1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630 |
- //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the primary stateless implementation of the
- // Alias Analysis interface that implements identities (two different
- // globals cannot alias, etc), but does no stateful analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <algorithm>
- using namespace llvm;
- /// Enable analysis of recursive PHI nodes.
- static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
- cl::init(false));
- /// SearchLimitReached / SearchTimes shows how often the limit of
- /// to decompose GEPs is reached. It will affect the precision
- /// of basic alias analysis.
- #define DEBUG_TYPE "basicaa"
- STATISTIC(SearchLimitReached, "Number of times the limit to "
- "decompose GEPs is reached");
- STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
- /// Cutoff after which to stop analysing a set of phi nodes potentially involved
- /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
- /// careful with value equivalence. We use reachability to make sure a value
- /// cannot be involved in a cycle.
- const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
- // The max limit of the search depth in DecomposeGEPExpression() and
- // GetUnderlyingObject(), both functions need to use the same search
- // depth otherwise the algorithm in aliasGEP will assert.
- static const unsigned MaxLookupSearchDepth = 6;
- //===----------------------------------------------------------------------===//
- // Useful predicates
- //===----------------------------------------------------------------------===//
- /// Returns true if the pointer is to a function-local object that never
- /// escapes from the function.
- static bool isNonEscapingLocalObject(const Value *V) {
- // If this is a local allocation, check to see if it escapes.
- if (isa<AllocaInst>(V) || isNoAliasCall(V))
- // Set StoreCaptures to True so that we can assume in our callers that the
- // pointer is not the result of a load instruction. Currently
- // PointerMayBeCaptured doesn't have any special analysis for the
- // StoreCaptures=false case; if it did, our callers could be refined to be
- // more precise.
- return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- // If this is an argument that corresponds to a byval or noalias argument,
- // then it has not escaped before entering the function. Check if it escapes
- // inside the function.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr() || A->hasNoAliasAttr())
- // Note even if the argument is marked nocapture, we still need to check
- // for copies made inside the function. The nocapture attribute only
- // specifies that there are no copies made that outlive the function.
- return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- return false;
- }
- /// Returns true if the pointer is one which would have been considered an
- /// escape by isNonEscapingLocalObject.
- static bool isEscapeSource(const Value *V) {
- if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
- return true;
- // The load case works because isNonEscapingLocalObject considers all
- // stores to be escapes (it passes true for the StoreCaptures argument
- // to PointerMayBeCaptured).
- if (isa<LoadInst>(V))
- return true;
- return false;
- }
- /// Returns the size of the object specified by V or UnknownSize if unknown.
- static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool RoundToAlign = false) {
- uint64_t Size;
- if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
- return Size;
- return MemoryLocation::UnknownSize;
- }
- /// Returns true if we can prove that the object specified by V is smaller than
- /// Size.
- static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const DataLayout &DL,
- const TargetLibraryInfo &TLI) {
- // Note that the meanings of the "object" are slightly different in the
- // following contexts:
- // c1: llvm::getObjectSize()
- // c2: llvm.objectsize() intrinsic
- // c3: isObjectSmallerThan()
- // c1 and c2 share the same meaning; however, the meaning of "object" in c3
- // refers to the "entire object".
- //
- // Consider this example:
- // char *p = (char*)malloc(100)
- // char *q = p+80;
- //
- // In the context of c1 and c2, the "object" pointed by q refers to the
- // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
- //
- // However, in the context of c3, the "object" refers to the chunk of memory
- // being allocated. So, the "object" has 100 bytes, and q points to the middle
- // the "object". In case q is passed to isObjectSmallerThan() as the 1st
- // parameter, before the llvm::getObjectSize() is called to get the size of
- // entire object, we should:
- // - either rewind the pointer q to the base-address of the object in
- // question (in this case rewind to p), or
- // - just give up. It is up to caller to make sure the pointer is pointing
- // to the base address the object.
- //
- // We go for 2nd option for simplicity.
- if (!isIdentifiedObject(V))
- return false;
- // This function needs to use the aligned object size because we allow
- // reads a bit past the end given sufficient alignment.
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
- }
- /// Returns true if we can prove that the object specified by V has size Size.
- static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
- const TargetLibraryInfo &TLI) {
- uint64_t ObjectSize = getObjectSize(V, DL, TLI);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
- }
- //===----------------------------------------------------------------------===//
- // GetElementPtr Instruction Decomposition and Analysis
- //===----------------------------------------------------------------------===//
- /// Analyzes the specified value as a linear expression: "A*V + B", where A and
- /// B are constant integers.
- ///
- /// Returns the scale and offset values as APInts and return V as a Value*, and
- /// return whether we looked through any sign or zero extends. The incoming
- /// Value is known to have IntegerType, and it may already be sign or zero
- /// extended.
- ///
- /// Note that this looks through extends, so the high bits may not be
- /// represented in the result.
- /*static*/ const Value *BasicAAResult::GetLinearExpression(
- const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
- unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
- assert(V->getType()->isIntegerTy() && "Not an integer value");
- // Limit our recursion depth.
- if (Depth == 6) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
- // If it's a constant, just convert it to an offset and remove the variable.
- // If we've been called recursively, the Offset bit width will be greater
- // than the constant's (the Offset's always as wide as the outermost call),
- // so we'll zext here and process any extension in the isa<SExtInst> &
- // isa<ZExtInst> cases below.
- Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
- assert(Scale == 0 && "Constant values don't have a scale");
- return V;
- }
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- // If we've been called recursively, then Offset and Scale will be wider
- // than the BOp operands. We'll always zext it here as we'll process sign
- // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
- APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
- switch (BOp->getOpcode()) {
- default:
- // We don't understand this instruction, so we can't decompose it any
- // further.
- Scale = 1;
- Offset = 0;
- return V;
- case Instruction::Or:
- // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
- // analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
- BOp, DT)) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- // FALL THROUGH.
- case Instruction::Add:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset += RHS;
- break;
- case Instruction::Sub:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset -= RHS;
- break;
- case Instruction::Mul:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset *= RHS;
- Scale *= RHS;
- break;
- case Instruction::Shl:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset <<= RHS.getLimitedValue();
- Scale <<= RHS.getLimitedValue();
- // the semantics of nsw and nuw for left shifts don't match those of
- // multiplications, so we won't propagate them.
- NSW = NUW = false;
- return V;
- }
- if (isa<OverflowingBinaryOperator>(BOp)) {
- NUW &= BOp->hasNoUnsignedWrap();
- NSW &= BOp->hasNoSignedWrap();
- }
- return V;
- }
- }
- // Since GEP indices are sign extended anyway, we don't care about the high
- // bits of a sign or zero extended value - just scales and offsets. The
- // extensions have to be consistent though.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
- Value *CastOp = cast<CastInst>(V)->getOperand(0);
- unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
- unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
- unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
- const Value *Result =
- GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
- Depth + 1, AC, DT, NSW, NUW);
- // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
- // by just incrementing the number of bits we've extended by.
- unsigned ExtendedBy = NewWidth - SmallWidth;
- if (isa<SExtInst>(V) && ZExtBits == 0) {
- // sext(sext(%x, a), b) == sext(%x, a + b)
- if (NSW) {
- // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
- // into sext(%x) + sext(c). We'll sext the Offset ourselves:
- unsigned OldWidth = Offset.getBitWidth();
- Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
- } else {
- // We may have signed-wrapped, so don't decompose sext(%x + c) into
- // sext(%x) + sext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- SExtBits += ExtendedBy;
- } else {
- // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
- if (!NUW) {
- // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
- // zext(%x) + zext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- ZExtBits += ExtendedBy;
- }
- return Result;
- }
- Scale = 1;
- Offset = 0;
- return V;
- }
- /// If V is a symbolic pointer expression, decompose it into a base pointer
- /// with a constant offset and a number of scaled symbolic offsets.
- ///
- /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
- /// in the VarIndices vector) are Value*'s that are known to be scaled by the
- /// specified amount, but which may have other unrepresented high bits. As
- /// such, the gep cannot necessarily be reconstructed from its decomposed form.
- ///
- /// When DataLayout is around, this function is capable of analyzing everything
- /// that GetUnderlyingObject can look through. To be able to do that
- /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
- /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
- /// through pointer casts.
- /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
- const Value *V, int64_t &BaseOffs,
- SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
- const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
- // Limit recursion depth to limit compile time in crazy cases.
- unsigned MaxLookup = MaxLookupSearchDepth;
- MaxLookupReached = false;
- SearchTimes++;
- BaseOffs = 0;
- do {
- // See if this is a bitcast or GEP.
- const Operator *Op = dyn_cast<Operator>(V);
- if (!Op) {
- // The only non-operator case we can handle are GlobalAliases.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden()) {
- V = GA->getAliasee();
- continue;
- }
- }
- return V;
- }
- if (Op->getOpcode() == Instruction::BitCast ||
- Op->getOpcode() == Instruction::AddrSpaceCast) {
- V = Op->getOperand(0);
- continue;
- }
- const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (!GEPOp) {
- // If it's not a GEP, hand it off to SimplifyInstruction to see if it
- // can come up with something. This matches what GetUnderlyingObject does.
- if (const Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Get a DominatorTree and AssumptionCache and use them here
- // (these are both now available in this function, but this should be
- // updated when GetUnderlyingObject is updated). TLI should be
- // provided also.
- if (const Value *Simplified =
- SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
- V = Simplified;
- continue;
- }
- return V;
- }
- // Don't attempt to analyze GEPs over unsized objects.
- if (!GEPOp->getSourceElementType()->isSized())
- return V;
- unsigned AS = GEPOp->getPointerAddressSpace();
- // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
- gep_type_iterator GTI = gep_type_begin(GEPOp);
- for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
- I != E; ++I) {
- const Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- if (FieldNo == 0)
- continue;
- BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
- continue;
- }
- // For an array/pointer, add the element offset, explicitly scaled.
- if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
- if (CIdx->isZero())
- continue;
- BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
- continue;
- }
- uint64_t Scale = DL.getTypeAllocSize(*GTI);
- unsigned ZExtBits = 0, SExtBits = 0;
- // If the integer type is smaller than the pointer size, it is implicitly
- // sign extended to pointer size.
