12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079 |
- //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This register allocator allocates registers to a basic block at a time,
- // attempting to keep values in registers and reusing registers as appropriate.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "regalloc"
- #include "llvm/BasicBlock.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/RegAllocRegistry.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/IndexedMap.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/STLExtras.h"
- #include <algorithm>
- using namespace llvm;
- STATISTIC(NumStores, "Number of stores added");
- STATISTIC(NumLoads , "Number of loads added");
- static RegisterRegAlloc
- localRegAlloc("local", "local register allocator",
- createLocalRegisterAllocator);
- namespace {
- class RALocal : public MachineFunctionPass {
- public:
- static char ID;
- RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
- private:
- const TargetMachine *TM;
- MachineFunction *MF;
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
- // StackSlotForVirtReg - Maps virtual regs to the frame index where these
- // values are spilled.
- IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
- // Virt2PhysRegMap - This map contains entries for each virtual register
- // that is currently available in a physical register.
- IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
- unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
- return Virt2PhysRegMap[VirtReg];
- }
- // PhysRegsUsed - This array is effectively a map, containing entries for
- // each physical register that currently has a value (ie, it is in
- // Virt2PhysRegMap). The value mapped to is the virtual register
- // corresponding to the physical register (the inverse of the
- // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
- // because it is used by a future instruction, and to -2 if it is not
- // allocatable. If the entry for a physical register is -1, then the
- // physical register is "not in the map".
- //
- std::vector<int> PhysRegsUsed;
- // PhysRegsUseOrder - This contains a list of the physical registers that
- // currently have a virtual register value in them. This list provides an
- // ordering of registers, imposing a reallocation order. This list is only
- // used if all registers are allocated and we have to spill one, in which
- // case we spill the least recently used register. Entries at the front of
- // the list are the least recently used registers, entries at the back are
- // the most recently used.
- //
- std::vector<unsigned> PhysRegsUseOrder;
- // Virt2LastUseMap - This maps each virtual register to its last use
- // (MachineInstr*, operand index pair).
- IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
- Virt2LastUseMap;
- std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
- return Virt2LastUseMap[Reg];
- }
- // VirtRegModified - This bitset contains information about which virtual
- // registers need to be spilled back to memory when their registers are
- // scavenged. If a virtual register has simply been rematerialized, there
- // is no reason to spill it to memory when we need the register back.
- //
- BitVector VirtRegModified;
-
- // UsedInMultipleBlocks - Tracks whether a particular register is used in
- // more than one block.
- BitVector UsedInMultipleBlocks;
- void markVirtRegModified(unsigned Reg, bool Val = true) {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
- Reg -= TargetRegisterInfo::FirstVirtualRegister;
- if (Val)
- VirtRegModified.set(Reg);
- else
- VirtRegModified.reset(Reg);
- }
- bool isVirtRegModified(unsigned Reg) const {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
- assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
- && "Illegal virtual register!");
- return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
- }
- void AddToPhysRegsUseOrder(unsigned Reg) {
- std::vector<unsigned>::iterator It =
- std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
- if (It != PhysRegsUseOrder.end())
- PhysRegsUseOrder.erase(It);
- PhysRegsUseOrder.push_back(Reg);
- }
- void MarkPhysRegRecentlyUsed(unsigned Reg) {
- if (PhysRegsUseOrder.empty() ||
- PhysRegsUseOrder.back() == Reg) return; // Already most recently used
- for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
- if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
- unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
- PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
- // Add it to the end of the list
- PhysRegsUseOrder.push_back(RegMatch);
- if (RegMatch == Reg)
- return; // Found an exact match, exit early
- }
- }
- public:
- virtual const char *getPassName() const {
- return "Local Register Allocator";
- }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequiredID(PHIEliminationID);
- AU.addRequiredID(TwoAddressInstructionPassID);
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- private:
- /// runOnMachineFunction - Register allocate the whole function
- bool runOnMachineFunction(MachineFunction &Fn);
- /// AllocateBasicBlock - Register allocate the specified basic block.
