123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
- // inserting a dummy basic block. This pass may be "required" by passes that
- // cannot deal with critical edges. For this usage, the structure type is
- // forward declared. This pass obviously invalidates the CFG, but can update
- // forward dominator (set, immediate dominators, tree, and frontier)
- // information.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "break-crit-edges"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ProfileInfo.h"
- #include "llvm/Function.h"
- #include "llvm/Instructions.h"
- #include "llvm/Type.h"
- #include "llvm/Support/CFG.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- using namespace llvm;
- STATISTIC(NumBroken, "Number of blocks inserted");
- namespace {
- struct BreakCriticalEdges : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- BreakCriticalEdges() : FunctionPass(&ID) {}
- virtual bool runOnFunction(Function &F);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
- AU.addPreserved<LoopInfo>();
- AU.addPreserved<ProfileInfo>();
- // No loop canonicalization guarantees are broken by this pass.
- AU.addPreservedID(LoopSimplifyID);
- }
- };
- }
- char BreakCriticalEdges::ID = 0;
- static RegisterPass<BreakCriticalEdges>
- X("break-crit-edges", "Break critical edges in CFG");
- // Publically exposed interface to pass...
- const PassInfo *const llvm::BreakCriticalEdgesID = &X;
- FunctionPass *llvm::createBreakCriticalEdgesPass() {
- return new BreakCriticalEdges();
- }
- // runOnFunction - Loop over all of the edges in the CFG, breaking critical
- // edges as they are found.
- //
- bool BreakCriticalEdges::runOnFunction(Function &F) {
- bool Changed = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- TerminatorInst *TI = I->getTerminator();
- if (TI->getNumSuccessors() > 1)
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- if (SplitCriticalEdge(TI, i, this)) {
- ++NumBroken;
- Changed = true;
- }
- }
- return Changed;
- }
- //===----------------------------------------------------------------------===//
- // Implementation of the external critical edge manipulation functions
- //===----------------------------------------------------------------------===//
- // isCriticalEdge - Return true if the specified edge is a critical edge.
- // Critical edges are edges from a block with multiple successors to a block
- // with multiple predecessors.
- //
- bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
- bool AllowIdenticalEdges) {
- assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
- if (TI->getNumSuccessors() == 1) return false;
- const BasicBlock *Dest = TI->getSuccessor(SuccNum);
- pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
- // If there is more than one predecessor, this is a critical edge...
- assert(I != E && "No preds, but we have an edge to the block?");
- const BasicBlock *FirstPred = *I;
- ++I; // Skip one edge due to the incoming arc from TI.
- if (!AllowIdenticalEdges)
- return I != E;
-
- // If AllowIdenticalEdges is true, then we allow this edge to be considered
- // non-critical iff all preds come from TI's block.
- while (I != E) {
- if (*I != FirstPred)
- return true;
- // Note: leave this as is until no one ever compiles with either gcc 4.0.1
- // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
- E = pred_end(*I);
- ++I;
- }
- return false;
- }
- /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
- /// may require new PHIs in the new exit block. This function inserts the
- /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
- /// is the new loop exit block, and DestBB is the old loop exit, now the
- /// successor of SplitBB.
- static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
- BasicBlock *SplitBB,
- BasicBlock *DestBB) {
- // SplitBB shouldn't have anything non-trivial in it yet.
- assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
- "SplitBB has non-PHI nodes!");
- // For each PHI in the destination block...
- for (BasicBlock::iterator I = DestBB->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- unsigned Idx = PN->getBasicBlockIndex(SplitBB);
- Value *V = PN->getIncomingValue(Idx);
- // If the input is a PHI which already satisfies LCSSA, don't create
- // a new one.
- if (const PHINode *VP = dyn_cast<PHINode>(V))
- if (VP->getParent() == SplitBB)
- continue;
- // Otherwise a new PHI is needed. Create one and populate it.
- PHINode *NewPN = PHINode::Create(PN->getType(), "split",
- SplitBB->getTerminator());
- for (unsigned i = 0, e = Preds.size(); i != e; ++i)
- NewPN->addIncoming(V, Preds[i]);
- // Update the original PHI.
