BitcodeWriter.cpp 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DebugInfoMetadata.h"
  20. #include "llvm/IR/DerivedTypes.h"
  21. #include "llvm/IR/InlineAsm.h"
  22. #include "llvm/IR/Instructions.h"
  23. #include "llvm/IR/Module.h"
  24. #include "llvm/IR/Operator.h"
  25. #include "llvm/IR/UseListOrder.h"
  26. #include "llvm/IR/ValueSymbolTable.h"
  27. #include "llvm/Support/CommandLine.h"
  28. #include "llvm/Support/ErrorHandling.h"
  29. #include "llvm/Support/MathExtras.h"
  30. #include "llvm/Support/Program.h"
  31. #include "llvm/Support/raw_ostream.h"
  32. #include <cctype>
  33. #include <map>
  34. using namespace llvm;
  35. /// These are manifest constants used by the bitcode writer. They do not need to
  36. /// be kept in sync with the reader, but need to be consistent within this file.
  37. enum {
  38. // VALUE_SYMTAB_BLOCK abbrev id's.
  39. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  40. VST_ENTRY_7_ABBREV,
  41. VST_ENTRY_6_ABBREV,
  42. VST_BBENTRY_6_ABBREV,
  43. // CONSTANTS_BLOCK abbrev id's.
  44. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  45. CONSTANTS_INTEGER_ABBREV,
  46. CONSTANTS_CE_CAST_Abbrev,
  47. CONSTANTS_NULL_Abbrev,
  48. // FUNCTION_BLOCK abbrev id's.
  49. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  50. FUNCTION_INST_BINOP_ABBREV,
  51. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  52. FUNCTION_INST_CAST_ABBREV,
  53. FUNCTION_INST_RET_VOID_ABBREV,
  54. FUNCTION_INST_RET_VAL_ABBREV,
  55. FUNCTION_INST_UNREACHABLE_ABBREV
  56. };
  57. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  58. switch (Opcode) {
  59. default: llvm_unreachable("Unknown cast instruction!");
  60. case Instruction::Trunc : return bitc::CAST_TRUNC;
  61. case Instruction::ZExt : return bitc::CAST_ZEXT;
  62. case Instruction::SExt : return bitc::CAST_SEXT;
  63. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  64. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  65. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  66. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  67. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  68. case Instruction::FPExt : return bitc::CAST_FPEXT;
  69. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  70. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  71. case Instruction::BitCast : return bitc::CAST_BITCAST;
  72. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  73. }
  74. }
  75. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  76. switch (Opcode) {
  77. default: llvm_unreachable("Unknown binary instruction!");
  78. case Instruction::Add:
  79. case Instruction::FAdd: return bitc::BINOP_ADD;
  80. case Instruction::Sub:
  81. case Instruction::FSub: return bitc::BINOP_SUB;
  82. case Instruction::Mul:
  83. case Instruction::FMul: return bitc::BINOP_MUL;
  84. case Instruction::UDiv: return bitc::BINOP_UDIV;
  85. case Instruction::FDiv:
  86. case Instruction::SDiv: return bitc::BINOP_SDIV;
  87. case Instruction::URem: return bitc::BINOP_UREM;
  88. case Instruction::FRem:
  89. case Instruction::SRem: return bitc::BINOP_SREM;
  90. case Instruction::Shl: return bitc::BINOP_SHL;
  91. case Instruction::LShr: return bitc::BINOP_LSHR;
  92. case Instruction::AShr: return bitc::BINOP_ASHR;
  93. case Instruction::And: return bitc::BINOP_AND;
  94. case Instruction::Or: return bitc::BINOP_OR;
  95. case Instruction::Xor: return bitc::BINOP_XOR;
  96. }
  97. }
  98. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  99. switch (Op) {
  100. default: llvm_unreachable("Unknown RMW operation!");
  101. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  102. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  103. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  104. case AtomicRMWInst::And: return bitc::RMW_AND;
  105. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  106. case AtomicRMWInst::Or: return bitc::RMW_OR;
  107. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  108. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  109. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  110. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  111. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  112. }
  113. }
  114. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  115. switch (Ordering) {
  116. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  117. case Unordered: return bitc::ORDERING_UNORDERED;
  118. case Monotonic: return bitc::ORDERING_MONOTONIC;
  119. case Acquire: return bitc::ORDERING_ACQUIRE;
  120. case Release: return bitc::ORDERING_RELEASE;
  121. case AcquireRelease: return bitc::ORDERING_ACQREL;
  122. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  123. }
  124. llvm_unreachable("Invalid ordering");
  125. }
  126. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  127. switch (SynchScope) {
  128. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  129. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  130. }
  131. llvm_unreachable("Invalid synch scope");
  132. }
  133. static void WriteStringRecord(unsigned Code, StringRef Str,
  134. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  135. SmallVector<unsigned, 64> Vals;
  136. // Code: [strchar x N]
  137. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  138. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  139. AbbrevToUse = 0;
  140. Vals.push_back(Str[i]);
  141. }
  142. // Emit the finished record.
  143. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  144. }
  145. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  146. switch (Kind) {
  147. case Attribute::Alignment:
  148. return bitc::ATTR_KIND_ALIGNMENT;
  149. case Attribute::AlwaysInline:
  150. return bitc::ATTR_KIND_ALWAYS_INLINE;
  151. case Attribute::Builtin:
  152. return bitc::ATTR_KIND_BUILTIN;
  153. case Attribute::ByVal:
  154. return bitc::ATTR_KIND_BY_VAL;
  155. case Attribute::InAlloca:
  156. return bitc::ATTR_KIND_IN_ALLOCA;
  157. case Attribute::Cold:
  158. return bitc::ATTR_KIND_COLD;
  159. case Attribute::InlineHint:
  160. return bitc::ATTR_KIND_INLINE_HINT;
  161. case Attribute::InReg:
  162. return bitc::ATTR_KIND_IN_REG;
  163. case Attribute::JumpTable:
  164. return bitc::ATTR_KIND_JUMP_TABLE;
  165. case Attribute::MinSize:
  166. return bitc::ATTR_KIND_MIN_SIZE;
  167. case Attribute::Naked:
  168. return bitc::ATTR_KIND_NAKED;
  169. case Attribute::Nest:
  170. return bitc::ATTR_KIND_NEST;
  171. case Attribute::NoAlias:
  172. return bitc::ATTR_KIND_NO_ALIAS;
  173. case Attribute::NoBuiltin:
  174. return bitc::ATTR_KIND_NO_BUILTIN;
  175. case Attribute::NoCapture:
  176. return bitc::ATTR_KIND_NO_CAPTURE;
  177. case Attribute::NoDuplicate:
  178. return bitc::ATTR_KIND_NO_DUPLICATE;
  179. case Attribute::NoImplicitFloat:
  180. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  181. case Attribute::NoInline:
  182. return bitc::ATTR_KIND_NO_INLINE;
  183. case Attribute::NonLazyBind:
  184. return bitc::ATTR_KIND_NON_LAZY_BIND;
  185. case Attribute::NonNull:
  186. return bitc::ATTR_KIND_NON_NULL;
  187. case Attribute::Dereferenceable:
  188. return bitc::ATTR_KIND_DEREFERENCEABLE;
  189. case Attribute::NoRedZone:
  190. return bitc::ATTR_KIND_NO_RED_ZONE;
  191. case Attribute::NoReturn:
  192. return bitc::ATTR_KIND_NO_RETURN;
  193. case Attribute::NoUnwind:
  194. return bitc::ATTR_KIND_NO_UNWIND;
  195. case Attribute::OptimizeForSize:
  196. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  197. case Attribute::OptimizeNone:
  198. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  199. case Attribute::ReadNone:
  200. return bitc::ATTR_KIND_READ_NONE;
  201. case Attribute::ReadOnly:
  202. return bitc::ATTR_KIND_READ_ONLY;
  203. case Attribute::Returned:
  204. return bitc::ATTR_KIND_RETURNED;
  205. case Attribute::ReturnsTwice:
  206. return bitc::ATTR_KIND_RETURNS_TWICE;
  207. case Attribute::SExt:
  208. return bitc::ATTR_KIND_S_EXT;
  209. case Attribute::StackAlignment:
  210. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  211. case Attribute::StackProtect:
  212. return bitc::ATTR_KIND_STACK_PROTECT;
  213. case Attribute::StackProtectReq:
  214. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  215. case Attribute::StackProtectStrong:
  216. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  217. case Attribute::StructRet:
  218. return bitc::ATTR_KIND_STRUCT_RET;
  219. case Attribute::SanitizeAddress:
  220. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  221. case Attribute::SanitizeThread:
  222. return bitc::ATTR_KIND_SANITIZE_THREAD;
  223. case Attribute::SanitizeMemory:
  224. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  225. case Attribute::UWTable:
  226. return bitc::ATTR_KIND_UW_TABLE;
  227. case Attribute::ZExt:
  228. return bitc::ATTR_KIND_Z_EXT;
  229. case Attribute::EndAttrKinds:
  230. llvm_unreachable("Can not encode end-attribute kinds marker.");
  231. case Attribute::None:
  232. llvm_unreachable("Can not encode none-attribute.");
  233. }
  234. llvm_unreachable("Trying to encode unknown attribute");
  235. }
  236. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  237. BitstreamWriter &Stream) {
  238. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  239. if (AttrGrps.empty()) return;
  240. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  241. SmallVector<uint64_t, 64> Record;
  242. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  243. AttributeSet AS = AttrGrps[i];
  244. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  245. AttributeSet A = AS.getSlotAttributes(i);
  246. Record.push_back(VE.getAttributeGroupID(A));
  247. Record.push_back(AS.getSlotIndex(i));
  248. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  249. I != E; ++I) {
  250. Attribute Attr = *I;
  251. if (Attr.isEnumAttribute()) {
  252. Record.push_back(0);
  253. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  254. } else if (Attr.isIntAttribute()) {
  255. Record.push_back(1);
  256. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  257. Record.push_back(Attr.getValueAsInt());
  258. } else {
  259. StringRef Kind = Attr.getKindAsString();
  260. StringRef Val = Attr.getValueAsString();
  261. Record.push_back(Val.empty() ? 3 : 4);
  262. Record.append(Kind.begin(), Kind.end());
  263. Record.push_back(0);
  264. if (!Val.empty()) {
  265. Record.append(Val.begin(), Val.end());
  266. Record.push_back(0);
  267. }
  268. }
  269. }
  270. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  271. Record.clear();
  272. }
  273. }
  274. Stream.ExitBlock();
  275. }
  276. static void WriteAttributeTable(const ValueEnumerator &VE,
  277. BitstreamWriter &Stream) {
  278. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  279. if (Attrs.empty()) return;
  280. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  281. SmallVector<uint64_t, 64> Record;
  282. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  283. const AttributeSet &A = Attrs[i];
  284. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  285. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  286. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  287. Record.clear();
  288. }
  289. Stream.ExitBlock();
  290. }
  291. /// WriteTypeTable - Write out the type table for a module.