- void AllocateBasicBlock(MachineBasicBlock &MBB);
- /// areRegsEqual - This method returns true if the specified registers are
- /// related to each other. To do this, it checks to see if they are equal
- /// or if the first register is in the alias set of the second register.
- ///
- bool areRegsEqual(unsigned R1, unsigned R2) const {
- if (R1 == R2) return true;
- for (const unsigned *AliasSet = TRI->getAliasSet(R2);
- *AliasSet; ++AliasSet) {
- if (*AliasSet == R1) return true;
- }
- return false;
- }
- /// getStackSpaceFor - This returns the frame index of the specified virtual
- /// register on the stack, allocating space if necessary.
- int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
- /// removePhysReg - This method marks the specified physical register as no
- /// longer being in use.
- ///
- void removePhysReg(unsigned PhysReg);
- /// spillVirtReg - This method spills the value specified by PhysReg into
- /// the virtual register slot specified by VirtReg. It then updates the RA
- /// data structures to indicate the fact that PhysReg is now available.
- ///
- void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- unsigned VirtReg, unsigned PhysReg);
- /// spillPhysReg - This method spills the specified physical register into
- /// the virtual register slot associated with it. If OnlyVirtRegs is set to
- /// true, then the request is ignored if the physical register does not
- /// contain a virtual register.
- ///
- void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned PhysReg, bool OnlyVirtRegs = false);
- /// assignVirtToPhysReg - This method updates local state so that we know
- /// that PhysReg is the proper container for VirtReg now. The physical
- /// register must not be used for anything else when this is called.
- ///
- void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
- /// isPhysRegAvailable - Return true if the specified physical register is
- /// free and available for use. This also includes checking to see if
- /// aliased registers are all free...
- ///
- bool isPhysRegAvailable(unsigned PhysReg) const;
- /// getFreeReg - Look to see if there is a free register available in the
- /// specified register class. If not, return 0.
- ///
- unsigned getFreeReg(const TargetRegisterClass *RC);
- /// getReg - Find a physical register to hold the specified virtual
- /// register. If all compatible physical registers are used, this method
- /// spills the last used virtual register to the stack, and uses that
- /// register. If NoFree is true, that means the caller knows there isn't
- /// a free register, do not call getFreeReg().
- unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned VirtReg, bool NoFree = false);
- /// reloadVirtReg - This method transforms the specified virtual
- /// register use to refer to a physical register. This method may do this
- /// in one of several ways: if the register is available in a physical
- /// register already, it uses that physical register. If the value is not
- /// in a physical register, and if there are physical registers available,
- /// it loads it into a register. If register pressure is high, and it is
- /// possible, it tries to fold the load of the virtual register into the
- /// instruction itself. It avoids doing this if register pressure is low to
- /// improve the chance that subsequent instructions can use the reloaded
- /// value. This method returns the modified instruction.
- ///
- MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
- /// ComputeLocalLiveness - Computes liveness of registers within a basic
- /// block, setting the killed/dead flags as appropriate.
- void ComputeLocalLiveness(MachineBasicBlock& MBB);
- void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
- unsigned PhysReg);
- };
- char RALocal::ID = 0;
- }
- /// getStackSpaceFor - This allocates space for the specified virtual register
- /// to be held on the stack.
- int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
- // Find the location Reg would belong...
- int SS = StackSlotForVirtReg[VirtReg];
- if (SS != -1)
- return SS; // Already has space allocated?
- // Allocate a new stack object for this spill location...
- int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
- RC->getAlignment(),true);
- // Assign the slot...
- StackSlotForVirtReg[VirtReg] = FrameIdx;
- return FrameIdx;
- }
- /// removePhysReg - This method marks the specified physical register as no
- /// longer being in use.
