpr>(S);
- Operands.push_back(S);
- }
- if (!hasTrunc)
- return getAddExpr(Operands);
- UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
- }
- // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
- // eliminate all the truncates.
- if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- bool hasTrunc = false;
- for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
- const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
- hasTrunc = isa<SCEVTruncateExpr>(S);
- Operands.push_back(S);
- }
- if (!hasTrunc)
- return getMulExpr(Operands);
- UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
- }
- // If the input value is a chrec scev, truncate the chrec's operands.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
- Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
- return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
- }
- // The cast wasn't folded; create an explicit cast node. We can reuse
- // the existing insert position since if we get here, we won't have
- // made any changes which would invalidate it.
- SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
- // zext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty);
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scZeroExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // zext(trunc(x)) --> zext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all zero bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getUnsignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
- CR.zextOrTrunc(NewBits)))
- return getTruncateOrZeroExtend(X, Ty);
- }
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can zero extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->getNoWrapFlags(SCEV::FlagNUW))
- return getAddRecExpr(getZeroExtendExpr(Start, Ty),
- getZeroExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no unsigned overflow.
- const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
- const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy)));
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NUW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getZeroExtendExpr(Start, Ty),
- getZeroExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as signed.
- // This covers loops that count down.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy)));
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NW, which is propagated to this AddRec.
- // Negative step causes unsigned wrap, but it still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getZeroExtendExpr(Start, Ty),
- getSignExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- }
- // If the backedge is guarded by a comparison with the pre-inc value
- // the addrec is safe. Also, if the entry is guarded by a comparison
- // with the start value and the backedge is guarded by a comparison
- // with the post-inc value, the addrec is safe.
- if (isKnownPositive(Step)) {
- const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
- getUnsignedRange(Step).getUnsignedMax());
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
- (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
- isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
- AR->getPostIncExpr(*this), N))) {
- // Cache knowledge of AR NUW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getZeroExtendExpr(Start, Ty),
- getZeroExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- } else if (isKnownNegative(Step)) {
- const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
- getSignedRange(Step).getSignedMin());
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
- (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
- isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
- AR->getPostIncExpr(*this), N))) {
- // Cache knowledge of AR NW, which is propagated to this AddRec.
- // Negative step causes unsigned wrap, but it still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getZeroExtendExpr(Start, Ty),
- getSignExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- }
- }
- }
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- // Get the limit of a recurrence such that incrementing by Step cannot cause
- // signed overflow as long as the value of the recurrence within the loop does
- // not exceed this limit before incrementing.
- static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
- if (SE->isKnownPositive(Step)) {
- *Pred = ICmpInst::ICMP_SLT;
- return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
- SE->getSignedRange(Step).getSignedMax());
- }
- if (SE->isKnownNegative(Step)) {
- *Pred = ICmpInst::ICMP_SGT;
- return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
- SE->getSignedRange(Step).getSignedMin());
- }
- return 0;
- }
- // The recurrence AR has been shown to have no signed wrap. Typically, if we can
- // prove NSW for AR, then we can just as easily prove NSW for its preincrement
- // or postincrement sibling. This allows normalizing a sign extended AddRec as
- // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
- // result, the expression "Step + sext(PreIncAR)" is congruent with
- // "sext(PostIncAR)"
- static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
- Type *Ty,
- ScalarEvolution *SE) {
- const Loop *L = AR->getLoop();
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Check for a simple looking step prior to loop entry.
- const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
- if (!SA)
- return 0;
- // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
- // subtraction is expensive. For this purpose, perform a quick and dirty
- // difference, by checking for Step in the operand list.
- SmallVector<const SCEV *, 4> DiffOps;
- for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
- I != E; ++I) {
- if (*I != Step)
- DiffOps.push_back(*I);
- }
- if (DiffOps.size() == SA->getNumOperands())
- return 0;
- // This is a postinc AR. Check for overflow on the preinc recurrence using the
- // same three conditions that getSignExtendedExpr checks.
- // 1. NSW flags on the step increment.
- const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
- const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
- SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
- if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
- return PreStart;
- // 2. Direct overflow check on the step operation's expression.
- unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
- Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
- const SCEV *OperandExtendedStart =
- SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
- SE->getSignExtendExpr(Step, WideTy));
- if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
- // Cache knowledge of PreAR NSW.
- if (PreAR)
- const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
- // FIXME: this optimization needs a unit test
- DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
- return PreStart;
- }
- // 3. Loop precondition.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
- if (OverflowLimit &&
- SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
- return PreStart;
- }
- return 0;
- }
- // Get the normalized sign-extended expression for this AddRec's Start.
- static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
- Type *Ty,
- ScalarEvolution *SE) {
- const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
- if (!PreStart)
- return SE->getSignExtendExpr(AR->getStart(), Ty);
- return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
- SE->getSignExtendExpr(PreStart, Ty));
- }
- const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
- // sext(sext(x)) --> sext(x)
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getSignExtendExpr(SS->getOperand(), Ty);
- // sext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty);
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scSignExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // If the input value is provably positive, build a zext instead.
- if (isKnownNonNegative(Op))
- return getZeroExtendExpr(Op, Ty);
- // sext(trunc(x)) --> sext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all sign bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getSignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).signExtend(NewBits).contains(
- CR.sextOrTrunc(NewBits)))
- return getTruncateOrSignExtend(X, Ty);
- }
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can sign extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->getNoWrapFlags(SCEV::FlagNSW))
- return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
- getSignExtendExpr(Step, Ty),
- L, SCEV::FlagNSW);
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no signed overflow.
- const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
- const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy)));
- if (SAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NSW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
- getSignExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as unsigned.
- // This covers loops that count up with an unsigned step.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy)));
- if (SAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NSW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
- getZeroExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- }
- // If the backedge is guarded by a comparison with the pre-inc value
- // the addrec is safe. Also, if the entry is guarded by a comparison
- // with the start value and the backedge is guarded by a comparison
- // with the post-inc value, the addrec is safe.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
- if (OverflowLimit &&
- (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
- (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
- isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
- OverflowLimit)))) {
- // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
- getSignExtendExpr(Step, Ty),
- L, AR->getNoWrapFlags());
- }
- }
- }
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- /// getAnyExtendExpr - Return a SCEV for the given operand extended with
- /// unspecified bits out to the given type.
- ///
- const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Sign-extend negative constants.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- if (SC->getValue()->getValue().isNegative())
- return getSignExtendExpr(Op, Ty);
- // Peel off a truncate cast.
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
- const SCEV *NewOp = T->getOperand();
- if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
- return getAnyExtendExpr(NewOp, Ty);
- return getTruncateOrNoop(NewOp, Ty);
- }
- // Next try a zext cast. If the cast is folded, use it.
- const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
- if (!isa<SCEVZeroExtendExpr>(ZExt))
- return ZExt;
- // Next try a sext cast. If the cast is folded, use it.
- const SCEV *SExt = getSignExtendExpr(Op, Ty);
- if (!isa<SCEVSignExtendExpr>(SExt))
- return SExt;
- // Force the cast to be folded into the operands of an addrec.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Ops;
- for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
- I != E; ++I)
- Ops.push_back(getAnyExtendExpr(*I, Ty));
- return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
- }
- // If the expression is obviously signed, use the sext cast value.
- if (isa<SCEVSMaxExpr>(Op))
- return SExt;
- // Absent any other information, use the zext cast value.
- return ZExt;
- }
- /// CollectAddOperandsWithScales - Process the given Ops list, which is
- /// a list of operands to be added under the given scale, update the given
- /// map. This is a helper function for getAddRecExpr. As an example of
- /// what it does, given a sequence of operands that would form an add
- /// expression like this:
- ///
- /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
- ///
- /// where A and B are constants, update the map with these values:
- ///
- /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
- ///
- /// and add 13 + A*B*29 to AccumulatedConstant.
- /// This will allow getAddRecExpr to produce this:
- ///
- /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
- ///
- /// This form often exposes folding opportunities that are hidden in
- /// the original operand list.
- ///
- /// Return true iff it appears that any interesting folding opportunities
- /// may be exposed. This helps getAddRecExpr short-circuit extra work in
- /// the common case where no interesting opportunities are present, and
- /// is also used as a check to avoid infinite recursion.
- ///
- static bool
- CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
- SmallVector<const SCEV *, 8> &NewOps,
- APInt &AccumulatedConstant,
- const SCEV *const *Ops, size_t NumOperands,
- const APInt &Scale,
- ScalarEvolution &SE) {
- bool Interesting = false;
- // Iterate over the add operands. They are sorted, with constants first.
- unsigned i = 0;
- while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- ++i;
- // Pull a buried constant out to the outside.
- if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
- Interesting = true;
- AccumulatedConstant += Scale * C->getValue()->getValue();
- }
- // Next comes everything else. We're especially interested in multiplies
- // here, but they're in the middle, so just visit the rest with one loop.
- for (; i != NumOperands; ++i) {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
- if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
- APInt NewScale =
- Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
- if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
- // A multiplication of a constant with another add; recurse.
- const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
- Interesting |=
- CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Add->op_begin(), Add->getNumOperands(),
- NewScale, SE);
- } else {
- // A multiplication of a constant with some other value. Update
- // the map.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
- const SCEV *Key = SE.getMulExpr(MulOps);
- std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Key, NewScale));
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += NewScale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- } else {
- // An ordinary operand. Update the map.
- std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Ops[i], Scale));
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += Scale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- }
- return Interesting;
- }
- namespace {
- struct APIntCompare {
- bool operator()(const APInt &LHS, const APInt &RHS) const {
- return LHS.ult(RHS);
- }
- };
- }
- /// getAddExpr - Get a canonical add expression, or something simpler if
- /// possible.
- const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty add!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVAddExpr operand types don't match!");
- #endif
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
- E = Ops.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- Ops[0] = getConstant(LHSC->getValue()->getValue() +
- RHSC->getValue()->getValue());
- if (Ops.size() == 2) return Ops[0];
- Ops.erase(Ops.begin()+1); // Erase the folded element
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant zero being added, strip it off.
- if (LHSC->getValue()->isZero()) {
- Ops.erase(Ops.begin());
- --Idx;
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Okay, check to see if the same value occurs in the operand list more than
- // once. If so, merge them together into an multiply expression. Since we
- // sorted the list, these values are required to be adjacent.
- Type *Ty = Ops[0]->getType();
- bool FoundMatch = false;
- for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
- if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
- // Scan ahead to count how many equal operands there are.
- unsigned Count = 2;
- while (i+Count != e && Ops[i+Count] == Ops[i])
- ++Count;
- // Merge the values into a multiply.
- const SCEV *Scale = getConstant(Ty, Count);
- const SCEV *Mul = getMulExpr(Scale, Ops[i]);
- if (Ops.size() == Count)
- return Mul;
- Ops[i] = Mul;
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
- --i; e -= Count - 1;
- FoundMatch = true;
- }
- if (FoundMatch)
- return getAddExpr(Ops, Flags);
- // Check for truncates. If all the operands are truncated from the same
- // type, see if factoring out the truncate would permit the result to be
- // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
- // if the contents of the resulting outer trunc fold to something simple.
- for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
- const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
- Type *DstType = Trunc->getType();
- Type *SrcType = Trunc->getOperand()->getType();
- SmallVector<const SCEV *, 8> LargeOps;
- bool Ok = true;
- // Check all the operands to see if they can be represented in the
- // source type of the truncate.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeOps.push_back(T->getOperand());
- } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- LargeOps.push_back(getAnyExtendExpr(C, SrcType));
- } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
- SmallVector<const SCEV *, 8> LargeMulOps;
- for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
- if (const SCEVTruncateExpr *T =
- dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeMulOps.push_back(T->getOperand());
- } else if (const SCEVConstant *C =
- dyn_cast<SCEVConstant>(M->getOperand(j))) {
- LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok)
- LargeOps.push_back(getMulExpr(LargeMulOps));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok) {
- // Evaluate the expression in the larger type.
- const SCEV *Fold = getAddExpr(LargeOps, Flags);
- // If it folds to something simple, use it. Otherwise, don't.
- if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
- return getTruncateExpr(Fold, DstType);
- }
- }
- // Skip past any other cast SCEVs.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
- ++Idx;
- // If there are add operands they would be next.
- if (Idx < Ops.size()) {
- bool DeletedAdd = false;
- while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
- // If we have an add, expand the add operands onto the end of the operands
- // list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Add->op_begin(), Add->op_end());
- DeletedAdd = true;
- }
- // If we deleted at least one add, we added operands to the end of the list,
- // and they are not necessarily sorted. Recurse to resort and resimplify
- // any operands we just acquired.
- if (DeletedAdd)
- return getAddExpr(Ops);
- }
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
- // Check to see if there are any folding opportunities present with
- // operands multiplied by constant values.
- if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
- uint64_t BitWidth = getTypeSizeInBits(Ty);
- DenseMap<const SCEV *, APInt> M;
- SmallVector<const SCEV *, 8> NewOps;
- APInt AccumulatedConstant(BitWidth, 0);
- if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Ops.data(), Ops.size(),
- APInt(BitWidth, 1), *this)) {
- // Some interesting folding opportunity is present, so its worthwhile to
- // re-generate the operands list. Group the operands by constant scale,
- // to avoid multiplying by the same constant scale multiple times.
- std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
- for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
- E = NewOps.end(); I != E; ++I)
- MulOpLists[M.find(*I)->second].push_back(*I);
- // Re-generate the operands list.
- Ops.clear();
- if (AccumulatedConstant != 0)
- Ops.push_back(getConstant(AccumulatedConstant));
- for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
- I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
- if (I->first != 0)
- Ops.push_back(getMulExpr(getConstant(I->first),
- getAddExpr(I->second)));
- if (Ops.empty())
- return getConstant(Ty, 0);
- if (Ops.size() == 1)
- return Ops[0];
- return getAddExpr(Ops);
- }
- }
- // If we are adding something to a multiply expression, make sure the
- // something is not already an operand of the multiply. If so, merge it into
- // the multiply.
- for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
- const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
- for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
- const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
- if (isa<SCEVConstant>(MulOpSCEV))
- continue;
- for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
- if (MulOpSCEV == Ops[AddOp]) {
- // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
- const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- // If the multiply has more than two operands, we must get the
- // Y*Z term.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul = getMulExpr(MulOps);
- }
- const SCEV *One = getConstant(Ty, 1);
- const SCEV *AddOne = getAddExpr(One, InnerMul);
- const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
- if (Ops.size() == 2) return OuterMul;
- if (AddOp < Idx) {
- Ops.erase(Ops.begin()+AddOp);
- Ops.erase(Ops.begin()+Idx-1);
- } else {
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+AddOp-1);
- }
- Ops.push_back(OuterMul);
- return getAddExpr(Ops);
- }
- // Check this multiply against other multiplies being added together.
- for (unsigned OtherMulIdx = Idx+1;
- OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
- ++OtherMulIdx) {
- const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
- // If MulOp occurs in OtherMul, we can fold the two multiplies
- // together.
- for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
- OMulOp != e; ++OMulOp)
- if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
- // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
- const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul1 = getMulExpr(MulOps);
- }
- const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
- if (OtherMul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
- OtherMul->op_begin()+OMulOp);
- MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
- InnerMul2 = getMulExpr(MulOps);
- }
- const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
- const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
- if (Ops.size() == 2) return OuterMul;
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+OtherMulIdx-1);
- Ops.push_back(OuterMul);
- return getAddExpr(Ops);
- }
- }
- }
- }
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this add and add them to the vector if
- // they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isLoopInvariant(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
- LIOps.push_back(AddRec->getStart());
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- AddRecOps[0] = getAddExpr(LIOps);
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer add and the inner addrec are guaranteed to have no overflow.
- // Always propagate NW.
- Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
- // Otherwise, add the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getAddExpr(Ops);
- }
- // Okay, if there weren't any loop invariants to be folded, check to see if
- // there are multiple AddRec's with the same loop induction variable being
- // added together. If so, we can fold them.
- for (unsigned OtherIdx = Idx+1;
- OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
- if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
- // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
- if (const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
- if (OtherAddRec->getLoop() == AddRecLoop) {
- for (unsigned i = 0, e = OtherAddRec->getNumOperands();
- i != e; ++i) {
- if (i >= AddRecOps.size()) {
- AddRecOps.append(OtherAddRec->op_begin()+i,
- OtherAddRec->op_end());
- break;
- }
- AddRecOps[i] = getAddExpr(AddRecOps[i],
- OtherAddRec->getOperand(i));
- }
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- }
- // Step size has changed, so we cannot guarantee no self-wraparound.
- Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
- return getAddExpr(Ops);
- }
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
- // Okay, it looks like we really DO need an add expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scAddExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = 0;
- SCEVAddExpr *S =
- static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
- uint64_t k = i*j;
- if (j > 1 && k / j != i) Overflow = true;
- return k;
- }
- /// Compute the result of "n choose k", the binomial coefficient. If an
- /// intermediate computation overflows, Overflow will be set and the return will
- /// be garbage. Overflow is not cleared on absence of overflow.
- static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
- // We use the multiplicative formula:
- // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
- // At each iteration, we take the n-th term of the numeral and divide by the
- // (k-n)th term of the denominator. This division will always produce an
- // integral result, and helps reduce the chance of overflow in the
- // intermediate computations. However, we can still overflow even when the
- // final result would fit.