  292. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  293. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  294. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  295. SmallVector<uint64_t, 64> TypeVals;
  296. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  297. // Abbrev for TYPE_CODE_POINTER.
  298. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  299. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  300. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  301. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  302. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  303. // Abbrev for TYPE_CODE_FUNCTION.
  304. Abbv = new BitCodeAbbrev();
  305. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  306. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  307. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  308. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  309. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  310. // Abbrev for TYPE_CODE_STRUCT_ANON.
  311. Abbv = new BitCodeAbbrev();
  312. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  313. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  314. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  315. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  316. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  317. // Abbrev for TYPE_CODE_STRUCT_NAME.
  318. Abbv = new BitCodeAbbrev();
  319. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  320. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  321. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  322. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  323. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  324. Abbv = new BitCodeAbbrev();
  325. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  326. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  327. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  328. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  329. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  330. // Abbrev for TYPE_CODE_ARRAY.
  331. Abbv = new BitCodeAbbrev();
  332. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  333. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  334. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  335. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  336. // Emit an entry count so the reader can reserve space.
  337. TypeVals.push_back(TypeList.size());
  338. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  339. TypeVals.clear();
  340. // Loop over all of the types, emitting each in turn.
  341. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  342. Type *T = TypeList[i];
  343. int AbbrevToUse = 0;
  344. unsigned Code = 0;
  345. switch (T->getTypeID()) {
  346. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  347. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  348. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  349. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  350. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  351. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  352. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  353. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  354. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  355. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  356. case Type::IntegerTyID:
  357. // INTEGER: [width]
  358. Code = bitc::TYPE_CODE_INTEGER;
  359. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  360. break;
  361. case Type::PointerTyID: {
  362. PointerType *PTy = cast<PointerType>(T);
  363. // POINTER: [pointee type, address space]
  364. Code = bitc::TYPE_CODE_POINTER;
  365. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  366. unsigned AddressSpace = PTy->getAddressSpace();
  367. TypeVals.push_back(AddressSpace);
  368. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  369. break;
  370. }
  371. case Type::FunctionTyID: {
  372. FunctionType *FT = cast<FunctionType>(T);
  373. // FUNCTION: [isvararg, retty, paramty x N]
  374. Code = bitc::TYPE_CODE_FUNCTION;
  375. TypeVals.push_back(FT->isVarArg());
  376. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  377. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  378. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  379. AbbrevToUse = FunctionAbbrev;
  380. break;
  381. }
  382. case Type::StructTyID: {
  383. StructType *ST = cast<StructType>(T);
  384. // STRUCT: [ispacked, eltty x N]
  385. TypeVals.push_back(ST->isPacked());
  386. // Output all of the element types.
  387. for (StructType::element_iterator I = ST->element_begin(),
  388. E = ST->element_end(); I != E; ++I)
  389. TypeVals.push_back(VE.getTypeID(*I));
  390. if (ST->isLiteral()) {
  391. Code = bitc::TYPE_CODE_STRUCT_ANON;
  392. AbbrevToUse = StructAnonAbbrev;
  393. } else {
  394. if (ST->isOpaque()) {
  395. Code = bitc::TYPE_CODE_OPAQUE;
  396. } else {
  397. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  398. AbbrevToUse = StructNamedAbbrev;
  399. }
  400. // Emit the name if it is present.
  401. if (!ST->getName().empty())
  402. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  403. StructNameAbbrev, Stream);
  404. }
  405. break;
  406. }
  407. case Type::ArrayTyID: {
  408. ArrayType *AT = cast<ArrayType>(T);
  409. // ARRAY: [numelts, eltty]
  410. Code = bitc::TYPE_CODE_ARRAY;
  411. TypeVals.push_back(AT->getNumElements());
  412. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  413. AbbrevToUse = ArrayAbbrev;
  414. break;
  415. }
  416. case Type::VectorTyID: {
  417. VectorType *VT = cast<VectorType>(T);
  418. // VECTOR [numelts, eltty]
  419. Code = bitc::TYPE_CODE_VECTOR;
  420. TypeVals.push_back(VT->getNumElements());
  421. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  422. break;
  423. }
  424. }
  425. // Emit the finished record.
  426. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  427. TypeVals.clear();
  428. }
  429. Stream.ExitBlock();
  430. }
  431. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  432. switch (GV.getLinkage()) {
  433. case GlobalValue::ExternalLinkage:
  434. return 0;
  435. case GlobalValue::WeakAnyLinkage:
  436. return 16;
  437. case GlobalValue::AppendingLinkage:
  438. return 2;
  439. case GlobalValue::InternalLinkage:
  440. return 3;
  441. case GlobalValue::LinkOnceAnyLinkage:
  442. return 18;
  443. case GlobalValue::ExternalWeakLinkage:
  444. return 7;
  445. case GlobalValue::CommonLinkage:
  446. return 8;
  447. case GlobalValue::PrivateLinkage:
  448. return 9;
  449. case GlobalValue::WeakODRLinkage:
  450. return 17;
  451. case GlobalValue::LinkOnceODRLinkage:
  452. return 19;
  453. case GlobalValue::AvailableExternallyLinkage:
  454. return 12;
  455. }
  456. llvm_unreachable("Invalid linkage");
  457. }
  458. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  459. switch (GV.getVisibility()) {
  460. case GlobalValue::DefaultVisibility: return 0;
  461. case GlobalValue::HiddenVisibility: return 1;
  462. case GlobalValue::ProtectedVisibility: return 2;
  463. }
  464. llvm_unreachable("Invalid visibility");
  465. }
  466. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  467. switch (GV.getDLLStorageClass()) {
  468. case GlobalValue::DefaultStorageClass: return 0;
  469. case GlobalValue::DLLImportStorageClass: return 1;
  470. case GlobalValue::DLLExportStorageClass: return 2;
  471. }
  472. llvm_unreachable("Invalid DLL storage class");
  473. }
  474. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  475. switch (GV.getThreadLocalMode()) {
  476. case GlobalVariable::NotThreadLocal: return 0;
  477. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  478. case GlobalVariable::LocalDynamicTLSModel: return 2;
  479. case GlobalVariable::InitialExecTLSModel: return 3;
  480. case GlobalVariable::LocalExecTLSModel: return 4;
  481. }
  482. llvm_unreachable("Invalid TLS model");
  483. }
  484. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  485. switch (C.getSelectionKind()) {
  486. case Comdat::Any:
  487. return bitc::COMDAT_SELECTION_KIND_ANY;
  488. case Comdat::ExactMatch:
  489. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  490. case Comdat::Largest:
  491. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  492. case Comdat::NoDuplicates:
  493. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  494. case Comdat::SameSize:
  495. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  496. }
  497. llvm_unreachable("Invalid selection kind");
  498. }
  499. static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  500. SmallVector<uint16_t, 64> Vals;
  501. for (const Comdat *C : VE.getComdats()) {
  502. // COMDAT: [selection_kind, name]
  503. Vals.push_back(getEncodedComdatSelectionKind(*C));
  504. size_t Size = C->getName().size();
  505. assert(isUInt<16>(Size));
  506. Vals.push_back(Size);
  507. for (char Chr : C->getName())
  508. Vals.push_back((unsigned char)Chr);
  509. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  510. Vals.clear();
  511. }
  512. }
  513. // Emit top-level description of module, including target triple, inline asm,
  514. // descriptors for global variables, and function prototype info.
  515. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  516. BitstreamWriter &Stream) {
  517. // Emit various pieces of data attached to a module.
  518. if (!M->getTargetTriple().empty())
  519. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  520. 0/*TODO*/, Stream);
  521. const std::string &DL = M->getDataLayoutStr();
  522. if (!DL.empty())
  523. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  524. if (!M->getModuleInlineAsm().empty())
  525. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  526. 0/*TODO*/, Stream);
  527. // Emit information about sections and GC, computing how many there are. Also
  528. // compute the maximum alignment value.
  529. std::map<std::string, unsigned> SectionMap;
  530. std::map<std::string, unsigned> GCMap;
  531. unsigned MaxAlignment = 0;
  532. unsigned MaxGlobalType = 0;
  533. for (const GlobalValue &GV : M->globals()) {
  534. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  535. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
  536. if (GV.hasSection()) {
  537. // Give section names unique ID's.
