123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800 |
- //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the interface to tear out a code region, such as an
- // individual loop or a parallel section, into a new function, replacing it with
- // a call to the new function.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/FunctionUtils.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Instructions.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Module.h"
- #include "llvm/Pass.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/Verifier.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/ADT/StringExtras.h"
- #include <algorithm>
- #include <set>
- using namespace llvm;
- // Provide a command-line option to aggregate function arguments into a struct
- // for functions produced by the code extractor. This is useful when converting
- // extracted functions to pthread-based code, as only one argument (void*) can
- // be passed in to pthread_create().
- static cl::opt<bool>
- AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
- cl::desc("Aggregate arguments to code-extracted functions"));
- namespace {
- class CodeExtractor {
- typedef std::vector<Value*> Values;
- std::set<BasicBlock*> BlocksToExtract;
- DominatorTree* DT;
- bool AggregateArgs;
- unsigned NumExitBlocks;
- const Type *RetTy;
- public:
- CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
- : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
- Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
- bool isEligible(const std::vector<BasicBlock*> &code);
- private:
- /// definedInRegion - Return true if the specified value is defined in the
- /// extracted region.
- bool definedInRegion(Value *V) const {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (BlocksToExtract.count(I->getParent()))
- return true;
- return false;
- }
- /// definedInCaller - Return true if the specified value is defined in the
- /// function being code extracted, but not in the region being extracted.
- /// These values must be passed in as live-ins to the function.
- bool definedInCaller(Value *V) const {
- if (isa<Argument>(V)) return true;
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (!BlocksToExtract.count(I->getParent()))
- return true;
- return false;
- }
- void severSplitPHINodes(BasicBlock *&Header);
- void splitReturnBlocks();
- void findInputsOutputs(Values &inputs, Values &outputs);
- Function *constructFunction(const Values &inputs,
- const Values &outputs,
- BasicBlock *header,
- BasicBlock *newRootNode, BasicBlock *newHeader,
- Function *oldFunction, Module *M);
- void moveCodeToFunction(Function *newFunction);
- void emitCallAndSwitchStatement(Function *newFunction,
- BasicBlock *newHeader,
- Values &inputs,
- Values &outputs);
- };
- }
- /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
- /// region, we need to split the entry block of the region so that the PHI node
- /// is easier to deal with.
- void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
- bool HasPredsFromRegion = false;
- unsigned NumPredsOutsideRegion = 0;
- if (Header != &Header->getParent()->getEntryBlock()) {
- PHINode *PN = dyn_cast<PHINode>(Header->begin());
- if (!PN) return; // No PHI nodes.
- // If the header node contains any PHI nodes, check to see if there is more
- // than one entry from outside the region. If so, we need to sever the
- // header block into two.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (BlocksToExtract.count(PN->getIncomingBlock(i)))
- HasPredsFromRegion = true;
- else
- ++NumPredsOutsideRegion;
- // If there is one (or fewer) predecessor from outside the region, we don't
- // need to do anything special.
- if (NumPredsOutsideRegion <= 1) return;
- }
- // Otherwise, we need to split the header block into two pieces: one
- // containing PHI nodes merging values from outside of the region, and a
- // second that contains all of the code for the block and merges back any
- // incoming values from inside of the region.
- BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
- BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
- Header->getName()+".ce");
- // We only want to code extract the second block now, and it becomes the new
- // header of the region.
- BasicBlock *OldPred = Header;
- BlocksToExtract.erase(OldPred);
- BlocksToExtract.insert(NewBB);
- Header = NewBB;
- // Okay, update dominator sets. The blocks that dominate the new one are the
- // blocks that dominate TIBB plus the new block itself.
- if (DT)
- DT->splitBlock(NewBB);
- // Okay, now we need to adjust the PHI nodes and any branches from within the
- // region to go to the new header block instead of the old header block.
- if (HasPredsFromRegion) {
- PHINode *PN = cast<PHINode>(OldPred->begin());
- // Loop over all of the predecessors of OldPred that are in the region,
- // changing them to branch to NewBB instead.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
- TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
- TI->replaceUsesOfWith(OldPred, NewBB);
- }
- // Okay, everthing within the region is now branching to the right block, we
- // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
- for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
- PHINode *PN = cast<PHINode>(AfterPHIs);
- // Create a new PHI node in the new region, which has an incoming value
- // from OldPred of PN.
- PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
- NewBB->begin());
- NewPN->addIncoming(PN, OldPred);
- // Loop over all of the incoming value in PN, moving them to NewPN if they
- // are from the extracted region.