- ///
- void RALocal::removePhysReg(unsigned PhysReg) {
- PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
- std::vector<unsigned>::iterator It =
- std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
- if (It != PhysRegsUseOrder.end())
- PhysRegsUseOrder.erase(It);
- }
- /// spillVirtReg - This method spills the value specified by PhysReg into the
- /// virtual register slot specified by VirtReg. It then updates the RA data
- /// structures to indicate the fact that PhysReg is now available.
- ///
- void RALocal::spillVirtReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned VirtReg, unsigned PhysReg) {
- assert(VirtReg && "Spilling a physical register is illegal!"
- " Must not have appropriate kill for the register or use exists beyond"
- " the intended one.");
- DEBUG(errs() << " Spilling register " << TRI->getName(PhysReg)
- << " containing %reg" << VirtReg);
-
- if (!isVirtRegModified(VirtReg)) {
- DEBUG(errs() << " which has not been modified, so no store necessary!");
- std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
- if (LastUse.first)
- LastUse.first->getOperand(LastUse.second).setIsKill();
- } else {
- // Otherwise, there is a virtual register corresponding to this physical
- // register. We only need to spill it into its stack slot if it has been
- // modified.
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- int FrameIndex = getStackSpaceFor(VirtReg, RC);
- DEBUG(errs() << " to stack slot #" << FrameIndex);
- // If the instruction reads the register that's spilled, (e.g. this can
- // happen if it is a move to a physical register), then the spill
- // instruction is not a kill.
- bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
- TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
- ++NumStores; // Update statistics
- }
- getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
- DEBUG(errs() << '\n');
- removePhysReg(PhysReg);
- }
- /// spillPhysReg - This method spills the specified physical register into the
- /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
- /// then the request is ignored if the physical register does not contain a
- /// virtual register.
- ///
- void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned PhysReg, bool OnlyVirtRegs) {
- if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
- assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
- if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
- spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
- } else {
- // If the selected register aliases any other registers, we must make
- // sure that one of the aliases isn't alive.
- for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet)
- if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
- PhysRegsUsed[*AliasSet] != -2) // If allocatable.
- if (PhysRegsUsed[*AliasSet])
- spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
- }
- }
- /// assignVirtToPhysReg - This method updates local state so that we know
- /// that PhysReg is the proper container for VirtReg now. The physical
- /// register must not be used for anything else when this is called.
- ///
- void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
- assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
- // Update information to note the fact that this register was just used, and
- // it holds VirtReg.
- PhysRegsUsed[PhysReg] = VirtReg;
- getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
- AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
- }
- /// isPhysRegAvailable - Return true if the specified physical register is free
- /// and available for use. This also includes checking to see if aliased
- /// registers are all free...
- ///
- bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
- if (PhysRegsUsed[PhysReg] != -1) return false;
- // If the selected register aliases any other allocated registers, it is
- // not free!
- for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet)
- if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
- return false; // Can't use this reg then.
- return true;
- }
- /// getFreeReg - Look to see if there is a free register available in the
- /// specified register class. If not, return 0.
- ///
- unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
- // Get iterators defining the range of registers that are valid to allocate in
- // this class, which also specifies the preferred allocation order.
- TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
- TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
- for (; RI != RE; ++RI)
- if (isPhysRegAvailable(*RI)) { // Is reg unused?
- assert(*RI != 0 && "Cannot use register!");
- return *RI; // Found an unused register!
- }
- return 0;
- }
- /// getReg - Find a physical register to hold the specified virtual
- /// register. If all compatible physical registers are used, this method spills
- /// the last used virtual register to the stack, and uses that register.
- ///
- unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned VirtReg, bool NoFree) {
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- // First check to see if we have a free register of the requested type...
- unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
- // If we didn't find an unused register, scavenge one now!
- if (PhysReg == 0) {
- assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
- // Loop over all of the preallocated registers from the least recently used
- // to the most recently used. When we find one that is capable of holding
- // our register, use it.
- for (unsigned i = 0; PhysReg == 0; ++i) {
- assert(i != PhysRegsUseOrder.size() &&
- "Couldn't find a register of the appropriate class!");
- unsigned R = PhysRegsUseOrder[i];
- // We can only use this register if it holds a virtual register (ie, it
- // can be spilled). Do not use it if it is an explicitly allocated
- // physical register!