- PN->setIncomingValue(Idx, NewPN);
- }
- }
- /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
- /// split the critical edge. This will update DominatorTree and
- /// DominatorFrontier information if it is available, thus calling this pass
- /// will not invalidate any of them. This returns true if the edge was split,
- /// false otherwise. This ensures that all edges to that dest go to one block
- /// instead of each going to a different block.
- //
- BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
- Pass *P, bool MergeIdenticalEdges) {
- if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
- BasicBlock *TIBB = TI->getParent();
- BasicBlock *DestBB = TI->getSuccessor(SuccNum);
- // Create a new basic block, linking it into the CFG.
- BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
- TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
- // Create our unconditional branch...
- BranchInst::Create(DestBB, NewBB);
- // Branch to the new block, breaking the edge.
- TI->setSuccessor(SuccNum, NewBB);
- // Insert the block into the function... right after the block TI lives in.
- Function &F = *TIBB->getParent();
- Function::iterator FBBI = TIBB;
- F.getBasicBlockList().insert(++FBBI, NewBB);
-
- // If there are any PHI nodes in DestBB, we need to update them so that they
- // merge incoming values from NewBB instead of from TIBB.
- //
- for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // We no longer enter through TIBB, now we come in through NewBB. Revector
- // exactly one entry in the PHI node that used to come from TIBB to come
- // from NewBB.
- int BBIdx = PN->getBasicBlockIndex(TIBB);
- PN->setIncomingBlock(BBIdx, NewBB);
- }
-
- // If there are any other edges from TIBB to DestBB, update those to go
- // through the split block, making those edges non-critical as well (and
- // reducing the number of phi entries in the DestBB if relevant).
- if (MergeIdenticalEdges) {
- for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
- if (TI->getSuccessor(i) != DestBB) continue;
-
- // Remove an entry for TIBB from DestBB phi nodes.
- DestBB->removePredecessor(TIBB);
-
- // We found another edge to DestBB, go to NewBB instead.
- TI->setSuccessor(i, NewBB);
- }
- }
-
-
- // If we don't have a pass object, we can't update anything...
- if (P == 0) return NewBB;
- // Now update analysis information. Since the only predecessor of NewBB is
- // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
- // anything, as there are other successors of DestBB. However, if all other
- // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
- // loop header) then NewBB dominates DestBB.
- SmallVector<BasicBlock*, 8> OtherPreds;
- for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
- if (*I != NewBB)
- OtherPreds.push_back(*I);
-
- bool NewBBDominatesDestBB = true;
-
- // Should we update DominatorTree information?
- if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
- DomTreeNode *TINode = DT->getNode(TIBB);
- // The new block is not the immediate dominator for any other nodes, but
- // TINode is the immediate dominator for the new node.
- //
- if (TINode) { // Don't break unreachable code!
- DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
- DomTreeNode *DestBBNode = 0;
-
- // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
- if (!OtherPreds.empty()) {
- DestBBNode = DT->getNode(DestBB);
- while (!OtherPreds.empty() && NewBBDominatesDestBB) {
- if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
- NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
- OtherPreds.pop_back();
- }
- OtherPreds.clear();
- }
-
- // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
- // doesn't dominate anything.
- if (NewBBDominatesDestBB) {
- if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
- DT->changeImmediateDominator(DestBBNode, NewBBNode);
- }
- }
- }
- // Should we update DominanceFrontier information?
- if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) {
- // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
- if (!OtherPreds.empty()) {
- // FIXME: IMPLEMENT THIS!
- llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
- " not implemented yet!");
- }
-
- // Since the new block is dominated by its only predecessor TIBB,
- // it cannot be in any block's dominance frontier. If NewBB dominates
- // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
- // just {DestBB}.
- DominanceFrontier::DomSetType NewDFSet;
- if (NewBBDominatesDestBB) {
- DominanceFrontier::iterator I = DF->find(DestBB);
- if (I != DF->end()) {
- DF->addBasicBlock(NewBB, I->second);
-
- if (I->second.count(DestBB)) {
- // However NewBB's frontier does not include DestBB.
