1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006 |
- //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file promotes memory references to be register references. It promotes
- // alloca instructions which only have loads and stores as uses. An alloca is
- // transformed by using dominator frontiers to place PHI nodes, then traversing
- // the function in depth-first order to rewrite loads and stores as appropriate.
- // This is just the standard SSA construction algorithm to construct "pruned"
- // SSA form.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "mem2reg"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/CFG.h"
- #include <algorithm>
- using namespace llvm;
- STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
- STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
- STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
- STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
- namespace llvm {
- template<>
- struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
- typedef std::pair<BasicBlock*, unsigned> EltTy;
- static inline EltTy getEmptyKey() {
- return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
- }
- static inline EltTy getTombstoneKey() {
- return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
- }
- static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
- return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
- }
- static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
- return LHS == RHS;
- }
- static bool isPod() { return true; }
- };
- }
- /// isAllocaPromotable - Return true if this alloca is legal for promotion.
- /// This is true if there are only loads and stores to the alloca.
- ///
- bool llvm::isAllocaPromotable(const AllocaInst *AI) {
- // FIXME: If the memory unit is of pointer or integer type, we can permit
- // assignments to subsections of the memory unit.
- // Only allow direct and non-volatile loads and stores...
- for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
- UI != UE; ++UI) // Loop over all of the uses of the alloca
- if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
- if (LI->isVolatile())
- return false;
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
- if (SI->getOperand(0) == AI)
- return false; // Don't allow a store OF the AI, only INTO the AI.
- if (SI->isVolatile())
- return false;
- } else if (const BitCastInst *BC = dyn_cast<BitCastInst>(*UI)) {
- // A bitcast that does not feed into debug info inhibits promotion.
- if (!BC->hasOneUse() || !isa<DbgInfoIntrinsic>(*BC->use_begin()))
- return false;
- // If the only use is by debug info, this alloca will not exist in
- // non-debug code, so don't try to promote; this ensures the same
- // codegen with debug info. Otherwise, debug info should not
- // inhibit promotion (but we must examine other uses).
- if (AI->hasOneUse())
- return false;
- } else {
- return false;
- }
- return true;
- }
- namespace {
- struct AllocaInfo;
- // Data package used by RenamePass()
- class RenamePassData {
- public:
- typedef std::vector<Value *> ValVector;
-
- RenamePassData() {}
- RenamePassData(BasicBlock *B, BasicBlock *P,
- const ValVector &V) : BB(B), Pred(P), Values(V) {}
- BasicBlock *BB;
- BasicBlock *Pred;
- ValVector Values;
-
- void swap(RenamePassData &RHS) {
- std::swap(BB, RHS.BB);
- std::swap(Pred, RHS.Pred);
- Values.swap(RHS.Values);
- }
- };
-
- /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
- /// load/store instructions in the block that directly load or store an alloca.
- ///
- /// This functionality is important because it avoids scanning large basic
- /// blocks multiple times when promoting many allocas in the same block.
- class LargeBlockInfo {
- /// InstNumbers - For each instruction that we track, keep the index of the
- /// instruction. The index starts out as the number of the instruction from
- /// the start of the block.
- DenseMap<const Instruction *, unsigned> InstNumbers;
- public:
-
- /// isInterestingInstruction - This code only looks at accesses to allocas.
- static bool isInterestingInstruction(const Instruction *I) {
- return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
- (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
- }
-
- /// getInstructionIndex - Get or calculate the index of the specified
- /// instruction.
- unsigned getInstructionIndex(const Instruction *I) {
- assert(isInterestingInstruction(I) &&
- "Not a load/store to/from an alloca?");
-
- // If we already have this instruction number, return it.
- DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
- if (It != InstNumbers.end()) return It->second;
-
- // Scan the whole block to get the instruction. This accumulates
- // information for every interesting instruction in the block, in order to
- // avoid gratuitus rescans.
- const BasicBlock *BB = I->getParent();
- unsigned InstNo = 0;
- for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
- BBI != E; ++BBI)
- if (isInterestingInstruction(BBI))
- InstNumbers[BBI] = InstNo++;
- It = InstNumbers.find(I);
-
- assert(It != InstNumbers.end() && "Didn't insert instruction?");
- return It->second;
- }
-
- void deleteValue(const Instruction *I) {
- InstNumbers.erase(I);
- }
-
- void clear() {
- InstNumbers.clear();
- }
- };
- struct PromoteMem2Reg {
- /// Allocas - The alloca instructions being promoted.