- unsigned Width = Index->getType()->getIntegerBitWidth();
- unsigned PointerSize = DL.getPointerSizeInBits(AS);
- if (PointerSize > Width)
- SExtBits += PointerSize - Width;
- // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
- APInt IndexScale(Width, 0), IndexOffset(Width, 0);
- bool NSW = true, NUW = true;
- Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
- SExtBits, DL, 0, AC, DT, NSW, NUW);
- // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
- // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
- BaseOffs += IndexOffset.getSExtValue() * Scale;
- Scale *= IndexScale.getSExtValue();
- // If we already had an occurrence of this index variable, merge this
- // scale into it. For example, we want to handle:
- // A[x][x] -> x*16 + x*4 -> x*20
- // This also ensures that 'x' only appears in the index list once.
- for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
- if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
- VarIndices[i].SExtBits == SExtBits) {
- Scale += VarIndices[i].Scale;
- VarIndices.erase(VarIndices.begin() + i);
- break;
- }
- }
- // Make sure that we have a scale that makes sense for this target's
- // pointer size.
- if (unsigned ShiftBits = 64 - PointerSize) {
- Scale <<= ShiftBits;
- Scale = (int64_t)Scale >> ShiftBits;
- }
- if (Scale) {
- VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
- static_cast<int64_t>(Scale)};
- VarIndices.push_back(Entry);
- }
- }
- // Analyze the base pointer next.
- V = GEPOp->getOperand(0);
- } while (--MaxLookup);
- // If the chain of expressions is too deep, just return early.
- MaxLookupReached = true;
- SearchLimitReached++;
- return V;
- }
- /// Returns whether the given pointer value points to memory that is local to
- /// the function, with global constants being considered local to all
- /// functions.
- bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
- bool OrLocal) {
- assert(Visited.empty() && "Visited must be cleared after use!");
- unsigned MaxLookup = 8;
- SmallVector<const Value *, 16> Worklist;
- Worklist.push_back(Loc.Ptr);
- do {
- const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
- if (!Visited.insert(V).second) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
- }
- // An alloca instruction defines local memory.
- if (OrLocal && isa<AllocaInst>(V))
- continue;
- // A global constant counts as local memory for our purposes.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- // Note: this doesn't require GV to be "ODR" because it isn't legal for a
- // global to be marked constant in some modules and non-constant in
- // others. GV may even be a declaration, not a definition.
- if (!GV->isConstant()) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
- }
- continue;
- }
- // If both select values point to local memory, then so does the select.
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- // If all values incoming to a phi node point to local memory, then so does
- // the phi.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- // Don't bother inspecting phi nodes with many operands.
- if (PN->getNumIncomingValues() > MaxLookup) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
- }
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
- // Otherwise be conservative.
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
- } while (!Worklist.empty() && --MaxLookup);
- Visited.clear();
- return Worklist.empty();
- }
- // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
- // some common utility location.
- static bool isMemsetPattern16(const Function *MS,
- const TargetLibraryInfo &TLI) {
- if (TLI.has(LibFunc::memset_pattern16) &&
- MS->getName() == "memset_pattern16") {
- FunctionType *MemsetType = MS->getFunctionType();
- if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
- isa<PointerType>(MemsetType->getParamType(0)) &&
- isa<PointerType>(MemsetType->getParamType(1)) &&
- isa<IntegerType>(MemsetType->getParamType(2)))
- return true;
- }
- return false;
- }
- /// Returns the behavior when calling the given call site.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
- if (CS.doesNotAccessMemory())
- // Can't do better than this.
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the callsite knows it only reads memory, don't return worse
- // than that.
- if (CS.onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- if (CS.onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- // The AAResultBase base class has some smarts, lets use them.
- return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
- }
- /// Returns the behavior when calling the given function. For use when the call
- /// site is not known.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
- // If the function declares it doesn't access memory, we can't do better.
- if (F->doesNotAccessMemory())
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the function declares it only reads memory, go with that.
- if (F->onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- if (F->onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- // Otherwise be conservative.
- return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
- }
- /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently,
- /// we don't have a writeonly attribute, so this only knows about builtin
- /// intrinsics and target library functions. We could consider adding a
- /// writeonly attribute in the future and moving all of these facts to either
- /// Intrinsics.td or InferFunctionAttr.cpp
- static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
- const TargetLibraryInfo &TLI) {
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
- switch (II->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::memset:
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- // We don't currently have a writeonly attribute. All other properties
- // of these intrinsics are nicely described via attributes in
- // Intrinsics.td and handled generically.
- if (ArgIdx == 0)
- return true;
- }
- // We can bound the aliasing properties of memset_pattern16 just as we can
- // for memcpy/memset. This is particularly important because the
- // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
- // whenever possible. Note that all but the missing writeonly attribute are
- // handled via InferFunctionAttr.
- if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
- if (ArgIdx == 0)
- return true;
- // TODO: memset_pattern4, memset_pattern8
- // TODO: _chk variants
- // TODO: strcmp, strcpy
- return false;
- }
- ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
- unsigned ArgIdx) {
- // Emulate the missing writeonly attribute by checking for known builtin
- // intrinsics and target library functions.