- for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
- if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
- NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
- PN->removeIncomingValue(i);
- --i;
- }
- }
- }
- }
- }
- void CodeExtractor::splitReturnBlocks() {
- for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
- E = BlocksToExtract.end(); I != E; ++I)
- if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
- BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
- if (DT) {
- // Old dominates New. New node domiantes all other nodes dominated
- //by Old.
- DomTreeNode *OldNode = DT->getNode(*I);
- SmallVector<DomTreeNode*, 8> Children;
- for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
- DI != DE; ++DI)
- Children.push_back(*DI);
- DomTreeNode *NewNode = DT->addNewBlock(New, *I);
- for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
- E = Children.end(); I != E; ++I)
- DT->changeImmediateDominator(*I, NewNode);
- }
- }
- }
- // findInputsOutputs - Find inputs to, outputs from the code region.
- //
- void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
- std::set<BasicBlock*> ExitBlocks;
- for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
- ce = BlocksToExtract.end(); ci != ce; ++ci) {
- BasicBlock *BB = *ci;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- // If a used value is defined outside the region, it's an input. If an
- // instruction is used outside the region, it's an output.
- for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
- if (definedInCaller(*O))
- inputs.push_back(*O);
- // Consider uses of this instruction (outputs).
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI)
- if (!definedInRegion(*UI)) {
- outputs.push_back(I);
- break;
- }
- } // for: insts
- // Keep track of the exit blocks from the region.
- TerminatorInst *TI = BB->getTerminator();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (!BlocksToExtract.count(TI->getSuccessor(i)))
- ExitBlocks.insert(TI->getSuccessor(i));
- } // for: basic blocks
- NumExitBlocks = ExitBlocks.size();
- // Eliminate duplicates.
- std::sort(inputs.begin(), inputs.end());
- inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
- std::sort(outputs.begin(), outputs.end());
- outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
- }
- /// constructFunction - make a function based on inputs and outputs, as follows:
- /// f(in0, ..., inN, out0, ..., outN)
- ///
- Function *CodeExtractor::constructFunction(const Values &inputs,
- const Values &outputs,
- BasicBlock *header,
- BasicBlock *newRootNode,
- BasicBlock *newHeader,
- Function *oldFunction,
- Module *M) {
- DEBUG(errs() << "inputs: " << inputs.size() << "\n");
- DEBUG(errs() << "outputs: " << outputs.size() << "\n");
- // This function returns unsigned, outputs will go back by reference.
- switch (NumExitBlocks) {
- case 0:
- case 1: RetTy = Type::getVoidTy(header->getContext()); break;
- case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
- default: RetTy = Type::getInt16Ty(header->getContext()); break;
- }
- std::vector<const Type*> paramTy;
- // Add the types of the input values to the function's argument list
- for (Values::const_iterator i = inputs.begin(),
- e = inputs.end(); i != e; ++i) {
- const Value *value = *i;
- DEBUG(errs() << "value used in func: " << *value << "\n");
- paramTy.push_back(value->getType());
- }
- // Add the types of the output values to the function's argument list.
- for (Values::const_iterator I = outputs.begin(), E = outputs.end();
- I != E; ++I) {
- DEBUG(errs() << "instr used in func: " << **I << "\n");
- if (AggregateArgs)
- paramTy.push_back((*I)->getType());
- else
- paramTy.push_back(PointerType::getUnqual((*I)->getType()));
- }
- DEBUG(errs() << "Function type: " << *RetTy << " f(");
- for (std::vector<const Type*>::iterator i = paramTy.begin(),
- e = paramTy.end(); i != e; ++i)
- DEBUG(errs() << **i << ", ");
- DEBUG(errs() << ")\n");
- if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
- PointerType *StructPtr =
- PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
- paramTy.clear();
- paramTy.push_back(StructPtr);
- }
- const FunctionType *funcType =
- FunctionType::get(RetTy, paramTy, false);
- // Create the new function
- Function *newFunction = Function::Create(funcType,
- GlobalValue::InternalLinkage,
- oldFunction->getName() + "_" +
- header->getName(), M);
- // If the old function is no-throw, so is the new one.
- if (oldFunction->doesNotThrow())
- newFunction->setDoesNotThrow(true);
-
- newFunction->getBasicBlockList().push_back(newRootNode);
- // Create an iterator to name all of the arguments we inserted.
- Function::arg_iterator AI = newFunction->arg_begin();
- // Rewrite all users of the inputs in the extracted region to use the
- // arguments (or appropriate addressing into struct) instead.