- ///
- std::vector<AllocaInst*> Allocas;
- DominatorTree &DT;
- DominanceFrontier &DF;
- /// AST - An AliasSetTracker object to update. If null, don't update it.
- ///
- AliasSetTracker *AST;
-
- LLVMContext &Context;
- /// AllocaLookup - Reverse mapping of Allocas.
- ///
- std::map<AllocaInst*, unsigned> AllocaLookup;
- /// NewPhiNodes - The PhiNodes we're adding.
- ///
- DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
-
- /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
- /// it corresponds to.
- DenseMap<PHINode*, unsigned> PhiToAllocaMap;
-
- /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
- /// each alloca that is of pointer type, we keep track of what to copyValue
- /// to the inserted PHI nodes here.
- ///
- std::vector<Value*> PointerAllocaValues;
- /// Visited - The set of basic blocks the renamer has already visited.
- ///
- SmallPtrSet<BasicBlock*, 16> Visited;
- /// BBNumbers - Contains a stable numbering of basic blocks to avoid
- /// non-determinstic behavior.
- DenseMap<BasicBlock*, unsigned> BBNumbers;
- /// BBNumPreds - Lazily compute the number of predecessors a block has.
- DenseMap<const BasicBlock*, unsigned> BBNumPreds;
- public:
- PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
- DominanceFrontier &df, AliasSetTracker *ast,
- LLVMContext &C)
- : Allocas(A), DT(dt), DF(df), AST(ast), Context(C) {}
- void run();
- /// properlyDominates - Return true if I1 properly dominates I2.
- ///
- bool properlyDominates(Instruction *I1, Instruction *I2) const {
- if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
- I1 = II->getNormalDest()->begin();
- return DT.properlyDominates(I1->getParent(), I2->getParent());
- }
-
- /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
- ///
- bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
- return DT.dominates(BB1, BB2);
- }
- private:
- void RemoveFromAllocasList(unsigned &AllocaIdx) {
- Allocas[AllocaIdx] = Allocas.back();
- Allocas.pop_back();
- --AllocaIdx;
- }
- unsigned getNumPreds(const BasicBlock *BB) {
- unsigned &NP = BBNumPreds[BB];
- if (NP == 0)
- NP = std::distance(pred_begin(BB), pred_end(BB))+1;
- return NP-1;
- }
- void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info);
- void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
- SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
-
- void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
- LargeBlockInfo &LBI);
- void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
- LargeBlockInfo &LBI);
-
- void RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncVals,
- std::vector<RenamePassData> &Worklist);
- bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
- SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
- };
-
- struct AllocaInfo {
- std::vector<BasicBlock*> DefiningBlocks;
- std::vector<BasicBlock*> UsingBlocks;
-
- StoreInst *OnlyStore;
- BasicBlock *OnlyBlock;
- bool OnlyUsedInOneBlock;
-
- Value *AllocaPointerVal;
-
- void clear() {
- DefiningBlocks.clear();
- UsingBlocks.clear();
- OnlyStore = 0;
- OnlyBlock = 0;
- OnlyUsedInOneBlock = true;
- AllocaPointerVal = 0;
- }
-
- /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
- /// ivars.
- void AnalyzeAlloca(AllocaInst *AI) {
- clear();
- // As we scan the uses of the alloca instruction, keep track of stores,
- // and decide whether all of the loads and stores to the alloca are within
- // the same basic block.
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
- UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
- // Remove any uses of this alloca in DbgInfoInstrinsics.
- assert(BC->hasOneUse() && "Unexpected alloca uses!");
- DbgInfoIntrinsic *DI = cast<DbgInfoIntrinsic>(*BC->use_begin());
- DI->eraseFromParent();
- BC->eraseFromParent();
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- // Remember the basic blocks which define new values for the alloca
- DefiningBlocks.push_back(SI->getParent());
- AllocaPointerVal = SI->getOperand(0);
- OnlyStore = SI;
- } else {
- LoadInst *LI = cast<LoadInst>(User);
- // Otherwise it must be a load instruction, keep track of variable
- // reads.
