123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536 |
- //===- CloneFunction.cpp - Clone a function into another function ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the CloneFunctionInto interface, which is used as the
- // low-level function cloner. This is used by the CloneFunction and function
- // inliner to do the dirty work of copying the body of a function around.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Function.h"
- #include "llvm/Support/CFG.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/DebugInfo.h"
- #include "llvm/ADT/SmallVector.h"
- #include <map>
- using namespace llvm;
- // CloneBasicBlock - See comments in Cloning.h
- BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
- DenseMap<const Value*, Value*> &ValueMap,
- const char *NameSuffix, Function *F,
- ClonedCodeInfo *CodeInfo) {
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
- if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
- bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
-
- // Loop over all instructions, and copy them over.
- for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
- II != IE; ++II) {
- Instruction *NewInst = II->clone();
- if (II->hasName())
- NewInst->setName(II->getName()+NameSuffix);
- NewBB->getInstList().push_back(NewInst);
- ValueMap[II] = NewInst; // Add instruction map to value.
-
- hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
- if (isa<ConstantInt>(AI->getArraySize()))
- hasStaticAllocas = true;
- else
- hasDynamicAllocas = true;
- }
- }
-
- if (CodeInfo) {
- CodeInfo->ContainsCalls |= hasCalls;
- CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator());
- CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
- CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
- BB != &BB->getParent()->getEntryBlock();
- }
- return NewBB;
- }
- // Clone OldFunc into NewFunc, transforming the old arguments into references to
- // ArgMap values.
- //
- void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
- DenseMap<const Value*, Value*> &ValueMap,
- SmallVectorImpl<ReturnInst*> &Returns,
- const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
- assert(NameSuffix && "NameSuffix cannot be null!");
- #ifndef NDEBUG
- for (Function::const_arg_iterator I = OldFunc->arg_begin(),
- E = OldFunc->arg_end(); I != E; ++I)
- assert(ValueMap.count(I) && "No mapping from source argument specified!");
- #endif
- // Clone any attributes.
- if (NewFunc->arg_size() == OldFunc->arg_size())
- NewFunc->copyAttributesFrom(OldFunc);
- else {
- //Some arguments were deleted with the ValueMap. Copy arguments one by one
- for (Function::const_arg_iterator I = OldFunc->arg_begin(),
- E = OldFunc->arg_end(); I != E; ++I)
- if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
- Anew->addAttr( OldFunc->getAttributes()
- .getParamAttributes(I->getArgNo() + 1));
- NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(0, OldFunc->getAttributes()
- .getRetAttributes()));
- NewFunc->setAttributes(NewFunc->getAttributes()
- .addAttr(~0, OldFunc->getAttributes()
- .getFnAttributes()));
- }
- // Loop over all of the basic blocks in the function, cloning them as
- // appropriate. Note that we save BE this way in order to handle cloning of
- // recursive functions into themselves.
- //
- for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
- BI != BE; ++BI) {
- const BasicBlock &BB = *BI;
- // Create a new basic block and copy instructions into it!
- BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
- CodeInfo);
- ValueMap[&BB] = CBB; // Add basic block mapping.
- if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
- Returns.push_back(RI);
- }
- // Loop over all of the instructions in the function, fixing up operand
- // references as we go. This uses ValueMap to do all the hard work.
- //
- for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
- BE = NewFunc->end(); BB != BE; ++BB)
- // Loop over all instructions, fixing each one as we find it...
- for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
- RemapInstruction(II, ValueMap);
- }
- /// CloneFunction - Return a copy of the specified function, but without
- /// embedding the function into another module. Also, any references specified
- /// in the ValueMap are changed to refer to their mapped value instead of the
- /// original one. If any of the arguments to the function are in the ValueMap,
- /// the arguments are deleted from the resultant function. The ValueMap is
- /// updated to include mappings from all of the instructions and basicblocks in
- /// the function from their old to new values.
- ///
- Function *llvm::CloneFunction(const Function *F,
- DenseMap<const Value*, Value*> &ValueMap,
- ClonedCodeInfo *CodeInfo) {
- std::vector<const Type*> ArgTypes;
- // The user might be deleting arguments to the function by specifying them in
- // the ValueMap. If so, we need to not add the arguments to the arg ty vector
- //
- for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I)
- if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet?