- if (isWriteOnlyParam(CS, ArgIdx, TLI))
- return MRI_Mod;
- if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
- return MRI_Ref;
- if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
- return MRI_NoModRef;
- return AAResultBase::getArgModRefInfo(CS, ArgIdx);
- }
- static bool isAssumeIntrinsic(ImmutableCallSite CS) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
- return II && II->getIntrinsicID() == Intrinsic::assume;
- }
- #ifndef NDEBUG
- static const Function *getParent(const Value *V) {
- if (const Instruction *inst = dyn_cast<Instruction>(V))
- return inst->getParent()->getParent();
- if (const Argument *arg = dyn_cast<Argument>(V))
- return arg->getParent();
- return nullptr;
- }
- static bool notDifferentParent(const Value *O1, const Value *O2) {
- const Function *F1 = getParent(O1);
- const Function *F2 = getParent(O2);
- return !F1 || !F2 || F1 == F2;
- }
- #endif
- AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
- "BasicAliasAnalysis doesn't support interprocedural queries.");
- // If we have a directly cached entry for these locations, we have recursed
- // through this once, so just return the cached results. Notably, when this
- // happens, we don't clear the cache.
- auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
- if (CacheIt != AliasCache.end())
- return CacheIt->second;
- AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
- LocB.Size, LocB.AATags);
- // AliasCache rarely has more than 1 or 2 elements, always use
- // shrink_and_clear so it quickly returns to the inline capacity of the
- // SmallDenseMap if it ever grows larger.
- // FIXME: This should really be shrink_to_inline_capacity_and_clear().
- AliasCache.shrink_and_clear();
- VisitedPhiBBs.clear();
- return Alias;
- }
- /// Checks to see if the specified callsite can clobber the specified memory
- /// object.
- ///
- /// Since we only look at local properties of this function, we really can't
- /// say much about this query. We do, however, use simple "address taken"
- /// analysis on local objects.
- ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
- const MemoryLocation &Loc) {
- assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
- "AliasAnalysis query involving multiple functions!");
- const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
- // If this is a tail call and Loc.Ptr points to a stack location, we know that
- // the tail call cannot access or modify the local stack.
- // We cannot exclude byval arguments here; these belong to the caller of
- // the current function not to the current function, and a tail callee
- // may reference them.
- if (isa<AllocaInst>(Object))
- if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
- if (CI->isTailCall())
- return MRI_NoModRef;
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the pointer
- // as an argument, and itself doesn't capture it.
- if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
- isNonEscapingLocalObject(Object)) {
- bool PassedAsArg = false;
- unsigned OperandNo = 0;
- for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
- CI != CE; ++CI, ++OperandNo) {
- // Only look at the no-capture or byval pointer arguments. If this
- // pointer were passed to arguments that were neither of these, then it
- // couldn't be no-capture.
- if (!(*CI)->getType()->isPointerTy() ||
- (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
- continue;
- // If this is a no-capture pointer argument, see if we can tell that it
- // is impossible to alias the pointer we're checking. If not, we have to
- // assume that the call could touch the pointer, even though it doesn't
- // escape.
- AliasResult AR =
- getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
- if (AR) {
- PassedAsArg = true;
- break;
- }
- }
- if (!PassedAsArg)
- return MRI_NoModRef;
- }
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isAssumeIntrinsic(CS))
- return MRI_NoModRef;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(CS, Loc);
- }
- ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
- return MRI_NoModRef;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(CS1, CS2);
- }
- /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
- /// both having the exact same pointer operand.
- static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
- uint64_t V1Size,
- const GEPOperator *GEP2,
- uint64_t V2Size,
- const DataLayout &DL) {
- assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
- "Expected GEPs with the same pointer operand");
- // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
- // such that the struct field accesses provably cannot alias.
- // We also need at least two indices (the pointer, and the struct field).
- if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
- GEP1->getNumIndices() < 2)
- return MayAlias;
- // If we don't know the size of the accesses through both GEPs, we can't
- // determine whether the struct fields accessed can't alias.
- if (V1Size == MemoryLocation::UnknownSize ||
- V2Size == MemoryLocation::UnknownSize)
- return MayAlias;
- ConstantInt *C1 =
- dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
- ConstantInt *C2 =
- dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
- // If the last (struct) indices are constants and are equal, the other indices
- // might be also be dynamically equal, so the GEPs can alias.
- if (C1 && C2 && C1 == C2)
- return MayAlias;
- // Find the last-indexed type of the GEP, i.e., the type you'd get if
- // you stripped the last index.
- // On the way, look at each indexed type. If there's something other
- // than an array, different indices can lead to different final types.
- SmallVector<Value *, 8> IntermediateIndices;
- // Insert the first index; we don't need to check the type indexed
- // through it as it only drops the pointer indirection.
- assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
- IntermediateIndices.push_back(GEP1->getOperand(1));
- // Insert all the remaining indices but the last one.
- // Also, check that they all index through arrays.
- for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
- if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices)))
- return MayAlias;
- IntermediateIndices.push_back(GEP1->getOperand(i + 1));
- }
- auto *Ty = GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices);
- StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
- if (isa<SequentialType>(Ty)) {
- // We know that:
- // - both GEPs begin indexing from the exact same pointer;
- // - the last indices in both GEPs are constants, indexing into a sequential
- // type (array or pointer);
- // - both GEPs only index through arrays prior to that.
- //
- // Because array indices greater than the number of elements are valid in
- // GEPs, unless we know the intermediate indices are identical between
- // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
- // partially overlap. We also need to check that the loaded size matches
- // the element size, otherwise we could still have overlap.