- assert(PhysRegsUsed[R] != -1 &&
- "PhysReg in PhysRegsUseOrder, but is not allocated?");
- if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
- // If the current register is compatible, use it.
- if (RC->contains(R)) {
- PhysReg = R;
- break;
- } else {
- // If one of the registers aliased to the current register is
- // compatible, use it.
- for (const unsigned *AliasIt = TRI->getAliasSet(R);
- *AliasIt; ++AliasIt) {
- if (RC->contains(*AliasIt) &&
- // If this is pinned down for some reason, don't use it. For
- // example, if CL is pinned, and we run across CH, don't use
- // CH as justification for using scavenging ECX (which will
- // fail).
- PhysRegsUsed[*AliasIt] != 0 &&
-
- // Make sure the register is allocatable. Don't allocate SIL on
- // x86-32.
- PhysRegsUsed[*AliasIt] != -2) {
- PhysReg = *AliasIt; // Take an aliased register
- break;
- }
- }
- }
- }
- }
- assert(PhysReg && "Physical register not assigned!?!?");
- // At this point PhysRegsUseOrder[i] is the least recently used register of
- // compatible register class. Spill it to memory and reap its remains.
- spillPhysReg(MBB, I, PhysReg);
- }
- // Now that we know which register we need to assign this to, do it now!
- assignVirtToPhysReg(VirtReg, PhysReg);
- return PhysReg;
- }
- /// reloadVirtReg - This method transforms the specified virtual
- /// register use to refer to a physical register. This method may do this in
- /// one of several ways: if the register is available in a physical register
- /// already, it uses that physical register. If the value is not in a physical
- /// register, and if there are physical registers available, it loads it into a
- /// register. If register pressure is high, and it is possible, it tries to
- /// fold the load of the virtual register into the instruction itself. It
- /// avoids doing this if register pressure is low to improve the chance that
- /// subsequent instructions can use the reloaded value. This method returns the
- /// modified instruction.
- ///
- MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned OpNum,
- SmallSet<unsigned, 4> &ReloadedRegs) {
- unsigned VirtReg = MI->getOperand(OpNum).getReg();
- // If the virtual register is already available, just update the instruction
- // and return.
- if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
- MarkPhysRegRecentlyUsed(PR); // Already have this value available!
- MI->getOperand(OpNum).setReg(PR); // Assign the input register
- getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
- return MI;
- }
- // Otherwise, we need to fold it into the current instruction, or reload it.
- // If we have registers available to hold the value, use them.
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- unsigned PhysReg = getFreeReg(RC);
- int FrameIndex = getStackSpaceFor(VirtReg, RC);
- if (PhysReg) { // Register is available, allocate it!
- assignVirtToPhysReg(VirtReg, PhysReg);
- } else { // No registers available.
- // Force some poor hapless value out of the register file to
- // make room for the new register, and reload it.
- PhysReg = getReg(MBB, MI, VirtReg, true);
- }
- markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
- DEBUG(errs() << " Reloading %reg" << VirtReg << " into "
- << TRI->getName(PhysReg) << "\n");
- // Add move instruction(s)
- TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
- ++NumLoads; // Update statistics
- MF->getRegInfo().setPhysRegUsed(PhysReg);
- MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
- getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
- if (!ReloadedRegs.insert(PhysReg)) {
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Ran out of registers during register allocation!";
- if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- Msg << "\nPlease check your inline asm statement for invalid "
- << "constraints:\n";
- MI->print(Msg, TM);
- }
- llvm_report_error(Msg.str());
- }
- for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
- *SubRegs; ++SubRegs) {
- if (!ReloadedRegs.insert(*SubRegs)) {
- std::string msg;
- raw_string_ostream Msg(msg);
- Msg << "Ran out of registers during register allocation!";
- if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- Msg << "\nPlease check your inline asm statement for invalid "
- << "constraints:\n";
- MI->print(Msg, TM);
- }
- llvm_report_error(Msg.str());
- }
- }
- return MI;
- }
- /// isReadModWriteImplicitKill - True if this is an implicit kill for a
- /// read/mod/write register, i.e. update partial register.