- UsingBlocks.push_back(LI->getParent());
- AllocaPointerVal = LI;
- }
-
- if (OnlyUsedInOneBlock) {
- if (OnlyBlock == 0)
- OnlyBlock = User->getParent();
- else if (OnlyBlock != User->getParent())
- OnlyUsedInOneBlock = false;
- }
- }
- }
- };
- } // end of anonymous namespace
- void PromoteMem2Reg::run() {
- Function &F = *DF.getRoot()->getParent();
- if (AST) PointerAllocaValues.resize(Allocas.size());
- AllocaInfo Info;
- LargeBlockInfo LBI;
- for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
- AllocaInst *AI = Allocas[AllocaNum];
- assert(isAllocaPromotable(AI) &&
- "Cannot promote non-promotable alloca!");
- assert(AI->getParent()->getParent() == &F &&
- "All allocas should be in the same function, which is same as DF!");
- if (AI->use_empty()) {
- // If there are no uses of the alloca, just delete it now.
- if (AST) AST->deleteValue(AI);
- AI->eraseFromParent();
- // Remove the alloca from the Allocas list, since it has been processed
- RemoveFromAllocasList(AllocaNum);
- ++NumDeadAlloca;
- continue;
- }
-
- // Calculate the set of read and write-locations for each alloca. This is
- // analogous to finding the 'uses' and 'definitions' of each variable.
- Info.AnalyzeAlloca(AI);
- // If there is only a single store to this value, replace any loads of
- // it that are directly dominated by the definition with the value stored.
- if (Info.DefiningBlocks.size() == 1) {
- RewriteSingleStoreAlloca(AI, Info, LBI);
- // Finally, after the scan, check to see if the store is all that is left.
- if (Info.UsingBlocks.empty()) {
- // Remove the (now dead) store and alloca.
- Info.OnlyStore->eraseFromParent();
- LBI.deleteValue(Info.OnlyStore);
- if (AST) AST->deleteValue(AI);
- AI->eraseFromParent();
- LBI.deleteValue(AI);
-
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
-
- ++NumSingleStore;
- continue;
- }
- }
-
- // If the alloca is only read and written in one basic block, just perform a
- // linear sweep over the block to eliminate it.
- if (Info.OnlyUsedInOneBlock) {
- PromoteSingleBlockAlloca(AI, Info, LBI);
-
- // Finally, after the scan, check to see if the stores are all that is
- // left.
- if (Info.UsingBlocks.empty()) {
-
- // Remove the (now dead) stores and alloca.
- while (!AI->use_empty()) {
- StoreInst *SI = cast<StoreInst>(AI->use_back());
- SI->eraseFromParent();
- LBI.deleteValue(SI);
- }
-
- if (AST) AST->deleteValue(AI);
- AI->eraseFromParent();
- LBI.deleteValue(AI);
-
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
-
- ++NumLocalPromoted;
- continue;
- }
- }
-
- // If we haven't computed a numbering for the BB's in the function, do so
- // now.
- if (BBNumbers.empty()) {
- unsigned ID = 0;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
- BBNumbers[I] = ID++;
- }
- // If we have an AST to keep updated, remember some pointer value that is
- // stored into the alloca.
- if (AST)
- PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
-
- // Keep the reverse mapping of the 'Allocas' array for the rename pass.
- AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
- // At this point, we're committed to promoting the alloca using IDF's, and
- // the standard SSA construction algorithm. Determine which blocks need PHI
- // nodes and see if we can optimize out some work by avoiding insertion of
- // dead phi nodes.
- DetermineInsertionPoint(AI, AllocaNum, Info);
- }
- if (Allocas.empty())
- return; // All of the allocas must have been trivial!
- LBI.clear();
-
-
- // Set the incoming values for the basic block to be null values for all of
- // the alloca's. We do this in case there is a load of a value that has not
- // been stored yet. In this case, it will get this null value.
- //
- RenamePassData::ValVector Values(Allocas.size());
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
- Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
- // Walks all basic blocks in the function performing the SSA rename algorithm
- // and inserting the phi nodes we marked as necessary
- //
- std::vector<RenamePassData> RenamePassWorkList;
- RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
- while (!RenamePassWorkList.empty()) {
- RenamePassData RPD;
- RPD.swap(RenamePassWorkList.back());
- RenamePassWorkList.pop_back();
- // RenamePass may add new worklist entries.
- RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
- }
-
- // The renamer uses the Visited set to avoid infinite loops. Clear it now.
- Visited.clear();
- // Remove the allocas themselves from the function.
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
- Instruction *A = Allocas[i];
- // If there are any uses of the alloca instructions left, they must be in
- // sections of dead code that were not processed on the dominance frontier.
- // Just delete the users now.
- //
- if (!A->use_empty())
- A->replaceAllUsesWith(UndefValue::get(A->getType()));
- if (AST) AST->deleteValue(A);
- A->eraseFromParent();
- }
-
- // Loop over all of the PHI nodes and see if there are any that we can get
- // rid of because they merge all of the same incoming values. This can
- // happen due to undef values coming into the PHI nodes. This process is
- // iterative, because eliminating one PHI node can cause others to be removed.
- bool EliminatedAPHI = true;
- while (EliminatedAPHI) {
- EliminatedAPHI = false;
-
- for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
- NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
- PHINode *PN = I->second;
-
- // If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = PN->hasConstantValue(&DT)) {
- if (AST && isa<PointerType>(PN->getType()))
- AST->deleteValue(PN);
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- NewPhiNodes.erase(I++);
- EliminatedAPHI = true;
- continue;
- }
- ++I;
- }
- }
-
- // At this point, the renamer has added entries to PHI nodes for all reachable
- // code. Unfortunately, there may be unreachable blocks which the renamer
- // hasn't traversed. If this is the case, the PHI nodes may not
- // have incoming values for all predecessors. Loop over all PHI nodes we have
- // created, inserting undef values if they are missing any incoming values.
- //
- for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
- NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
- // We want to do this once per basic block. As such, only process a block
- // when we find the PHI that is the first entry in the block.
- PHINode *SomePHI = I->second;
- BasicBlock *BB = SomePHI->getParent();
- if (&BB->front() != SomePHI)
- continue;
- // Only do work here if there the PHI nodes are missing incoming values. We
- // know that all PHI nodes that were inserted in a block will have the same
- // number of incoming values, so we can just check any of them.
- if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
- continue;
- // Get the preds for BB.
- SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
-
- // Ok, now we know that all of the PHI nodes are missing entries for some
- // basic blocks. Start by sorting the incoming predecessors for efficient
- // access.
- std::sort(Preds.begin(), Preds.end());
-
- // Now we loop through all BB's which have entries in SomePHI and remove
- // them from the Preds list.
- for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
- // Do a log(n) search of the Preds list for the entry we want.
- SmallVector<BasicBlock*, 16>::iterator EntIt =
- std::lower_bound(Preds.begin(), Preds.end(),
- SomePHI->getIncomingBlock(i));
- assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
- "PHI node has entry for a block which is not a predecessor!");
- // Remove the entry
- Preds.erase(EntIt);
- }
- // At this point, the blocks left in the preds list must have dummy
- // entries inserted into every PHI nodes for the block. Update all the phi
- // nodes in this block that we are inserting (there could be phis before
- // mem2reg runs).
- unsigned NumBadPreds = SomePHI->getNumIncomingValues();
- BasicBlock::iterator BBI = BB->begin();
- while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
- SomePHI->getNumIncomingValues() == NumBadPreds) {
- Value *UndefVal = UndefValue::get(SomePHI->getType());
- for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
- SomePHI->addIncoming(UndefVal, Preds[pred]);
- }
- }
-
- NewPhiNodes.clear();
- }
- /// ComputeLiveInBlocks - Determine which blocks the value is live in. These
- /// are blocks which lead to uses. Knowing this allows us to avoid inserting
- /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
- /// would be dead).
- void PromoteMem2Reg::
- ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
- SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
-
- // To determine liveness, we must iterate through the predecessors of blocks
- // where the def is live. Blocks are added to the worklist if we need to
- // check their predecessors. Start with all the using blocks.
- SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
- LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
- Info.UsingBlocks.begin(), Info.UsingBlocks.end());
-
- // If any of the using blocks is also a definition block, check to see if the
- // definition occurs before or after the use. If it happens before the use,
- // the value isn't really live-in.
- for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
- BasicBlock *BB = LiveInBlockWorklist[i];
- if (!DefBlocks.count(BB)) continue;
-
- // Okay, this is a block that both uses and defines the value. If the first
- // reference to the alloca is a def (store), then we know it isn't live-in.