- if (n == 0 || n == k) return 1;
- if (k > n) return 0;
- if (k > n/2)
- k = n-k;
- uint64_t r = 1;
- for (uint64_t i = 1; i <= k; ++i) {
- r = umul_ov(r, n-(i-1), Overflow);
- r /= i;
- }
- return r;
- }
- /// getMulExpr - Get a canonical multiply expression, or something simpler if
- /// possible.
- const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty mul!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVMulExpr operand types don't match!");
- #endif
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
- E = Ops.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- // C1*(C2+V) -> C1*C2 + C1*V
- if (Ops.size() == 2)
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
- if (Add->getNumOperands() == 2 &&
- isa<SCEVConstant>(Add->getOperand(0)))
- return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
- getMulExpr(LHSC, Add->getOperand(1)));
- ++Idx;
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- LHSC->getValue()->getValue() *
- RHSC->getValue()->getValue());
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant one being multiplied, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
- // If we have a multiply of zero, it will always be zero.
- return Ops[0];
- } else if (Ops[0]->isAllOnesValue()) {
- // If we have a mul by -1 of an add, try distributing the -1 among the
- // add operands.
- if (Ops.size() == 2) {
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
- SmallVector<const SCEV *, 4> NewOps;
- bool AnyFolded = false;
- for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
- E = Add->op_end(); I != E; ++I) {
- const SCEV *Mul = getMulExpr(Ops[0], *I);
- if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
- NewOps.push_back(Mul);
- }
- if (AnyFolded)
- return getAddExpr(NewOps);
- }
- else if (const SCEVAddRecExpr *
- AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
- // Negation preserves a recurrence's no self-wrap property.
- SmallVector<const SCEV *, 4> Operands;
- for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
- E = AddRec->op_end(); I != E; ++I) {
- Operands.push_back(getMulExpr(Ops[0], *I));
- }
- return getAddRecExpr(Operands, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- }
- }
- }
- if (Ops.size() == 1)
- return Ops[0];
- }
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
- // If there are mul operands inline them all into this expression.
- if (Idx < Ops.size()) {
- bool DeletedMul = false;
- while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
- // If we have an mul, expand the mul operands onto the end of the operands
- // list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Mul->op_begin(), Mul->op_end());
- DeletedMul = true;
- }
- // If we deleted at least one mul, we added operands to the end of the list,
- // and they are not necessarily sorted. Recurse to resort and resimplify
- // any operands we just acquired.
- if (DeletedMul)
- return getMulExpr(Ops);
- }
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this mul and add them to the vector if
- // they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isLoopInvariant(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.reserve(AddRec->getNumOperands());
- const SCEV *Scale = getMulExpr(LIOps);
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
- NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer mul and the inner addrec are guaranteed to have no overflow.
- //
- // No self-wrap cannot be guaranteed after changing the step size, but
- // will be inferred if either NUW or NSW is true.
- Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
- // Otherwise, multiply the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getMulExpr(Ops);
- }
- // Okay, if there weren't any loop invariants to be folded, check to see if
- // there are multiple AddRec's with the same loop induction variable being
- // multiplied together. If so, we can fold them.
- for (unsigned OtherIdx = Idx+1;
- OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
- continue;
- // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
- // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
- // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
- // ]]],+,...up to x=2n}.
- // Note that the arguments to choose() are always integers with values
- // known at compile time, never SCEV objects.
- //
- // The implementation avoids pointless extra computations when the two
- // addrec's are of different length (mathematically, it's equivalent to
- // an infinite stream of zeros on the right).
- bool OpsModified = false;
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
- if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
- continue;
- bool Overflow = false;
- Type *Ty = AddRec->getType();
- bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
- SmallVector<const SCEV*, 7> AddRecOps;
- for (int x = 0, xe = AddRec->getNumOperands() +
- OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
- const SCEV *Term = getConstant(Ty, 0);
- for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
- uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
- for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
- ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
- z < ze && !Overflow; ++z) {
- uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
- uint64_t Coeff;
- if (LargerThan64Bits)
- Coeff = umul_ov(Coeff1, Coeff2, Overflow);
- else
- Coeff = Coeff1*Coeff2;
- const SCEV *CoeffTerm = getConstant(Ty, Coeff);
- const SCEV *Term1 = AddRec->getOperand(y-z);
- const SCEV *Term2 = OtherAddRec->getOperand(z);
- Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
- }
- }
- AddRecOps.push_back(Term);
- }
- if (!Overflow) {
- const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
- SCEV::FlagAnyWrap);
- if (Ops.size() == 2) return NewAddRec;
- Ops[Idx] = NewAddRec;
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- OpsModified = true;
- AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
- if (!AddRec)
- break;
- }
- }
- if (OpsModified)
- return getMulExpr(Ops);
- }
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
- // Okay, it looks like we really DO need an mul expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scMulExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = 0;
- SCEVMulExpr *S =
- static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- /// getUDivExpr - Get a canonical unsigned division expression, or something
- /// simpler if possible.
- const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
- const SCEV *RHS) {
- assert(getEffectiveSCEVType(LHS->getType()) ==
- getEffectiveSCEVType(RHS->getType()) &&
- "SCEVUDivExpr operand types don't match!");
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (RHSC->getValue()->equalsInt(1))
- return LHS; // X udiv 1 --> x
- // If the denominator is zero, the result of the udiv is undefined. Don't
- // try to analyze it, because the resolution chosen here may differ from
- // the resolution chosen in other parts of the compiler.
- if (!RHSC->getValue()->isZero()) {
- // Determine if the division can be folded into the operands of
- // its operands.
- // TODO: Generalize this to non-constants by using known-bits information.
- Type *Ty = LHS->getType();
- unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
- unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
- // For non-power-of-two values, effectively round the value up to the
- // nearest power of two.
- if (!RHSC->getValue()->getValue().isPowerOf2())
- ++MaxShiftAmt;
- IntegerType *ExtTy =
- IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
- if (const SCEVConstant *Step =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
- // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
- const APInt &StepInt = Step->getValue()->getValue();
- const APInt &DivInt = RHSC->getValue()->getValue();
- if (!StepInt.urem(DivInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
- Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
- return getAddRecExpr(Operands, AR->getLoop(),
- SCEV::FlagNW);
- }
- /// Get a canonical UDivExpr for a recurrence.
- /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
- // We can currently only fold X%N if X is constant.
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
- if (StartC && !DivInt.urem(StepInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- const APInt &StartInt = StartC->getValue()->getValue();
- const APInt &StartRem = StartInt.urem(StepInt);
- if (StartRem != 0)
- LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
- AR->getLoop(), SCEV::FlagNW);
- }
- }
- // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
- Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
- if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
- // Find an operand that's safely divisible.
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV *Op = M->getOperand(i);
- const SCEV *Div = getUDivExpr(Op, RHSC);
- if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
- Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
- M->op_end());
- Operands[i] = Div;
- return getMulExpr(Operands);
- }
- }
- }
- // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
- Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
- if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
- Operands.clear();
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
- if (isa<SCEVUDivExpr>(Op) ||
- getMulExpr(Op, RHS) != A->getOperand(i))
- break;
- Operands.push_back(Op);
- }
- if (Operands.size() == A->getNumOperands())
- return getAddExpr(Operands);
- }
- }
- // Fold if both operands are constant.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- Constant *LHSCV = LHSC->getValue();
- Constant *RHSCV = RHSC->getValue();
- return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
- RHSCV)));
- }
- }
- }
- FoldingSetNodeID ID;
- ID.AddInteger(scUDivExpr);
- ID.AddPointer(LHS);
- ID.AddPointer(RHS);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
- LHS, RHS);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- /// getAddRecExpr - Get an add recurrence expression for the specified loop.
- /// Simplify the expression as much as possible.
- const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
- const Loop *L,
- SCEV::NoWrapFlags Flags) {
- SmallVector<const SCEV *, 4> Operands;
- Operands.push_back(Start);
- if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
- if (StepChrec->getLoop() == L) {
- Operands.append(StepChrec->op_begin(), StepChrec->op_end());
- return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
- }
- Operands.push_back(Step);
- return getAddRecExpr(Operands, L, Flags);
- }
- /// getAddRecExpr - Get an add recurrence expression for the specified loop.
- /// Simplify the expression as much as possible.
- const SCEV *
- ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
- const Loop *L, SCEV::NoWrapFlags Flags) {
- if (Operands.size() == 1) return Operands[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
- for (unsigned i = 1, e = Operands.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
- "SCEVAddRecExpr operand types don't match!");
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- assert(isLoopInvariant(Operands[i], L) &&
- "SCEVAddRecExpr operand is not loop-invariant!");
- #endif
- if (Operands.back()->isZero()) {
- Operands.pop_back();
- return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
- }
- // It's tempting to want to call getMaxBackedgeTakenCount count here and
- // use that information to infer NUW and NSW flags. However, computing a
- // BE count requires calling getAddRecExpr, so we may not yet have a
- // meaningful BE count at this point (and if we don't, we'd be stuck
- // with a SCEVCouldNotCompute as the cached BE count).
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- // And vice-versa.
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
- if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
- bool All = true;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
- E = Operands.end(); I != E; ++I)
- if (!isKnownNonNegative(*I)) {
- All = false;
- break;
- }
- if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
- }
- // Canonicalize nested AddRecs in by nesting them in order of loop depth.
- if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
- const Loop *NestedLoop = NestedAR->getLoop();
- if (L->contains(NestedLoop) ?
- (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
- (!NestedLoop->contains(L) &&
- DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
- SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
- NestedAR->op_end());
- Operands[0] = NestedAR->getStart();
- // AddRecs require their operands be loop-invariant with respect to their
- // loops. Don't perform this transformation if it would break this
- // requirement.
- bool AllInvariant = true;
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- if (!isLoopInvariant(Operands[i], L)) {
- AllInvariant = false;
- break;
- }
- if (AllInvariant) {
- // Create a recurrence for the outer loop with the same step size.
- //
- // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
- // inner recurrence has the same property.
- SCEV::NoWrapFlags OuterFlags =
- maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
- NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
- AllInvariant = true;
- for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
- if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
- AllInvariant = false;
- break;
- }
- if (AllInvariant) {
- // Ok, both add recurrences are valid after the transformation.
- //
- // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
- // the outer recurrence has the same property.
- SCEV::NoWrapFlags InnerFlags =
- maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
- return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
- }
- }
- // Reset Operands to its original state.
- Operands[0] = NestedAR;
- }
- }
- // Okay, it looks like we really DO need an addrec expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scAddRecExpr);
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- ID.AddPointer(Operands[i]);
- ID.AddPointer(L);
- void *IP = 0;
- SCEVAddRecExpr *S =
- static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
- std::uninitialized_copy(Operands.begin(), Operands.end(), O);
- S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
- O, Operands.size(), L);
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops;
- Ops.push_back(LHS);
- Ops.push_back(RHS);
- return getSMaxExpr(Ops);
- }
- const SCEV *
- ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty smax!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVSMaxExpr operand types don't match!");
- #endif
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- APIntOps::smax(LHSC->getValue()->getValue(),
- RHSC->getValue()->getValue()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
- // If we have an smax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Find the first SMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
- ++Idx;
- // Check to see if one of the operands is an SMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedSMax = false;
- while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(SMax->op_begin(), SMax->op_end());
- DeletedSMax = true;
- }
- if (DeletedSMax)
- return getSMaxExpr(Ops);
- }
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X smax Y smax Y --> X smax Y
- // X smax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i+1] ||
- isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
- --i; --e;
- } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
- --i; --e;
- }
- if (Ops.size() == 1) return Ops[0];
- assert(!Ops.empty() && "Reduced smax down to nothing!");
- // Okay, it looks like we really DO need an smax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scSMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops;
- Ops.push_back(LHS);
- Ops.push_back(RHS);
- return getUMaxExpr(Ops);
- }
- const SCEV *
- ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty umax!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVUMaxExpr operand types don't match!");
- #endif
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- APIntOps::umax(LHSC->getValue()->getValue(),
- RHSC->getValue()->getValue()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
- // If we have an umax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Find the first UMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
- ++Idx;
- // Check to see if one of the operands is a UMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedUMax = false;
- while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(UMax->op_begin(), UMax->op_end());
- DeletedUMax = true;
- }
- if (DeletedUMax)
- return getUMaxExpr(Ops);
- }
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X umax Y umax Y --> X umax Y
- // X umax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i+1] ||
- isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
- --i; --e;
- } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
- --i; --e;
- }
- if (Ops.size() == 1) return Ops[0];
- assert(!Ops.empty() && "Reduced umax down to nothing!");
- // Okay, it looks like we really DO need a umax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scUMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // ~smax(~x, ~y) == smin(x, y).
- return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
- }
- const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // ~umax(~x, ~y) == umin(x, y)
- return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
- }
- const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
- // If we have DataLayout, we can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- if (TD)
- return getConstant(TD->getIntPtrType(getContext()),
- TD->getTypeAllocSize(AllocTy));
- Constant *C = ConstantExpr::getSizeOf(AllocTy);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
- C = Folded;
- Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
- return getTruncateOrZeroExtend(getSCEV(C), Ty);
- }
- const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
- Constant *C = ConstantExpr::getAlignOf(AllocTy);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
- C = Folded;
- Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
- return getTruncateOrZeroExtend(getSCEV(C), Ty);
- }
- const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
- unsigned FieldNo) {
- // If we have DataLayout, we can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- if (TD)
- return getConstant(TD->getIntPtrType(getContext()),
- TD->getStructLayout(STy)->getElementOffset(FieldNo));
- Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
- C = Folded;
- Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
- return getTruncateOrZeroExtend(getSCEV(C), Ty);
- }
- const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
- Constant *FieldNo) {
- Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
- C = Folded;
- Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
- return getTruncateOrZeroExtend(getSCEV(C), Ty);
- }
- const SCEV *ScalarEvolution::getUnknown(Value *V) {
- // Don't attempt to do anything other than create a SCEVUnknown object
- // here. createSCEV only calls getUnknown after checking for all other
- // interesting possibilities, and any other code that calls getUnknown
- // is doing so in order to hide a value from SCEV canonicalization.
- FoldingSetNodeID ID;
- ID.AddInteger(scUnknown);
- ID.AddPointer(V);
- void *IP = 0;
- if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
- assert(cast<SCEVUnknown>(S)->getValue() == V &&
- "Stale SCEVUnknown in uniquing map!");
- return S;
- }
- SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
- FirstUnknown);
- FirstUnknown = cast<SCEVUnknown>(S);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- //===----------------------------------------------------------------------===//
- // Basic SCEV Analysis and PHI Idiom Recognition Code
- //
- /// isSCEVable - Test if values of the given type are analyzable within
- /// the SCEV framework. This primarily includes integer types, and it
- /// can optionally include pointer types if the ScalarEvolution class
- /// has access to target-specific information.
- bool ScalarEvolution::isSCEVable(Type *Ty) const {
- // Integers and pointers are always SCEVable.
- return Ty->isIntegerTy() || Ty->isPointerTy();
- }
- /// getTypeSizeInBits - Return the size in bits of the specified type,
- /// for which isSCEVable must return true.
- uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
- // If we have a DataLayout, use it!
- if (TD)
- return TD->getTypeSizeInBits(Ty);
- // Integer types have fixed sizes.
- if (Ty->isIntegerTy())
- return Ty->getPrimitiveSizeInBits();
- // The only other support type is pointer. Without DataLayout, conservatively
- // assume pointers are 64-bit.
- assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
- return 64;
- }
- /// getEffectiveSCEVType - Return a type with the same bitwidth as
- /// the given type and which represents how SCEV will treat the given
- /// type, for which isSCEVable must return true. For pointer types,
- /// this is the pointer-sized integer type.
- Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
- if (Ty->isIntegerTy())
- return Ty;
- // The only other support type is pointer.
- assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
- if (TD) return TD->getIntPtrType(getContext());
- // Without DataLayout, conservatively assume pointers are 64-bit.
- return Type::getInt64Ty(getContext());
- }
- const SCEV *ScalarEvolution::getCouldNotCompute() {
- return &CouldNotCompute;
- }
- /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
- /// expression and create a new one.
- const SCEV *ScalarEvolution::getSCEV(Value *V) {
- assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
- ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
- if (I != ValueExprMap.end()) return I->second;
- const SCEV *S = createSCEV(V);
- // The process of creating a SCEV for V may have caused other SCEVs
- // to have been created, so it's necessary to insert the new entry
- // from scratch, rather than trying to remember the insert position
- // above.
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
- return S;
- }
- /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
- ///
- const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- return getMulExpr(V,
- getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
- }
- /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
- const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- const SCEV *AllOnes =
- getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
- return getMinusSCEV(AllOnes, V);
- }
- /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
- const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags) {
- assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
- // Fast path: X - X --> 0.
- if (LHS == RHS)
- return getConstant(LHS->getType(), 0);
- // X - Y --> X + -Y
- return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
- }
- /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is zero
- /// extended.
- const SCEV *
- ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getZeroExtendExpr(V, Ty);
- }
- /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is sign
- /// extended.