- static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
- MO.isDef() && !MO.isDead())
- return true;
- }
- return false;
- }
- /// isReadModWriteImplicitDef - True if this is an implicit def for a
- /// read/mod/write register, i.e. update partial register.
- static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
- !MO.isDef() && MO.isKill())
- return true;
- }
- return false;
- }
- // precedes - Helper function to determine with MachineInstr A
- // precedes MachineInstr B within the same MBB.
- static bool precedes(MachineBasicBlock::iterator A,
- MachineBasicBlock::iterator B) {
- if (A == B)
- return false;
-
- MachineBasicBlock::iterator I = A->getParent()->begin();
- while (I != A->getParent()->end()) {
- if (I == A)
- return true;
- else if (I == B)
- return false;
-
- ++I;
- }
-
- return false;
- }
- /// ComputeLocalLiveness - Computes liveness of registers within a basic
- /// block, setting the killed/dead flags as appropriate.
- void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
- MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
- // Keep track of the most recently seen previous use or def of each reg,
- // so that we can update them with dead/kill markers.
- DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
- I != E; ++I) {
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = I->getOperand(i);
- // Uses don't trigger any flags, but we need to save
- // them for later. Also, we have to process these
- // _before_ processing the defs, since an instr
- // uses regs before it defs them.
- if (MO.isReg() && MO.getReg() && MO.isUse()) {
- LastUseDef[MO.getReg()] = std::make_pair(I, i);
-
-
- if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
-
- const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
- if (Aliases) {
- while (*Aliases) {
- DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
- alias = LastUseDef.find(*Aliases);
-
- if (alias != LastUseDef.end() && alias->second.first != I)
- LastUseDef[*Aliases] = std::make_pair(I, i);
-
- ++Aliases;
- }
- }
- }
- }
-
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = I->getOperand(i);
- // Defs others than 2-addr redefs _do_ trigger flag changes:
- // - A def followed by a def is dead
- // - A use followed by a def is a kill
- if (MO.isReg() && MO.getReg() && MO.isDef()) {
- DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
- last = LastUseDef.find(MO.getReg());
- if (last != LastUseDef.end()) {
- // Check if this is a two address instruction. If so, then
- // the def does not kill the use.
- if (last->second.first == I &&
- I->isRegTiedToUseOperand(i))
- continue;
-
- MachineOperand& lastUD =
- last->second.first->getOperand(last->second.second);
- if (lastUD.isDef())
- lastUD.setIsDead(true);
- else
- lastUD.setIsKill(true);
- }
-
- LastUseDef[MO.getReg()] = std::make_pair(I, i);
- }
- }
- }
-
- // Live-out (of the function) registers contain return values of the function,
- // so we need to make sure they are alive at return time.
- if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
- MachineInstr* Ret = &MBB.back();
- for (MachineRegisterInfo::liveout_iterator
- I = MF->getRegInfo().liveout_begin(),
- E = MF->getRegInfo().liveout_end(); I != E; ++I)
- if (!Ret->readsRegister(*I)) {
- Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
- LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
- }
- }
-
- // Finally, loop over the final use/def of each reg
- // in the block and determine if it is dead.
- for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
- I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
- MachineInstr* MI = I->second.first;
- unsigned idx = I->second.second;
- MachineOperand& MO = MI->getOperand(idx);
-
- bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
-
- // A crude approximation of "live-out" calculation
- bool usedOutsideBlock = isPhysReg ? false :
- UsedInMultipleBlocks.test(MO.getReg() -
- TargetRegisterInfo::FirstVirtualRegister);
- if (!isPhysReg && !usedOutsideBlock)
- for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
- UE = MRI.reg_end(); UI != UE; ++UI)
- // Two cases:
- // - used in another block
- // - used in the same block before it is defined (loop)
- if (UI->getParent() != &MBB ||
- (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
- UsedInMultipleBlocks.set(MO.getReg() -
- TargetRegisterInfo::FirstVirtualRegister);
- usedOutsideBlock = true;
- break;
- }
-
- // Physical registers and those that are not live-out of the block
- // are killed/dead at their last use/def within this block.
