123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330 |
- //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass munges the code in the input function to better prepare it for
- // SelectionDAG-based code generation. This works around limitations in it's
- // basic-block-at-a-time approach. It should eventually be removed.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/ValueMap.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetLibraryInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/BypassSlowDivision.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "codegenprepare"
- STATISTIC(NumBlocksElim, "Number of blocks eliminated");
- STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
- STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
- STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
- "sunken Cmps");
- STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
- "of sunken Casts");
- STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
- "computations were sunk");
- STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
- STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
- STATISTIC(NumRetsDup, "Number of return instructions duplicated");
- STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
- STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
- STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
- static cl::opt<bool> DisableBranchOpts(
- "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
- cl::desc("Disable branch optimizations in CodeGenPrepare"));
- static cl::opt<bool> DisableSelectToBranch(
- "disable-cgp-select2branch", cl::Hidden, cl::init(false),
- cl::desc("Disable select to branch conversion."));
- static cl::opt<bool> AddrSinkUsingGEPs(
- "addr-sink-using-gep", cl::Hidden, cl::init(false),
- cl::desc("Address sinking in CGP using GEPs."));
- static cl::opt<bool> EnableAndCmpSinking(
- "enable-andcmp-sinking", cl::Hidden, cl::init(true),
- cl::desc("Enable sinkinig and/cmp into branches."));
- namespace {
- typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
- typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
- class CodeGenPrepare : public FunctionPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetMachine *TM;
- const TargetLowering *TLI;
- const TargetLibraryInfo *TLInfo;
- DominatorTree *DT;
- /// CurInstIterator - As we scan instructions optimizing them, this is the
- /// next instruction to optimize. Xforms that can invalidate this should
- /// update it.
- BasicBlock::iterator CurInstIterator;
- /// Keeps track of non-local addresses that have been sunk into a block.
- /// This allows us to avoid inserting duplicate code for blocks with
- /// multiple load/stores of the same address.
- ValueMap<Value*, Value*> SunkAddrs;
- /// Keeps track of all truncates inserted for the current function.
- SetOfInstrs InsertedTruncsSet;
- /// Keeps track of the type of the related instruction before their
- /// promotion for the current function.
- InstrToOrigTy PromotedInsts;
- /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
- /// be updated.
- bool ModifiedDT;
- /// OptSize - True if optimizing for size.
- bool OptSize;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM), TLI(nullptr) {
- initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- const char *getPassName() const override { return "CodeGen Prepare"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfo>();
- }
- private:
- bool EliminateFallThrough(Function &F);
- bool EliminateMostlyEmptyBlocks(Function &F);
- bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
- void EliminateMostlyEmptyBlock(BasicBlock *BB);
- bool OptimizeBlock(BasicBlock &BB);
- bool OptimizeInst(Instruction *I);
- bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
- bool OptimizeInlineAsmInst(CallInst *CS);
- bool OptimizeCallInst(CallInst *CI);
- bool MoveExtToFormExtLoad(Instruction *I);
- bool OptimizeExtUses(Instruction *I);
- bool OptimizeSelectInst(SelectInst *SI);
- bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
- bool DupRetToEnableTailCallOpts(BasicBlock *BB);
- bool PlaceDbgValues(Function &F);
- bool sinkAndCmp(Function &F);
- };
- }
- char CodeGenPrepare::ID = 0;
- INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
- "Optimize for code generation", false, false)
- FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
- return new CodeGenPrepare(TM);
- }
- bool CodeGenPrepare::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- bool EverMadeChange = false;
- // Clear per function information.
- InsertedTruncsSet.clear();
- PromotedInsts.clear();
- ModifiedDT = false;
- if (TM)
- TLI = TM->getSubtargetImpl()->getTargetLowering();
- TLInfo = &getAnalysis<TargetLibraryInfo>();
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : nullptr;
- OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize);
- /// This optimization identifies DIV instructions that can be
- /// profitably bypassed and carried out with a shorter, faster divide.
- if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
- const DenseMap<unsigned int, unsigned int> &BypassWidths =
- TLI->getBypassSlowDivWidths();
- for (Function::iterator I = F.begin(); I != F.end(); I++)
- EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
- }
- // Eliminate blocks that contain only PHI nodes and an
- // unconditional branch.