  538. unsigned &Entry = SectionMap[GV.getSection()];
  539. if (!Entry) {
  540. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  541. 0/*TODO*/, Stream);
  542. Entry = SectionMap.size();
  543. }
  544. }
  545. }
  546. for (const Function &F : *M) {
  547. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  548. if (F.hasSection()) {
  549. // Give section names unique ID's.
  550. unsigned &Entry = SectionMap[F.getSection()];
  551. if (!Entry) {
  552. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  553. 0/*TODO*/, Stream);
  554. Entry = SectionMap.size();
  555. }
  556. }
  557. if (F.hasGC()) {
  558. // Same for GC names.
  559. unsigned &Entry = GCMap[F.getGC()];
  560. if (!Entry) {
  561. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
  562. 0/*TODO*/, Stream);
  563. Entry = GCMap.size();
  564. }
  565. }
  566. }
  567. // Emit abbrev for globals, now that we know # sections and max alignment.
  568. unsigned SimpleGVarAbbrev = 0;
  569. if (!M->global_empty()) {
  570. // Add an abbrev for common globals with no visibility or thread localness.
  571. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  572. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  573. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  574. Log2_32_Ceil(MaxGlobalType+1)));
  575. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  576. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  577. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
  578. if (MaxAlignment == 0) // Alignment.
  579. Abbv->Add(BitCodeAbbrevOp(0));
  580. else {
  581. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  582. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  583. Log2_32_Ceil(MaxEncAlignment+1)));
  584. }
  585. if (SectionMap.empty()) // Section.
  586. Abbv->Add(BitCodeAbbrevOp(0));
  587. else
  588. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  589. Log2_32_Ceil(SectionMap.size()+1)));
  590. // Don't bother emitting vis + thread local.
  591. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  592. }
  593. // Emit the global variable information.
  594. SmallVector<unsigned, 64> Vals;
  595. for (const GlobalVariable &GV : M->globals()) {
  596. unsigned AbbrevToUse = 0;
  597. // GLOBALVAR: [type, isconst, initid,
  598. // linkage, alignment, section, visibility, threadlocal,
  599. // unnamed_addr, externally_initialized, dllstorageclass,
  600. // comdat]
  601. Vals.push_back(VE.getTypeID(GV.getType()));
  602. Vals.push_back(GV.isConstant());
  603. Vals.push_back(GV.isDeclaration() ? 0 :
  604. (VE.getValueID(GV.getInitializer()) + 1));
  605. Vals.push_back(getEncodedLinkage(GV));
  606. Vals.push_back(Log2_32(GV.getAlignment())+1);
  607. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  608. if (GV.isThreadLocal() ||
  609. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  610. GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
  611. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  612. GV.hasComdat()) {
  613. Vals.push_back(getEncodedVisibility(GV));
  614. Vals.push_back(getEncodedThreadLocalMode(GV));
  615. Vals.push_back(GV.hasUnnamedAddr());
  616. Vals.push_back(GV.isExternallyInitialized());
  617. Vals.push_back(getEncodedDLLStorageClass(GV));
  618. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  619. } else {
  620. AbbrevToUse = SimpleGVarAbbrev;
  621. }
  622. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  623. Vals.clear();
  624. }
  625. // Emit the function proto information.
  626. for (const Function &F : *M) {
  627. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  628. // section, visibility, gc, unnamed_addr, prologuedata,
  629. // dllstorageclass, comdat, prefixdata]
  630. Vals.push_back(VE.getTypeID(F.getType()));
  631. Vals.push_back(F.getCallingConv());
  632. Vals.push_back(F.isDeclaration());
  633. Vals.push_back(getEncodedLinkage(F));
  634. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  635. Vals.push_back(Log2_32(F.getAlignment())+1);
  636. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  637. Vals.push_back(getEncodedVisibility(F));
  638. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  639. Vals.push_back(F.hasUnnamedAddr());
  640. Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
  641. : 0);
  642. Vals.push_back(getEncodedDLLStorageClass(F));
  643. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  644. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  645. : 0);
  646. unsigned AbbrevToUse = 0;
  647. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  648. Vals.clear();
  649. }
  650. // Emit the alias information.
  651. for (const GlobalAlias &A : M->aliases()) {
  652. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  653. Vals.push_back(VE.getTypeID(A.getType()));
  654. Vals.push_back(VE.getValueID(A.getAliasee()));
  655. Vals.push_back(getEncodedLinkage(A));
  656. Vals.push_back(getEncodedVisibility(A));
  657. Vals.push_back(getEncodedDLLStorageClass(A));
  658. Vals.push_back(getEncodedThreadLocalMode(A));
  659. Vals.push_back(A.hasUnnamedAddr());
  660. unsigned AbbrevToUse = 0;
  661. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  662. Vals.clear();
  663. }
  664. }
  665. static uint64_t GetOptimizationFlags(const Value *V) {
  666. uint64_t Flags = 0;
  667. if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
  668. if (OBO->hasNoSignedWrap())
  669. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  670. if (OBO->hasNoUnsignedWrap())
  671. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  672. } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
  673. if (PEO->isExact())
  674. Flags |= 1 << bitc::PEO_EXACT;
  675. } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
  676. if (FPMO->hasUnsafeAlgebra())
  677. Flags |= FastMathFlags::UnsafeAlgebra;
  678. if (FPMO->hasNoNaNs())
  679. Flags |= FastMathFlags::NoNaNs;
  680. if (FPMO->hasNoInfs())
  681. Flags |= FastMathFlags::NoInfs;
  682. if (FPMO->hasNoSignedZeros())
  683. Flags |= FastMathFlags::NoSignedZeros;
  684. if (FPMO->hasAllowReciprocal())
  685. Flags |= FastMathFlags::AllowReciprocal;
  686. }
  687. return Flags;
  688. }
  689. static void WriteValueAsMetadata(const ValueAsMetadata *MD,
  690. const ValueEnumerator &VE,
  691. BitstreamWriter &Stream,
  692. SmallVectorImpl<uint64_t> &Record) {
  693. // Mimic an MDNode with a value as one operand.
  694. Value *V = MD->getValue();
  695. Record.push_back(VE.getTypeID(V->getType()));
  696. Record.push_back(VE.getValueID(V));
  697. Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
  698. Record.clear();
  699. }
  700. static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
  701. BitstreamWriter &Stream,
  702. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
  703. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  704. Metadata *MD = N->getOperand(i);
  705. assert(!(MD && isa<LocalAsMetadata>(MD)) &&
  706. "Unexpected function-local metadata");