- if (isPhysReg || !usedOutsideBlock) {
- if (MO.isUse()) {
- // Don't mark uses that are tied to defs as kills.
- if (!MI->isRegTiedToDefOperand(idx))
- MO.setIsKill(true);
- } else
- MO.setIsDead(true);
- }
- }
- }
- void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
- // loop over each instruction
- MachineBasicBlock::iterator MII = MBB.begin();
-
- DEBUG({
- const BasicBlock *LBB = MBB.getBasicBlock();
- if (LBB)
- errs() << "\nStarting RegAlloc of BB: " << LBB->getName();
- });
- // Add live-in registers as active.
- for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
- E = MBB.livein_end(); I != E; ++I) {
- unsigned Reg = *I;
- MF->getRegInfo().setPhysRegUsed(Reg);
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- AddToPhysRegsUseOrder(Reg);
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- *SubRegs; ++SubRegs) {
- if (PhysRegsUsed[*SubRegs] != -2) {
- AddToPhysRegsUseOrder(*SubRegs);
- PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
- MF->getRegInfo().setPhysRegUsed(*SubRegs);
- }
- }
- }
-
- ComputeLocalLiveness(MBB);
-
- // Otherwise, sequentially allocate each instruction in the MBB.
- while (MII != MBB.end()) {
- MachineInstr *MI = MII++;
- const TargetInstrDesc &TID = MI->getDesc();
- DEBUG({
- errs() << "\nStarting RegAlloc of: " << *MI;
- errs() << " Regs have values: ";
- for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
- if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
- errs() << "[" << TRI->getName(i)
- << ",%reg" << PhysRegsUsed[i] << "] ";
- errs() << '\n';
- });
- // Loop over the implicit uses, making sure that they are at the head of the
- // use order list, so they don't get reallocated.
- if (TID.ImplicitUses) {
- for (const unsigned *ImplicitUses = TID.ImplicitUses;
- *ImplicitUses; ++ImplicitUses)
- MarkPhysRegRecentlyUsed(*ImplicitUses);
- }
- SmallVector<unsigned, 8> Kills;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.isKill()) {
- if (!MO.isImplicit())
- Kills.push_back(MO.getReg());
- else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
- // These are extra physical register kills when a sub-register
- // is defined (def of a sub-register is a read/mod/write of the
- // larger registers). Ignore.
- Kills.push_back(MO.getReg());
- }
- }
- // If any physical regs are earlyclobber, spill any value they might
- // have in them, then mark them unallocatable.
- // If any virtual regs are earlyclobber, allocate them now (before
- // freeing inputs that are killed).
- if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
- MO.getReg()) {
- if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
- unsigned DestVirtReg = MO.getReg();
- unsigned DestPhysReg;
- // If DestVirtReg already has a value, use it.
- if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
- DestPhysReg = getReg(MBB, MI, DestVirtReg);
- MF->getRegInfo().setPhysRegUsed(DestPhysReg);
- markVirtRegModified(DestVirtReg);
- getVirtRegLastUse(DestVirtReg) =
- std::make_pair((MachineInstr*)0, 0);
- DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
- << " to %reg" << DestVirtReg << "\n");
- MO.setReg(DestPhysReg); // Assign the earlyclobber register
- } else {
- unsigned Reg = MO.getReg();
- if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
- // These are extra physical register defs when a sub-register
- // is defined (def of a sub-register is a read/mod/write of the
- // larger registers). Ignore.