- const SCEV *
- ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
- Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getSignExtendExpr(V, Ty);
- }
- /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is zero
- /// extended. The conversion must not be narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or zero extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrZeroExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getZeroExtendExpr(V, Ty);
- }
- /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is sign
- /// extended. The conversion must not be narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or sign extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrSignExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getSignExtendExpr(V, Ty);
- }
- /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
- /// the input value to the specified type. If the type must be extended,
- /// it is extended with unspecified bits. The conversion must not be
- /// narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or any extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrAnyExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getAnyExtendExpr(V, Ty);
- }
- /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. The conversion must not be widening.
- const SCEV *
- ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or noop with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
- "getTruncateOrNoop cannot extend!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getTruncateExpr(V, Ty);
- }
- /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
- /// the types using zero-extension, and then perform a umax operation
- /// with them.
- const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- const SCEV *PromotedLHS = LHS;
- const SCEV *PromotedRHS = RHS;
- if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
- PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
- else
- PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
- return getUMaxExpr(PromotedLHS, PromotedRHS);
- }
- /// getUMinFromMismatchedTypes - Promote the operands to the wider of
- /// the types using zero-extension, and then perform a umin operation
- /// with them.
- const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- const SCEV *PromotedLHS = LHS;
- const SCEV *PromotedRHS = RHS;
- if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
- PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
- else
- PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
- return getUMinExpr(PromotedLHS, PromotedRHS);
- }
- /// getPointerBase - Transitively follow the chain of pointer-type operands
- /// until reaching a SCEV that does not have a single pointer operand. This
- /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
- /// but corner cases do exist.
- const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
- // A pointer operand may evaluate to a nonpointer expression, such as null.
- if (!V->getType()->isPointerTy())
- return V;
- if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
- return getPointerBase(Cast->getOperand());
- }
- else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
- const SCEV *PtrOp = 0;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- if ((*I)->getType()->isPointerTy()) {
- // Cannot find the base of an expression with multiple pointer operands.
- if (PtrOp)
- return V;
- PtrOp = *I;
- }
- }
- if (!PtrOp)
- return V;
- return getPointerBase(PtrOp);
- }
- return V;
- }
- /// PushDefUseChildren - Push users of the given Instruction
- /// onto the given Worklist.
- static void
- PushDefUseChildren(Instruction *I,
- SmallVectorImpl<Instruction *> &Worklist) {
- // Push the def-use children onto the Worklist stack.
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
- UI != UE; ++UI)
- Worklist.push_back(cast<Instruction>(*UI));
- }
- /// ForgetSymbolicValue - This looks up computed SCEV values for all
- /// instructions that depend on the given instruction and removes them from
- /// the ValueExprMapType map if they reference SymName. This is used during PHI
- /// resolution.
- void
- ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
- SmallVector<Instruction *, 16> Worklist;
- PushDefUseChildren(PN, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- Visited.insert(PN);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
- // Short-circuit the def-use traversal if the symbolic name
- // ceases to appear in expressions.
- if (Old != SymName && !hasOperand(Old, SymName))
- continue;
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, it's a PHI that's in the progress of being computed
- // by createNodeForPHI, or it's a single-value PHI. In the first case,
- // additional loop trip count information isn't going to change anything.
- // In the second case, createNodeForPHI will perform the necessary
- // updates on its own when it gets to that point. In the third, we do
- // want to forget the SCEVUnknown.
- if (!isa<PHINode>(I) ||
- !isa<SCEVUnknown>(Old) ||
- (I != PN && Old == SymName)) {
- forgetMemoizedResults(Old);
- ValueExprMap.erase(It);
- }
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
- /// a loop header, making it a potential recurrence, or it doesn't.
- ///
- const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
- if (const Loop *L = LI->getLoopFor(PN->getParent()))
- if (L->getHeader() == PN->getParent()) {
- // The loop may have multiple entrances or multiple exits; we can analyze
- // this phi as an addrec if it has a unique entry value and a unique
- // backedge value.
- Value *BEValueV = 0, *StartValueV = 0;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (L->contains(PN->getIncomingBlock(i))) {
- if (!BEValueV) {
- BEValueV = V;
- } else if (BEValueV != V) {
- BEValueV = 0;
- break;
- }
- } else if (!StartValueV) {
- StartValueV = V;
- } else if (StartValueV != V) {
- StartValueV = 0;
- break;
- }
- }
- if (BEValueV && StartValueV) {
- // While we are analyzing this PHI node, handle its value symbolically.
- const SCEV *SymbolicName = getUnknown(PN);
- assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
- "PHI node already processed?");
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
- // Using this symbolic name for the PHI, analyze the value coming around
- // the back-edge.
- const SCEV *BEValue = getSCEV(BEValueV);
- // NOTE: If BEValue is loop invariant, we know that the PHI node just
- // has a special value for the first iteration of the loop.
- // If the value coming around the backedge is an add with the symbolic
- // value we just inserted, then we found a simple induction variable!
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
- // If there is a single occurrence of the symbolic value, replace it
- // with a recurrence.
- unsigned FoundIndex = Add->getNumOperands();
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (Add->getOperand(i) == SymbolicName)
- if (FoundIndex == e) {
- FoundIndex = i;
- break;
- }
- if (FoundIndex != Add->getNumOperands()) {
- // Create an add with everything but the specified operand.
- SmallVector<const SCEV *, 8> Ops;
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (i != FoundIndex)
- Ops.push_back(Add->getOperand(i));
- const SCEV *Accum = getAddExpr(Ops);
- // This is not a valid addrec if the step amount is varying each
- // loop iteration, but is not itself an addrec in this loop.
- if (isLoopInvariant(Accum, L) ||
- (isa<SCEVAddRecExpr>(Accum) &&
- cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- // If the increment doesn't overflow, then neither the addrec nor
- // the post-increment will overflow.
- if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
- if (OBO->hasNoUnsignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (OBO->hasNoSignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNSW);
- } else if (const GEPOperator *GEP =
- dyn_cast<GEPOperator>(BEValueV)) {
- // If the increment is an inbounds GEP, then we know the address
- // space cannot be wrapped around. We cannot make any guarantee
- // about signed or unsigned overflow because pointers are
- // unsigned but we may have a negative index from the base
- // pointer.
- if (GEP->isInBounds())
- Flags = setFlags(Flags, SCEV::FlagNW);
- }
- const SCEV *StartVal = getSCEV(StartValueV);
- const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
- // Since the no-wrap flags are on the increment, they apply to the
- // post-incremented value as well.
- if (isLoopInvariant(Accum, L))
- (void)getAddRecExpr(getAddExpr(StartVal, Accum),
- Accum, L, Flags);
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- ForgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
- return PHISCEV;
- }
- }
- } else if (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(BEValue)) {
- // Otherwise, this could be a loop like this:
- // i = 0; for (j = 1; ..; ++j) { .... i = j; }
- // In this case, j = {1,+,1} and BEValue is j.
- // Because the other in-value of i (0) fits the evolution of BEValue
- // i really is an addrec evolution.
- if (AddRec->getLoop() == L && AddRec->isAffine()) {
- const SCEV *StartVal = getSCEV(StartValueV);
- // If StartVal = j.start - j.stride, we can use StartVal as the
- // initial step of the addrec evolution.
- if (StartVal == getMinusSCEV(AddRec->getOperand(0),
- AddRec->getOperand(1))) {
- // FIXME: For constant StartVal, we should be able to infer
- // no-wrap flags.
- const SCEV *PHISCEV =
- getAddRecExpr(StartVal, AddRec->getOperand(1), L,
- SCEV::FlagAnyWrap);
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- ForgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
- return PHISCEV;
- }
- }
- }
- }
- }
- // If the PHI has a single incoming value, follow that value, unless the
- // PHI's incoming blocks are in a different loop, in which case doing so
- // risks breaking LCSSA form. Instcombine would normally zap these, but
- // it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
- if (LI->replacementPreservesLCSSAForm(PN, V))
- return getSCEV(V);
- // If it's not a loop phi, we can't handle it yet.
- return getUnknown(PN);
- }
- /// createNodeForGEP - Expand GEP instructions into add and multiply
- /// operations. This allows them to be analyzed by regular SCEV code.
- ///
- const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
- // Don't blindly transfer the inbounds flag from the GEP instruction to the
- // Add expression, because the Instruction may be guarded by control flow
- // and the no-overflow bits may not be valid for the expression in any
- // context.
- bool isInBounds = GEP->isInBounds();
- Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
- Value *Base = GEP->getOperand(0);
- // Don't attempt to analyze GEPs over unsized objects.
- if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
- return getUnknown(GEP);
- const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
- E = GEP->op_end();
- I != E; ++I) {
- Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
- // Add the field offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, FieldOffset);
- } else {
- // For an array, add the element offset, explicitly scaled.
- const SCEV *ElementSize = getSizeOfExpr(*GTI);
- const SCEV *IndexS = getSCEV(Index);
- // Getelementptr indices are signed.
- IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
- // Multiply the index by the element size to compute the element offset.
- const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
- isInBounds ? SCEV::FlagNSW :
- SCEV::FlagAnyWrap);
- // Add the element offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, LocalOffset);
- }
- }
- // Get the SCEV for the GEP base.
- const SCEV *BaseS = getSCEV(Base);
- // Add the total offset from all the GEP indices to the base.
- return getAddExpr(BaseS, TotalOffset,
- isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
- }
- /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
- /// guaranteed to end in (at every loop iteration). It is, at the same time,
- /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
- /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
- uint32_t
- ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return C->getValue()->getValue().countTrailingZeros();
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
- return std::min(GetMinTrailingZeros(T->getOperand()),
- (uint32_t)getTypeSizeInBits(T->getType()));
- if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
- getTypeSizeInBits(E->getType()) : OpRes;
- }
- if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
- getTypeSizeInBits(E->getType()) : OpRes;
- }
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- // The result is the sum of all operands results.
- uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
- uint32_t BitWidth = getTypeSizeInBits(M->getType());
- for (unsigned i = 1, e = M->getNumOperands();
- SumOpRes != BitWidth && i != e; ++i)
- SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
- BitWidth);
- return SumOpRes;
- }
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // For a SCEVUnknown, ask ValueTracking.
- unsigned BitWidth = getTypeSizeInBits(U->getType());
- APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Zeros, Ones);
- return Zeros.countTrailingOnes();
- }
- // SCEVUDivExpr
- return 0;
- }
- /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
- ///
- ConstantRange
- ScalarEvolution::getUnsignedRange(const SCEV *S) {
- // See if we've computed this range already.
- DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
- if (I != UnsignedRanges.end())
- return I->second;
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
- unsigned BitWidth = getTypeSizeInBits(S->getType());
- ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
- // If the value has known zeros, the maximum unsigned value will have those
- // known zeros as well.
- uint32_t TZ = GetMinTrailingZeros(S);
- if (TZ != 0)
- ConservativeResult =
- ConstantRange(APInt::getMinValue(BitWidth),
- APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- ConstantRange X = getUnsignedRange(Add->getOperand(0));
- for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
- X = X.add(getUnsignedRange(Add->getOperand(i)));
- return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
- }
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- ConstantRange X = getUnsignedRange(Mul->getOperand(0));
- for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
- X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
- return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
- }
- if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
- ConstantRange X = getUnsignedRange(SMax->getOperand(0));
- for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
- X = X.smax(getUnsignedRange(SMax->getOperand(i)));
- return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
- ConstantRange X = getUnsignedRange(UMax->getOperand(0));
- for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
- X = X.umax(getUnsignedRange(UMax->getOperand(i)));
- return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
- ConstantRange X = getUnsignedRange(UDiv->getLHS());
- ConstantRange Y = getUnsignedRange(UDiv->getRHS());
- return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
- }
- if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
- ConstantRange X = getUnsignedRange(ZExt->getOperand());
- return setUnsignedRange(ZExt,
- ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
- }
- if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
- ConstantRange X = getUnsignedRange(SExt->getOperand());
- return setUnsignedRange(SExt,
- ConservativeResult.intersectWith(X.signExtend(BitWidth)));
- }
- if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
- ConstantRange X = getUnsignedRange(Trunc->getOperand());
- return setUnsignedRange(Trunc,
- ConservativeResult.intersectWith(X.truncate(BitWidth)));
- }
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- // If there's no unsigned wrap, the value will never be less than its
- // initial value.
- if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
- if (!C->getValue()->isZero())
- ConservativeResult =
- ConservativeResult.intersectWith(
- ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
- // TODO: non-affine addrec
- if (AddRec->isAffine()) {
- Type *Ty = AddRec->getType();
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
- getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
- MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
- const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*this);
- ConstantRange StartRange = getUnsignedRange(Start);
- ConstantRange StepRange = getSignedRange(Step);
- ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
- ConstantRange EndRange =
- StartRange.add(MaxBECountRange.multiply(StepRange));
- // Check for overflow. This must be done with ConstantRange arithmetic
- // because we could be called from within the ScalarEvolution overflow
- // checking code.
- ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
- ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
- ConstantRange ExtMaxBECountRange =
- MaxBECountRange.zextOrTrunc(BitWidth*2+1);
- ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
- if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
- ExtEndRange)
- return setUnsignedRange(AddRec, ConservativeResult);
- APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
- EndRange.getUnsignedMin());
- APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
- EndRange.getUnsignedMax());
- if (Min.isMinValue() && Max.isMaxValue())
- return setUnsignedRange(AddRec, ConservativeResult);
- return setUnsignedRange(AddRec,
- ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
- }
- }
- return setUnsignedRange(AddRec, ConservativeResult);
- }
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // For a SCEVUnknown, ask ValueTracking.
- APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
- if (Ones == ~Zeros + 1)
- return setUnsignedRange(U, ConservativeResult);
- return setUnsignedRange(U,
- ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
- }
- return setUnsignedRange(S, ConservativeResult);
- }
- /// getSignedRange - Determine the signed range for a particular SCEV.
- ///
- ConstantRange
- ScalarEvolution::getSignedRange(const SCEV *S) {
- // See if we've computed this range already.
- DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
- if (I != SignedRanges.end())
- return I->second;
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
- unsigned BitWidth = getTypeSizeInBits(S->getType());
- ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
- // If the value has known zeros, the maximum signed value will have those
- // known zeros as well.
- uint32_t TZ = GetMinTrailingZeros(S);
- if (TZ != 0)
- ConservativeResult =
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- ConstantRange X = getSignedRange(Add->getOperand(0));
- for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
- X = X.add(getSignedRange(Add->getOperand(i)));
- return setSignedRange(Add, ConservativeResult.intersectWith(X));
- }
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- ConstantRange X = getSignedRange(Mul->getOperand(0));
- for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
- X = X.multiply(getSignedRange(Mul->getOperand(i)));
- return setSignedRange(Mul, ConservativeResult.intersectWith(X));
- }
- if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
- ConstantRange X = getSignedRange(SMax->getOperand(0));
- for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
- X = X.smax(getSignedRange(SMax->getOperand(i)));
- return setSignedRange(SMax, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
- ConstantRange X = getSignedRange(UMax->getOperand(0));
- for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
- X = X.umax(getSignedRange(UMax->getOperand(i)));
- return setSignedRange(UMax, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
- ConstantRange X = getSignedRange(UDiv->getLHS());
- ConstantRange Y = getSignedRange(UDiv->getRHS());
- return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
- }
- if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
- ConstantRange X = getSignedRange(ZExt->getOperand());
- return setSignedRange(ZExt,
- ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
- }
- if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
- ConstantRange X = getSignedRange(SExt->getOperand());
- return setSignedRange(SExt,
- ConservativeResult.intersectWith(X.signExtend(BitWidth)));
- }
- if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
- ConstantRange X = getSignedRange(Trunc->getOperand());
- return setSignedRange(Trunc,
- ConservativeResult.intersectWith(X.truncate(BitWidth)));
- }
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- // If there's no signed wrap, and all the operands have the same sign or
- // zero, the value won't ever change sign.
- if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
- bool AllNonNeg = true;
- bool AllNonPos = true;
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
- if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
- }
- if (AllNonNeg)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt(BitWidth, 0),
- APInt::getSignedMinValue(BitWidth)));
- else if (AllNonPos)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt(BitWidth, 1)));
- }
- // TODO: non-affine addrec
- if (AddRec->isAffine()) {
- Type *Ty = AddRec->getType();
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
- getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
- MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
- const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*this);
- ConstantRange StartRange = getSignedRange(Start);
- ConstantRange StepRange = getSignedRange(Step);
- ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
- ConstantRange EndRange =
- StartRange.add(MaxBECountRange.multiply(StepRange));
- // Check for overflow. This must be done with ConstantRange arithmetic
- // because we could be called from within the ScalarEvolution overflow
- // checking code.
- ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
- ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
- ConstantRange ExtMaxBECountRange =
- MaxBECountRange.zextOrTrunc(BitWidth*2+1);
- ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
- if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
- ExtEndRange)
- return setSignedRange(AddRec, ConservativeResult);
- APInt Min = APIntOps::smin(StartRange.getSignedMin(),
- EndRange.getSignedMin());
- APInt Max = APIntOps::smax(StartRange.getSignedMax(),
- EndRange.getSignedMax());
- if (Min.isMinSignedValue() && Max.isMaxSignedValue())
- return setSignedRange(AddRec, ConservativeResult);
- return setSignedRange(AddRec,
- ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
- }
- }
- return setSignedRange(AddRec, ConservativeResult);
- }
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // For a SCEVUnknown, ask ValueTracking.