- const uint64_t ElementSize =
- DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
- if (V1Size != ElementSize || V2Size != ElementSize)
- return MayAlias;
- for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
- if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
- return MayAlias;
- // Now we know that the array/pointer that GEP1 indexes into and that
- // that GEP2 indexes into must either precisely overlap or be disjoint.
- // Because they cannot partially overlap and because fields in an array
- // cannot overlap, if we can prove the final indices are different between
- // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
-
- // If the last indices are constants, we've already checked they don't
- // equal each other so we can exit early.
- if (C1 && C2)
- return NoAlias;
- if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
- GEP2->getOperand(GEP2->getNumOperands() - 1),
- DL))
- return NoAlias;
- return MayAlias;
- } else if (!LastIndexedStruct || !C1 || !C2) {
- return MayAlias;
- }
- // We know that:
- // - both GEPs begin indexing from the exact same pointer;
- // - the last indices in both GEPs are constants, indexing into a struct;
- // - said indices are different, hence, the pointed-to fields are different;
- // - both GEPs only index through arrays prior to that.
- //
- // This lets us determine that the struct that GEP1 indexes into and the
- // struct that GEP2 indexes into must either precisely overlap or be
- // completely disjoint. Because they cannot partially overlap, indexing into
- // different non-overlapping fields of the struct will never alias.
- // Therefore, the only remaining thing needed to show that both GEPs can't
- // alias is that the fields are not overlapping.
- const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
- const uint64_t StructSize = SL->getSizeInBytes();
- const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
- const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
- auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
- uint64_t V2Off, uint64_t V2Size) {
- return V1Off < V2Off && V1Off + V1Size <= V2Off &&
- ((V2Off + V2Size <= StructSize) ||
- (V2Off + V2Size - StructSize <= V1Off));
- };
- if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
- EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
- return NoAlias;
- return MayAlias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
- /// another pointer.
- ///
- /// We know that V1 is a GEP, but we don't know anything about V2.
- /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
- /// V2.
- AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
- const AAMDNodes &V1AAInfo, const Value *V2,
- uint64_t V2Size, const AAMDNodes &V2AAInfo,
- const Value *UnderlyingV1,
- const Value *UnderlyingV2) {
- int64_t GEP1BaseOffset;
- bool GEP1MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
- // If we have two gep instructions with must-alias or not-alias'ing base
- // pointers, figure out if the indexes to the GEP tell us anything about the
- // derived pointer.
- if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
- // Do the base pointers alias?
- AliasResult BaseAlias =
- aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
- UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
- // Check for geps of non-aliasing underlying pointers where the offsets are
- // identical.
- if ((BaseAlias == MayAlias) && V1Size == V2Size) {
- // Do the base pointers alias assuming type and size.
- AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
- UnderlyingV2, V2Size, V2AAInfo);
- if (PreciseBaseAlias == NoAlias) {
- // See if the computed offset from the common pointer tells us about the
- // relation of the resulting pointer.
- int64_t GEP2BaseOffset;
- bool GEP2MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
- const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, DL, &AC, DT);
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL, &AC, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- // FIXME: They always have a DataLayout, so this should become an
- // assert.
- if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- return MayAlias;
- }
- // If the max search depth is reached the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Same offsets.
- if (GEP1BaseOffset == GEP2BaseOffset &&
- GEP1VariableIndices == GEP2VariableIndices)
- return NoAlias;
- GEP1VariableIndices.clear();
- }
- }
- // If we get a No or May, then return it immediately, no amount of analysis
- // will improve this situation.
- if (BaseAlias != MustAlias)
- return BaseAlias;
- // Otherwise, we have a MustAlias. Since the base pointers alias each other
- // exactly, see if the computed offset from the common pointer tells us
- // about the relation of the resulting pointer.
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL, &AC, DT);
- int64_t GEP2BaseOffset;
- bool GEP2MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
- const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, DL, &AC, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- // FIXME: They always have a DataLayout, so this should become an assert.
- if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- return MayAlias;
- }
- // If we know the two GEPs are based off of the exact same pointer (and not
- // just the same underlying object), see if that tells us anything about
- // the resulting pointers.
- if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
- AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
- // If we couldn't find anything interesting, don't abandon just yet.
- if (R != MayAlias)
- return R;
- }
- // If the max search depth is reached, the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Subtract the GEP2 pointer from the GEP1 pointer to find out their
- // symbolic difference.
- GEP1BaseOffset -= GEP2BaseOffset;
- GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
- } else {
- // Check to see if these two pointers are related by the getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
- // If both accesses are unknown size, we can't do anything useful here.
- if (V1Size == MemoryLocation::UnknownSize &&
- V2Size == MemoryLocation::UnknownSize)
- return MayAlias;
- AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
- AAMDNodes(), V2, V2Size, V2AAInfo);
- if (R != MustAlias)
- // If V2 may alias GEP base pointer, conservatively returns MayAlias.
- // If V2 is known not to alias GEP base pointer, then the two values
- // cannot alias per GEP semantics: "A pointer value formed from a
- // getelementptr instruction is associated with the addresses associated
- // with the first operand of the getelementptr".
- return R;
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, DL, &AC, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- // FIXME: They always have a DataLayout, so this should become an assert.