- for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
- Value *RewriteVal;
- if (AggregateArgs) {
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
- Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
- TerminatorInst *TI = newFunction->begin()->getTerminator();
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(AI, Idx, Idx+2,
- "gep_" + inputs[i]->getName(), TI);
- RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
- } else
- RewriteVal = AI++;
- std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
- for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
- use != useE; ++use)
- if (Instruction* inst = dyn_cast<Instruction>(*use))
- if (BlocksToExtract.count(inst->getParent()))
- inst->replaceUsesOfWith(inputs[i], RewriteVal);
- }
- // Set names for input and output arguments.
- if (!AggregateArgs) {
- AI = newFunction->arg_begin();
- for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
- AI->setName(inputs[i]->getName());
- for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
- AI->setName(outputs[i]->getName()+".out");
- }
- // Rewrite branches to basic blocks outside of the loop to new dummy blocks
- // within the new function. This must be done before we lose track of which
- // blocks were originally in the code region.
- std::vector<User*> Users(header->use_begin(), header->use_end());
- for (unsigned i = 0, e = Users.size(); i != e; ++i)
- // The BasicBlock which contains the branch is not in the region
- // modify the branch target to a new block
- if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
- if (!BlocksToExtract.count(TI->getParent()) &&
- TI->getParent()->getParent() == oldFunction)
- TI->replaceUsesOfWith(header, newHeader);
- return newFunction;
- }
- /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
- /// that uses the value within the basic block, and return the predecessor
- /// block associated with that use, or return 0 if none is found.
- static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
- for (Value::use_iterator UI = Used->use_begin(),
- UE = Used->use_end(); UI != UE; ++UI) {
- PHINode *P = dyn_cast<PHINode>(*UI);
- if (P && P->getParent() == BB)
- return P->getIncomingBlock(UI);
- }
-
- return 0;
- }
- /// emitCallAndSwitchStatement - This method sets up the caller side by adding
- /// the call instruction, splitting any PHI nodes in the header block as
- /// necessary.
- void CodeExtractor::
- emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
- Values &inputs, Values &outputs) {
- // Emit a call to the new function, passing in: *pointer to struct (if
- // aggregating parameters), or plan inputs and allocated memory for outputs
- std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
-
- LLVMContext &Context = newFunction->getContext();
- // Add inputs as params, or to be filled into the struct
- for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
- if (AggregateArgs)
- StructValues.push_back(*i);
- else
- params.push_back(*i);
- // Create allocas for the outputs
- for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
- if (AggregateArgs) {
- StructValues.push_back(*i);
- } else {
- AllocaInst *alloca =
- new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
- codeReplacer->getParent()->begin()->begin());
- ReloadOutputs.push_back(alloca);
- params.push_back(alloca);
- }
- }
- AllocaInst *Struct = 0;
- if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
- std::vector<const Type*> ArgTypes;
- for (Values::iterator v = StructValues.begin(),
- ve = StructValues.end(); v != ve; ++v)
- ArgTypes.push_back((*v)->getType());
- // Allocate a struct at the beginning of this function
- Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
- Struct =
- new AllocaInst(StructArgTy, 0, "structArg",
- codeReplacer->getParent()->begin()->begin());
- params.push_back(Struct);
- for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
- Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(Struct, Idx, Idx + 2,
- "gep_" + StructValues[i]->getName());
- codeReplacer->getInstList().push_back(GEP);
- StoreInst *SI = new StoreInst(StructValues[i], GEP);
- codeReplacer->getInstList().push_back(SI);
- }
- }
- // Emit the call to the function
- CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
- NumExitBlocks > 1 ? "targetBlock" : "");
- codeReplacer->getInstList().push_back(call);
- Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
- unsigned FirstOut = inputs.size();
- if (!AggregateArgs)
- std::advance(OutputArgBegin, inputs.size());
- // Reload the outputs passed in by reference
- for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
- Value *Output = 0;
- if (AggregateArgs) {
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
- Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
- GetElementPtrInst *GEP
- = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
- "gep_reload_" + outputs[i]->getName());
- codeReplacer->getInstList().push_back(GEP);
- Output = GEP;
- } else {
- Output = ReloadOutputs[i];
- }
- LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
- Reloads.push_back(load);
- codeReplacer->getInstList().push_back(load);
- std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
- for (unsigned u = 0, e = Users.size(); u != e; ++u) {
- Instruction *inst = cast<Instruction>(Users[u]);
- if (!BlocksToExtract.count(inst->getParent()))
- inst->replaceUsesOfWith(outputs[i], load);
- }
- }
- // Now we can emit a switch statement using the call as a value.