- if (!U->getValue()->getType()->isIntegerTy() && !TD)
- return setSignedRange(U, ConservativeResult);
- unsigned NS = ComputeNumSignBits(U->getValue(), TD);
- if (NS == 1)
- return setSignedRange(U, ConservativeResult);
- return setSignedRange(U, ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
- APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
- }
- return setSignedRange(S, ConservativeResult);
- }
- /// createSCEV - We know that there is no SCEV for the specified value.
- /// Analyze the expression.
- ///
- const SCEV *ScalarEvolution::createSCEV(Value *V) {
- if (!isSCEVable(V->getType()))
- return getUnknown(V);
- unsigned Opcode = Instruction::UserOp1;
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- Opcode = I->getOpcode();
- // Don't attempt to analyze instructions in blocks that aren't
- // reachable. Such instructions don't matter, and they aren't required
- // to obey basic rules for definitions dominating uses which this
- // analysis depends on.
- if (!DT->isReachableFromEntry(I->getParent()))
- return getUnknown(V);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- Opcode = CE->getOpcode();
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return getConstant(CI);
- else if (isa<ConstantPointerNull>(V))
- return getConstant(V->getType(), 0);
- else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
- return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
- else
- return getUnknown(V);
- Operator *U = cast<Operator>(V);
- switch (Opcode) {
- case Instruction::Add: {
- // The simple thing to do would be to just call getSCEV on both operands
- // and call getAddExpr with the result. However if we're looking at a
- // bunch of things all added together, this can be quite inefficient,
- // because it leads to N-1 getAddExpr calls for N ultimate operands.
- // Instead, gather up all the operands and make a single getAddExpr call.
- // LLVM IR canonical form means we need only traverse the left operands.
- //
- // Don't apply this instruction's NSW or NUW flags to the new
- // expression. The instruction may be guarded by control flow that the
- // no-wrap behavior depends on. Non-control-equivalent instructions can be
- // mapped to the same SCEV expression, and it would be incorrect to transfer
- // NSW/NUW semantics to those operations.
- SmallVector<const SCEV *, 4> AddOps;
- AddOps.push_back(getSCEV(U->getOperand(1)));
- for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
- unsigned Opcode = Op->getValueID() - Value::InstructionVal;
- if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
- break;
- U = cast<Operator>(Op);
- const SCEV *Op1 = getSCEV(U->getOperand(1));
- if (Opcode == Instruction::Sub)
- AddOps.push_back(getNegativeSCEV(Op1));
- else
- AddOps.push_back(Op1);
- }
- AddOps.push_back(getSCEV(U->getOperand(0)));
- return getAddExpr(AddOps);
- }
- case Instruction::Mul: {
- // Don't transfer NSW/NUW for the same reason as AddExpr.
- SmallVector<const SCEV *, 4> MulOps;
- MulOps.push_back(getSCEV(U->getOperand(1)));
- for (Value *Op = U->getOperand(0);
- Op->getValueID() == Instruction::Mul + Value::InstructionVal;
- Op = U->getOperand(0)) {
- U = cast<Operator>(Op);
- MulOps.push_back(getSCEV(U->getOperand(1)));
- }
- MulOps.push_back(getSCEV(U->getOperand(0)));
- return getMulExpr(MulOps);
- }
- case Instruction::UDiv:
- return getUDivExpr(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- case Instruction::Sub:
- return getMinusSCEV(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- case Instruction::And:
- // For an expression like x&255 that merely masks off the high bits,
- // use zext(trunc(x)) as the SCEV expression.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- if (CI->isNullValue())
- return getSCEV(U->getOperand(1));
- if (CI->isAllOnesValue())
- return getSCEV(U->getOperand(0));
- const APInt &A = CI->getValue();
- // Instcombine's ShrinkDemandedConstant may strip bits out of
- // constants, obscuring what would otherwise be a low-bits mask.
- // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
- // knew about to reconstruct a low-bits mask value.
- unsigned LZ = A.countLeadingZeros();
- unsigned BitWidth = A.getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
- APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
- if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
- return
- getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
- IntegerType::get(getContext(), BitWidth - LZ)),
- U->getType());
- }
- break;
- case Instruction::Or:
- // If the RHS of the Or is a constant, we may have something like:
- // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
- // optimizations will transparently handle this case.
- //
- // In order for this transformation to be safe, the LHS must be of the
- // form X*(2^n) and the Or constant must be less than 2^n.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- const SCEV *LHS = getSCEV(U->getOperand(0));
- const APInt &CIVal = CI->getValue();
- if (GetMinTrailingZeros(LHS) >=
- (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
- // Build a plain add SCEV.
- const SCEV *S = getAddExpr(LHS, getSCEV(CI));
- // If the LHS of the add was an addrec and it has no-wrap flags,
- // transfer the no-wrap flags, since an or won't introduce a wrap.
- if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
- const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
- OldAR->getNoWrapFlags());
- }
- return S;
- }
- }
- break;
- case Instruction::Xor:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- // If the RHS of the xor is a signbit, then this is just an add.
- // Instcombine turns add of signbit into xor as a strength reduction step.
- if (CI->getValue().isSignBit())
- return getAddExpr(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- // If the RHS of xor is -1, then this is a not operation.
- if (CI->isAllOnesValue())
- return getNotSCEV(getSCEV(U->getOperand(0)));
- // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
- // This is a variant of the check for xor with -1, and it handles
- // the case where instcombine has trimmed non-demanded bits out
- // of an xor with -1.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
- if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO->getOpcode() == Instruction::And &&
- LCI->getValue() == CI->getValue())
- if (const SCEVZeroExtendExpr *Z =
- dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
- Type *UTy = U->getType();
- const SCEV *Z0 = Z->getOperand();
- Type *Z0Ty = Z0->getType();
- unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
- // If C is a low-bits mask, the zero extend is serving to
- // mask off the high bits. Complement the operand and
- // re-apply the zext.
- if (APIntOps::isMask(Z0TySize, CI->getValue()))
- return getZeroExtendExpr(getNotSCEV(Z0), UTy);
- // If C is a single bit, it may be in the sign-bit position
- // before the zero-extend. In this case, represent the xor
- // using an add, which is equivalent, and re-apply the zext.
- APInt Trunc = CI->getValue().trunc(Z0TySize);
- if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
- Trunc.isSignBit())
- return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
- UTy);
- }
- }
- break;
- case Instruction::Shl:
- // Turn shift left of a constant amount into a multiply.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().uge(BitWidth))
- break;
- Constant *X = ConstantInt::get(getContext(),
- APInt(BitWidth, 1).shl(SA->getZExtValue()));
- return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
- }
- break;
- case Instruction::LShr:
- // Turn logical shift right of a constant into a unsigned divide.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().uge(BitWidth))
- break;
- Constant *X = ConstantInt::get(getContext(),
- APInt(BitWidth, 1).shl(SA->getZExtValue()));
- return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
- }
- break;
- case Instruction::AShr:
- // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
- if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
- if (L->getOpcode() == Instruction::Shl &&
- L->getOperand(1) == U->getOperand(1)) {
- uint64_t BitWidth = getTypeSizeInBits(U->getType());
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (CI->getValue().uge(BitWidth))
- break;
- uint64_t Amt = BitWidth - CI->getZExtValue();
- if (Amt == BitWidth)
- return getSCEV(L->getOperand(0)); // shift by zero --> noop
- return
- getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
- IntegerType::get(getContext(),
- Amt)),
- U->getType());
- }
- break;
- case Instruction::Trunc:
- return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::ZExt:
- return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::SExt:
- return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::BitCast:
- // BitCasts are no-op casts so we just eliminate the cast.
- if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
- return getSCEV(U->getOperand(0));
- break;
- // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
- // lead to pointer expressions which cannot safely be expanded to GEPs,
- // because ScalarEvolution doesn't respect the GEP aliasing rules when
- // simplifying integer expressions.
- case Instruction::GetElementPtr:
- return createNodeForGEP(cast<GEPOperator>(U));
- case Instruction::PHI:
- return createNodeForPHI(cast<PHINode>(U));
- case Instruction::Select:
- // This could be a smax or umax that was lowered earlier.
- // Try to recover it.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- switch (ICI->getPredicate()) {
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- // a >s b ? a+x : b+x -> smax(a, b)+x
- // a >s b ? b+x : a+x -> smin(a, b)+x
- if (LHS->getType() == U->getType()) {
- const SCEV *LS = getSCEV(LHS);
- const SCEV *RS = getSCEV(RHS);
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getSMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getSMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // a >u b ? a+x : b+x -> umax(a, b)+x
- // a >u b ? b+x : a+x -> umin(a, b)+x
- if (LHS->getType() == U->getType()) {
- const SCEV *LS = getSCEV(LHS);
- const SCEV *RS = getSCEV(RHS);
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_NE:
- // n != 0 ? n+x : 1+x -> umax(n, 1)+x
- if (LHS->getType() == U->getType() &&
- isa<ConstantInt>(RHS) &&
- cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getConstant(LHS->getType(), 1);
- const SCEV *LS = getSCEV(LHS);
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, One);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- case ICmpInst::ICMP_EQ:
- // n == 0 ? 1+x : n+x -> umax(n, 1)+x
- if (LHS->getType() == U->getType() &&
- isa<ConstantInt>(RHS) &&
- cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getConstant(LHS->getType(), 1);
- const SCEV *LS = getSCEV(LHS);
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, One);
- const SCEV *RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- default:
- break;
- }
- }
- default: // We cannot analyze this expression.
- break;
- }
- return getUnknown(V);
- }
- //===----------------------------------------------------------------------===//
- // Iteration Count Computation Code
- //
- /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
- /// normal unsigned value. Returns 0 if the trip count is unknown or not
- /// constant. Will also return 0 if the maximum trip count is very large (>=
- /// 2^32).
- ///
- /// This "trip count" assumes that control exits via ExitingBlock. More
- /// precisely, it is the number of times that control may reach ExitingBlock
- /// before taking the branch. For loops with multiple exits, it may not be the
- /// number times that the loop header executes because the loop may exit
- /// prematurely via another branch.
- unsigned ScalarEvolution::
- getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
- const SCEVConstant *ExitCount =
- dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
- if (!ExitCount)
- return 0;
- ConstantInt *ExitConst = ExitCount->getValue();
- // Guard against huge trip counts.
- if (ExitConst->getValue().getActiveBits() > 32)
- return 0;
- // In case of integer overflow, this returns 0, which is correct.
- return ((unsigned)ExitConst->getZExtValue()) + 1;
- }
- /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
- /// trip count of this loop as a normal unsigned value, if possible. This
- /// means that the actual trip count is always a multiple of the returned
- /// value (don't forget the trip count could very well be zero as well!).
- ///
- /// Returns 1 if the trip count is unknown or not guaranteed to be the
- /// multiple of a constant (which is also the case if the trip count is simply
- /// constant, use getSmallConstantTripCount for that case), Will also return 1
- /// if the trip count is very large (>= 2^32).
- ///
- /// As explained in the comments for getSmallConstantTripCount, this assumes
- /// that control exits the loop via ExitingBlock.
- unsigned ScalarEvolution::
- getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
- const SCEV *ExitCount = getExitCount(L, ExitingBlock);
- if (ExitCount == getCouldNotCompute())
- return 1;
- // Get the trip count from the BE count by adding 1.
- const SCEV *TCMul = getAddExpr(ExitCount,
- getConstant(ExitCount->getType(), 1));
- // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
- // to factor simple cases.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
- TCMul = Mul->getOperand(0);
- const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
- if (!MulC)
- return 1;
- ConstantInt *Result = MulC->getValue();
- // Guard against huge trip counts (this requires checking
- // for zero to handle the case where the trip count == -1 and the
- // addition wraps).
- if (!Result || Result->getValue().getActiveBits() > 32 ||
- Result->getValue().getActiveBits() == 0)
- return 1;
- return (unsigned)Result->getZExtValue();
- }
- // getExitCount - Get the expression for the number of loop iterations for which
- // this loop is guaranteed not to exit via ExitintBlock. Otherwise return
- // SCEVCouldNotCompute.
- const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
- return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
- }
- /// getBackedgeTakenCount - If the specified loop has a predictable
- /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
- /// object. The backedge-taken count is the number of times the loop header
- /// will be branched to from within the loop. This is one less than the
- /// trip count of the loop, since it doesn't count the first iteration,
- /// when the header is branched to from outside the loop.
- ///
- /// Note that it is not valid to call this method on a loop without a
- /// loop-invariant backedge-taken count (see
- /// hasLoopInvariantBackedgeTakenCount).
- ///
- const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getExact(this);
- }
- /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
- /// return the least SCEV value that is known never to be less than the
- /// actual backedge taken count.
- const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getMax(this);
- }
- /// PushLoopPHIs - Push PHI nodes in the header of the given loop
- /// onto the given Worklist.
- static void
- PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
- BasicBlock *Header = L->getHeader();
- // Push all Loop-header PHIs onto the Worklist stack.
- for (BasicBlock::iterator I = Header->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I)
- Worklist.push_back(PN);
- }
- const ScalarEvolution::BackedgeTakenInfo &
- ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
- // Initially insert an invalid entry for this loop. If the insertion
- // succeeds, proceed to actually compute a backedge-taken count and
- // update the value. The temporary CouldNotCompute value tells SCEV
- // code elsewhere that it shouldn't attempt to request a new
- // backedge-taken count, which could result in infinite recursion.
- std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
- BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
- if (!Pair.second)
- return Pair.first->second;
- // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
- // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
- // must be cleared in this scope.
- BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
- if (Result.getExact(this) != getCouldNotCompute()) {
- assert(isLoopInvariant(Result.getExact(this), L) &&
- isLoopInvariant(Result.getMax(this), L) &&
- "Computed backedge-taken count isn't loop invariant for loop!");
- ++NumTripCountsComputed;
- }
- else if (Result.getMax(this) == getCouldNotCompute() &&
- isa<PHINode>(L->getHeader()->begin())) {
- // Only count loops that have phi nodes as not being computable.
- ++NumTripCountsNotComputed;
- }
- // Now that we know more about the trip count for this loop, forget any
- // existing SCEV values for PHI nodes in this loop since they are only
- // conservative estimates made without the benefit of trip count
- // information. This is similar to the code in forgetLoop, except that
- // it handles SCEVUnknown PHI nodes specially.
- if (Result.hasAnyInfo()) {
- SmallVector<Instruction *, 16> Worklist;
- PushLoopPHIs(L, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, or it's a PHI that's in the progress of being computed
- // by createNodeForPHI. In the former case, additional loop trip
- // count information isn't going to change anything. In the later
- // case, createNodeForPHI will perform the necessary updates on its
- // own when it gets to that point.
- if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
- forgetMemoizedResults(Old);
- ValueExprMap.erase(It);
- }
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- // Re-lookup the insert position, since the call to
- // ComputeBackedgeTakenCount above could result in a
- // recusive call to getBackedgeTakenInfo (on a different
- // loop), which would invalidate the iterator computed
- // earlier.
- return BackedgeTakenCounts.find(L)->second = Result;
- }
- /// forgetLoop - This method should be called by the client when it has
- /// changed a loop in a way that may effect ScalarEvolution's ability to
- /// compute a trip count, or if the loop is deleted.
- void ScalarEvolution::forgetLoop(const Loop *L) {
- // Drop any stored trip count value.
- DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
- BackedgeTakenCounts.find(L);
- if (BTCPos != BackedgeTakenCounts.end()) {
- BTCPos->second.clear();
- BackedgeTakenCounts.erase(BTCPos);
- }
- // Drop information about expressions based on loop-header PHIs.
- SmallVector<Instruction *, 16> Worklist;
- PushLoopPHIs(L, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- forgetMemoizedResults(It->second);
- ValueExprMap.erase(It);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- // Forget all contained loops too, to avoid dangling entries in the
- // ValuesAtScopes map.
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- forgetLoop(*I);
- }
- /// forgetValue - This method should be called by the client when it has
- /// changed a value in a way that may effect its value, or which may
- /// disconnect it from a def-use chain linking it to a loop.
- void ScalarEvolution::forgetValue(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return;
- // Drop information about expressions based on loop-header PHIs.
- SmallVector<Instruction *, 16> Worklist;
- Worklist.push_back(I);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- I = Worklist.pop_back_val();
- if (!Visited.insert(I)) continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- forgetMemoizedResults(It->second);
- ValueExprMap.erase(It);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- /// getExact - Get the exact loop backedge taken count considering all loop
- /// exits. A computable result can only be return for loops with a single exit.
- /// Returning the minimum taken count among all exits is incorrect because one
- /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
- /// the limit of each loop test is never skipped. This is a valid assumption as
- /// long as the loop exits via that test. For precise results, it is the
- /// caller's responsibility to specify the relevant loop exit using
- /// getExact(ExitingBlock, SE).
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
- // If any exits were not computable, the loop is not computable.
- if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
- // We need exactly one computable exit.
- if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
- assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
- const SCEV *BECount = 0;
- for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != 0; ENT = ENT->getNextExit()) {
- assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
- if (!BECount)
- BECount = ENT->ExactNotTaken;
- else if (BECount != ENT->ExactNotTaken)
- return SE->getCouldNotCompute();
- }
- assert(BECount && "Invalid not taken count for loop exit");
- return BECount;
- }
- /// getExact - Get the exact not taken count for this loop exit.