- if (GEP1BasePtr != UnderlyingV1) {
- return MayAlias;
- }
- // If the max search depth is reached the result is undefined
- if (GEP1MaxLookupReached)
- return MayAlias;
- }
- // In the two GEP Case, if there is no difference in the offsets of the
- // computed pointers, the resultant pointers are a must alias. This
- // happens when we have two lexically identical GEP's (for example).
- //
- // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
- // must aliases the GEP, the end result is a must alias also.
- if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
- return MustAlias;
- // If there is a constant difference between the pointers, but the difference
- // is less than the size of the associated memory object, then we know
- // that the objects are partially overlapping. If the difference is
- // greater, we know they do not overlap.
- if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
- if (GEP1BaseOffset >= 0) {
- if (V2Size != MemoryLocation::UnknownSize) {
- if ((uint64_t)GEP1BaseOffset < V2Size)
- return PartialAlias;
- return NoAlias;
- }
- } else {
- // We have the situation where:
- // + +
- // | BaseOffset |
- // ---------------->|
- // |-->V1Size |-------> V2Size
- // GEP1 V2
- // We need to know that V2Size is not unknown, otherwise we might have
- // stripped a gep with negative index ('gep <ptr>, -1, ...).
- if (V1Size != MemoryLocation::UnknownSize &&
- V2Size != MemoryLocation::UnknownSize) {
- if (-(uint64_t)GEP1BaseOffset < V1Size)
- return PartialAlias;
- return NoAlias;
- }
- }
- }
- if (!GEP1VariableIndices.empty()) {
- uint64_t Modulo = 0;
- bool AllPositive = true;
- for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
- // Try to distinguish something like &A[i][1] against &A[42][0].
- // Grab the least significant bit set in any of the scales. We
- // don't need std::abs here (even if the scale's negative) as we'll
- // be ^'ing Modulo with itself later.
- Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
- if (AllPositive) {
- // If the Value could change between cycles, then any reasoning about
- // the Value this cycle may not hold in the next cycle. We'll just
- // give up if we can't determine conditions that hold for every cycle:
- const Value *V = GEP1VariableIndices[i].V;
- bool SignKnownZero, SignKnownOne;
- ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
- 0, &AC, nullptr, DT);
- // Zero-extension widens the variable, and so forces the sign
- // bit to zero.
- bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
- SignKnownZero |= IsZExt;
- SignKnownOne &= !IsZExt;
- // If the variable begins with a zero then we know it's
- // positive, regardless of whether the value is signed or
- // unsigned.
- int64_t Scale = GEP1VariableIndices[i].Scale;
- AllPositive =
- (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
- }
- }
- Modulo = Modulo ^ (Modulo & (Modulo - 1));
- // We can compute the difference between the two addresses
- // mod Modulo. Check whether that difference guarantees that the
- // two locations do not alias.
- uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
- if (V1Size != MemoryLocation::UnknownSize &&
- V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
- V1Size <= Modulo - ModOffset)
- return NoAlias;
- // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
- // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
- // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
- if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
- return NoAlias;
- if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
- GEP1BaseOffset, &AC, DT))
- return NoAlias;
- }
- // Statically, we can see that the base objects are the same, but the
- // pointers have dynamic offsets which we can't resolve. And none of our
- // little tricks above worked.
- //
- // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
- // practical effect of this is protecting TBAA in the case of dynamic
- // indices into arrays of unions or malloc'd memory.
- return PartialAlias;
- }
- static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
- // If the results agree, take it.
- if (A == B)
- return A;
- // A mix of PartialAlias and MustAlias is PartialAlias.
- if ((A == PartialAlias && B == MustAlias) ||
- (B == PartialAlias && A == MustAlias))
- return PartialAlias;
- // Otherwise, we don't know anything.
- return MayAlias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
- /// against another.
- AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
- const AAMDNodes &SIAAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for aliases between the values on corresponding arms.
- if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
- if (SI->getCondition() == SI2->getCondition()) {
- AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
- SI2->getTrueValue(), V2Size, V2AAInfo);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias =
- aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
- SI2->getFalseValue(), V2Size, V2AAInfo);
- return MergeAliasResults(ThisAlias, Alias);
- }
- // If both arms of the Select node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- AliasResult Alias =
- aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias =
- aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
- return MergeAliasResults(ThisAlias, Alias);
- }
- /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
- /// another.
- AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
- const AAMDNodes &PNAAInfo, const Value *V2,
- uint64_t V2Size,
- const AAMDNodes &V2AAInfo) {
- // Track phi nodes we have visited. We use this information when we determine
- // value equivalence.
- VisitedPhiBBs.insert(PN->getParent());
- // If the values are PHIs in the same block, we can do a more precise
- // as well as efficient check: just check for aliases between the values
- // on corresponding edges.
- if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
- if (PN2->getParent() == PN->getParent()) {
- LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (PN > V2)
- std::swap(Locs.first, Locs.second);
- // Analyse the PHIs' inputs under the assumption that the PHIs are
- // NoAlias.
- // If the PHIs are May/MustAlias there must be (recursively) an input
- // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
- // there must be an operation on the PHIs within the PHIs' value cycle
- // that causes a MayAlias.
- // Pretend the phis do not alias.