- if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
- MF->getRegInfo().setPhysRegUsed(Reg);
- spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- AddToPhysRegsUseOrder(Reg);
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- *SubRegs; ++SubRegs) {
- if (PhysRegsUsed[*SubRegs] != -2) {
- MF->getRegInfo().setPhysRegUsed(*SubRegs);
- PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
- AddToPhysRegsUseOrder(*SubRegs);
- }
- }
- }
- }
- }
- }
- // Get the used operands into registers. This has the potential to spill
- // incoming values if we are out of registers. Note that we completely
- // ignore physical register uses here. We assume that if an explicit
- // physical register is referenced by the instruction, that it is guaranteed
- // to be live-in, or the input is badly hosed.
- //
- SmallSet<unsigned, 4> ReloadedRegs;
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& MO = MI->getOperand(i);
- // here we are looking for only used operands (never def&use)
- if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
- }
- // If this instruction is the last user of this register, kill the
- // value, freeing the register being used, so it doesn't need to be
- // spilled to memory.
- //
- for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
- unsigned VirtReg = Kills[i];
- unsigned PhysReg = VirtReg;
- if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
- // If the virtual register was never materialized into a register, it
- // might not be in the map, but it won't hurt to zero it out anyway.
- unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
- PhysReg = PhysRegSlot;
- PhysRegSlot = 0;
- } else if (PhysRegsUsed[PhysReg] == -2) {
- // Unallocatable register dead, ignore.
- continue;
- } else {
- assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
- "Silently clearing a virtual register?");
- }
- if (PhysReg) {
- DEBUG(errs() << " Last use of " << TRI->getName(PhysReg)
- << "[%reg" << VirtReg <<"], removing it from live set\n");
- removePhysReg(PhysReg);
- for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
- *SubRegs; ++SubRegs) {
- if (PhysRegsUsed[*SubRegs] != -2) {
- DEBUG(errs() << " Last use of "
- << TRI->getName(*SubRegs) << "[%reg" << VirtReg
- <<"], removing it from live set\n");
- removePhysReg(*SubRegs);
- }
- }
- }
- }
- // Loop over all of the operands of the instruction, spilling registers that
- // are defined, and marking explicit destinations in the PhysRegsUsed map.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
- !MO.isEarlyClobber() &&
- TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
- unsigned Reg = MO.getReg();
- if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
- // These are extra physical register defs when a sub-register
- // is defined (def of a sub-register is a read/mod/write of the
- // larger registers). Ignore.
- if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
- MF->getRegInfo().setPhysRegUsed(Reg);
- spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- AddToPhysRegsUseOrder(Reg);
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- *SubRegs; ++SubRegs) {
- if (PhysRegsUsed[*SubRegs] != -2) {
- MF->getRegInfo().setPhysRegUsed(*SubRegs);
- PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
- AddToPhysRegsUseOrder(*SubRegs);
- }
- }
- }
- }
- // Loop over the implicit defs, spilling them as well.
- if (TID.ImplicitDefs) {
- for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
- *ImplicitDefs; ++ImplicitDefs) {
- unsigned Reg = *ImplicitDefs;
- if (PhysRegsUsed[Reg] != -2) {
- spillPhysReg(MBB, MI, Reg, true);
- AddToPhysRegsUseOrder(Reg);
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- }
- MF->getRegInfo().setPhysRegUsed(Reg);
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- *SubRegs; ++SubRegs) {
- if (PhysRegsUsed[*SubRegs] != -2) {
- AddToPhysRegsUseOrder(*SubRegs);
- PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
- MF->getRegInfo().setPhysRegUsed(*SubRegs);
- }
- }
- }
- }
- SmallVector<unsigned, 8> DeadDefs;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.isDead())
- DeadDefs.push_back(MO.getReg());
- }
- // Okay, we have allocated all of the source operands and spilled any values
- // that would be destroyed by defs of this instruction. Loop over the
- // explicit defs and assign them to a register, spilling incoming values if
- // we need to scavenge a register.
- //
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isReg() && MO.isDef() && MO.getReg() &&
- !MO.isEarlyClobber() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
- unsigned DestVirtReg = MO.getReg();
- unsigned DestPhysReg;
- // If DestVirtReg already has a value, use it.