  707. Record.push_back(VE.getMetadataOrNullID(MD));
  708. }
  709. Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
  710. : bitc::METADATA_NODE,
  711. Record, Abbrev);
  712. Record.clear();
  713. }
  714. static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
  715. BitstreamWriter &Stream,
  716. SmallVectorImpl<uint64_t> &Record,
  717. unsigned Abbrev) {
  718. Record.push_back(N->isDistinct());
  719. Record.push_back(N->getLine());
  720. Record.push_back(N->getColumn());
  721. Record.push_back(VE.getMetadataID(N->getScope()));
  722. Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
  723. Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
  724. Record.clear();
  725. }
  726. static void WriteGenericDebugNode(const GenericDebugNode *N,
  727. const ValueEnumerator &VE,
  728. BitstreamWriter &Stream,
  729. SmallVectorImpl<uint64_t> &Record,
  730. unsigned Abbrev) {
  731. Record.push_back(N->isDistinct());
  732. Record.push_back(N->getTag());
  733. Record.push_back(0); // Per-tag version field; unused for now.
  734. for (auto &I : N->operands())
  735. Record.push_back(VE.getMetadataOrNullID(I));
  736. Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
  737. Record.clear();
  738. }
  739. static uint64_t rotateSign(int64_t I) {
  740. uint64_t U = I;
  741. return I < 0 ? ~(U << 1) : U << 1;
  742. }
  743. static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
  744. BitstreamWriter &Stream,
  745. SmallVectorImpl<uint64_t> &Record,
  746. unsigned Abbrev) {
  747. Record.push_back(N->isDistinct());
  748. Record.push_back(N->getCount());
  749. Record.push_back(rotateSign(N->getLo()));
  750. Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
  751. Record.clear();
  752. }
  753. static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
  754. BitstreamWriter &Stream,
  755. SmallVectorImpl<uint64_t> &Record,
  756. unsigned Abbrev) {
  757. Record.push_back(N->isDistinct());
  758. Record.push_back(rotateSign(N->getValue()));
  759. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  760. Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
  761. Record.clear();
  762. }
  763. static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
  764. BitstreamWriter &Stream,
  765. SmallVectorImpl<uint64_t> &Record,
  766. unsigned Abbrev) {
  767. Record.push_back(N->isDistinct());
  768. Record.push_back(N->getTag());
  769. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  770. Record.push_back(N->getSizeInBits());
  771. Record.push_back(N->getAlignInBits());
  772. Record.push_back(N->getEncoding());
  773. Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
  774. Record.clear();
  775. }
  776. static void WriteMDDerivedType(const MDDerivedType *N,
  777. const ValueEnumerator &VE,
  778. BitstreamWriter &Stream,
  779. SmallVectorImpl<uint64_t> &Record,
  780. unsigned Abbrev) {
  781. Record.push_back(N->isDistinct());
  782. Record.push_back(N->getTag());
  783. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  784. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  785. Record.push_back(N->getLine());
  786. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  787. Record.push_back(VE.getMetadataID(N->getBaseType()));
  788. Record.push_back(N->getSizeInBits());
  789. Record.push_back(N->getAlignInBits());
  790. Record.push_back(N->getOffsetInBits());
  791. Record.push_back(N->getFlags());
  792. Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
  793. Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
  794. Record.clear();
  795. }
  796. static void WriteMDCompositeType(const MDCompositeType *N,
  797. const ValueEnumerator &VE,
  798. BitstreamWriter &Stream,
  799. SmallVectorImpl<uint64_t> &Record,
  800. unsigned Abbrev) {
  801. Record.push_back(N->isDistinct());
  802. Record.push_back(N->getTag());
  803. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  804. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  805. Record.push_back(N->getLine());
  806. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  807. Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  808. Record.push_back(N->getSizeInBits());
  809. Record.push_back(N->getAlignInBits());
  810. Record.push_back(N->getOffsetInBits());
  811. Record.push_back(N->getFlags());
  812. Record.push_back(VE.getMetadataOrNullID(N->getElements()));
  813. Record.push_back(N->getRuntimeLang());
  814. Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
  815. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
  816. Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
  817. Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
  818. Record.clear();
  819. }
  820. static void WriteMDSubroutineType(const MDSubroutineType *N,
  821. const ValueEnumerator &VE,
  822. BitstreamWriter &Stream,
  823. SmallVectorImpl<uint64_t> &Record,
  824. unsigned Abbrev) {
  825. Record.push_back(N->isDistinct());
  826. Record.push_back(N->getFlags());
  827. Record.push_back(VE.getMetadataOrNullID(N->getTypeArray()));
  828. Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
  829. Record.clear();
  830. }
  831. static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
  832. BitstreamWriter &Stream,
  833. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
  834. Record.push_back(N->isDistinct());
  835. Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
  836. Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
  837. Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
  838. Record.clear();
  839. }
  840. static void WriteMDCompileUnit(const MDCompileUnit *N,
  841. const ValueEnumerator &VE,
  842. BitstreamWriter &Stream,
  843. SmallVectorImpl<uint64_t> &Record,
  844. unsigned Abbrev) {
  845. Record.push_back(N->isDistinct());
  846. Record.push_back(N->getSourceLanguage());
  847. Record.push_back(VE.getMetadataID(N->getFile()));
  848. Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
  849. Record.push_back(N->isOptimized());
  850. Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
  851. Record.push_back(N->getRuntimeVersion());
  852. Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
  853. Record.push_back(N->getEmissionKind());
  854. Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes()));
  855. Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes()));
  856. Record.push_back(VE.getMetadataOrNullID(N->getSubprograms()));
  857. Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables()));
  858. Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities()));
  859. Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
  860. Record.clear();
  861. }
  862. static void WriteMDSubprogram(const MDSubprogram *N,
  863. const ValueEnumerator &VE,
  864. BitstreamWriter &Stream,
  865. SmallVectorImpl<uint64_t> &Record,
  866. unsigned Abbrev) {
  867. Record.push_back(N->isDistinct());
  868. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  869. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  870. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  871. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  872. Record.push_back(N->getLine());
  873. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  874. Record.push_back(N->isLocalToUnit());
  875. Record.push_back(N->isDefinition());
  876. Record.push_back(N->getScopeLine());
  877. Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
  878. Record.push_back(N->getVirtuality());
  879. Record.push_back(N->getVirtualIndex());
  880. Record.push_back(N->getFlags());
  881. Record.push_back(N->isOptimized());
  882. Record.push_back(VE.getMetadataOrNullID(N->getFunction()));
  883. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
  884. Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
  885. Record.push_back(VE.getMetadataOrNullID(N->getVariables()));
  886. Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
  887. Record.clear();
  888. }
  889. static void WriteMDLexicalBlock(const MDLexicalBlock *N,
  890. const ValueEnumerator &VE,
  891. BitstreamWriter &Stream,
  892. SmallVectorImpl<uint64_t> &Record,
  893. unsigned Abbrev) {
  894. Record.push_back(N->isDistinct());
  895. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  896. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  897. Record.push_back(N->getLine());
  898. Record.push_back(N->getColumn());
  899. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
  900. Record.clear();
  901. }
  902. static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
  903. const ValueEnumerator &VE,
  904. BitstreamWriter &Stream,
  905. SmallVectorImpl<uint64_t> &Record,
  906. unsigned Abbrev) {
  907. Record.push_back(N->isDistinct());
  908. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  909. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  910. Record.push_back(N->getDiscriminator());
  911. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
  912. Record.clear();
  913. }
  914. static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
  915. BitstreamWriter &Stream,
  916. SmallVectorImpl<uint64_t> &Record,
  917. unsigned Abbrev) {
  918. Record.push_back(N->isDistinct());
  919. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  920. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  921. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  922. Record.push_back(N->getLine());
  923. Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
  924. Record.clear();
  925. }
  926. static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N,
  927. const ValueEnumerator &VE,
  928. BitstreamWriter &Stream,
  929. SmallVectorImpl<uint64_t> &Record,
  930. unsigned Abbrev) {
  931. Record.push_back(N->isDistinct());
  932. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  933. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  934. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  935. Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
  936. Record.clear();
  937. }
  938. static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N,
  939. const ValueEnumerator &VE,
  940. BitstreamWriter &Stream,
  941. SmallVectorImpl<uint64_t> &Record,
  942. unsigned Abbrev) {
  943. Record.push_back(N->isDistinct());
  944. Record.push_back(N->getTag());
  945. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  946. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  947. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  948. Record.push_back(VE.getMetadataOrNullID(N->getValue()));
  949. Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
  950. Record.clear();
  951. }
  952. static void WriteMDGlobalVariable(const MDGlobalVariable *N,
  953. const ValueEnumerator &VE,
  954. BitstreamWriter &Stream,
  955. SmallVectorImpl<uint64_t> &Record,
  956. unsigned Abbrev) {
  957. Record.push_back(N->isDistinct());
  958. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  959. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  960. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  961. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  962. Record.push_back(N->getLine());
  963. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  964. Record.push_back(N->isLocalToUnit());
  965. Record.push_back(N->isDefinition());
  966. Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
  967. Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
  968. Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
  969. Record.clear();
  970. }
  971. static void WriteMDLocalVariable(const MDLocalVariable *,
  972. const ValueEnumerator &, BitstreamWriter &,
  973. SmallVectorImpl<uint64_t> &, unsigned) {
  974. llvm_unreachable("write not implemented");
  975. }
  976. static void WriteMDExpression(const MDExpression *, const ValueEnumerator &,
  977. BitstreamWriter &, SmallVectorImpl<uint64_t> &,
  978. unsigned) {
  979. llvm_unreachable("write not implemented");
  980. }
  981. static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &,
  982. BitstreamWriter &, SmallVectorImpl<uint64_t> &,
  983. unsigned) {
  984. llvm_unreachable("write not implemented");
  985. }
  986. static void WriteMDImportedEntity(const MDImportedEntity *,
  987. const ValueEnumerator &, BitstreamWriter &,
  988. SmallVectorImpl<uint64_t> &, unsigned) {
  989. llvm_unreachable("write not implemented");
  990. }
  991. static void WriteModuleMetadata(const Module *M,
  992. const ValueEnumerator &VE,
  993. BitstreamWriter &Stream) {
  994. const auto &MDs = VE.getMDs();
  995. if (MDs.empty() && M->named_metadata_empty())
  996. return;
  997. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  998. unsigned MDSAbbrev = 0;
  999. if (VE.hasMDString()) {
  1000. // Abbrev for METADATA_STRING.
  1001. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1002. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  1003. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1004. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1005. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  1006. }
  1007. // Initialize MDNode abbreviations.
  1008. #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
  1009. #include "llvm/IR/Metadata.def"
  1010. if (VE.hasMDLocation()) {
  1011. // Abbrev for METADATA_LOCATION.
  1012. //
  1013. // Assume the column is usually under 128, and always output the inlined-at
  1014. // location (it's never more expensive than building an array size 1).
  1015. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1016. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
  1017. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1018. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1019. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1020. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1021. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1022. MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
  1023. }
  1024. if (VE.hasGenericDebugNode()) {
  1025. // Abbrev for METADATA_GENERIC_DEBUG.
  1026. //
  1027. // Assume the column is usually under 128, and always output the inlined-at
  1028. // location (it's never more expensive than building an array size 1).
  1029. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1030. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
  1031. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1032. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1033. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1034. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1035. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1036. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1037. GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
  1038. }
  1039. unsigned NameAbbrev = 0;
  1040. if (!M->named_metadata_empty()) {
  1041. // Abbrev for METADATA_NAME.
  1042. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1043. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
  1044. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1045. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1046. NameAbbrev = Stream.EmitAbbrev(Abbv);
  1047. }
  1048. SmallVector<uint64_t, 64> Record;
  1049. for (const Metadata *MD : MDs) {
  1050. if (const MDNode *N = dyn_cast<MDNode>(MD)) {
  1051. switch (N->getMetadataID()) {
  1052. default:
  1053. llvm_unreachable("Invalid MDNode subclass");
  1054. #define HANDLE_MDNODE_LEAF(CLASS) \
  1055. case Metadata::CLASS##Kind: \
  1056. Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
  1057. continue;
  1058. #include "llvm/IR/Metadata.def"
  1059. }
  1060. }
  1061. if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
  1062. WriteValueAsMetadata(MDC, VE, Stream, Record);
  1063. continue;
  1064. }
  1065. const MDString *MDS = cast<MDString>(MD);
  1066. // Code: [strchar x N]
  1067. Record.append(MDS->bytes_begin(), MDS->bytes_end());
  1068. // Emit the finished record.
  1069. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  1070. Record.clear();
  1071. }
  1072. // Write named metadata.
  1073. for (const NamedMDNode &NMD : M->named_metadata()) {
  1074. // Write name.