- AliasResult Alias = NoAlias;
- assert(AliasCache.count(Locs) &&
- "There must exist an entry for the phi node");
- AliasResult OrigAliasResult = AliasCache[Locs];
- AliasCache[Locs] = NoAlias;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- AliasResult ThisAlias =
- aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
- PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
- V2Size, V2AAInfo);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- // Reset if speculation failed.
- if (Alias != NoAlias)
- AliasCache[Locs] = OrigAliasResult;
- return Alias;
- }
- SmallPtrSet<Value *, 4> UniqueSrc;
- SmallVector<Value *, 4> V1Srcs;
- bool isRecursive = false;
- for (Value *PV1 : PN->incoming_values()) {
- if (isa<PHINode>(PV1))
- // If any of the source itself is a PHI, return MayAlias conservatively
- // to avoid compile time explosion. The worst possible case is if both
- // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
- // and 'n' are the number of PHI sources.
- return MayAlias;
- if (EnableRecPhiAnalysis)
- if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
- // Check whether the incoming value is a GEP that advances the pointer
- // result of this PHI node (e.g. in a loop). If this is the case, we
- // would recurse and always get a MayAlias. Handle this case specially
- // below.
- if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
- isa<ConstantInt>(PV1GEP->idx_begin())) {
- isRecursive = true;
- continue;
- }
- }
- if (UniqueSrc.insert(PV1).second)
- V1Srcs.push_back(PV1);
- }
- // If this PHI node is recursive, set the size of the accessed memory to
- // unknown to represent all the possible values the GEP could advance the
- // pointer to.
- if (isRecursive)
- PNSize = MemoryLocation::UnknownSize;
- AliasResult Alias =
- aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
- // Early exit if the check of the first PHI source against V2 is MayAlias.
- // Other results are not possible.
- if (Alias == MayAlias)
- return MayAlias;
- // If all sources of the PHI node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
- Value *V = V1Srcs[i];
- AliasResult ThisAlias =
- aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- return Alias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
- /// array references.
- AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
- AAMDNodes V1AAInfo, const Value *V2,
- uint64_t V2Size, AAMDNodes V2AAInfo) {
- // If either of the memory references is empty, it doesn't matter what the
- // pointer values are.
- if (V1Size == 0 || V2Size == 0)
- return NoAlias;
- // Strip off any casts if they exist.
- V1 = V1->stripPointerCasts();
- V2 = V2->stripPointerCasts();
- // If V1 or V2 is undef, the result is NoAlias because we can always pick a
- // value for undef that aliases nothing in the program.
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return NoAlias;
- // Are we checking for alias of the same value?
- // Because we look 'through' phi nodes, we could look at "Value" pointers from
- // different iterations. We must therefore make sure that this is not the
- // case. The function isValueEqualInPotentialCycles ensures that this cannot
- // happen by looking at the visited phi nodes and making sure they cannot
- // reach the value.
- if (isValueEqualInPotentialCycles(V1, V2))
- return MustAlias;
- if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
- return NoAlias; // Scalars cannot alias each other
- // Figure out what objects these things are pointing to if we can.
- const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
- const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
- // Null values in the default address space don't point to any object, so they
- // don't alias any other pointer.
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
- if (CPN->getType()->getAddressSpace() == 0)
- return NoAlias;
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
- if (CPN->getType()->getAddressSpace() == 0)
- return NoAlias;
- if (O1 != O2) {
- // If V1/V2 point to two different objects, we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
- // Constant pointers can't alias with non-const isIdentifiedObject objects.
- if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
- (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
- return NoAlias;
- // Function arguments can't alias with things that are known to be
- // unambigously identified at the function level.
- if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
- (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
- return NoAlias;
- // Most objects can't alias null.
- if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
- (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
- return NoAlias;
- // If one pointer is the result of a call/invoke or load and the other is a
- // non-escaping local object within the same function, then we know the
- // object couldn't escape to a point where the call could return it.
- //
- // Note that if the pointers are in different functions, there are a
- // variety of complications. A call with a nocapture argument may still
- // temporary store the nocapture argument's value in a temporary memory
- // location if that memory location doesn't escape. Or it may pass a
- // nocapture value to other functions as long as they don't capture it.
- if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
- return NoAlias;
- if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
- return NoAlias;
- }
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- if ((V1Size != MemoryLocation::UnknownSize &&
- isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
- (V2Size != MemoryLocation::UnknownSize &&
- isObjectSmallerThan(O1, V2Size, DL, TLI)))
- return NoAlias;
- // Check the cache before climbing up use-def chains. This also terminates
- // otherwise infinitely recursive queries.
- LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (V1 > V2)
- std::swap(Locs.first, Locs.second);
- std::pair<AliasCacheTy::iterator, bool> Pair =
- AliasCache.insert(std::make_pair(Locs, MayAlias));
- if (!Pair.second)
- return Pair.first->second;
- // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
- // GEP can't simplify, we don't even look at the PHI cases.
- if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(O1, O2);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result =
- aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
- if (Result != MayAlias)
- return AliasCache[Locs] = Result;
- }
- if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
- if (Result != MayAlias)
- return AliasCache[Locs] = Result;
- }
- if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result =
- aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
- if (Result != MayAlias)
- return AliasCache[Locs] = Result;
- }
- // If both pointers are pointing into the same object and one of them
- // accesses the entire object, then the accesses must overlap in some way.