- ArgTypes.push_back(I->getType());
- // Create a new function type...
- FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
- ArgTypes, F->getFunctionType()->isVarArg());
- // Create the new function...
- Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
- // Loop over the arguments, copying the names of the mapped arguments over...
- Function::arg_iterator DestI = NewF->arg_begin();
- for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I)
- if (ValueMap.count(I) == 0) { // Is this argument preserved?
- DestI->setName(I->getName()); // Copy the name over...
- ValueMap[I] = DestI++; // Add mapping to ValueMap
- }
- SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
- CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
- return NewF;
- }
- namespace {
- /// PruningFunctionCloner - This class is a private class used to implement
- /// the CloneAndPruneFunctionInto method.
- struct PruningFunctionCloner {
- Function *NewFunc;
- const Function *OldFunc;
- DenseMap<const Value*, Value*> &ValueMap;
- SmallVectorImpl<ReturnInst*> &Returns;
- const char *NameSuffix;
- ClonedCodeInfo *CodeInfo;
- const TargetData *TD;
- Value *DbgFnStart;
- public:
- PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
- DenseMap<const Value*, Value*> &valueMap,
- SmallVectorImpl<ReturnInst*> &returns,
- const char *nameSuffix,
- ClonedCodeInfo *codeInfo,
- const TargetData *td)
- : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
- NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
- }
- /// CloneBlock - The specified block is found to be reachable, clone it and
- /// anything that it can reach.
- void CloneBlock(const BasicBlock *BB,
- std::vector<const BasicBlock*> &ToClone);
-
- public:
- /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
- /// mapping its operands through ValueMap if they are available.
- Constant *ConstantFoldMappedInstruction(const Instruction *I);
- };
- }
- /// CloneBlock - The specified block is found to be reachable, clone it and
- /// anything that it can reach.
- void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
- std::vector<const BasicBlock*> &ToClone){
- Value *&BBEntry = ValueMap[BB];
- // Have we already cloned this block?
- if (BBEntry) return;
-
- // Nope, clone it now.
- BasicBlock *NewBB;
- BBEntry = NewBB = BasicBlock::Create(BB->getContext());
- if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
- bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
-
- // Loop over all instructions, and copy them over, DCE'ing as we go. This
- // loop doesn't include the terminator.
- for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
- II != IE; ++II) {
- // If this instruction constant folds, don't bother cloning the instruction,
- // instead, just add the constant to the value map.
- if (Constant *C = ConstantFoldMappedInstruction(II)) {
- ValueMap[II] = C;
- continue;
- }
- // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
- if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
- if (DbgFnStart == NULL) {
- DISubprogram SP(DFSI->getSubprogram());
- if (SP.describes(BB->getParent()))
- DbgFnStart = DFSI->getSubprogram();
- }
- }
- if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
- if (DREIS->getContext() == DbgFnStart)
- continue;
- }
-
- Instruction *NewInst = II->clone();
- if (II->hasName())
- NewInst->setName(II->getName()+NameSuffix);
- NewBB->getInstList().push_back(NewInst);
- ValueMap[II] = NewInst; // Add instruction map to value.
-
- hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
- if (isa<ConstantInt>(AI->getArraySize()))
- hasStaticAllocas = true;
- else
- hasDynamicAllocas = true;
- }
- }
-
- // Finally, clone over the terminator.
- const TerminatorInst *OldTI = BB->getTerminator();
- bool TerminatorDone = false;
- if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
- if (BI->isConditional()) {
- // If the condition was a known constant in the callee...
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- // Or is a known constant in the caller...
- if (Cond == 0)
- Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
- // Constant fold to uncond branch!
- if (Cond) {
- BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
- ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
- ToClone.push_back(Dest);
- TerminatorDone = true;
- }
- }
- } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
- // If switching on a value known constant in the caller.
- ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
- if (Cond == 0) // Or known constant after constant prop in the callee...
- Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
- if (Cond) { // Constant fold to uncond branch!
- BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
- ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
- ToClone.push_back(Dest);
- TerminatorDone = true;
- }
- }
-
- if (!TerminatorDone) {
- Instruction *NewInst = OldTI->clone();
- if (OldTI->hasName())
- NewInst->setName(OldTI->getName()+NameSuffix);
- NewBB->getInstList().push_back(NewInst);
- ValueMap[OldTI] = NewInst; // Add instruction map to value.
-
- // Recursively clone any reachable successor blocks.
- const TerminatorInst *TI = BB->getTerminator();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- ToClone.push_back(TI->getSuccessor(i));
- }
-
- if (CodeInfo) {
- CodeInfo->ContainsCalls |= hasCalls;
- CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI);
- CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
- CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
- BB != &BB->getParent()->front();
- }
-
- if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
- Returns.push_back(RI);
- }
- /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
- /// mapping its operands through ValueMap if they are available.
- Constant *PruningFunctionCloner::
- ConstantFoldMappedInstruction(const Instruction *I) {
- LLVMContext &Context = I->getContext();
-
- SmallVector<Constant*, 8> Ops;
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
- ValueMap)))
- Ops.push_back(Op);
- else
- return 0; // All operands not constant!
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(),
- &Ops[0], Ops.size(),
- Context, TD);
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
- if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
- CE);
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
- Ops.size(), Context, TD);
- }
- /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
- /// except that it does some simple constant prop and DCE on the fly. The
- /// effect of this is to copy significantly less code in cases where (for
- /// example) a function call with constant arguments is inlined, and those
- /// constant arguments cause a significant amount of code in the callee to be
- /// dead. Since this doesn't produce an exact copy of the input, it can't be
- /// used for things like CloneFunction or CloneModule.
- void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
- DenseMap<const Value*, Value*> &ValueMap,
- SmallVectorImpl<ReturnInst*> &Returns,
- const char *NameSuffix,
- ClonedCodeInfo *CodeInfo,
- const TargetData *TD) {
- assert(NameSuffix && "NameSuffix cannot be null!");
-
- #ifndef NDEBUG
- for (Function::const_arg_iterator II = OldFunc->arg_begin(),
- E = OldFunc->arg_end(); II != E; ++II)
- assert(ValueMap.count(II) && "No mapping from source argument specified!");
- #endif
- PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
- NameSuffix, CodeInfo, TD);
- // Clone the entry block, and anything recursively reachable from it.
- std::vector<const BasicBlock*> CloneWorklist;
- CloneWorklist.push_back(&OldFunc->getEntryBlock());
- while (!CloneWorklist.empty()) {
- const BasicBlock *BB = CloneWorklist.back();
- CloneWorklist.pop_back();
- PFC.CloneBlock(BB, CloneWorklist);
- }
-
- // Loop over all of the basic blocks in the old function. If the block was
- // reachable, we have cloned it and the old block is now in the value map:
- // insert it into the new function in the right order. If not, ignore it.
- //
- // Defer PHI resolution until rest of function is resolved.
- SmallVector<const PHINode*, 16> PHIToResolve;
- for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
- BI != BE; ++BI) {
- BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
- if (NewBB == 0) continue; // Dead block.
- // Add the new block to the new function.
- NewFunc->getBasicBlockList().push_back(NewBB);
-
- // Loop over all of the instructions in the block, fixing up operand
- // references as we go. This uses ValueMap to do all the hard work.
- //
- BasicBlock::iterator I = NewBB->begin();
-
- // Handle PHI nodes specially, as we have to remove references to dead
- // blocks.
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- // Skip over all PHI nodes, remembering them for later.
- BasicBlock::const_iterator OldI = BI->begin();
- for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
- PHIToResolve.push_back(cast<PHINode>(OldI));
- }
-
- // Otherwise, remap the rest of the instructions normally.
- for (; I != NewBB->end(); ++I)
- RemapInstruction(I, ValueMap);
- }
-
- // Defer PHI resolution until rest of function is resolved, PHI resolution
- // requires the CFG to be up-to-date.
- for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
- const PHINode *OPN = PHIToResolve[phino];
- unsigned NumPreds = OPN->getNumIncomingValues();
- const BasicBlock *OldBB = OPN->getParent();
- BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
- // Map operands for blocks that are live and remove operands for blocks
- // that are dead.