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
- ScalarEvolution *SE) const {
- for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != 0; ENT = ENT->getNextExit()) {
- if (ENT->ExitingBlock == ExitingBlock)
- return ENT->ExactNotTaken;
- }
- return SE->getCouldNotCompute();
- }
- /// getMax - Get the max backedge taken count for the loop.
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
- return Max ? Max : SE->getCouldNotCompute();
- }
- /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
- /// computable exit into a persistent ExitNotTakenInfo array.
- ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
- SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
- bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
- if (!Complete)
- ExitNotTaken.setIncomplete();
- unsigned NumExits = ExitCounts.size();
- if (NumExits == 0) return;
- ExitNotTaken.ExitingBlock = ExitCounts[0].first;
- ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
- if (NumExits == 1) return;
- // Handle the rare case of multiple computable exits.
- ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
- ExitNotTakenInfo *PrevENT = &ExitNotTaken;
- for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
- PrevENT->setNextExit(ENT);
- ENT->ExitingBlock = ExitCounts[i].first;
- ENT->ExactNotTaken = ExitCounts[i].second;
- }
- }
- /// clear - Invalidate this result and free the ExitNotTakenInfo array.
- void ScalarEvolution::BackedgeTakenInfo::clear() {
- ExitNotTaken.ExitingBlock = 0;
- ExitNotTaken.ExactNotTaken = 0;
- delete[] ExitNotTaken.getNextExit();
- }
- /// ComputeBackedgeTakenCount - Compute the number of times the backedge
- /// of the specified loop will execute.
- ScalarEvolution::BackedgeTakenInfo
- ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
- SmallVector<BasicBlock *, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- // Examine all exits and pick the most conservative values.
- const SCEV *MaxBECount = getCouldNotCompute();
- bool CouldComputeBECount = true;
- SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
- for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
- if (EL.Exact == getCouldNotCompute())
- // We couldn't compute an exact value for this exit, so
- // we won't be able to compute an exact value for the loop.
- CouldComputeBECount = false;
- else
- ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
- if (MaxBECount == getCouldNotCompute())
- MaxBECount = EL.Max;
- else if (EL.Max != getCouldNotCompute()) {
- // We cannot take the "min" MaxBECount, because non-unit stride loops may
- // skip some loop tests. Taking the max over the exits is sufficiently
- // conservative. TODO: We could do better taking into consideration
- // that (1) the loop has unit stride (2) the last loop test is
- // less-than/greater-than (3) any loop test is less-than/greater-than AND
- // falls-through some constant times less then the other tests.
- MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
- }
- }
- return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
- }
- /// ComputeExitLimit - Compute the number of times the backedge of the specified
- /// loop will execute if it exits via the specified block.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
- // Okay, we've chosen an exiting block. See what condition causes us to
- // exit at this block.
- //
- // FIXME: we should be able to handle switch instructions (with a single exit)
- BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (ExitBr == 0) return getCouldNotCompute();
- assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
- // At this point, we know we have a conditional branch that determines whether
- // the loop is exited. However, we don't know if the branch is executed each
- // time through the loop. If not, then the execution count of the branch will
- // not be equal to the trip count of the loop.
- //
- // Currently we check for this by checking to see if the Exit branch goes to
- // the loop header. If so, we know it will always execute the same number of
- // times as the loop. We also handle the case where the exit block *is* the
- // loop header. This is common for un-rotated loops.
- //
- // If both of those tests fail, walk up the unique predecessor chain to the
- // header, stopping if there is an edge that doesn't exit the loop. If the
- // header is reached, the execution count of the branch will be equal to the
- // trip count of the loop.
- //
- // More extensive analysis could be done to handle more cases here.
- //
- if (ExitBr->getSuccessor(0) != L->getHeader() &&
- ExitBr->getSuccessor(1) != L->getHeader() &&
- ExitBr->getParent() != L->getHeader()) {
- // The simple checks failed, try climbing the unique predecessor chain
- // up to the header.
- bool Ok = false;
- for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
- BasicBlock *Pred = BB->getUniquePredecessor();
- if (!Pred)
- return getCouldNotCompute();
- TerminatorInst *PredTerm = Pred->getTerminator();
- for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
- BasicBlock *PredSucc = PredTerm->getSuccessor(i);
- if (PredSucc == BB)
- continue;
- // If the predecessor has a successor that isn't BB and isn't
- // outside the loop, assume the worst.
- if (L->contains(PredSucc))
- return getCouldNotCompute();
- }
- if (Pred == L->getHeader()) {
- Ok = true;
- break;
- }
- BB = Pred;
- }
- if (!Ok)
- return getCouldNotCompute();
- }
- // Proceed to the next level to examine the exit condition expression.
- return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
- ExitBr->getSuccessor(0),
- ExitBr->getSuccessor(1));
- }
- /// ComputeExitLimitFromCond - Compute the number of times the
- /// backedge of the specified loop will execute if its exit condition
- /// were a conditional branch of ExitCond, TBB, and FBB.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
- Value *ExitCond,
- BasicBlock *TBB,
- BasicBlock *FBB) {
- // Check if the controlling expression for this loop is an And or Or.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
- if (BO->getOpcode() == Instruction::And) {
- // Recurse on the operands of the and.
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (L->contains(TBB)) {
- // Both conditions must be true for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.Exact == getCouldNotCompute() ||
- EL1.Exact == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
- if (EL0.Max == getCouldNotCompute())
- MaxBECount = EL1.Max;
- else if (EL1.Max == getCouldNotCompute())
- MaxBECount = EL0.Max;
- else
- MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- } else {
- // Both conditions must be true at the same time for the loop to exit.
- // For now, be conservative.
- assert(L->contains(FBB) && "Loop block has no successor in loop!");
- if (EL0.Max == EL1.Max)
- MaxBECount = EL0.Max;
- if (EL0.Exact == EL1.Exact)
- BECount = EL0.Exact;
- }
- return ExitLimit(BECount, MaxBECount);
- }
- if (BO->getOpcode() == Instruction::Or) {
- // Recurse on the operands of the or.
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (L->contains(FBB)) {
- // Both conditions must be false for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.Exact == getCouldNotCompute() ||
- EL1.Exact == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
- if (EL0.Max == getCouldNotCompute())
- MaxBECount = EL1.Max;
- else if (EL1.Max == getCouldNotCompute())
- MaxBECount = EL0.Max;
- else
- MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- } else {
- // Both conditions must be false at the same time for the loop to exit.
- // For now, be conservative.
- assert(L->contains(TBB) && "Loop block has no successor in loop!");
- if (EL0.Max == EL1.Max)
- MaxBECount = EL0.Max;
- if (EL0.Exact == EL1.Exact)
- BECount = EL0.Exact;
- }
- return ExitLimit(BECount, MaxBECount);
- }
- }
- // With an icmp, it may be feasible to compute an exact backedge-taken count.
- // Proceed to the next level to examine the icmp.
- if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
- return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
- // Check for a constant condition. These are normally stripped out by
- // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
- // preserve the CFG and is temporarily leaving constant conditions
- // in place.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
- if (L->contains(FBB) == !CI->getZExtValue())
- // The backedge is always taken.
- return getCouldNotCompute();
- else
- // The backedge is never taken.
- return getConstant(CI->getType(), 0);
- }
- // If it's not an integer or pointer comparison then compute it the hard way.
- return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
- }
- /// ComputeExitLimitFromICmp - Compute the number of times the
- /// backedge of the specified loop will execute if its exit condition
- /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
- ICmpInst *ExitCond,
- BasicBlock *TBB,
- BasicBlock *FBB) {
- // If the condition was exit on true, convert the condition to exit on false
- ICmpInst::Predicate Cond;
- if (!L->contains(FBB))
- Cond = ExitCond->getPredicate();
- else
- Cond = ExitCond->getInversePredicate();
- // Handle common loops like: for (X = "string"; *X; ++X)
- if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
- if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
- ExitLimit ItCnt =
- ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
- if (ItCnt.hasAnyInfo())
- return ItCnt;
- }
- const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
- const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
- // Try to evaluate any dependencies out of the loop.
- LHS = getSCEVAtScope(LHS, L);
- RHS = getSCEVAtScope(RHS, L);
- // At this point, we would like to compute how many iterations of the
- // loop the predicate will return true for these inputs.
- if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
- // If there is a loop-invariant, force it into the RHS.
- std::swap(LHS, RHS);
- Cond = ICmpInst::getSwappedPredicate(Cond);
- }
- // Simplify the operands before analyzing them.
- (void)SimplifyICmpOperands(Cond, LHS, RHS);
- // If we have a comparison of a chrec against a constant, try to use value
- // ranges to answer this query.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
- if (AddRec->getLoop() == L) {
- // Form the constant range.
- ConstantRange CompRange(
- ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
- const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
- if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
- }
- switch (Cond) {
- case ICmpInst::ICMP_NE: { // while (X != Y)
- // Convert to: while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_EQ: { // while (X == Y)
- // Convert to: while (X-Y == 0)
- ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SLT: {
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SGT: {
- ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
- getNotSCEV(RHS), L, true);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_ULT: {
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_UGT: {
- ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
- getNotSCEV(RHS), L, false);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- default:
- #if 0
- dbgs() << "ComputeBackedgeTakenCount ";
- if (ExitCond->getOperand(0)->getType()->isUnsigned())
- dbgs() << "[unsigned] ";
- dbgs() << *LHS << " "
- << Instruction::getOpcodeName(Instruction::ICmp)
- << " " << *RHS << "\n";
- #endif
- break;
- }
- return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
- }
- static ConstantInt *
- EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
- ScalarEvolution &SE) {
- const SCEV *InVal = SE.getConstant(C);
- const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
- assert(isa<SCEVConstant>(Val) &&
- "Evaluation of SCEV at constant didn't fold correctly?");
- return cast<SCEVConstant>(Val)->getValue();
- }
- /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
- /// 'icmp op load X, cst', try to see if we can compute the backedge
- /// execution count.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeLoadConstantCompareExitLimit(
- LoadInst *LI,
- Constant *RHS,
- const Loop *L,
- ICmpInst::Predicate predicate) {
- if (LI->isVolatile()) return getCouldNotCompute();
- // Check to see if the loaded pointer is a getelementptr of a global.
- // TODO: Use SCEV instead of manually grubbing with GEPs.
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
- if (!GEP) return getCouldNotCompute();
- // Make sure that it is really a constant global we are gepping, with an
- // initializer, and make sure the first IDX is really 0.
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
- !cast<Constant>(GEP->getOperand(1))->isNullValue())
- return getCouldNotCompute();
- // Okay, we allow one non-constant index into the GEP instruction.
- Value *VarIdx = 0;
- std::vector<Constant*> Indexes;
- unsigned VarIdxNum = 0;
- for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
- Indexes.push_back(CI);
- } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
- if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
- VarIdx = GEP->getOperand(i);
- VarIdxNum = i-2;
- Indexes.push_back(0);
- }
- // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
- if (!VarIdx)
- return getCouldNotCompute();
- // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
- // Check to see if X is a loop variant variable value now.
- const SCEV *Idx = getSCEV(VarIdx);
- Idx = getSCEVAtScope(Idx, L);
- // We can only recognize very limited forms of loop index expressions, in
- // particular, only affine AddRec's like {C1,+,C2}.
- const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
- if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(1)))
- return getCouldNotCompute();
- unsigned MaxSteps = MaxBruteForceIterations;
- for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
- ConstantInt *ItCst = ConstantInt::get(
- cast<IntegerType>(IdxExpr->getType()), IterationNum);
- ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
- // Form the GEP offset.
- Indexes[VarIdxNum] = Val;
- Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
- Indexes);
- if (Result == 0) break; // Cannot compute!
- // Evaluate the condition for this iteration.
- Result = ConstantExpr::getICmp(predicate, Result, RHS);
- if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
- if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
- #if 0
- dbgs() << "\n***\n*** Computed loop count " << *ItCst
- << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
- << "***\n";
- #endif
- ++NumArrayLenItCounts;
- return getConstant(ItCst); // Found terminating iteration!
- }
- }
- return getCouldNotCompute();
- }
- /// CanConstantFold - Return true if we can constant fold an instruction of the
- /// specified type, assuming that all operands were constants.
- static bool CanConstantFold(const Instruction *I) {
- if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
- isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<LoadInst>(I))
- return true;
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction())
- return canConstantFoldCallTo(F);
- return false;
- }
- /// Determine whether this instruction can constant evolve within this loop
- /// assuming its operands can all constant evolve.
- static bool canConstantEvolve(Instruction *I, const Loop *L) {
- // An instruction outside of the loop can't be derived from a loop PHI.
- if (!L->contains(I)) return false;
- if (isa<PHINode>(I)) {
- if (L->getHeader() == I->getParent())
- return true;
- else
- // We don't currently keep track of the control flow needed to evaluate
- // PHIs, so we cannot handle PHIs inside of loops.
- return false;
- }
- // If we won't be able to constant fold this expression even if the operands
- // are constants, bail early.
- return CanConstantFold(I);
- }
- /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
- /// recursing through each instruction operand until reaching a loop header phi.
- static PHINode *
- getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
- DenseMap<Instruction *, PHINode *> &PHIMap) {
- // Otherwise, we can evaluate this instruction if all of its operands are
- // constant or derived from a PHI node themselves.
- PHINode *PHI = 0;
- for (Instruction::op_iterator OpI = UseInst->op_begin(),
- OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
- if (isa<Constant>(*OpI)) continue;
- Instruction *OpInst = dyn_cast<Instruction>(*OpI);
- if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
- PHINode *P = dyn_cast<PHINode>(OpInst);
- if (!P)
- // If this operand is already visited, reuse the prior result.
- // We may have P != PHI if this is the deepest point at which the
- // inconsistent paths meet.
- P = PHIMap.lookup(OpInst);
- if (!P) {
- // Recurse and memoize the results, whether a phi is found or not.
- // This recursive call invalidates pointers into PHIMap.
- P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
- PHIMap[OpInst] = P;
- }
- if (P == 0) return 0; // Not evolving from PHI
- if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
- PHI = P;
- }
- // This is a expression evolving from a constant PHI!
- return PHI;
- }
- /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
- /// in the loop that V is derived from. We allow arbitrary operations along the
- /// way, but the operands of an operation must either be constants or a value
- /// derived from a constant PHI. If this expression does not fit with these
- /// constraints, return null.
- static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0 || !canConstantEvolve(I, L)) return 0;
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- return PN;
- }
- // Record non-constant instructions contained by the loop.
- DenseMap<Instruction *, PHINode *> PHIMap;
- return getConstantEvolvingPHIOperands(I, L, PHIMap);
- }
- /// EvaluateExpression - Given an expression that passes the
- /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
- /// in the loop has the value PHIVal. If we can't fold this expression for some
- /// reason, return null.
- static Constant *EvaluateExpression(Value *V, const Loop *L,
- DenseMap<Instruction *, Constant *> &Vals,
- const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- // Convenient constant check, but redundant for recursive calls.
- if (Constant *C = dyn_cast<Constant>(V)) return C;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return 0;
- if (Constant *C = Vals.lookup(I)) return C;
- // An instruction inside the loop depends on a value outside the loop that we
- // weren't given a mapping for, or a value such as a call inside the loop.
- if (!canConstantEvolve(I, L)) return 0;
- // An unmapped PHI can be due to a branch or another loop inside this loop,
- // or due to this not being the initial iteration through a loop where we
- // couldn't compute the evolution of this particular PHI last time.
- if (isa<PHINode>(I)) return 0;
- std::vector<Constant*> Operands(I->getNumOperands());
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
- if (!Operand) {
- Operands[i] = dyn_cast<Constant>(I->getOperand(i));
- if (!Operands[i]) return 0;
- continue;
- }
- Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
- Vals[Operand] = C;
- if (!C) return 0;
- Operands[i] = C;
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], TD, TLI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(Operands[0], TD);
- }
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
- TLI);
- }
- /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
- /// in the header of its containing loop, we know the loop executes a
- /// constant number of times, and the PHI node is just a recurrence
- /// involving constants, fold it.
- Constant *
- ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
- const APInt &BEs,
- const Loop *L) {
- DenseMap<PHINode*, Constant*>::const_iterator I =
- ConstantEvolutionLoopExitValue.find(PN);
- if (I != ConstantEvolutionLoopExitValue.end())
- return I->second;
- if (BEs.ugt(MaxBruteForceIterations))
- return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
- Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
- // Since the loop is canonicalized, the PHI node must have two entries. One
- // entry must be a constant (coming in from outside of the loop), and the
- // second must be derived from the same PHI.
- bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = 0;
- for (BasicBlock::iterator I = Header->begin();
- (PHI = dyn_cast<PHINode>(I)); ++I) {
- Constant *StartCST =
- dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) continue;
- CurrentIterVals[PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return RetVal = 0;
- Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
- // Execute the loop symbolically to determine the exit value.
- if (BEs.getActiveBits() >= 32)
- return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
- unsigned NumIterations = BEs.getZExtValue(); // must be in range
- unsigned IterationNum = 0;
- for (; ; ++IterationNum) {
- if (IterationNum == NumIterations)
- return RetVal = CurrentIterVals[PN]; // Got exit value!
- // Compute the value of the PHIs for the next iteration.
- // EvaluateExpression adds non-phi values to the CurrentIterVals map.
- DenseMap<Instruction *, Constant *> NextIterVals;
- Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
- TLI);
- if (NextPHI == 0)
- return 0; // Couldn't evaluate!