- for (BasicBlock::iterator I = BB->begin(); ; ++I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getOperand(1) != AI) continue;
-
- // We found a store to the alloca before a load. The alloca is not
- // actually live-in here.
- LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
- LiveInBlockWorklist.pop_back();
- --i, --e;
- break;
- }
-
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (LI->getOperand(0) != AI) continue;
-
- // Okay, we found a load before a store to the alloca. It is actually
- // live into this block.
- break;
- }
- }
- }
-
- // Now that we have a set of blocks where the phi is live-in, recursively add
- // their predecessors until we find the full region the value is live.
- while (!LiveInBlockWorklist.empty()) {
- BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
-
- // The block really is live in here, insert it into the set. If already in
- // the set, then it has already been processed.
- if (!LiveInBlocks.insert(BB))
- continue;
-
- // Since the value is live into BB, it is either defined in a predecessor or
- // live into it to. Add the preds to the worklist unless they are a
- // defining block.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *P = *PI;
-
- // The value is not live into a predecessor if it defines the value.
- if (DefBlocks.count(P))
- continue;
-
- // Otherwise it is, add to the worklist.
- LiveInBlockWorklist.push_back(P);
- }
- }
- }
- /// DetermineInsertionPoint - At this point, we're committed to promoting the
- /// alloca using IDF's, and the standard SSA construction algorithm. Determine
- /// which blocks need phi nodes and see if we can optimize out some work by
- /// avoiding insertion of dead phi nodes.
- void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info) {
- // Unique the set of defining blocks for efficient lookup.
- SmallPtrSet<BasicBlock*, 32> DefBlocks;
- DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
- // Determine which blocks the value is live in. These are blocks which lead
- // to uses.
- SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
- ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
- // Compute the locations where PhiNodes need to be inserted. Look at the
- // dominance frontier of EACH basic-block we have a write in.
- unsigned CurrentVersion = 0;
- SmallPtrSet<PHINode*, 16> InsertedPHINodes;
- std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
- while (!Info.DefiningBlocks.empty()) {
- BasicBlock *BB = Info.DefiningBlocks.back();
- Info.DefiningBlocks.pop_back();
-
- // Look up the DF for this write, add it to defining blocks.
- DominanceFrontier::const_iterator it = DF.find(BB);
- if (it == DF.end()) continue;
-
- const DominanceFrontier::DomSetType &S = it->second;
-
- // In theory we don't need the indirection through the DFBlocks vector.
- // In practice, the order of calling QueuePhiNode would depend on the
- // (unspecified) ordering of basic blocks in the dominance frontier,
- // which would give PHI nodes non-determinstic subscripts. Fix this by
- // processing blocks in order of the occurance in the function.
- for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
- PE = S.end(); P != PE; ++P) {
- // If the frontier block is not in the live-in set for the alloca, don't
- // bother processing it.
- if (!LiveInBlocks.count(*P))
- continue;
-
- DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
- }
-
- // Sort by which the block ordering in the function.
- if (DFBlocks.size() > 1)
- std::sort(DFBlocks.begin(), DFBlocks.end());
-
- for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
- BasicBlock *BB = DFBlocks[i].second;
- if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
- Info.DefiningBlocks.push_back(BB);
- }
- DFBlocks.clear();
- }
- }
- /// RewriteSingleStoreAlloca - If there is only a single store to this value,
- /// replace any loads of it that are directly dominated by the definition with
- /// the value stored.
- void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
- AllocaInfo &Info,
- LargeBlockInfo &LBI) {
- StoreInst *OnlyStore = Info.OnlyStore;
- bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
- BasicBlock *StoreBB = OnlyStore->getParent();
- int StoreIndex = -1;
- // Clear out UsingBlocks. We will reconstruct it here if needed.
- Info.UsingBlocks.clear();
-
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
- Instruction *UserInst = cast<Instruction>(*UI++);
- if (!isa<LoadInst>(UserInst)) {
- assert(UserInst == OnlyStore && "Should only have load/stores");
- continue;
- }
- LoadInst *LI = cast<LoadInst>(UserInst);
-
- // Okay, if we have a load from the alloca, we want to replace it with the
- // only value stored to the alloca. We can do this if the value is
- // dominated by the store. If not, we use the rest of the mem2reg machinery
- // to insert the phi nodes as needed.