  1075. StringRef Str = NMD.getName();
  1076. Record.append(Str.bytes_begin(), Str.bytes_end());
  1077. Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
  1078. Record.clear();
  1079. // Write named metadata operands.
  1080. for (const MDNode *N : NMD.operands())
  1081. Record.push_back(VE.getMetadataID(N));
  1082. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  1083. Record.clear();
  1084. }
  1085. Stream.ExitBlock();
  1086. }
  1087. static void WriteFunctionLocalMetadata(const Function &F,
  1088. const ValueEnumerator &VE,
  1089. BitstreamWriter &Stream) {
  1090. bool StartedMetadataBlock = false;
  1091. SmallVector<uint64_t, 64> Record;
  1092. const SmallVectorImpl<const LocalAsMetadata *> &MDs =
  1093. VE.getFunctionLocalMDs();
  1094. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  1095. assert(MDs[i] && "Expected valid function-local metadata");
  1096. if (!StartedMetadataBlock) {
  1097. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1098. StartedMetadataBlock = true;
  1099. }
  1100. WriteValueAsMetadata(MDs[i], VE, Stream, Record);
  1101. }
  1102. if (StartedMetadataBlock)
  1103. Stream.ExitBlock();
  1104. }
  1105. static void WriteMetadataAttachment(const Function &F,
  1106. const ValueEnumerator &VE,
  1107. BitstreamWriter &Stream) {
  1108. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  1109. SmallVector<uint64_t, 64> Record;
  1110. // Write metadata attachments
  1111. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  1112. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  1113. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1114. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1115. I != E; ++I) {
  1116. MDs.clear();
  1117. I->getAllMetadataOtherThanDebugLoc(MDs);
  1118. // If no metadata, ignore instruction.
  1119. if (MDs.empty()) continue;
  1120. Record.push_back(VE.getInstructionID(I));
  1121. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  1122. Record.push_back(MDs[i].first);
  1123. Record.push_back(VE.getMetadataID(MDs[i].second));
  1124. }
  1125. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  1126. Record.clear();
  1127. }
  1128. Stream.ExitBlock();
  1129. }
  1130. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  1131. SmallVector<uint64_t, 64> Record;
  1132. // Write metadata kinds
  1133. // METADATA_KIND - [n x [id, name]]
  1134. SmallVector<StringRef, 8> Names;
  1135. M->getMDKindNames(Names);
  1136. if (Names.empty()) return;
  1137. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1138. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  1139. Record.push_back(MDKindID);
  1140. StringRef KName = Names[MDKindID];
  1141. Record.append(KName.begin(), KName.end());
  1142. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  1143. Record.clear();
  1144. }
  1145. Stream.ExitBlock();
  1146. }
  1147. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  1148. if ((int64_t)V >= 0)
  1149. Vals.push_back(V << 1);
  1150. else
  1151. Vals.push_back((-V << 1) | 1);
  1152. }
  1153. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  1154. const ValueEnumerator &VE,
  1155. BitstreamWriter &Stream, bool isGlobal) {
  1156. if (FirstVal == LastVal) return;
  1157. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  1158. unsigned AggregateAbbrev = 0;
  1159. unsigned String8Abbrev = 0;
  1160. unsigned CString7Abbrev = 0;
  1161. unsigned CString6Abbrev = 0;
  1162. // If this is a constant pool for the module, emit module-specific abbrevs.
  1163. if (isGlobal) {
  1164. // Abbrev for CST_CODE_AGGREGATE.
  1165. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1166. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  1167. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1168. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  1169. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  1170. // Abbrev for CST_CODE_STRING.
  1171. Abbv = new BitCodeAbbrev();
  1172. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  1173. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1174. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1175. String8Abbrev = Stream.EmitAbbrev(Abbv);
  1176. // Abbrev for CST_CODE_CSTRING.
  1177. Abbv = new BitCodeAbbrev();
  1178. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1179. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1180. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1181. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  1182. // Abbrev for CST_CODE_CSTRING.
  1183. Abbv = new BitCodeAbbrev();
  1184. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1185. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1186. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1187. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  1188. }
  1189. SmallVector<uint64_t, 64> Record;
  1190. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1191. Type *LastTy = nullptr;
  1192. for (unsigned i = FirstVal; i != LastVal; ++i) {
  1193. const Value *V = Vals[i].first;
  1194. // If we need to switch types, do so now.
  1195. if (V->getType() != LastTy) {
  1196. LastTy = V->getType();
  1197. Record.push_back(VE.getTypeID(LastTy));
  1198. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  1199. CONSTANTS_SETTYPE_ABBREV);
  1200. Record.clear();
  1201. }
  1202. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  1203. Record.push_back(unsigned(IA->hasSideEffects()) |
  1204. unsigned(IA->isAlignStack()) << 1 |
  1205. unsigned(IA->getDialect()&1) << 2);
  1206. // Add the asm string.
  1207. const std::string &AsmStr = IA->getAsmString();
  1208. Record.push_back(AsmStr.size());
  1209. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  1210. Record.push_back(AsmStr[i]);
  1211. // Add the constraint string.
  1212. const std::string &ConstraintStr = IA->getConstraintString();
  1213. Record.push_back(ConstraintStr.size());
  1214. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  1215. Record.push_back(ConstraintStr[i]);
  1216. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  1217. Record.clear();
  1218. continue;
  1219. }
  1220. const Constant *C = cast<Constant>(V);
  1221. unsigned Code = -1U;
  1222. unsigned AbbrevToUse = 0;
  1223. if (C->isNullValue()) {
  1224. Code = bitc::CST_CODE_NULL;
  1225. } else if (isa<UndefValue>(C)) {
  1226. Code = bitc::CST_CODE_UNDEF;
  1227. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  1228. if (IV->getBitWidth() <= 64) {
  1229. uint64_t V = IV->getSExtValue();
  1230. emitSignedInt64(Record, V);
  1231. Code = bitc::CST_CODE_INTEGER;
  1232. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  1233. } else { // Wide integers, > 64 bits in size.
  1234. // We have an arbitrary precision integer value to write whose
  1235. // bit width is > 64. However, in canonical unsigned integer
  1236. // format it is likely that the high bits are going to be zero.
  1237. // So, we only write the number of active words.
  1238. unsigned NWords = IV->getValue().getActiveWords();
  1239. const uint64_t *RawWords = IV->getValue().getRawData();
  1240. for (unsigned i = 0; i != NWords; ++i) {
  1241. emitSignedInt64(Record, RawWords[i]);
  1242. }
  1243. Code = bitc::CST_CODE_WIDE_INTEGER;
  1244. }
  1245. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  1246. Code = bitc::CST_CODE_FLOAT;
  1247. Type *Ty = CFP->getType();
  1248. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  1249. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  1250. } else if (Ty->isX86_FP80Ty()) {
  1251. // api needed to prevent premature destruction
  1252. // bits are not in the same order as a normal i80 APInt, compensate.
  1253. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1254. const uint64_t *p = api.getRawData();
  1255. Record.push_back((p[1] << 48) | (p[0] >> 16));
  1256. Record.push_back(p[0] & 0xffffLL);
  1257. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  1258. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1259. const uint64_t *p = api.getRawData();
  1260. Record.push_back(p[0]);
  1261. Record.push_back(p[1]);
  1262. } else {
  1263. assert (0 && "Unknown FP type!");
  1264. }
  1265. } else if (isa<ConstantDataSequential>(C) &&
  1266. cast<ConstantDataSequential>(C)->isString()) {
  1267. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  1268. // Emit constant strings specially.
  1269. unsigned NumElts = Str->getNumElements();
  1270. // If this is a null-terminated string, use the denser CSTRING encoding.
  1271. if (Str->isCString()) {
  1272. Code = bitc::CST_CODE_CSTRING;
  1273. --NumElts; // Don't encode the null, which isn't allowed by char6.