- NextIterVals[PN] = NextPHI;
- bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
- // Also evaluate the other PHI nodes. However, we don't get to stop if we
- // cease to be able to evaluate one of them or if they stop evolving,
- // because that doesn't necessarily prevent us from computing PN.
- SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
- for (DenseMap<Instruction *, Constant *>::const_iterator
- I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
- PHINode *PHI = dyn_cast<PHINode>(I->first);
- if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
- PHIsToCompute.push_back(std::make_pair(PHI, I->second));
- }
- // We use two distinct loops because EvaluateExpression may invalidate any
- // iterators into CurrentIterVals.
- for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
- I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
- PHINode *PHI = I->first;
- Constant *&NextPHI = NextIterVals[PHI];
- if (!NextPHI) { // Not already computed.
- Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
- }
- if (NextPHI != I->second)
- StoppedEvolving = false;
- }
- // If all entries in CurrentIterVals == NextIterVals then we can stop
- // iterating, the loop can't continue to change.
- if (StoppedEvolving)
- return RetVal = CurrentIterVals[PN];
- CurrentIterVals.swap(NextIterVals);
- }
- }
- /// ComputeExitCountExhaustively - If the loop is known to execute a
- /// constant number of times (the condition evolves only from constants),
- /// try to evaluate a few iterations of the loop until we get the exit
- /// condition gets a value of ExitWhen (true or false). If we cannot
- /// evaluate the trip count of the loop, return getCouldNotCompute().
- const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
- Value *Cond,
- bool ExitWhen) {
- PHINode *PN = getConstantEvolvingPHI(Cond, L);
- if (PN == 0) return getCouldNotCompute();
- // If the loop is canonicalized, the PHI will have exactly two entries.
- // That's the only form we support here.
- if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
- // One entry must be a constant (coming in from outside of the loop), and the
- // second must be derived from the same PHI.
- bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = 0;
- for (BasicBlock::iterator I = Header->begin();
- (PHI = dyn_cast<PHINode>(I)); ++I) {
- Constant *StartCST =
- dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) continue;
- CurrentIterVals[PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return getCouldNotCompute();
- // Okay, we find a PHI node that defines the trip count of this loop. Execute
- // the loop symbolically to determine when the condition gets a value of
- // "ExitWhen".
- unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
- for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
- ConstantInt *CondVal =
- dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
- TD, TLI));
- // Couldn't symbolically evaluate.
- if (!CondVal) return getCouldNotCompute();
- if (CondVal->getValue() == uint64_t(ExitWhen)) {
- ++NumBruteForceTripCountsComputed;
- return getConstant(Type::getInt32Ty(getContext()), IterationNum);
- }
- // Update all the PHI nodes for the next iteration.
- DenseMap<Instruction *, Constant *> NextIterVals;
- // Create a list of which PHIs we need to compute. We want to do this before
- // calling EvaluateExpression on them because that may invalidate iterators
- // into CurrentIterVals.
- SmallVector<PHINode *, 8> PHIsToCompute;
- for (DenseMap<Instruction *, Constant *>::const_iterator
- I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
- PHINode *PHI = dyn_cast<PHINode>(I->first);
- if (!PHI || PHI->getParent() != Header) continue;
- PHIsToCompute.push_back(PHI);
- }
- for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
- E = PHIsToCompute.end(); I != E; ++I) {
- PHINode *PHI = *I;
- Constant *&NextPHI = NextIterVals[PHI];
- if (NextPHI) continue; // Already computed!
- Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
- }
- CurrentIterVals.swap(NextIterVals);
- }
- // Too many iterations were needed to evaluate.
- return getCouldNotCompute();
- }
- /// getSCEVAtScope - Return a SCEV expression for the specified value
- /// at the specified scope in the program. The L value specifies a loop
- /// nest to evaluate the expression at, where null is the top-level or a
- /// specified loop is immediately inside of the loop.
- ///
- /// This method can be used to compute the exit value for a variable defined
- /// in a loop by querying what the value will hold in the parent loop.
- ///
- /// In the case that a relevant loop exit value cannot be computed, the
- /// original value V is returned.
- const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
- // Check to see if we've folded this expression at this loop before.
- std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
- std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
- Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
- if (!Pair.second)
- return Pair.first->second ? Pair.first->second : V;
- // Otherwise compute it.
- const SCEV *C = computeSCEVAtScope(V, L);
- ValuesAtScopes[V][L] = C;
- return C;
- }
- /// This builds up a Constant using the ConstantExpr interface. That way, we
- /// will return Constants for objects which aren't represented by a
- /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
- /// Returns NULL if the SCEV isn't representable as a Constant.
- static Constant *BuildConstantFromSCEV(const SCEV *V) {
- switch (V->getSCEVType()) {
- default: // TODO: smax, umax.
- case scCouldNotCompute:
- case scAddRecExpr:
- break;
- case scConstant:
- return cast<SCEVConstant>(V)->getValue();
- case scUnknown:
- return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
- case scSignExtend: {
- const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
- return ConstantExpr::getSExt(CastOp, SS->getType());
- break;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
- return ConstantExpr::getZExt(CastOp, SZ->getType());
- break;
- }
- case scTruncate: {
- const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
- return ConstantExpr::getTrunc(CastOp, ST->getType());
- break;
- }
- case scAddExpr: {
- const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
- if (C->getType()->isPointerTy())
- C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
- for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
- if (!C2) return 0;
- // First pointer!
- if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
- std::swap(C, C2);
- // The offsets have been converted to bytes. We can add bytes to an
- // i8* by GEP with the byte count in the first index.
- C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
- }
- // Don't bother trying to sum two pointers. We probably can't
- // statically compute a load that results from it anyway.
- if (C2->getType()->isPointerTy())
- return 0;
- if (C->getType()->isPointerTy()) {
- if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
- C2 = ConstantExpr::getIntegerCast(
- C2, Type::getInt32Ty(C->getContext()), true);
- C = ConstantExpr::getGetElementPtr(C, C2);
- } else
- C = ConstantExpr::getAdd(C, C2);
- }
- return C;
- }
- break;
- }
- case scMulExpr: {
- const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
- // Don't bother with pointers at all.
- if (C->getType()->isPointerTy()) return 0;
- for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
- if (!C2 || C2->getType()->isPointerTy()) return 0;
- C = ConstantExpr::getMul(C, C2);
- }
- return C;
- }
- break;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
- if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
- if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
- if (LHS->getType() == RHS->getType())
- return ConstantExpr::getUDiv(LHS, RHS);
- break;
- }
- }
- return 0;
- }
- const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
- if (isa<SCEVConstant>(V)) return V;
- // If this instruction is evolved from a constant-evolving PHI, compute the
- // exit value from the loop without using SCEVs.
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
- if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
- const Loop *LI = (*this->LI)[I->getParent()];
- if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- if (PN->getParent() == LI->getHeader()) {
- // Okay, there is no closed form solution for the PHI node. Check
- // to see if the loop that contains it has a known backedge-taken
- // count. If so, we may be able to force computation of the exit
- // value.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
- if (const SCEVConstant *BTCC =
- dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
- // Okay, we know how many times the containing loop executes. If
- // this is a constant evolving PHI node, get the final value at
- // the specified iteration number.
- Constant *RV = getConstantEvolutionLoopExitValue(PN,
- BTCC->getValue()->getValue(),
- LI);
- if (RV) return getSCEV(RV);
- }
- }
- // Okay, this is an expression that we cannot symbolically evaluate
- // into a SCEV. Check to see if it's possible to symbolically evaluate
- // the arguments into constants, and if so, try to constant propagate the
- // result. This is particularly useful for computing loop exit values.
- if (CanConstantFold(I)) {
- SmallVector<Constant *, 4> Operands;
- bool MadeImprovement = false;
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *Op = I->getOperand(i);
- if (Constant *C = dyn_cast<Constant>(Op)) {
- Operands.push_back(C);
- continue;
- }
- // If any of the operands is non-constant and if they are
- // non-integer and non-pointer, don't even try to analyze them
- // with scev techniques.
- if (!isSCEVable(Op->getType()))
- return V;
- const SCEV *OrigV = getSCEV(Op);
- const SCEV *OpV = getSCEVAtScope(OrigV, L);
- MadeImprovement |= OrigV != OpV;
- Constant *C = BuildConstantFromSCEV(OpV);
- if (!C) return V;
- if (C->getType() != Op->getType())
- C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
- Op->getType(),
- false),
- C, Op->getType());
- Operands.push_back(C);
- }
- // Check to see if getSCEVAtScope actually made an improvement.
- if (MadeImprovement) {
- Constant *C = 0;
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- C = ConstantFoldCompareInstOperands(CI->getPredicate(),
- Operands[0], Operands[1], TD,
- TLI);
- else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
- } else
- C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Operands, TD, TLI);
- if (!C) return V;
- return getSCEV(C);
- }
- }
- }
- // This is some other type of SCEVUnknown, just return it.
- return V;
- }
- if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- if (OpAtScope != Comm->getOperand(i)) {
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
- Comm->op_begin()+i);
- NewOps.push_back(OpAtScope);
- for (++i; i != e; ++i) {
- OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- NewOps.push_back(OpAtScope);
- }
- if (isa<SCEVAddExpr>(Comm))
- return getAddExpr(NewOps);
- if (isa<SCEVMulExpr>(Comm))
- return getMulExpr(NewOps);
- if (isa<SCEVSMaxExpr>(Comm))
- return getSMaxExpr(NewOps);
- if (isa<SCEVUMaxExpr>(Comm))
- return getUMaxExpr(NewOps);
- llvm_unreachable("Unknown commutative SCEV type!");
- }
- }
- // If we got here, all operands are loop invariant.
- return Comm;
- }
- if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
- const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
- const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
- if (LHS == Div->getLHS() && RHS == Div->getRHS())
- return Div; // must be loop invariant
- return getUDivExpr(LHS, RHS);
- }
- // If this is a loop recurrence for a loop that does not contain L, then we
- // are dealing with the final value computed by the loop.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
- // First, attempt to evaluate each operand.
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
- if (OpAtScope == AddRec->getOperand(i))
- continue;
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
- AddRec->op_begin()+i);
- NewOps.push_back(OpAtScope);
- for (++i; i != e; ++i)
- NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
- const SCEV *FoldedRec =
- getAddRecExpr(NewOps, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
- // The addrec may be folded to a nonrecurrence, for example, if the
- // induction variable is multiplied by zero after constant folding. Go
- // ahead and return the folded value.
- if (!AddRec)
- return FoldedRec;
- break;
- }
- // If the scope is outside the addrec's loop, evaluate it by using the
- // loop exit value of the addrec.
- if (!AddRec->getLoop()->contains(L)) {
- // To evaluate this recurrence, we need to know how many times the AddRec
- // loop iterates. Compute this now.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
- if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
- // Then, evaluate the AddRec.
- return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
- }
- return AddRec;
- }
- if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getZeroExtendExpr(Op, Cast->getType());
- }
- if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getSignExtendExpr(Op, Cast->getType());
- }
- if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getTruncateExpr(Op, Cast->getType());
- }
- llvm_unreachable("Unknown SCEV type!");
- }
- /// getSCEVAtScope - This is a convenience function which does
- /// getSCEVAtScope(getSCEV(V), L).
- const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
- return getSCEVAtScope(getSCEV(V), L);
- }
- /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
- /// following equation:
- ///
- /// A * X = B (mod N)
- ///
- /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
- /// A and B isn't important.
- ///
- /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
- static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
- ScalarEvolution &SE) {
- uint32_t BW = A.getBitWidth();
- assert(BW == B.getBitWidth() && "Bit widths must be the same.");
- assert(A != 0 && "A must be non-zero.");
- // 1. D = gcd(A, N)
- //
- // The gcd of A and N may have only one prime factor: 2. The number of
- // trailing zeros in A is its multiplicity
- uint32_t Mult2 = A.countTrailingZeros();
- // D = 2^Mult2
- // 2. Check if B is divisible by D.
- //
- // B is divisible by D if and only if the multiplicity of prime factor 2 for B
- // is not less than multiplicity of this prime factor for D.
- if (B.countTrailingZeros() < Mult2)
- return SE.getCouldNotCompute();
- // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
- // modulo (N / D).
- //
- // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
- // bit width during computations.
- APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
- APInt Mod(BW + 1, 0);
- Mod.setBit(BW - Mult2); // Mod = N / D
- APInt I = AD.multiplicativeInverse(Mod);
- // 4. Compute the minimum unsigned root of the equation:
- // I * (B / D) mod (N / D)
- APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
- // The result is guaranteed to be less than 2^BW so we may truncate it to BW
- // bits.
- return SE.getConstant(Result.trunc(BW));
- }
- /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
- /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
- /// might be the same) or two SCEVCouldNotCompute objects.
- ///
- static std::pair<const SCEV *,const SCEV *>
- SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
- assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
- const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
- const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
- const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
- // We currently can only solve this if the coefficients are constants.
- if (!LC || !MC || !NC) {
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
- const APInt &L = LC->getValue()->getValue();
- const APInt &M = MC->getValue()->getValue();
- const APInt &N = NC->getValue()->getValue();
- APInt Two(BitWidth, 2);
- APInt Four(BitWidth, 4);
- {
- using namespace APIntOps;
- const APInt& C = L;
- // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
- // The B coefficient is M-N/2
- APInt B(M);
- B -= sdiv(N,Two);
- // The A coefficient is N/2
- APInt A(N.sdiv(Two));
- // Compute the B^2-4ac term.
- APInt SqrtTerm(B);
- SqrtTerm *= B;
- SqrtTerm -= Four * (A * C);
- if (SqrtTerm.isNegative()) {
- // The loop is provably infinite.
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
- // integer value or else APInt::sqrt() will assert.
- APInt SqrtVal(SqrtTerm.sqrt());
- // Compute the two solutions for the quadratic formula.
- // The divisions must be performed as signed divisions.
- APInt NegB(-B);
- APInt TwoA(A << 1);
- if (TwoA.isMinValue()) {
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- LLVMContext &Context = SE.getContext();
- ConstantInt *Solution1 =
- ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
- ConstantInt *Solution2 =
- ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
- return std::make_pair(SE.getConstant(Solution1),
- SE.getConstant(Solution2));
- } // end APIntOps namespace
- }
- /// HowFarToZero - Return the number of times a backedge comparing the specified
- /// value to zero will execute. If not computable, return CouldNotCompute.
- ///
- /// This is only used for loops with a "x != y" exit test. The exit condition is
- /// now expressed as a single expression, V = x-y. So the exit test is
- /// effectively V != 0. We know and take advantage of the fact that this
- /// expression only being used in a comparison by zero context.
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
- // If the value is a constant
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- // If the value is already zero, the branch will execute zero times.
- if (C->getValue()->isZero()) return C;
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
- if (!AddRec || AddRec->getLoop() != L)
- return getCouldNotCompute();
- // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
- // the quadratic equation to solve it.
- if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
- std::pair<const SCEV *,const SCEV *> Roots =
- SolveQuadraticEquation(AddRec, *this);
- const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
- const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
- if (R1 && R2) {
- #if 0
- dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
- << " sol#2: " << *R2 << "\n";
- #endif
- // Pick the smallest positive root value.
- if (ConstantInt *CB =
- dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
- R1->getValue(),
- R2->getValue()))) {
- if (CB->getZExtValue() == false)
- std::swap(R1, R2); // R1 is the minimum root now.
- // We can only use this value if the chrec ends up with an exact zero
- // value at this index. When solving for "X*X != 5", for example, we
- // should not accept a root of 2.
- const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
- if (Val->isZero())
- return R1; // We found a quadratic root!
- }
- }
- return getCouldNotCompute();
- }
- // Otherwise we can only handle this if it is affine.
- if (!AddRec->isAffine())
- return getCouldNotCompute();
- // If this is an affine expression, the execution count of this branch is
- // the minimum unsigned root of the following equation:
- //
- // Start + Step*N = 0 (mod 2^BW)
- //
- // equivalent to:
- //
- // Step*N = -Start (mod 2^BW)
- //
- // where BW is the common bit width of Start and Step.
- // Get the initial value for the loop.
- const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
- const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
- // For now we handle only constant steps.
- //
- // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
- // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
- // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
- // We have not yet seen any such cases.
- const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
- if (StepC == 0 || StepC->getValue()->equalsInt(0))
- return getCouldNotCompute();
- // For positive steps (counting up until unsigned overflow):
- // N = -Start/Step (as unsigned)
- // For negative steps (counting down to zero):
- // N = Start/-Step
- // First compute the unsigned distance from zero in the direction of Step.
- bool CountDown = StepC->getValue()->getValue().isNegative();
- const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
- // Handle unitary steps, which cannot wraparound.
- // 1*N = -Start; -1*N = Start (mod 2^BW), so:
- // N = Distance (as unsigned)
- if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
- ConstantRange CR = getUnsignedRange(Start);
- const SCEV *MaxBECount;
- if (!CountDown && CR.getUnsignedMin().isMinValue())
- // When counting up, the worst starting value is 1, not 0.
- MaxBECount = CR.getUnsignedMax().isMinValue()
- ? getConstant(APInt::getMinValue(CR.getBitWidth()))
- : getConstant(APInt::getMaxValue(CR.getBitWidth()));
- else
- MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
- : -CR.getUnsignedMin());
- return ExitLimit(Distance, MaxBECount);
- }
- // If the recurrence is known not to wraparound, unsigned divide computes the
- // back edge count. We know that the value will either become zero (and thus
- // the loop terminates), that the loop will terminate through some other exit
- // condition first, or that the loop has undefined behavior. This means
- // we can't "miss" the exit value, even with nonunit stride.