- if (O1 == O2)
- if ((V1Size != MemoryLocation::UnknownSize &&
- isObjectSize(O1, V1Size, DL, TLI)) ||
- (V2Size != MemoryLocation::UnknownSize &&
- isObjectSize(O2, V2Size, DL, TLI)))
- return AliasCache[Locs] = PartialAlias;
- // Recurse back into the best AA results we have, potentially with refined
- // memory locations. We have already ensured that BasicAA has a MayAlias
- // cache result for these, so any recursion back into BasicAA won't loop.
- AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
- return AliasCache[Locs] = Result;
- }
- /// Check whether two Values can be considered equivalent.
- ///
- /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
- /// they can not be part of a cycle in the value graph by looking at all
- /// visited phi nodes an making sure that the phis cannot reach the value. We
- /// have to do this because we are looking through phi nodes (That is we say
- /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
- bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
- const Value *V2) {
- if (V != V2)
- return false;
- const Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return true;
- if (VisitedPhiBBs.empty())
- return true;
- if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
- return false;
- // Make sure that the visited phis cannot reach the Value. This ensures that
- // the Values cannot come from different iterations of a potential cycle the
- // phi nodes could be involved in.
- for (auto *P : VisitedPhiBBs)
- if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
- return false;
- return true;
- }
- /// Computes the symbolic difference between two de-composed GEPs.
- ///
- /// Dest and Src are the variable indices from two decomposed GetElementPtr
- /// instructions GEP1 and GEP2 which have common base pointers.
- void BasicAAResult::GetIndexDifference(
- SmallVectorImpl<VariableGEPIndex> &Dest,
- const SmallVectorImpl<VariableGEPIndex> &Src) {
- if (Src.empty())
- return;
- for (unsigned i = 0, e = Src.size(); i != e; ++i) {
- const Value *V = Src[i].V;
- unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
- int64_t Scale = Src[i].Scale;
- // Find V in Dest. This is N^2, but pointer indices almost never have more
- // than a few variable indexes.
- for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
- if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
- Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
- continue;
- // If we found it, subtract off Scale V's from the entry in Dest. If it
- // goes to zero, remove the entry.
- if (Dest[j].Scale != Scale)
- Dest[j].Scale -= Scale;
- else
- Dest.erase(Dest.begin() + j);
- Scale = 0;
- break;
- }
- // If we didn't consume this entry, add it to the end of the Dest list.
- if (Scale) {
- VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
- Dest.push_back(Entry);
- }
- }
- }
- bool BasicAAResult::constantOffsetHeuristic(
- const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
- uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
- DominatorTree *DT) {
- if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
- V2Size == MemoryLocation::UnknownSize)
- return false;
- const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
- if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
- Var0.Scale != -Var1.Scale)
- return false;
- unsigned Width = Var1.V->getType()->getIntegerBitWidth();
- // We'll strip off the Extensions of Var0 and Var1 and do another round
- // of GetLinearExpression decomposition. In the example above, if Var0
- // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
- APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
- V1Offset(Width, 0);
- bool NSW = true, NUW = true;
- unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
- const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
- V0SExtBits, DL, 0, AC, DT, NSW, NUW);
- NSW = true, NUW = true;
- const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
- V1SExtBits, DL, 0, AC, DT, NSW, NUW);
- if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
- V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
- return false;
- // We have a hit - Var0 and Var1 only differ by a constant offset!
- // If we've been sext'ed then zext'd the maximum difference between Var0 and
- // Var1 is possible to calculate, but we're just interested in the absolute
- // minimum difference between the two. The minimum distance may occur due to
- // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
- // the minimum distance between %i and %i + 5 is 3.
- APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
- MinDiff = APIntOps::umin(MinDiff, Wrapped);
- uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
- // We can't definitely say whether GEP1 is before or after V2 due to wrapping
- // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
- // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
- // V2Size can fit in the MinDiffBytes gap.
- return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
- V2Size + std::abs(BaseOffset) <= MinDiffBytes;
- }
- //===----------------------------------------------------------------------===//
- // BasicAliasAnalysis Pass
- //===----------------------------------------------------------------------===//
- char BasicAA::PassID;
- BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
- return BasicAAResult(F.getParent()->getDataLayout(),
- AM->getResult<TargetLibraryAnalysis>(F),
- AM->getResult<AssumptionAnalysis>(F),
- AM->getCachedResult<DominatorTreeAnalysis>(F),
- AM->getCachedResult<LoopAnalysis>(F));
- }
- BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
- initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- char BasicAAWrapperPass::ID = 0;
- void BasicAAWrapperPass::anchor() {}
- INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
- "Basic Alias Analysis (stateless AA impl)", true, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
- "Basic Alias Analysis (stateless AA impl)", true, true)
- FunctionPass *llvm::createBasicAAWrapperPass() {
- return new BasicAAWrapperPass();
- }
- bool BasicAAWrapperPass::runOnFunction(Function &F) {
- auto &ACT = getAnalysis<AssumptionCacheTracker>();
- auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
- ACT.getAssumptionCache(F),
- DTWP ? &DTWP->getDomTree() : nullptr,
- LIWP ? &LIWP->getLoopInfo() : nullptr));
- return false;
- }
- void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
- return BasicAAResult(
- F.getParent()->getDataLayout(),
- P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
- P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
- }
|