  1274. } else {
  1275. Code = bitc::CST_CODE_STRING;
  1276. AbbrevToUse = String8Abbrev;
  1277. }
  1278. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  1279. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  1280. for (unsigned i = 0; i != NumElts; ++i) {
  1281. unsigned char V = Str->getElementAsInteger(i);
  1282. Record.push_back(V);
  1283. isCStr7 &= (V & 128) == 0;
  1284. if (isCStrChar6)
  1285. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  1286. }
  1287. if (isCStrChar6)
  1288. AbbrevToUse = CString6Abbrev;
  1289. else if (isCStr7)
  1290. AbbrevToUse = CString7Abbrev;
  1291. } else if (const ConstantDataSequential *CDS =
  1292. dyn_cast<ConstantDataSequential>(C)) {
  1293. Code = bitc::CST_CODE_DATA;
  1294. Type *EltTy = CDS->getType()->getElementType();
  1295. if (isa<IntegerType>(EltTy)) {
  1296. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  1297. Record.push_back(CDS->getElementAsInteger(i));
  1298. } else if (EltTy->isFloatTy()) {
  1299. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  1300. union { float F; uint32_t I; };
  1301. F = CDS->getElementAsFloat(i);
  1302. Record.push_back(I);
  1303. }
  1304. } else {
  1305. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  1306. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  1307. union { double F; uint64_t I; };
  1308. F = CDS->getElementAsDouble(i);
  1309. Record.push_back(I);
  1310. }
  1311. }
  1312. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  1313. isa<ConstantVector>(C)) {
  1314. Code = bitc::CST_CODE_AGGREGATE;
  1315. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  1316. Record.push_back(VE.getValueID(C->getOperand(i)));
  1317. AbbrevToUse = AggregateAbbrev;
  1318. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  1319. switch (CE->getOpcode()) {
  1320. default:
  1321. if (Instruction::isCast(CE->getOpcode())) {
  1322. Code = bitc::CST_CODE_CE_CAST;
  1323. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  1324. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1325. Record.push_back(VE.getValueID(C->getOperand(0)));
  1326. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  1327. } else {
  1328. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  1329. Code = bitc::CST_CODE_CE_BINOP;
  1330. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  1331. Record.push_back(VE.getValueID(C->getOperand(0)));
  1332. Record.push_back(VE.getValueID(C->getOperand(1)));
  1333. uint64_t Flags = GetOptimizationFlags(CE);
  1334. if (Flags != 0)
  1335. Record.push_back(Flags);
  1336. }
  1337. break;
  1338. case Instruction::GetElementPtr:
  1339. Code = bitc::CST_CODE_CE_GEP;
  1340. if (cast<GEPOperator>(C)->isInBounds())
  1341. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  1342. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  1343. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  1344. Record.push_back(VE.getValueID(C->getOperand(i)));
  1345. }
  1346. break;
  1347. case Instruction::Select:
  1348. Code = bitc::CST_CODE_CE_SELECT;
  1349. Record.push_back(VE.getValueID(C->getOperand(0)));
  1350. Record.push_back(VE.getValueID(C->getOperand(1)));
  1351. Record.push_back(VE.getValueID(C->getOperand(2)));
  1352. break;
  1353. case Instruction::ExtractElement:
  1354. Code = bitc::CST_CODE_CE_EXTRACTELT;
  1355. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1356. Record.push_back(VE.getValueID(C->getOperand(0)));
  1357. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  1358. Record.push_back(VE.getValueID(C->getOperand(1)));
  1359. break;
  1360. case Instruction::InsertElement:
  1361. Code = bitc::CST_CODE_CE_INSERTELT;
  1362. Record.push_back(VE.getValueID(C->getOperand(0)));
  1363. Record.push_back(VE.getValueID(C->getOperand(1)));
  1364. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  1365. Record.push_back(VE.getValueID(C->getOperand(2)));
  1366. break;
  1367. case Instruction::ShuffleVector:
  1368. // If the return type and argument types are the same, this is a
  1369. // standard shufflevector instruction. If the types are different,
  1370. // then the shuffle is widening or truncating the input vectors, and
  1371. // the argument type must also be encoded.
  1372. if (C->getType() == C->getOperand(0)->getType()) {
  1373. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1374. } else {
  1375. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1376. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1377. }
  1378. Record.push_back(VE.getValueID(C->getOperand(0)));
  1379. Record.push_back(VE.getValueID(C->getOperand(1)));
  1380. Record.push_back(VE.getValueID(C->getOperand(2)));
  1381. break;
  1382. case Instruction::ICmp:
  1383. case Instruction::FCmp:
  1384. Code = bitc::CST_CODE_CE_CMP;
  1385. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1386. Record.push_back(VE.getValueID(C->getOperand(0)));
  1387. Record.push_back(VE.getValueID(C->getOperand(1)));
  1388. Record.push_back(CE->getPredicate());
  1389. break;
  1390. }
  1391. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1392. Code = bitc::CST_CODE_BLOCKADDRESS;
  1393. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1394. Record.push_back(VE.getValueID(BA->getFunction()));
  1395. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1396. } else {
  1397. #ifndef NDEBUG
  1398. C->dump();
  1399. #endif
  1400. llvm_unreachable("Unknown constant!");
  1401. }
  1402. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1403. Record.clear();
  1404. }
  1405. Stream.ExitBlock();
  1406. }
  1407. static void WriteModuleConstants(const ValueEnumerator &VE,
  1408. BitstreamWriter &Stream) {
  1409. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1410. // Find the first constant to emit, which is the first non-globalvalue value.
  1411. // We know globalvalues have been emitted by WriteModuleInfo.
  1412. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1413. if (!isa<GlobalValue>(Vals[i].first)) {
  1414. WriteConstants(i, Vals.size(), VE, Stream, true);
  1415. return;
  1416. }
  1417. }
  1418. }
  1419. /// PushValueAndType - The file has to encode both the value and type id for
  1420. /// many values, because we need to know what type to create for forward
  1421. /// references. However, most operands are not forward references, so this type
  1422. /// field is not needed.
  1423. ///
  1424. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1425. /// instruction ID, then it is a forward reference, and it also includes the
  1426. /// type ID. The value ID that is written is encoded relative to the InstID.
  1427. static bool PushValueAndType(const Value *V, unsigned InstID,
  1428. SmallVectorImpl<unsigned> &Vals,
  1429. ValueEnumerator &VE) {
  1430. unsigned ValID = VE.getValueID(V);
  1431. // Make encoding relative to the InstID.
  1432. Vals.push_back(InstID - ValID);
  1433. if (ValID >= InstID) {
  1434. Vals.push_back(VE.getTypeID(V->getType()));
  1435. return true;
  1436. }
  1437. return false;
  1438. }
  1439. /// pushValue - Like PushValueAndType, but where the type of the value is
  1440. /// omitted (perhaps it was already encoded in an earlier operand).
  1441. static void pushValue(const Value *V, unsigned InstID,
  1442. SmallVectorImpl<unsigned> &Vals,
  1443. ValueEnumerator &VE) {
  1444. unsigned ValID = VE.getValueID(V);
  1445. Vals.push_back(InstID - ValID);
  1446. }
  1447. static void pushValueSigned(const Value *V, unsigned InstID,
  1448. SmallVectorImpl<uint64_t> &Vals,
  1449. ValueEnumerator &VE) {
  1450. unsigned ValID = VE.getValueID(V);
  1451. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1452. emitSignedInt64(Vals, diff);
  1453. }
  1454. /// WriteInstruction - Emit an instruction to the specified stream.
  1455. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1456. ValueEnumerator &VE, BitstreamWriter &Stream,
  1457. SmallVectorImpl<unsigned> &Vals) {
  1458. unsigned Code = 0;
  1459. unsigned AbbrevToUse = 0;
  1460. VE.setInstructionID(&I);
  1461. switch (I.getOpcode()) {
  1462. default:
  1463. if (Instruction::isCast(I.getOpcode())) {
  1464. Code = bitc::FUNC_CODE_INST_CAST;
  1465. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1466. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1467. Vals.push_back(VE.getTypeID(I.getType()));
  1468. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1469. } else {
  1470. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1471. Code = bitc::FUNC_CODE_INST_BINOP;
  1472. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1473. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1474. pushValue(I.getOperand(1), InstID, Vals, VE);
  1475. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1476. uint64_t Flags = GetOptimizationFlags(&I);
  1477. if (Flags != 0) {
  1478. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1479. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1480. Vals.push_back(Flags);
  1481. }
  1482. }
  1483. break;
  1484. case Instruction::GetElementPtr:
  1485. Code = bitc::FUNC_CODE_INST_GEP;
  1486. if (cast<GEPOperator>(&I)->isInBounds())
  1487. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1488. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1489. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1490. break;
  1491. case Instruction::ExtractValue: {
  1492. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1493. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1494. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1495. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1496. Vals.push_back(*i);
  1497. break;
  1498. }
  1499. case Instruction::InsertValue: {
  1500. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1501. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1502. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1503. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1504. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1505. Vals.push_back(*i);
  1506. break;
  1507. }
  1508. case Instruction::Select:
  1509. Code = bitc::FUNC_CODE_INST_VSELECT;
  1510. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1511. pushValue(I.getOperand(2), InstID, Vals, VE);
  1512. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1513. break;
  1514. case Instruction::ExtractElement:
  1515. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1516. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1517. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1518. break;
  1519. case Instruction::InsertElement:
  1520. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1521. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1522. pushValue(I.getOperand(1), InstID, Vals, VE);
  1523. PushValueAndType(I.getOperand(2), InstID, Vals, VE);
  1524. break;
  1525. case Instruction::ShuffleVector:
  1526. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1527. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1528. pushValue(I.getOperand(1), InstID, Vals, VE);
  1529. pushValue(I.getOperand(2), InstID, Vals, VE);
  1530. break;
  1531. case Instruction::ICmp:
  1532. case Instruction::FCmp:
  1533. // compare returning Int1Ty or vector of Int1Ty
  1534. Code = bitc::FUNC_CODE_INST_CMP2;
  1535. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1536. pushValue(I.getOperand(1), InstID, Vals, VE);
  1537. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1538. break;
  1539. case Instruction::Ret:
  1540. {
  1541. Code = bitc::FUNC_CODE_INST_RET;
  1542. unsigned NumOperands = I.getNumOperands();
  1543. if (NumOperands == 0)
  1544. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1545. else if (NumOperands == 1) {
  1546. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1547. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1548. } else {
  1549. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1550. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1551. }
  1552. }
  1553. break;
  1554. case Instruction::Br:
  1555. {
  1556. Code = bitc::FUNC_CODE_INST_BR;
  1557. const BranchInst &II = cast<BranchInst>(I);
  1558. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1559. if (II.isConditional()) {
  1560. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1561. pushValue(II.getCondition(), InstID, Vals, VE);
  1562. }
  1563. }
  1564. break;
  1565. case Instruction::Switch:
  1566. {
  1567. Code = bitc::FUNC_CODE_INST_SWITCH;
  1568. const SwitchInst &SI = cast<SwitchInst>(I);
  1569. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1570. pushValue(SI.getCondition(), InstID, Vals, VE);
  1571. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1572. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1573. i != e; ++i) {
  1574. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1575. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1576. }
  1577. }
  1578. break;
  1579. case Instruction::IndirectBr:
  1580. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1581. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1582. // Encode the address operand as relative, but not the basic blocks.