- SwitchInst *TheSwitch =
- SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
- codeReplacer, 0, codeReplacer);
- // Since there may be multiple exits from the original region, make the new
- // function return an unsigned, switch on that number. This loop iterates
- // over all of the blocks in the extracted region, updating any terminator
- // instructions in the to-be-extracted region that branch to blocks that are
- // not in the region to be extracted.
- std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
- unsigned switchVal = 0;
- for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
- e = BlocksToExtract.end(); i != e; ++i) {
- TerminatorInst *TI = (*i)->getTerminator();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (!BlocksToExtract.count(TI->getSuccessor(i))) {
- BasicBlock *OldTarget = TI->getSuccessor(i);
- // add a new basic block which returns the appropriate value
- BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
- if (!NewTarget) {
- // If we don't already have an exit stub for this non-extracted
- // destination, create one now!
- NewTarget = BasicBlock::Create(Context,
- OldTarget->getName() + ".exitStub",
- newFunction);
- unsigned SuccNum = switchVal++;
- Value *brVal = 0;
- switch (NumExitBlocks) {
- case 0:
- case 1: break; // No value needed.
- case 2: // Conditional branch, return a bool
- brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
- break;
- default:
- brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
- break;
- }
- ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
- // Update the switch instruction.
- TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
- SuccNum),
- OldTarget);
- // Restore values just before we exit
- Function::arg_iterator OAI = OutputArgBegin;
- for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
- // For an invoke, the normal destination is the only one that is
- // dominated by the result of the invocation
- BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
- bool DominatesDef = true;
- if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
- DefBlock = Invoke->getNormalDest();
- // Make sure we are looking at the original successor block, not
- // at a newly inserted exit block, which won't be in the dominator
- // info.
- for (std::map<BasicBlock*, BasicBlock*>::iterator I =
- ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
- if (DefBlock == I->second) {
- DefBlock = I->first;
- break;
- }
- // In the extract block case, if the block we are extracting ends
- // with an invoke instruction, make sure that we don't emit a
- // store of the invoke value for the unwind block.
- if (!DT && DefBlock != OldTarget)
- DominatesDef = false;
- }
- if (DT) {
- DominatesDef = DT->dominates(DefBlock, OldTarget);
-
- // If the output value is used by a phi in the target block,
- // then we need to test for dominance of the phi's predecessor
- // instead. Unfortunately, this a little complicated since we
- // have already rewritten uses of the value to uses of the reload.
- BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
- OldTarget);
- if (pred && DT && DT->dominates(DefBlock, pred))
- DominatesDef = true;
- }
- if (DominatesDef) {
- if (AggregateArgs) {
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
- Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
- FirstOut+out);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(OAI, Idx, Idx + 2,
- "gep_" + outputs[out]->getName(),
- NTRet);
- new StoreInst(outputs[out], GEP, NTRet);
- } else {
- new StoreInst(outputs[out], OAI, NTRet);
- }
- }
- // Advance output iterator even if we don't emit a store
- if (!AggregateArgs) ++OAI;
- }
- }
- // rewrite the original branch instruction with this new target
- TI->setSuccessor(i, NewTarget);
- }
- }
- // Now that we've done the deed, simplify the switch instruction.
- const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
- switch (NumExitBlocks) {
- case 0:
- // There are no successors (the block containing the switch itself), which
- // means that previously this was the last part of the function, and hence
- // this should be rewritten as a `ret'
- // Check if the function should return a value
- if (OldFnRetTy == Type::getVoidTy(Context)) {
- ReturnInst::Create(Context, 0, TheSwitch); // Return void
- } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
- // return what we have
- ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
- } else {
- // Otherwise we must have code extracted an unwind or something, just
- // return whatever we want.
- ReturnInst::Create(Context,
- Constant::getNullValue(OldFnRetTy), TheSwitch);
- }
- TheSwitch->eraseFromParent();
- break;
- case 1:
- // Only a single destination, change the switch into an unconditional
- // branch.
- BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
- TheSwitch->eraseFromParent();
- break;
- case 2:
- BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
- call, TheSwitch);
- TheSwitch->eraseFromParent();
- break;
- default:
- // Otherwise, make the default destination of the switch instruction be one
- // of the other successors.