- //
- // FIXME: Prove that loops always exhibits *acceptable* undefined
- // behavior. Loops must exhibit defined behavior until a wrapped value is
- // actually used. So the trip count computed by udiv could be smaller than the
- // number of well-defined iterations.
- if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
- // FIXME: We really want an "isexact" bit for udiv.
- return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
- }
- // Then, try to solve the above equation provided that Start is constant.
- if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
- return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
- -StartC->getValue()->getValue(),
- *this);
- return getCouldNotCompute();
- }
- /// HowFarToNonZero - Return the number of times a backedge checking the
- /// specified value for nonzero will execute. If not computable, return
- /// CouldNotCompute
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
- // Loops that look like: while (X == 0) are very strange indeed. We don't
- // handle them yet except for the trivial case. This could be expanded in the
- // future as needed.
- // If the value is a constant, check to see if it is known to be non-zero
- // already. If so, the backedge will execute zero times.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- if (!C->getValue()->isNullValue())
- return getConstant(C->getType(), 0);
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
- // We could implement others, but I really doubt anyone writes loops like
- // this, and if they did, they would already be constant folded.
- return getCouldNotCompute();
- }
- /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
- /// (which may not be an immediate predecessor) which has exactly one
- /// successor from which BB is reachable, or null if no such block is
- /// found.
- ///
- std::pair<BasicBlock *, BasicBlock *>
- ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
- // If the block has a unique predecessor, then there is no path from the
- // predecessor to the block that does not go through the direct edge
- // from the predecessor to the block.
- if (BasicBlock *Pred = BB->getSinglePredecessor())
- return std::make_pair(Pred, BB);
- // A loop's header is defined to be a block that dominates the loop.
- // If the header has a unique predecessor outside the loop, it must be
- // a block that has exactly one successor that can reach the loop.
- if (Loop *L = LI->getLoopFor(BB))
- return std::make_pair(L->getLoopPredecessor(), L->getHeader());
- return std::pair<BasicBlock *, BasicBlock *>();
- }
- /// HasSameValue - SCEV structural equivalence is usually sufficient for
- /// testing whether two expressions are equal, however for the purposes of
- /// looking for a condition guarding a loop, it can be useful to be a little
- /// more general, since a front-end may have replicated the controlling
- /// expression.
- ///
- static bool HasSameValue(const SCEV *A, const SCEV *B) {
- // Quick check to see if they are the same SCEV.
- if (A == B) return true;
- // Otherwise, if they're both SCEVUnknown, it's possible that they hold
- // two different instructions with the same value. Check for this case.
- if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
- if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
- if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
- if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
- if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
- return true;
- // Otherwise assume they may have a different value.
- return false;
- }
- /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
- /// predicate Pred. Return true iff any changes were made.
- ///
- bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
- const SCEV *&LHS, const SCEV *&RHS,
- unsigned Depth) {
- bool Changed = false;
- // If we hit the max recursion limit bail out.
- if (Depth >= 3)
- return false;
- // Canonicalize a constant to the right side.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- // Check for both operands constant.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (ConstantExpr::getICmp(Pred,
- LHSC->getValue(),
- RHSC->getValue())->isNullValue())
- goto trivially_false;
- else
- goto trivially_true;
- }
- // Otherwise swap the operands to put the constant on the right.
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
- // If we're comparing an addrec with a value which is loop-invariant in the
- // addrec's loop, put the addrec on the left. Also make a dominance check,
- // as both operands could be addrecs loop-invariant in each other's loop.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
- const Loop *L = AR->getLoop();
- if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
- }
- // If there's a constant operand, canonicalize comparisons with boundary
- // cases, and canonicalize *-or-equal comparisons to regular comparisons.
- if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
- const APInt &RA = RC->getValue()->getValue();
- switch (Pred) {
- default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
- if (!RA)
- if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
- if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
- if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
- ME->getOperand(0)->isAllOnesValue()) {
- RHS = AE->getOperand(1);
- LHS = ME->getOperand(1);
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_UGE:
- if ((RA - 1).isMinValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMinValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_UGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_ULE:
- if ((RA + 1).isMaxValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMinValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_ULT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SGE:
- if ((RA - 1).isMinSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_SGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SLE:
- if ((RA + 1).isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_SLT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_UGT:
- if (RA.isMinValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA + 1).isMaxValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_ULT:
- if (RA.isMaxValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA - 1).isMinValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMinValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_SGT:
- if (RA.isMinSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA + 1).isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_SLT:
- if (RA.isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA - 1).isMinSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) goto trivially_false;
- break;
- }
- }
- // Check for obvious equality.
- if (HasSameValue(LHS, RHS)) {
- if (ICmpInst::isTrueWhenEqual(Pred))
- goto trivially_true;
- if (ICmpInst::isFalseWhenEqual(Pred))
- goto trivially_false;
- }
- // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
- // adding or subtracting 1 from one of the operands.
- switch (Pred) {
- case ICmpInst::ICMP_SLE:
- if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_SGE:
- if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_UGE:
- if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- }
- break;
- default:
- break;
- }
- // TODO: More simplifications are possible here.
- // Recursively simplify until we either hit a recursion limit or nothing
- // changes.
- if (Changed)
- return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
- return Changed;
- trivially_true:
- // Return 0 == 0.
- LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
- Pred = ICmpInst::ICMP_EQ;
- return true;
- trivially_false:
- // Return 0 != 0.
- LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
- Pred = ICmpInst::ICMP_NE;
- return true;
- }
- bool ScalarEvolution::isKnownNegative(const SCEV *S) {
- return getSignedRange(S).getSignedMax().isNegative();
- }
- bool ScalarEvolution::isKnownPositive(const SCEV *S) {
- return getSignedRange(S).getSignedMin().isStrictlyPositive();
- }
- bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
- return !getSignedRange(S).getSignedMin().isNegative();
- }
- bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
- return !getSignedRange(S).getSignedMax().isStrictlyPositive();
- }
- bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
- return isKnownNegative(S) || isKnownPositive(S);
- }
- bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Canonicalize the inputs first.
- (void)SimplifyICmpOperands(Pred, LHS, RHS);
- // If LHS or RHS is an addrec, check to see if the condition is true in
- // every iteration of the loop.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
- if (isLoopEntryGuardedByCond(
- AR->getLoop(), Pred, AR->getStart(), RHS) &&
- isLoopBackedgeGuardedByCond(
- AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
- return true;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
- if (isLoopEntryGuardedByCond(
- AR->getLoop(), Pred, LHS, AR->getStart()) &&
- isLoopBackedgeGuardedByCond(
- AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
- return true;
- // Otherwise see what can be done with known constant ranges.
- return isKnownPredicateWithRanges(Pred, LHS, RHS);
- }
- bool
- ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- if (HasSameValue(LHS, RHS))
- return ICmpInst::isTrueWhenEqual(Pred);
- // This code is split out from isKnownPredicate because it is called from
- // within isLoopEntryGuardedByCond.
- switch (Pred) {
- default:
- llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_SGT:
- Pred = ICmpInst::ICMP_SLT;
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_SLT: {
- ConstantRange LHSRange = getSignedRange(LHS);
- ConstantRange RHSRange = getSignedRange(RHS);
- if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
- return true;
- if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_SGE:
- Pred = ICmpInst::ICMP_SLE;
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_SLE: {
- ConstantRange LHSRange = getSignedRange(LHS);
- ConstantRange RHSRange = getSignedRange(RHS);
- if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
- return true;
- if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_UGT:
- Pred = ICmpInst::ICMP_ULT;
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_ULT: {
- ConstantRange LHSRange = getUnsignedRange(LHS);
- ConstantRange RHSRange = getUnsignedRange(RHS);
- if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
- return true;
- if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_UGE:
- Pred = ICmpInst::ICMP_ULE;
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_ULE: {
- ConstantRange LHSRange = getUnsignedRange(LHS);
- ConstantRange RHSRange = getUnsignedRange(RHS);
- if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
- return true;
- if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_NE: {
- if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
- return true;
- if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
- return true;
- const SCEV *Diff = getMinusSCEV(LHS, RHS);
- if (isKnownNonZero(Diff))
- return true;
- break;
- }
- case ICmpInst::ICMP_EQ:
- // The check at the top of the function catches the case where
- // the values are known to be equal.
- break;
- }
- return false;
- }
- /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
- /// protected by a conditional between LHS and RHS. This is used to
- /// to eliminate casts.
- bool
- ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return true;
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return false;
- BranchInst *LoopContinuePredicate =
- dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LoopContinuePredicate ||
- LoopContinuePredicate->isUnconditional())
- return false;
- return isImpliedCond(Pred, LHS, RHS,
- LoopContinuePredicate->getCondition(),
- LoopContinuePredicate->getSuccessor(0) != L->getHeader());
- }
- /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
- /// by a conditional between LHS and RHS. This is used to help avoid max
- /// expressions in loop trip counts, and to eliminate casts.
- bool
- ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return false;
- // Starting at the loop predecessor, climb up the predecessor chain, as long
- // as there are predecessors that can be found that have unique successors
- // leading to the original header.
- for (std::pair<BasicBlock *, BasicBlock *>
- Pair(L->getLoopPredecessor(), L->getHeader());
- Pair.first;
- Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
- BranchInst *LoopEntryPredicate =
- dyn_cast<BranchInst>(Pair.first->getTerminator());
- if (!LoopEntryPredicate ||
- LoopEntryPredicate->isUnconditional())
- continue;
- if (isImpliedCond(Pred, LHS, RHS,
- LoopEntryPredicate->getCondition(),
- LoopEntryPredicate->getSuccessor(0) != Pair.second))
- return true;
- }
- return false;
- }
- /// RAII wrapper to prevent recursive application of isImpliedCond.
- /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
- /// currently evaluating isImpliedCond.
- struct MarkPendingLoopPredicate {
- Value *Cond;
- DenseSet<Value*> &LoopPreds;
- bool Pending;
- MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
- : Cond(C), LoopPreds(LP) {
- Pending = !LoopPreds.insert(Cond).second;
- }
- ~MarkPendingLoopPredicate() {
- if (!Pending)
- LoopPreds.erase(Cond);
- }
- };
- /// isImpliedCond - Test whether the condition described by Pred, LHS,
- /// and RHS is true whenever the given Cond value evaluates to true.
- bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- Value *FoundCondValue,
- bool Inverse) {
- MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
- if (Mark.Pending)
- return false;
- // Recursively handle And and Or conditions.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
- if (BO->getOpcode() == Instruction::And) {
- if (!Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- } else if (BO->getOpcode() == Instruction::Or) {
- if (Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- }
- }
- ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
- if (!ICI) return false;
- // Bail if the ICmp's operands' types are wider than the needed type
- // before attempting to call getSCEV on them. This avoids infinite
- // recursion, since the analysis of widening casts can require loop
- // exit condition information for overflow checking, which would
- // lead back here.
- if (getTypeSizeInBits(LHS->getType()) <
- getTypeSizeInBits(ICI->getOperand(0)->getType()))
- return false;
- // Now that we found a conditional branch that dominates the loop or controls
- // the loop latch. Check to see if it is the comparison we are looking for.
- ICmpInst::Predicate FoundPred;
- if (Inverse)
- FoundPred = ICI->getInversePredicate();
- else
- FoundPred = ICI->getPredicate();
- const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
- const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
- // Balance the types. The case where FoundLHS' type is wider than
- // LHS' type is checked for above.
- if (getTypeSizeInBits(LHS->getType()) >
- getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(Pred)) {
- FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
- } else {
- FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
- }
- }
- // Canonicalize the query to match the way instcombine will have
- // canonicalized the comparison.
- if (SimplifyICmpOperands(Pred, LHS, RHS))
- if (LHS == RHS)
- return CmpInst::isTrueWhenEqual(Pred);
- // Canonicalize the found cond too. We can't conclude a result from the
- // simplified values.
- SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS);
- // Check to see if we can make the LHS or RHS match.
- if (LHS == FoundRHS || RHS == FoundLHS) {
- if (isa<SCEVConstant>(RHS)) {
- std::swap(FoundLHS, FoundRHS);
- FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
- } else {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- }
- // Check whether the found predicate is the same as the desired predicate.
- if (FoundPred == Pred)
- return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
- // Check whether swapping the found predicate makes it the same as the
- // desired predicate.
- if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
- if (isa<SCEVConstant>(RHS))
- return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
- else
- return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
- RHS, LHS, FoundLHS, FoundRHS);
- }
- // Check whether the actual condition is beyond sufficient.
- if (FoundPred == ICmpInst::ICMP_EQ)
- if (ICmpInst::isTrueWhenEqual(Pred))
- if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- if (Pred == ICmpInst::ICMP_NE)
- if (!ICmpInst::isTrueWhenEqual(FoundPred))
- if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- // Otherwise assume the worst.
- return false;
- }
- /// isImpliedCondOperands - Test whether the condition described by Pred,
- /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
- /// and FoundRHS is true.
- bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- return isImpliedCondOperandsHelper(Pred, LHS, RHS,
- FoundLHS, FoundRHS) ||
- // ~x < ~y --> x > y
- isImpliedCondOperandsHelper(Pred, LHS, RHS,
- getNotSCEV(FoundRHS),
- getNotSCEV(FoundLHS));
- }
- /// isImpliedCondOperandsHelper - Test whether the condition described by
- /// Pred, LHS, and RHS is true whenever the condition described by Pred,
- /// FoundLHS, and FoundRHS is true.
- bool
- ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- switch (Pred) {
- default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
- isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
- return true;
- break;
- }
- return false;
- }
- /// getBECount - Subtract the end and start values and divide by the step,
- /// rounding up, to get the number of times the backedge is executed. Return
- /// CouldNotCompute if an intermediate computation overflows.
- const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
- const SCEV *End,
- const SCEV *Step,
- bool NoWrap) {
- assert(!isKnownNegative(Step) &&
- "This code doesn't handle negative strides yet!");
- Type *Ty = Start->getType();
- // When Start == End, we have an exact BECount == 0. Short-circuit this case
- // here because SCEV may not be able to determine that the unsigned division
- // after rounding is zero.
- if (Start == End)
- return getConstant(Ty, 0);
- const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
- const SCEV *Diff = getMinusSCEV(End, Start);
- const SCEV *RoundUp = getAddExpr(Step, NegOne);
- // Add an adjustment to the difference between End and Start so that
- // the division will effectively round up.
- const SCEV *Add = getAddExpr(Diff, RoundUp);
- if (!NoWrap) {
- // Check Add for unsigned overflow.
- // TODO: More sophisticated things could be done here.
- Type *WideTy = IntegerType::get(getContext(),
- getTypeSizeInBits(Ty) + 1);
- const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
- const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
- const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
- if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
- return getCouldNotCompute();
- }
- return getUDivExpr(Add, Step);
- }
- /// HowManyLessThans - Return the number of times a backedge containing the
- /// specified less-than comparison will execute. If not computable, return
- /// CouldNotCompute.
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool isSigned) {
- // Only handle: "ADDREC < LoopInvariant".
- if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
- if (!AddRec || AddRec->getLoop() != L)
- return getCouldNotCompute();
- // Check to see if we have a flag which makes analysis easy.
- bool NoWrap = isSigned ?
- AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
- AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
- if (AddRec->isAffine()) {
- unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
- const SCEV *Step = AddRec->getStepRecurrence(*this);
- if (Step->isZero())
- return getCouldNotCompute();
- if (Step->isOne()) {
- // With unit stride, the iteration never steps past the limit value.
- } else if (isKnownPositive(Step)) {
- // Test whether a positive iteration can step past the limit
- // value and past the maximum value for its type in a single step.
- // Note that it's not sufficient to check NoWrap here, because even
- // though the value after a wrap is undefined, it's not undefined
- // behavior, so if wrap does occur, the loop could either terminate or
- // loop infinitely, but in either case, the loop is guaranteed to
- // iterate at least until the iteration where the wrapping occurs.
- const SCEV *One = getConstant(Step->getType(), 1);
- if (isSigned) {
- APInt Max = APInt::getSignedMaxValue(BitWidth);
- if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
- .slt(getSignedRange(RHS).getSignedMax()))
- return getCouldNotCompute();
- } else {
- APInt Max = APInt::getMaxValue(BitWidth);
- if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
- .ult(getUnsignedRange(RHS).getUnsignedMax()))
- return getCouldNotCompute();
- }
- } else
- // TODO: Handle negative strides here and below.
- return getCouldNotCompute();
- // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
- // m. So, we count the number of iterations in which {n,+,s} < m is true.
- // Note that we cannot simply return max(m-n,0)/s because it's not safe to
- // treat m-n as signed nor unsigned due to overflow possibility.
- // First, we get the value of the LHS in the first iteration: n
- const SCEV *Start = AddRec->getOperand(0);
- // Determine the minimum constant start value.
- const SCEV *MinStart = getConstant(isSigned ?
- getSignedRange(Start).getSignedMin() :
- getUnsignedRange(Start).getUnsignedMin());
- // If we know that the condition is true in order to enter the loop,
- // then we know that it will run exactly (m-n)/s times. Otherwise, we
- // only know that it will execute (max(m,n)-n)/s times. In both cases,
- // the division must round up.