  1583. pushValue(I.getOperand(0), InstID, Vals, VE);
  1584. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1585. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1586. break;
  1587. case Instruction::Invoke: {
  1588. const InvokeInst *II = cast<InvokeInst>(&I);
  1589. const Value *Callee(II->getCalledValue());
  1590. PointerType *PTy = cast<PointerType>(Callee->getType());
  1591. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1592. Code = bitc::FUNC_CODE_INST_INVOKE;
  1593. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1594. Vals.push_back(II->getCallingConv());
  1595. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1596. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1597. PushValueAndType(Callee, InstID, Vals, VE);
  1598. // Emit value #'s for the fixed parameters.
  1599. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1600. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1601. // Emit type/value pairs for varargs params.
  1602. if (FTy->isVarArg()) {
  1603. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1604. i != e; ++i)
  1605. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1606. }
  1607. break;
  1608. }
  1609. case Instruction::Resume:
  1610. Code = bitc::FUNC_CODE_INST_RESUME;
  1611. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1612. break;
  1613. case Instruction::Unreachable:
  1614. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1615. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1616. break;
  1617. case Instruction::PHI: {
  1618. const PHINode &PN = cast<PHINode>(I);
  1619. Code = bitc::FUNC_CODE_INST_PHI;
  1620. // With the newer instruction encoding, forward references could give
  1621. // negative valued IDs. This is most common for PHIs, so we use
  1622. // signed VBRs.
  1623. SmallVector<uint64_t, 128> Vals64;
  1624. Vals64.push_back(VE.getTypeID(PN.getType()));
  1625. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1626. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1627. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1628. }
  1629. // Emit a Vals64 vector and exit.
  1630. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1631. Vals64.clear();
  1632. return;
  1633. }
  1634. case Instruction::LandingPad: {
  1635. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1636. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1637. Vals.push_back(VE.getTypeID(LP.getType()));
  1638. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1639. Vals.push_back(LP.isCleanup());
  1640. Vals.push_back(LP.getNumClauses());
  1641. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1642. if (LP.isCatch(I))
  1643. Vals.push_back(LandingPadInst::Catch);
  1644. else
  1645. Vals.push_back(LandingPadInst::Filter);
  1646. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1647. }
  1648. break;
  1649. }
  1650. case Instruction::Alloca: {
  1651. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1652. Vals.push_back(VE.getTypeID(I.getType()));
  1653. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1654. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1655. const AllocaInst &AI = cast<AllocaInst>(I);
  1656. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
  1657. assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
  1658. "not enough bits for maximum alignment");
  1659. assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
  1660. AlignRecord |= AI.isUsedWithInAlloca() << 5;
  1661. Vals.push_back(AlignRecord);
  1662. break;
  1663. }
  1664. case Instruction::Load:
  1665. if (cast<LoadInst>(I).isAtomic()) {
  1666. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1667. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1668. } else {
  1669. Code = bitc::FUNC_CODE_INST_LOAD;
  1670. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1671. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1672. }
  1673. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1674. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1675. if (cast<LoadInst>(I).isAtomic()) {
  1676. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1677. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1678. }
  1679. break;
  1680. case Instruction::Store:
  1681. if (cast<StoreInst>(I).isAtomic())
  1682. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1683. else
  1684. Code = bitc::FUNC_CODE_INST_STORE;
  1685. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1686. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1687. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1688. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1689. if (cast<StoreInst>(I).isAtomic()) {
  1690. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1691. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1692. }
  1693. break;
  1694. case Instruction::AtomicCmpXchg:
  1695. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1696. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1697. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1698. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1699. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1700. Vals.push_back(GetEncodedOrdering(
  1701. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1702. Vals.push_back(GetEncodedSynchScope(
  1703. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1704. Vals.push_back(GetEncodedOrdering(
  1705. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1706. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  1707. break;
  1708. case Instruction::AtomicRMW:
  1709. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1710. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1711. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1712. Vals.push_back(GetEncodedRMWOperation(
  1713. cast<AtomicRMWInst>(I).getOperation()));
  1714. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1715. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1716. Vals.push_back(GetEncodedSynchScope(
  1717. cast<AtomicRMWInst>(I).getSynchScope()));
  1718. break;
  1719. case Instruction::Fence:
  1720. Code = bitc::FUNC_CODE_INST_FENCE;
  1721. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1722. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1723. break;
  1724. case Instruction::Call: {
  1725. const CallInst &CI = cast<CallInst>(I);
  1726. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1727. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1728. Code = bitc::FUNC_CODE_INST_CALL;
  1729. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1730. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
  1731. unsigned(CI.isMustTailCall()) << 14);
  1732. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1733. // Emit value #'s for the fixed parameters.
  1734. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1735. // Check for labels (can happen with asm labels).
  1736. if (FTy->getParamType(i)->isLabelTy())
  1737. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1738. else
  1739. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1740. }
  1741. // Emit type/value pairs for varargs params.
  1742. if (FTy->isVarArg()) {
  1743. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1744. i != e; ++i)
  1745. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1746. }
  1747. break;
  1748. }
  1749. case Instruction::VAArg:
  1750. Code = bitc::FUNC_CODE_INST_VAARG;
  1751. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1752. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1753. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1754. break;
  1755. }
  1756. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1757. Vals.clear();
  1758. }
  1759. // Emit names for globals/functions etc.
  1760. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1761. const ValueEnumerator &VE,
  1762. BitstreamWriter &Stream) {
  1763. if (VST.empty()) return;
  1764. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1765. // FIXME: Set up the abbrev, we know how many values there are!
  1766. // FIXME: We know if the type names can use 7-bit ascii.
  1767. SmallVector<unsigned, 64> NameVals;
  1768. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1769. SI != SE; ++SI) {
  1770. const ValueName &Name = *SI;
  1771. // Figure out the encoding to use for the name.
  1772. bool is7Bit = true;
  1773. bool isChar6 = true;
  1774. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1775. C != E; ++C) {
  1776. if (isChar6)
  1777. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1778. if ((unsigned char)*C & 128) {
  1779. is7Bit = false;
  1780. break; // don't bother scanning the rest.
  1781. }
  1782. }
  1783. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1784. // VST_ENTRY: [valueid, namechar x N]
  1785. // VST_BBENTRY: [bbid, namechar x N]
  1786. unsigned Code;
  1787. if (isa<BasicBlock>(SI->getValue())) {
  1788. Code = bitc::VST_CODE_BBENTRY;
  1789. if (isChar6)
  1790. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1791. } else {
  1792. Code = bitc::VST_CODE_ENTRY;
  1793. if (isChar6)
  1794. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1795. else if (is7Bit)
  1796. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1797. }
  1798. NameVals.push_back(VE.getValueID(SI->getValue()));
  1799. for (const char *P = Name.getKeyData(),
  1800. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1801. NameVals.push_back((unsigned char)*P);
  1802. // Emit the finished record.
  1803. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1804. NameVals.clear();
  1805. }
  1806. Stream.ExitBlock();
  1807. }
  1808. static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
  1809. BitstreamWriter &Stream) {
  1810. assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
  1811. unsigned Code;
  1812. if (isa<BasicBlock>(Order.V))
  1813. Code = bitc::USELIST_CODE_BB;
  1814. else
  1815. Code = bitc::USELIST_CODE_DEFAULT;
  1816. SmallVector<uint64_t, 64> Record;
  1817. for (unsigned I : Order.Shuffle)
  1818. Record.push_back(I);
  1819. Record.push_back(VE.getValueID(Order.V));
  1820. Stream.EmitRecord(Code, Record);
  1821. }
  1822. static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
  1823. BitstreamWriter &Stream) {
  1824. auto hasMore = [&]() {
  1825. return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
  1826. };
  1827. if (!hasMore())
  1828. // Nothing to do.
  1829. return;
  1830. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1831. while (hasMore()) {
  1832. WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
  1833. VE.UseListOrders.pop_back();
  1834. }
  1835. Stream.ExitBlock();
  1836. }
  1837. /// WriteFunction - Emit a function body to the module stream.
  1838. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1839. BitstreamWriter &Stream) {
  1840. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1841. VE.incorporateFunction(F);
  1842. SmallVector<unsigned, 64> Vals;
  1843. // Emit the number of basic blocks, so the reader can create them ahead of
  1844. // time.
  1845. Vals.push_back(VE.getBasicBlocks().size());
  1846. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1847. Vals.clear();
  1848. // If there are function-local constants, emit them now.
  1849. unsigned CstStart, CstEnd;
  1850. VE.getFunctionConstantRange(CstStart, CstEnd);
  1851. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1852. // If there is function-local metadata, emit it now.
  1853. WriteFunctionLocalMetadata(F, VE, Stream);
  1854. // Keep a running idea of what the instruction ID is.
  1855. unsigned InstID = CstEnd;
  1856. bool NeedsMetadataAttachment = false;
  1857. DebugLoc LastDL;
  1858. // Finally, emit all the instructions, in order.
  1859. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1860. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1861. I != E; ++I) {
  1862. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1863. if (!I->getType()->isVoidTy())
  1864. ++InstID;
  1865. // If the instruction has metadata, write a metadata attachment later.
  1866. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1867. // If the instruction has a debug location, emit it.
  1868. DebugLoc DL = I->getDebugLoc();
  1869. if (DL.isUnknown()) {
  1870. // nothing todo.
  1871. } else if (DL == LastDL) {
  1872. // Just repeat the same debug loc as last time.
  1873. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1874. } else {
  1875. MDNode *Scope, *IA;
  1876. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1877. assert(Scope && "Expected valid scope");
  1878. Vals.push_back(DL.getLine());
  1879. Vals.push_back(DL.getCol());
  1880. Vals.push_back(VE.getMetadataOrNullID(Scope));
  1881. Vals.push_back(VE.getMetadataOrNullID(IA));
  1882. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1883. Vals.clear();
  1884. LastDL = DL;
  1885. }
  1886. }
  1887. // Emit names for all the instructions etc.