- if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
- DestPhysReg = getReg(MBB, MI, DestVirtReg);
- MF->getRegInfo().setPhysRegUsed(DestPhysReg);
- markVirtRegModified(DestVirtReg);
- getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
- DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
- << " to %reg" << DestVirtReg << "\n");
- MO.setReg(DestPhysReg); // Assign the output register
- }
- }
- // If this instruction defines any registers that are immediately dead,
- // kill them now.
- //
- for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
- unsigned VirtReg = DeadDefs[i];
- unsigned PhysReg = VirtReg;
- if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
- unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
- PhysReg = PhysRegSlot;
- assert(PhysReg != 0);
- PhysRegSlot = 0;
- } else if (PhysRegsUsed[PhysReg] == -2) {
- // Unallocatable register dead, ignore.
- continue;
- }
- if (PhysReg) {
- DEBUG(errs() << " Register " << TRI->getName(PhysReg)
- << " [%reg" << VirtReg
- << "] is never used, removing it from live set\n");
- removePhysReg(PhysReg);
- for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- DEBUG(errs() << " Register " << TRI->getName(*AliasSet)
- << " [%reg" << *AliasSet
- << "] is never used, removing it from live set\n");
- removePhysReg(*AliasSet);
- }
- }
- }
- }
-
- // Finally, if this is a noop copy instruction, zap it. (Except that if
- // the copy is dead, it must be kept to avoid messing up liveness info for
- // the register scavenger. See pr4100.)
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
- SrcReg == DstReg && DeadDefs.empty())
- MBB.erase(MI);
- }
- MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
- // Spill all physical registers holding virtual registers now.
- for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
- if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
- if (unsigned VirtReg = PhysRegsUsed[i])
- spillVirtReg(MBB, MI, VirtReg, i);
- else
- removePhysReg(i);
- }
- #if 0
- // This checking code is very expensive.
- bool AllOk = true;
- for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
- e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
- if (unsigned PR = Virt2PhysRegMap[i]) {
- cerr << "Register still mapped: " << i << " -> " << PR << "\n";
- AllOk = false;
- }
- assert(AllOk && "Virtual registers still in phys regs?");
- #endif
- // Clear any physical register which appear live at the end of the basic
- // block, but which do not hold any virtual registers. e.g., the stack
- // pointer.
- PhysRegsUseOrder.clear();
- }
- /// runOnMachineFunction - Register allocate the whole function
- ///
- bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
- DEBUG(errs() << "Machine Function\n");
- MF = &Fn;
- TM = &Fn.getTarget();
- TRI = TM->getRegisterInfo();
- TII = TM->getInstrInfo();
- PhysRegsUsed.assign(TRI->getNumRegs(), -1);
-
- // At various places we want to efficiently check to see whether a register
- // is allocatable. To handle this, we mark all unallocatable registers as
- // being pinned down, permanently.
- {
- BitVector Allocable = TRI->getAllocatableSet(Fn);
- for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
- if (!Allocable[i])
- PhysRegsUsed[i] = -2; // Mark the reg unallocable.
- }
- // initialize the virtual->physical register map to have a 'null'
- // mapping for all virtual registers
- unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
- StackSlotForVirtReg.grow(LastVirtReg);
- Virt2PhysRegMap.grow(LastVirtReg);
- Virt2LastUseMap.grow(LastVirtReg);
- VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
- UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
-
- // Loop over all of the basic blocks, eliminating virtual register references
- for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
- MBB != MBBe; ++MBB)
- AllocateBasicBlock(*MBB);
- StackSlotForVirtReg.clear();
- PhysRegsUsed.clear();
- VirtRegModified.clear();
- UsedInMultipleBlocks.clear();
- Virt2PhysRegMap.clear();
- Virt2LastUseMap.clear();
- return true;
- }
- FunctionPass *llvm::createLocalRegisterAllocator() {
- return new RALocal();
- }
|