- TheSwitch->setOperand(0, call);
- TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
- TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
- break;
- }
- }
- void CodeExtractor::moveCodeToFunction(Function *newFunction) {
- Function *oldFunc = (*BlocksToExtract.begin())->getParent();
- Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
- Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
- for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
- e = BlocksToExtract.end(); i != e; ++i) {
- // Delete the basic block from the old function, and the list of blocks
- oldBlocks.remove(*i);
- // Insert this basic block into the new function
- newBlocks.push_back(*i);
- }
- }
- /// ExtractRegion - Removes a loop from a function, replaces it with a call to
- /// new function. Returns pointer to the new function.
- ///
- /// algorithm:
- ///
- /// find inputs and outputs for the region
- ///
- /// for inputs: add to function as args, map input instr* to arg#
- /// for outputs: add allocas for scalars,
- /// add to func as args, map output instr* to arg#
- ///
- /// rewrite func to use argument #s instead of instr*
- ///
- /// for each scalar output in the function: at every exit, store intermediate
- /// computed result back into memory.
- ///
- Function *CodeExtractor::
- ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
- if (!isEligible(code))
- return 0;
- // 1) Find inputs, outputs
- // 2) Construct new function
- // * Add allocas for defs, pass as args by reference
- // * Pass in uses as args
- // 3) Move code region, add call instr to func
- //
- BlocksToExtract.insert(code.begin(), code.end());
- Values inputs, outputs;
- // Assumption: this is a single-entry code region, and the header is the first
- // block in the region.
- BasicBlock *header = code[0];
- for (unsigned i = 1, e = code.size(); i != e; ++i)
- for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
- PI != E; ++PI)
- assert(BlocksToExtract.count(*PI) &&
- "No blocks in this region may have entries from outside the region"
- " except for the first block!");
- // If we have to split PHI nodes or the entry block, do so now.
- severSplitPHINodes(header);
- // If we have any return instructions in the region, split those blocks so
- // that the return is not in the region.
- splitReturnBlocks();
- Function *oldFunction = header->getParent();
- // This takes place of the original loop
- BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
- "codeRepl", oldFunction,
- header);
- // The new function needs a root node because other nodes can branch to the
- // head of the region, but the entry node of a function cannot have preds.
- BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
- "newFuncRoot");
- newFuncRoot->getInstList().push_back(BranchInst::Create(header));
- // Find inputs to, outputs from the code region.
- findInputsOutputs(inputs, outputs);
- // Construct new function based on inputs/outputs & add allocas for all defs.
- Function *newFunction = constructFunction(inputs, outputs, header,
- newFuncRoot,
- codeReplacer, oldFunction,
- oldFunction->getParent());
- emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
- moveCodeToFunction(newFunction);
- // Loop over all of the PHI nodes in the header block, and change any
- // references to the old incoming edge to be the new incoming edge.
- for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
- PN->setIncomingBlock(i, newFuncRoot);
- }
- // Look at all successors of the codeReplacer block. If any of these blocks
- // had PHI nodes in them, we need to update the "from" block to be the code
- // replacer, not the original block in the extracted region.
- std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
- succ_end(codeReplacer));
- for (unsigned i = 0, e = Succs.size(); i != e; ++i)
- for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- std::set<BasicBlock*> ProcessedPreds;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
- if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
- PN->setIncomingBlock(i, codeReplacer);
- else {
- // There were multiple entries in the PHI for this block, now there
- // is only one, so remove the duplicated entries.
- PN->removeIncomingValue(i, false);
- --i; --e;
- }
- }
- }
- //cerr << "NEW FUNCTION: " << *newFunction;
- // verifyFunction(*newFunction);
- // cerr << "OLD FUNCTION: " << *oldFunction;
- // verifyFunction(*oldFunction);
- DEBUG(if (verifyFunction(*newFunction))
- llvm_report_error("verifyFunction failed!"));
- return newFunction;
- }
- bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
- // Deny code region if it contains allocas or vastarts.
- for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
- BB != e; ++BB)
- for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
- I != Ie; ++I)
- if (isa<AllocaInst>(*I))
- return false;
- else if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::vastart)
- return false;
- return true;
- }
- /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
- /// function
- ///
- Function* llvm::ExtractCodeRegion(DominatorTree &DT,
- const std::vector<BasicBlock*> &code,
- bool AggregateArgs) {
- return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
- }
- /// ExtractBasicBlock - slurp a natural loop into a brand new function
- ///
- Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
- return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
- }
- /// ExtractBasicBlock - slurp a basic block into a brand new function
- ///
- Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
- std::vector<BasicBlock*> Blocks;
- Blocks.push_back(BB);
- return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
- }
|