- DominanceFrontier::iterator NF = DF->find(NewBB);
- DF->removeFromFrontier(NF, DestBB);
- }
- }
- else
- DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
- } else {
- DominanceFrontier::DomSetType NewDFSet;
- NewDFSet.insert(DestBB);
- DF->addBasicBlock(NewBB, NewDFSet);
- }
- }
-
- // Update LoopInfo if it is around.
- if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) {
- if (Loop *TIL = LI->getLoopFor(TIBB)) {
- // If one or the other blocks were not in a loop, the new block is not
- // either, and thus LI doesn't need to be updated.
- if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
- if (TIL == DestLoop) {
- // Both in the same loop, the NewBB joins loop.
- DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- } else if (TIL->contains(DestLoop->getHeader())) {
- // Edge from an outer loop to an inner loop. Add to the outer loop.
- TIL->addBasicBlockToLoop(NewBB, LI->getBase());
- } else if (DestLoop->contains(TIL->getHeader())) {
- // Edge from an inner loop to an outer loop. Add to the outer loop.
- DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- } else {
- // Edge from two loops with no containment relation. Because these
- // are natural loops, we know that the destination block must be the
- // header of its loop (adding a branch into a loop elsewhere would
- // create an irreducible loop).
- assert(DestLoop->getHeader() == DestBB &&
- "Should not create irreducible loops!");
- if (Loop *P = DestLoop->getParentLoop())
- P->addBasicBlockToLoop(NewBB, LI->getBase());
- }
- }
- // If TIBB is in a loop and DestBB is outside of that loop, split the
- // other exit blocks of the loop that also have predecessors outside
- // the loop, to maintain a LoopSimplify guarantee.
- if (!TIL->contains(DestBB) &&
- P->mustPreserveAnalysisID(LoopSimplifyID)) {
- assert(!TIL->contains(NewBB) &&
- "Split point for loop exit is contained in loop!");
- // Update LCSSA form in the newly created exit block.
- if (P->mustPreserveAnalysisID(LCSSAID)) {
- SmallVector<BasicBlock *, 1> OrigPred;
- OrigPred.push_back(TIBB);
- CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
- }
- // For each unique exit block...
- SmallVector<BasicBlock *, 4> ExitBlocks;
- TIL->getExitBlocks(ExitBlocks);
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- // Collect all the preds that are inside the loop, and note
- // whether there are any preds outside the loop.
- SmallVector<BasicBlock *, 4> Preds;
- bool HasPredOutsideOfLoop = false;
- BasicBlock *Exit = ExitBlocks[i];
- for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
- I != E; ++I)
- if (TIL->contains(*I))
- Preds.push_back(*I);
- else
- HasPredOutsideOfLoop = true;
- // If there are any preds not in the loop, we'll need to split
- // the edges. The Preds.empty() check is needed because a block
- // may appear multiple times in the list. We can't use
- // getUniqueExitBlocks above because that depends on LoopSimplify
- // form, which we're in the process of restoring!
- if (!Preds.empty() && HasPredOutsideOfLoop) {
- BasicBlock *NewExitBB =
- SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
- "split", P);
- if (P->mustPreserveAnalysisID(LCSSAID))
- CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
- }
- }
- }
- // LCSSA form was updated above for the case where LoopSimplify is
- // available, which means that all predecessors of loop exit blocks
- // are within the loop. Without LoopSimplify form, it would be
- // necessary to insert a new phi.
- assert((!P->mustPreserveAnalysisID(LCSSAID) ||
- P->mustPreserveAnalysisID(LoopSimplifyID)) &&
- "SplitCriticalEdge doesn't know how to update LCCSA form "
- "without LoopSimplify!");
- }
- }
- // Update ProfileInfo if it is around.
- if (ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>()) {
- PI->splitEdge(TIBB,DestBB,NewBB,MergeIdenticalEdges);
- }
- return NewBB;
- }
|