- const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L,
- isSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT,
- getMinusSCEV(Start, Step), RHS))
- End = isSigned ? getSMaxExpr(RHS, Start)
- : getUMaxExpr(RHS, Start);
- // Determine the maximum constant end value.
- const SCEV *MaxEnd = getConstant(isSigned ?
- getSignedRange(End).getSignedMax() :
- getUnsignedRange(End).getUnsignedMax());
- // If MaxEnd is within a step of the maximum integer value in its type,
- // adjust it down to the minimum value which would produce the same effect.
- // This allows the subsequent ceiling division of (N+(step-1))/step to
- // compute the correct value.
- const SCEV *StepMinusOne = getMinusSCEV(Step,
- getConstant(Step->getType(), 1));
- MaxEnd = isSigned ?
- getSMinExpr(MaxEnd,
- getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
- StepMinusOne)) :
- getUMinExpr(MaxEnd,
- getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
- StepMinusOne));
- // Finally, we subtract these two values and divide, rounding up, to get
- // the number of times the backedge is executed.
- const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
- // The maximum backedge count is similar, except using the minimum start
- // value and the maximum end value.
- // If we already have an exact constant BECount, use it instead.
- const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
- : getBECount(MinStart, MaxEnd, Step, NoWrap);
- // If the stride is nonconstant, and NoWrap == true, then
- // getBECount(MinStart, MaxEnd) may not compute. This would result in an
- // exact BECount and invalid MaxBECount, which should be avoided to catch
- // more optimization opportunities.
- if (isa<SCEVCouldNotCompute>(MaxBECount))
- MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount);
- }
- return getCouldNotCompute();
- }
- /// getNumIterationsInRange - Return the number of iterations of this loop that
- /// produce values in the specified constant range. Another way of looking at
- /// this is that it returns the first iteration number where the value is not in
- /// the condition, thus computing the exit count. If the iteration count can't
- /// be computed, an instance of SCEVCouldNotCompute is returned.
- const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
- ScalarEvolution &SE) const {
- if (Range.isFullSet()) // Infinite loop.
- return SE.getCouldNotCompute();
- // If the start is a non-zero constant, shift the range to simplify things.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
- if (!SC->getValue()->isZero()) {
- SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
- Operands[0] = SE.getConstant(SC->getType(), 0);
- const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
- getNoWrapFlags(FlagNW));
- if (const SCEVAddRecExpr *ShiftedAddRec =
- dyn_cast<SCEVAddRecExpr>(Shifted))
- return ShiftedAddRec->getNumIterationsInRange(
- Range.subtract(SC->getValue()->getValue()), SE);
- // This is strange and shouldn't happen.
- return SE.getCouldNotCompute();
- }
- // The only time we can solve this is when we have all constant indices.
- // Otherwise, we cannot determine the overflow conditions.
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (!isa<SCEVConstant>(getOperand(i)))
- return SE.getCouldNotCompute();
- // Okay at this point we know that all elements of the chrec are constants and
- // that the start element is zero.
- // First check to see if the range contains zero. If not, the first
- // iteration exits.
- unsigned BitWidth = SE.getTypeSizeInBits(getType());
- if (!Range.contains(APInt(BitWidth, 0)))
- return SE.getConstant(getType(), 0);
- if (isAffine()) {
- // If this is an affine expression then we have this situation:
- // Solve {0,+,A} in Range === Ax in Range
- // We know that zero is in the range. If A is positive then we know that
- // the upper value of the range must be the first possible exit value.
- // If A is negative then the lower of the range is the last possible loop
- // value. Also note that we already checked for a full range.
- APInt One(BitWidth,1);
- APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
- APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
- // The exit value should be (End+A)/A.
- APInt ExitVal = (End + A).udiv(A);
- ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
- // Evaluate at the exit value. If we really did fall out of the valid
- // range, then we computed our trip count, otherwise wrap around or other
- // things must have happened.
- ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
- if (Range.contains(Val->getValue()))
- return SE.getCouldNotCompute(); // Something strange happened
- // Ensure that the previous value is in the range. This is a sanity check.
- assert(Range.contains(
- EvaluateConstantChrecAtConstant(this,
- ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
- "Linear scev computation is off in a bad way!");
- return SE.getConstant(ExitValue);
- } else if (isQuadratic()) {
- // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
- // quadratic equation to solve it. To do this, we must frame our problem in
- // terms of figuring out when zero is crossed, instead of when
- // Range.getUpper() is crossed.
- SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
- NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
- const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
- // getNoWrapFlags(FlagNW)
- FlagAnyWrap);
- // Next, solve the constructed addrec
- std::pair<const SCEV *,const SCEV *> Roots =
- SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
- const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
- const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
- if (R1) {
- // Pick the smallest positive root value.
- if (ConstantInt *CB =
- dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
- R1->getValue(), R2->getValue()))) {
- if (CB->getZExtValue() == false)
- std::swap(R1, R2); // R1 is the minimum root now.
- // Make sure the root is not off by one. The returned iteration should
- // not be in the range, but the previous one should be. When solving
- // for "X*X < 5", for example, we should not return a root of 2.
- ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
- R1->getValue(),
- SE);
- if (Range.contains(R1Val->getValue())) {
- // The next iteration must be out of the range...
- ConstantInt *NextVal =
- ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
- R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
- if (!Range.contains(R1Val->getValue()))
- return SE.getConstant(NextVal);
- return SE.getCouldNotCompute(); // Something strange happened
- }
- // If R1 was not in the range, then it is a good return value. Make
- // sure that R1-1 WAS in the range though, just in case.
- ConstantInt *NextVal =
- ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
- R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
- if (Range.contains(R1Val->getValue()))
- return R1;
- return SE.getCouldNotCompute(); // Something strange happened
- }
- }
- }
- return SE.getCouldNotCompute();
- }
- //===----------------------------------------------------------------------===//
- // SCEVCallbackVH Class Implementation
- //===----------------------------------------------------------------------===//
- void ScalarEvolution::SCEVCallbackVH::deleted() {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
- if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(getValPtr());
- // this now dangles!
- }
- void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
- // Forget all the expressions associated with users of the old value,
- // so that future queries will recompute the expressions using the new
- // value.
- Value *Old = getValPtr();
- SmallVector<User *, 16> Worklist;
- SmallPtrSet<User *, 8> Visited;
- for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
- UI != UE; ++UI)
- Worklist.push_back(*UI);
- while (!Worklist.empty()) {
- User *U = Worklist.pop_back_val();
- // Deleting the Old value will cause this to dangle. Postpone
- // that until everything else is done.
- if (U == Old)
- continue;
- if (!Visited.insert(U))
- continue;
- if (PHINode *PN = dyn_cast<PHINode>(U))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(U);
- for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
- UI != UE; ++UI)
- Worklist.push_back(*UI);
- }
- // Delete the Old value.
- if (PHINode *PN = dyn_cast<PHINode>(Old))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(Old);
- // this now dangles!
- }
- ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
- : CallbackVH(V), SE(se) {}
- //===----------------------------------------------------------------------===//
- // ScalarEvolution Class Implementation
- //===----------------------------------------------------------------------===//
- ScalarEvolution::ScalarEvolution()
- : FunctionPass(ID), FirstUnknown(0) {
- initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
- }
- bool ScalarEvolution::runOnFunction(Function &F) {
- this->F = &F;
- LI = &getAnalysis<LoopInfo>();
- TD = getAnalysisIfAvailable<DataLayout>();
- TLI = &getAnalysis<TargetLibraryInfo>();
- DT = &getAnalysis<DominatorTree>();
- return false;
- }
- void ScalarEvolution::releaseMemory() {
- // Iterate through all the SCEVUnknown instances and call their
- // destructors, so that they release their references to their values.
- for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
- U->~SCEVUnknown();
- FirstUnknown = 0;
- ValueExprMap.clear();
- // Free any extra memory created for ExitNotTakenInfo in the unlikely event
- // that a loop had multiple computable exits.
- for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
- BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
- I != E; ++I) {
- I->second.clear();
- }
- assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
- BackedgeTakenCounts.clear();
- ConstantEvolutionLoopExitValue.clear();
- ValuesAtScopes.clear();
- LoopDispositions.clear();
- BlockDispositions.clear();
- UnsignedRanges.clear();
- SignedRanges.clear();
- UniqueSCEVs.clear();
- SCEVAllocator.Reset();
- }
- void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<LoopInfo>();
- AU.addRequiredTransitive<DominatorTree>();
- AU.addRequired<TargetLibraryInfo>();
- }
- bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
- return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
- }
- static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
- const Loop *L) {
- // Print all inner loops first
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- PrintLoopInfo(OS, SE, *I);
- OS << "Loop ";
- WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
- OS << ": ";
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- if (ExitBlocks.size() != 1)
- OS << "<multiple exits> ";
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
- } else {
- OS << "Unpredictable backedge-taken count. ";
- }
- OS << "\n"
- "Loop ";
- WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
- OS << ": ";
- if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
- OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
- } else {
- OS << "Unpredictable max backedge-taken count. ";
- }
- OS << "\n";
- }
- void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
- // ScalarEvolution's implementation of the print method is to print
- // out SCEV values of all instructions that are interesting. Doing
- // this potentially causes it to create new SCEV objects though,
- // which technically conflicts with the const qualifier. This isn't
- // observable from outside the class though, so casting away the
- // const isn't dangerous.
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- OS << "Classifying expressions for: ";
- WriteAsOperand(OS, F, /*PrintType=*/false);
- OS << "\n";
- for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
- if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
- OS << *I << '\n';
- OS << " --> ";
- const SCEV *SV = SE.getSCEV(&*I);
- SV->print(OS);
- const Loop *L = LI->getLoopFor((*I).getParent());
- const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
- if (AtUse != SV) {
- OS << " --> ";
- AtUse->print(OS);
- }
- if (L) {
- OS << "\t\t" "Exits: ";
- const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
- if (!SE.isLoopInvariant(ExitValue, L)) {
- OS << "<<Unknown>>";
- } else {
- OS << *ExitValue;
- }
- }
- OS << "\n";
- }
- OS << "Determining loop execution counts for: ";
- WriteAsOperand(OS, F, /*PrintType=*/false);
- OS << "\n";
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- PrintLoopInfo(OS, &SE, *I);
- }
- ScalarEvolution::LoopDisposition
- ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
- std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
- std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
- Values.insert(std::make_pair(L, LoopVariant));
- if (!Pair.second)
- return Pair.first->second;
- LoopDisposition D = computeLoopDisposition(S, L);
- return LoopDispositions[S][L] = D;
- }
- ScalarEvolution::LoopDisposition
- ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
- switch (S->getSCEVType()) {
- case scConstant:
- return LoopInvariant;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
- // If L is the addrec's loop, it's computable.
- if (AR->getLoop() == L)
- return LoopComputable;
- // Add recurrences are never invariant in the function-body (null loop).
- if (!L)
- return LoopVariant;
- // This recurrence is variant w.r.t. L if L contains AR's loop.
- if (L->contains(AR->getLoop()))
- return LoopVariant;
- // This recurrence is invariant w.r.t. L if AR's loop contains L.
- if (AR->getLoop()->contains(L))
- return LoopInvariant;
- // This recurrence is variant w.r.t. L if any of its operands
- // are variant.
- for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
- I != E; ++I)
- if (!isLoopInvariant(*I, L))
- return LoopVariant;
- // Otherwise it's loop-invariant.
- return LoopInvariant;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- bool HasVarying = false;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- LoopDisposition D = getLoopDisposition(*I, L);
- if (D == LoopVariant)
- return LoopVariant;
- if (D == LoopComputable)
- HasVarying = true;
- }
- return HasVarying ? LoopComputable : LoopInvariant;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
- if (LD == LoopVariant)
- return LoopVariant;
- LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
- if (RD == LoopVariant)
- return LoopVariant;
- return (LD == LoopInvariant && RD == LoopInvariant) ?
- LoopInvariant : LoopComputable;
- }
- case scUnknown:
- // All non-instruction values are loop invariant. All instructions are loop
- // invariant if they are not contained in the specified loop.
- // Instructions are never considered invariant in the function body
- // (null loop) because they are defined within the "loop".
- if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
- return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
- return LoopInvariant;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default: llvm_unreachable("Unknown SCEV kind!");
- }
- }
- bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopInvariant;
- }
- bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopComputable;
- }
- ScalarEvolution::BlockDisposition
- ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
- std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
- Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
- if (!Pair.second)
- return Pair.first->second;
- BlockDisposition D = computeBlockDisposition(S, BB);
- return BlockDispositions[S][BB] = D;
- }
- ScalarEvolution::BlockDisposition
- ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- switch (S->getSCEVType()) {
- case scConstant:
- return ProperlyDominatesBlock;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
- case scAddRecExpr: {
- // This uses a "dominates" query instead of "properly dominates" query
- // to test for proper dominance too, because the instruction which
- // produces the addrec's value is a PHI, and a PHI effectively properly
- // dominates its entire containing block.
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
- if (!DT->dominates(AR->getLoop()->getHeader(), BB))
- return DoesNotDominateBlock;
- }
- // FALL THROUGH into SCEVNAryExpr handling.
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- bool Proper = true;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- BlockDisposition D = getBlockDisposition(*I, BB);
- if (D == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- if (D == DominatesBlock)
- Proper = false;
- }
- return Proper ? ProperlyDominatesBlock : DominatesBlock;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
- BlockDisposition LD = getBlockDisposition(LHS, BB);
- if (LD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- BlockDisposition RD = getBlockDisposition(RHS, BB);
- if (RD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
- ProperlyDominatesBlock : DominatesBlock;
- }
- case scUnknown:
- if (Instruction *I =
- dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
- if (I->getParent() == BB)
- return DominatesBlock;
- if (DT->properlyDominates(I->getParent(), BB))
- return ProperlyDominatesBlock;
- return DoesNotDominateBlock;
- }
- return ProperlyDominatesBlock;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default:
- llvm_unreachable("Unknown SCEV kind!");
- }
- }
- bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) >= DominatesBlock;
- }
- bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
- }
- namespace {
- // Search for a SCEV expression node within an expression tree.
- // Implements SCEVTraversal::Visitor.
- struct SCEVSearch {
- const SCEV *Node;
- bool IsFound;
- SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
- bool follow(const SCEV *S) {
- IsFound |= (S == Node);
- return !IsFound;
- }
- bool isDone() const { return IsFound; }
- };
- }
- bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
- SCEVSearch Search(Op);
- visitAll(S, Search);
- return Search.IsFound;
- }
- void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
- ValuesAtScopes.erase(S);
- LoopDispositions.erase(S);
- BlockDispositions.erase(S);
- UnsignedRanges.erase(S);
- SignedRanges.erase(S);
- }
- typedef DenseMap<const Loop *, std::string> VerifyMap;
- /// replaceSubString - Replaces all occurences of From in Str with To.
- static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
- size_t Pos = 0;
- while ((Pos = Str.find(From, Pos)) != std::string::npos) {
- Str.replace(Pos, From.size(), To.data(), To.size());
- Pos += To.size();
- }
- }
- /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
- static void
- getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
- for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
- getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
- std::string &S = Map[L];
- if (S.empty()) {
- raw_string_ostream OS(S);
- SE.getBackedgeTakenCount(L)->print(OS);
- // false and 0 are semantically equivalent. This can happen in dead loops.
- replaceSubString(OS.str(), "false", "0");
- // Remove wrap flags, their use in SCEV is highly fragile.
- // FIXME: Remove this when SCEV gets smarter about them.
- replaceSubString(OS.str(), "<nw>", "");
- replaceSubString(OS.str(), "<nsw>", "");
- replaceSubString(OS.str(), "<nuw>", "");
- }
- }
- }
- void ScalarEvolution::verifyAnalysis() const {
- if (!VerifySCEV)
- return;
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- // Gather stringified backedge taken counts for all loops using SCEV's caches.
- // FIXME: It would be much better to store actual values instead of strings,
- // but SCEV pointers will change if we drop the caches.
- VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
- for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
- getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
- // Gather stringified backedge taken counts for all loops without using
- // SCEV's caches.
- SE.releaseMemory();
- for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
- getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
- // Now compare whether they're the same with and without caches. This allows
- // verifying that no pass changed the cache.
- assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
- "New loops suddenly appeared!");
- for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
- OldE = BackedgeDumpsOld.end(),
- NewI = BackedgeDumpsNew.begin();
- OldI != OldE; ++OldI, ++NewI) {
- assert(OldI->first == NewI->first && "Loop order changed!");
- // Compare the stringified SCEVs. We don't care if undef backedgetaken count
- // changes.
- // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
- // means that a pass is buggy or SCEV has to learn a new pattern but is
- // usually not harmful.
- if (OldI->second != NewI->second &&
- OldI->second.find("undef") == std::string::npos &&
- NewI->second.find("undef") == std::string::npos &&
- OldI->second != "***COULDNOTCOMPUTE***" &&
- NewI->second != "***COULDNOTCOMPUTE***") {
- dbgs() << "SCEVValidator: SCEV for loop '"
- << OldI->first->getHeader()->getName()
- << "' changed from '" << OldI->second
- << "' to '" << NewI->second << "'!\n";
- std::abort();
- }
- }
- // TODO: Verify more things.
- }
|