- if (!StoringGlobalVal) { // Non-instructions are always dominated.
- if (LI->getParent() == StoreBB) {
- // If we have a use that is in the same block as the store, compare the
- // indices of the two instructions to see which one came first. If the
- // load came before the store, we can't handle it.
- if (StoreIndex == -1)
- StoreIndex = LBI.getInstructionIndex(OnlyStore);
- if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
- // Can't handle this load, bail out.
- Info.UsingBlocks.push_back(StoreBB);
- continue;
- }
-
- } else if (LI->getParent() != StoreBB &&
- !dominates(StoreBB, LI->getParent())) {
- // If the load and store are in different blocks, use BB dominance to
- // check their relationships. If the store doesn't dom the use, bail
- // out.
- Info.UsingBlocks.push_back(LI->getParent());
- continue;
- }
- }
-
- // Otherwise, we *can* safely rewrite this load.
- LI->replaceAllUsesWith(OnlyStore->getOperand(0));
- if (AST && isa<PointerType>(LI->getType()))
- AST->deleteValue(LI);
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- }
- namespace {
- /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
- /// first element of a pair.
- struct StoreIndexSearchPredicate {
- bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
- const std::pair<unsigned, StoreInst*> &RHS) {
- return LHS.first < RHS.first;
- }
- };
- }
- /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
- /// block. If this is the case, avoid traversing the CFG and inserting a lot of
- /// potentially useless PHI nodes by just performing a single linear pass over
- /// the basic block using the Alloca.
- ///
- /// If we cannot promote this alloca (because it is read before it is written),
- /// return true. This is necessary in cases where, due to control flow, the
- /// alloca is potentially undefined on some control flow paths. e.g. code like
- /// this is potentially correct:
- ///
- /// for (...) { if (c) { A = undef; undef = B; } }
- ///
- /// ... so long as A is not used before undef is set.
- ///
- void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
- LargeBlockInfo &LBI) {
- // The trickiest case to handle is when we have large blocks. Because of this,
- // this code is optimized assuming that large blocks happen. This does not
- // significantly pessimize the small block case. This uses LargeBlockInfo to
- // make it efficient to get the index of various operations in the block.
-
- // Clear out UsingBlocks. We will reconstruct it here if needed.
- Info.UsingBlocks.clear();
-
- // Walk the use-def list of the alloca, getting the locations of all stores.
- typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
- StoresByIndexTy StoresByIndex;
-
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
- UI != E; ++UI)
- if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
- StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
- // If there are no stores to the alloca, just replace any loads with undef.
- if (StoresByIndex.empty()) {
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
- if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
- LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
- if (AST && isa<PointerType>(LI->getType()))
- AST->deleteValue(LI);
- LBI.deleteValue(LI);
- LI->eraseFromParent();
- }
- return;
- }
-
- // Sort the stores by their index, making it efficient to do a lookup with a
- // binary search.
- std::sort(StoresByIndex.begin(), StoresByIndex.end());
-
- // Walk all of the loads from this alloca, replacing them with the nearest
- // store above them, if any.
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
- LoadInst *LI = dyn_cast<LoadInst>(*UI++);
- if (!LI) continue;
-
- unsigned LoadIdx = LBI.getInstructionIndex(LI);
-
- // Find the nearest store that has a lower than this load.
- StoresByIndexTy::iterator I =
- std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
- std::pair<unsigned, StoreInst*>(LoadIdx, 0),
- StoreIndexSearchPredicate());
-
- // If there is no store before this load, then we can't promote this load.
- if (I == StoresByIndex.begin()) {
- // Can't handle this load, bail out.
- Info.UsingBlocks.push_back(LI->getParent());
- continue;
- }
-
- // Otherwise, there was a store before this load, the load takes its value.
- --I;
- LI->replaceAllUsesWith(I->second->getOperand(0));
- if (AST && isa<PointerType>(LI->getType()))
- AST->deleteValue(LI);
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- }
- // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
- // Alloca returns true if there wasn't already a phi-node for that variable
- //
- bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
- unsigned &Version,
- SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
- // Look up the basic-block in question.
- PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
- // If the BB already has a phi node added for the i'th alloca then we're done!
- if (PN) return false;
- // Create a PhiNode using the dereferenced type... and add the phi-node to the
- // BasicBlock.
- PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
- Allocas[AllocaNo]->getName() + "." + Twine(Version++),
- BB->begin());
- ++NumPHIInsert;
- PhiToAllocaMap[PN] = AllocaNo;
- PN->reserveOperandSpace(getNumPreds(BB));
-
- InsertedPHINodes.insert(PN);
- if (AST && isa<PointerType>(PN->getType()))
- AST->copyValue(PointerAllocaValues[AllocaNo], PN);
- return true;
- }
- // RenamePass - Recursively traverse the CFG of the function, renaming loads and
- // stores to the allocas which we are promoting. IncomingVals indicates what
- // value each Alloca contains on exit from the predecessor block Pred.
- //
- void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncomingVals,
- std::vector<RenamePassData> &Worklist) {
- NextIteration:
- // If we are inserting any phi nodes into this BB, they will already be in the
- // block.
- if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
- // If we have PHI nodes to update, compute the number of edges from Pred to
- // BB.
- if (PhiToAllocaMap.count(APN)) {
- // We want to be able to distinguish between PHI nodes being inserted by
- // this invocation of mem2reg from those phi nodes that already existed in
- // the IR before mem2reg was run. We determine that APN is being inserted
- // because it is missing incoming edges. All other PHI nodes being
- // inserted by this pass of mem2reg will have the same number of incoming
- // operands so far. Remember this count.
- unsigned NewPHINumOperands = APN->getNumOperands();
-
- unsigned NumEdges = 0;
- for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
- if (*I == BB)
- ++NumEdges;
- assert(NumEdges && "Must be at least one edge from Pred to BB!");
-
- // Add entries for all the phis.
- BasicBlock::iterator PNI = BB->begin();
- do {
- unsigned AllocaNo = PhiToAllocaMap[APN];
-
- // Add N incoming values to the PHI node.
- for (unsigned i = 0; i != NumEdges; ++i)
- APN->addIncoming(IncomingVals[AllocaNo], Pred);
-
- // The currently active variable for this block is now the PHI.
- IncomingVals[AllocaNo] = APN;
-
- // Get the next phi node.
- ++PNI;
- APN = dyn_cast<PHINode>(PNI);
- if (APN == 0) break;
-
- // Verify that it is missing entries. If not, it is not being inserted
- // by this mem2reg invocation so we want to ignore it.
- } while (APN->getNumOperands() == NewPHINumOperands);
- }
- }
-
- // Don't revisit blocks.
- if (!Visited.insert(BB)) return;
- for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
- Instruction *I = II++; // get the instruction, increment iterator
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
- if (!Src) continue;
-
- std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
- if (AI == AllocaLookup.end()) continue;
- Value *V = IncomingVals[AI->second];
- // Anything using the load now uses the current value.
- LI->replaceAllUsesWith(V);
- if (AST && isa<PointerType>(LI->getType()))
- AST->deleteValue(LI);
- BB->getInstList().erase(LI);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Delete this instruction and mark the name as the current holder of the
- // value
- AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
- if (!Dest) continue;
-
- std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
- if (ai == AllocaLookup.end())
- continue;
-
- // what value were we writing?
- IncomingVals[ai->second] = SI->getOperand(0);
- BB->getInstList().erase(SI);
- }
- }
- // 'Recurse' to our successors.
- succ_iterator I = succ_begin(BB), E = succ_end(BB);
- if (I == E) return;
- // Keep track of the successors so we don't visit the same successor twice
- SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
- // Handle the first successor without using the worklist.
- VisitedSuccs.insert(*I);
- Pred = BB;
- BB = *I;
- ++I;
- for (; I != E; ++I)
- if (VisitedSuccs.insert(*I))
- Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
- goto NextIteration;
- }
- /// PromoteMemToReg - Promote the specified list of alloca instructions into
- /// scalar registers, inserting PHI nodes as appropriate. This function makes
- /// use of DominanceFrontier information. This function does not modify the CFG
- /// of the function at all. All allocas must be from the same function.
- ///
- /// If AST is specified, the specified tracker is updated to reflect changes
- /// made to the IR.
- ///
- void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
- DominatorTree &DT, DominanceFrontier &DF,
- LLVMContext &Context, AliasSetTracker *AST) {
- // If there is nothing to do, bail out...
- if (Allocas.empty()) return;
- PromoteMem2Reg(Allocas, DT, DF, AST, Context).run();
- }
|