- for (; phino != PHIToResolve.size() &&
- PHIToResolve[phino]->getParent() == OldBB; ++phino) {
- OPN = PHIToResolve[phino];
- PHINode *PN = cast<PHINode>(ValueMap[OPN]);
- for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
- if (BasicBlock *MappedBlock =
- cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
- Value *InVal = MapValue(PN->getIncomingValue(pred),
- ValueMap);
- assert(InVal && "Unknown input value?");
- PN->setIncomingValue(pred, InVal);
- PN->setIncomingBlock(pred, MappedBlock);
- } else {
- PN->removeIncomingValue(pred, false);
- --pred, --e; // Revisit the next entry.
- }
- }
- }
-
- // The loop above has removed PHI entries for those blocks that are dead
- // and has updated others. However, if a block is live (i.e. copied over)
- // but its terminator has been changed to not go to this block, then our
- // phi nodes will have invalid entries. Update the PHI nodes in this
- // case.
- PHINode *PN = cast<PHINode>(NewBB->begin());
- NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
- if (NumPreds != PN->getNumIncomingValues()) {
- assert(NumPreds < PN->getNumIncomingValues());
- // Count how many times each predecessor comes to this block.
- std::map<BasicBlock*, unsigned> PredCount;
- for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
- PI != E; ++PI)
- --PredCount[*PI];
-
- // Figure out how many entries to remove from each PHI.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- ++PredCount[PN->getIncomingBlock(i)];
-
- // At this point, the excess predecessor entries are positive in the
- // map. Loop over all of the PHIs and remove excess predecessor
- // entries.
- BasicBlock::iterator I = NewBB->begin();
- for (; (PN = dyn_cast<PHINode>(I)); ++I) {
- for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
- E = PredCount.end(); PCI != E; ++PCI) {
- BasicBlock *Pred = PCI->first;
- for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
- PN->removeIncomingValue(Pred, false);
- }
- }
- }
-
- // If the loops above have made these phi nodes have 0 or 1 operand,
- // replace them with undef or the input value. We must do this for
- // correctness, because 0-operand phis are not valid.
- PN = cast<PHINode>(NewBB->begin());
- if (PN->getNumIncomingValues() == 0) {
- BasicBlock::iterator I = NewBB->begin();
- BasicBlock::const_iterator OldI = OldBB->begin();
- while ((PN = dyn_cast<PHINode>(I++))) {
- Value *NV = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NV);
- assert(ValueMap[OldI] == PN && "ValueMap mismatch");
- ValueMap[OldI] = NV;
- PN->eraseFromParent();
- ++OldI;
- }
- }
- // NOTE: We cannot eliminate single entry phi nodes here, because of
- // ValueMap. Single entry phi nodes can have multiple ValueMap entries
- // pointing at them. Thus, deleting one would require scanning the ValueMap
- // to update any entries in it that would require that. This would be
- // really slow.
- }
-
- // Now that the inlined function body has been fully constructed, go through
- // and zap unconditional fall-through branches. This happen all the time when
- // specializing code: code specialization turns conditional branches into
- // uncond branches, and this code folds them.
- Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
- while (I != NewFunc->end()) {
- BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
- if (!BI || BI->isConditional()) { ++I; continue; }
-
- // Note that we can't eliminate uncond branches if the destination has
- // single-entry PHI nodes. Eliminating the single-entry phi nodes would
- // require scanning the ValueMap to update any entries that point to the phi
- // node.
- BasicBlock *Dest = BI->getSuccessor(0);
- if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
- ++I; continue;
- }
-
- // We know all single-entry PHI nodes in the inlined function have been
- // removed, so we just need to splice the blocks.
- BI->eraseFromParent();
-
- // Move all the instructions in the succ to the pred.
- I->getInstList().splice(I->end(), Dest->getInstList());
-
- // Make all PHI nodes that referred to Dest now refer to I as their source.
- Dest->replaceAllUsesWith(I);
- // Remove the dest block.
- Dest->eraseFromParent();
-
- // Do not increment I, iteratively merge all things this block branches to.
- }
- }
|