  1888. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1889. if (NeedsMetadataAttachment)
  1890. WriteMetadataAttachment(F, VE, Stream);
  1891. if (shouldPreserveBitcodeUseListOrder())
  1892. WriteUseListBlock(&F, VE, Stream);
  1893. VE.purgeFunction();
  1894. Stream.ExitBlock();
  1895. }
  1896. // Emit blockinfo, which defines the standard abbreviations etc.
  1897. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1898. // We only want to emit block info records for blocks that have multiple
  1899. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1900. // Other blocks can define their abbrevs inline.
  1901. Stream.EnterBlockInfoBlock(2);
  1902. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1903. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1904. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1905. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1906. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1907. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1908. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1909. Abbv) != VST_ENTRY_8_ABBREV)
  1910. llvm_unreachable("Unexpected abbrev ordering!");
  1911. }
  1912. { // 7-bit fixed width VST_ENTRY strings.
  1913. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1914. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1915. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1916. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1917. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1918. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1919. Abbv) != VST_ENTRY_7_ABBREV)
  1920. llvm_unreachable("Unexpected abbrev ordering!");
  1921. }
  1922. { // 6-bit char6 VST_ENTRY strings.
  1923. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1924. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1925. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1926. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1927. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1928. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1929. Abbv) != VST_ENTRY_6_ABBREV)
  1930. llvm_unreachable("Unexpected abbrev ordering!");
  1931. }
  1932. { // 6-bit char6 VST_BBENTRY strings.
  1933. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1934. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1935. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1936. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1937. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1938. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1939. Abbv) != VST_BBENTRY_6_ABBREV)
  1940. llvm_unreachable("Unexpected abbrev ordering!");
  1941. }
  1942. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1943. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1944. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1945. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1946. Log2_32_Ceil(VE.getTypes().size()+1)));
  1947. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1948. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1949. llvm_unreachable("Unexpected abbrev ordering!");
  1950. }
  1951. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1952. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1953. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1954. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1955. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1956. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1957. llvm_unreachable("Unexpected abbrev ordering!");
  1958. }
  1959. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1960. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1961. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1962. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1963. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1964. Log2_32_Ceil(VE.getTypes().size()+1)));
  1965. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1966. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1967. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1968. llvm_unreachable("Unexpected abbrev ordering!");
  1969. }
  1970. { // NULL abbrev for CONSTANTS_BLOCK.
  1971. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1972. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1973. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1974. Abbv) != CONSTANTS_NULL_Abbrev)
  1975. llvm_unreachable("Unexpected abbrev ordering!");
  1976. }
  1977. // FIXME: This should only use space for first class types!
  1978. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1979. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1980. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1981. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1982. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1983. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1984. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1985. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1986. llvm_unreachable("Unexpected abbrev ordering!");
  1987. }
  1988. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1989. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1990. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1991. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1992. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1993. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1994. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1995. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1996. llvm_unreachable("Unexpected abbrev ordering!");
  1997. }
  1998. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1999. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  2000. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  2001. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  2002. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  2003. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2004. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  2005. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2006. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  2007. llvm_unreachable("Unexpected abbrev ordering!");
  2008. }
  2009. { // INST_CAST abbrev for FUNCTION_BLOCK.
  2010. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  2011. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  2012. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  2013. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2014. Log2_32_Ceil(VE.getTypes().size()+1)));
  2015. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2016. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2017. Abbv) != FUNCTION_INST_CAST_ABBREV)
  2018. llvm_unreachable("Unexpected abbrev ordering!");
  2019. }
  2020. { // INST_RET abbrev for FUNCTION_BLOCK.
  2021. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  2022. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2023. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2024. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  2025. llvm_unreachable("Unexpected abbrev ordering!");
  2026. }
  2027. { // INST_RET abbrev for FUNCTION_BLOCK.
  2028. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  2029. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2030. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  2031. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2032. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  2033. llvm_unreachable("Unexpected abbrev ordering!");
  2034. }
  2035. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  2036. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  2037. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  2038. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2039. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  2040. llvm_unreachable("Unexpected abbrev ordering!");
  2041. }
  2042. Stream.ExitBlock();
  2043. }
  2044. /// WriteModule - Emit the specified module to the bitstream.
  2045. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  2046. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  2047. SmallVector<unsigned, 1> Vals;
  2048. unsigned CurVersion = 1;
  2049. Vals.push_back(CurVersion);
  2050. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  2051. // Analyze the module, enumerating globals, functions, etc.
  2052. ValueEnumerator VE(*M);
  2053. // Emit blockinfo, which defines the standard abbreviations etc.
  2054. WriteBlockInfo(VE, Stream);
  2055. // Emit information about attribute groups.
  2056. WriteAttributeGroupTable(VE, Stream);
  2057. // Emit information about parameter attributes.
  2058. WriteAttributeTable(VE, Stream);
  2059. // Emit information describing all of the types in the module.
  2060. WriteTypeTable(VE, Stream);
  2061. writeComdats(VE, Stream);
  2062. // Emit top-level description of module, including target triple, inline asm,
  2063. // descriptors for global variables, and function prototype info.
  2064. WriteModuleInfo(M, VE, Stream);
  2065. // Emit constants.
  2066. WriteModuleConstants(VE, Stream);
  2067. // Emit metadata.
  2068. WriteModuleMetadata(M, VE, Stream);
  2069. // Emit metadata.
  2070. WriteModuleMetadataStore(M, Stream);
  2071. // Emit names for globals/functions etc.
  2072. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  2073. // Emit module-level use-lists.
  2074. if (shouldPreserveBitcodeUseListOrder())
  2075. WriteUseListBlock(nullptr, VE, Stream);
  2076. // Emit function bodies.
  2077. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  2078. if (!F->isDeclaration())
  2079. WriteFunction(*F, VE, Stream);
  2080. Stream.ExitBlock();
  2081. }
  2082. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  2083. /// header and trailer to make it compatible with the system archiver. To do
  2084. /// this we emit the following header, and then emit a trailer that pads the
  2085. /// file out to be a multiple of 16 bytes.
  2086. ///
  2087. /// struct bc_header {
  2088. /// uint32_t Magic; // 0x0B17C0DE
  2089. /// uint32_t Version; // Version, currently always 0.
  2090. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  2091. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  2092. /// uint32_t CPUType; // CPU specifier.
  2093. /// ... potentially more later ...
  2094. /// };
  2095. enum {
  2096. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  2097. DarwinBCHeaderSize = 5*4
  2098. };
  2099. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  2100. uint32_t &Position) {
  2101. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  2102. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  2103. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  2104. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  2105. Position += 4;
  2106. }
  2107. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  2108. const Triple &TT) {
  2109. unsigned CPUType = ~0U;
  2110. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  2111. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  2112. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  2113. // specific constants here because they are implicitly part of the Darwin ABI.
  2114. enum {
  2115. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  2116. DARWIN_CPU_TYPE_X86 = 7,
  2117. DARWIN_CPU_TYPE_ARM = 12,
  2118. DARWIN_CPU_TYPE_POWERPC = 18
  2119. };
  2120. Triple::ArchType Arch = TT.getArch();
  2121. if (Arch == Triple::x86_64)
  2122. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  2123. else if (Arch == Triple::x86)
  2124. CPUType = DARWIN_CPU_TYPE_X86;
  2125. else if (Arch == Triple::ppc)
  2126. CPUType = DARWIN_CPU_TYPE_POWERPC;
  2127. else if (Arch == Triple::ppc64)
  2128. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  2129. else if (Arch == Triple::arm || Arch == Triple::thumb)
  2130. CPUType = DARWIN_CPU_TYPE_ARM;
  2131. // Traditional Bitcode starts after header.
  2132. assert(Buffer.size() >= DarwinBCHeaderSize &&
  2133. "Expected header size to be reserved");
  2134. unsigned BCOffset = DarwinBCHeaderSize;
  2135. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  2136. // Write the magic and version.
  2137. unsigned Position = 0;
  2138. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  2139. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  2140. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  2141. WriteInt32ToBuffer(BCSize , Buffer, Position);
  2142. WriteInt32ToBuffer(CPUType , Buffer, Position);
  2143. // If the file is not a multiple of 16 bytes, insert dummy padding.
  2144. while (Buffer.size() & 15)
  2145. Buffer.push_back(0);
  2146. }
  2147. /// WriteBitcodeToFile - Write the specified module to the specified output
  2148. /// stream.
  2149. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  2150. SmallVector<char, 0> Buffer;
  2151. Buffer.reserve(256*1024);
  2152. // If this is darwin or another generic macho target, reserve space for the
  2153. // header.
  2154. Triple TT(M->getTargetTriple());
  2155. if (TT.isOSDarwin())
  2156. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  2157. // Emit the module into the buffer.
  2158. {
  2159. BitstreamWriter Stream(Buffer);
  2160. // Emit the file header.
  2161. Stream.Emit((unsigned)'B', 8);
  2162. Stream.Emit((unsigned)'C', 8);
  2163. Stream.Emit(0x0, 4);
  2164. Stream.Emit(0xC, 4);
  2165. Stream.Emit(0xE, 4);
  2166. Stream.Emit(0xD, 4);
  2167. // Emit the module.
  2168. WriteModule(M, Stream);
  2169. }
  2170. if (TT.isOSDarwin())
  2171. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  2172. // Write the generated bitstream to "Out".
  2173. Out.write((char*)&Buffer.front(), Buffer.size());
  2174. }