- EverMadeChange |= EliminateMostlyEmptyBlocks(F);
- // llvm.dbg.value is far away from the value then iSel may not be able
- // handle it properly. iSel will drop llvm.dbg.value if it can not
- // find a node corresponding to the value.
- EverMadeChange |= PlaceDbgValues(F);
- // If there is a mask, compare against zero, and branch that can be combined
- // into a single target instruction, push the mask and compare into branch
- // users. Do this before OptimizeBlock -> OptimizeInst ->
- // OptimizeCmpExpression, which perturbs the pattern being searched for.
- if (!DisableBranchOpts)
- EverMadeChange |= sinkAndCmp(F);
- bool MadeChange = true;
- while (MadeChange) {
- MadeChange = false;
- for (Function::iterator I = F.begin(); I != F.end(); ) {
- BasicBlock *BB = I++;
- MadeChange |= OptimizeBlock(*BB);
- }
- EverMadeChange |= MadeChange;
- }
- SunkAddrs.clear();
- if (!DisableBranchOpts) {
- MadeChange = false;
- SmallPtrSet<BasicBlock*, 8> WorkList;
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
- MadeChange |= ConstantFoldTerminator(BB, true);
- if (!MadeChange) continue;
- for (SmallVectorImpl<BasicBlock*>::iterator
- II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
- if (pred_begin(*II) == pred_end(*II))
- WorkList.insert(*II);
- }
- // Delete the dead blocks and any of their dead successors.
- MadeChange |= !WorkList.empty();
- while (!WorkList.empty()) {
- BasicBlock *BB = *WorkList.begin();
- WorkList.erase(BB);
- SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
- DeleteDeadBlock(BB);
- for (SmallVectorImpl<BasicBlock*>::iterator
- II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
- if (pred_begin(*II) == pred_end(*II))
- WorkList.insert(*II);
- }
- // Merge pairs of basic blocks with unconditional branches, connected by
- // a single edge.
- if (EverMadeChange || MadeChange)
- MadeChange |= EliminateFallThrough(F);
- if (MadeChange)
- ModifiedDT = true;
- EverMadeChange |= MadeChange;
- }
- if (ModifiedDT && DT)
- DT->recalculate(F);
- return EverMadeChange;
- }
- /// EliminateFallThrough - Merge basic blocks which are connected
- /// by a single edge, where one of the basic blocks has a single successor
- /// pointing to the other basic block, which has a single predecessor.
- bool CodeGenPrepare::EliminateFallThrough(Function &F) {
- bool Changed = false;
- // Scan all of the blocks in the function, except for the entry block.
- for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
- BasicBlock *BB = I++;
- // If the destination block has a single pred, then this is a trivial
- // edge, just collapse it.
- BasicBlock *SinglePred = BB->getSinglePredecessor();
- // Don't merge if BB's address is taken.
- if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
- BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
- if (Term && !Term->isConditional()) {
- Changed = true;
- DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
- // Remember if SinglePred was the entry block of the function.
- // If so, we will need to move BB back to the entry position.
- bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
- MergeBasicBlockIntoOnlyPred(BB, this);
- if (isEntry && BB != &BB->getParent()->getEntryBlock())
- BB->moveBefore(&BB->getParent()->getEntryBlock());
- // We have erased a block. Update the iterator.
- I = BB;
- }
- }
- return Changed;
- }
- /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
- /// debug info directives, and an unconditional branch. Passes before isel
- /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
- /// isel. Start by eliminating these blocks so we can split them the way we
- /// want them.
- bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
- bool MadeChange = false;
- // Note that this intentionally skips the entry block.
- for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
- BasicBlock *BB = I++;
- // If this block doesn't end with an uncond branch, ignore it.
- BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || !BI->isUnconditional())
- continue;
- // If the instruction before the branch (skipping debug info) isn't a phi
- // node, then other stuff is happening here.
- BasicBlock::iterator BBI = BI;
- if (BBI != BB->begin()) {
- --BBI;
- while (isa<DbgInfoIntrinsic>(BBI)) {
- if (BBI == BB->begin())
- break;
- --BBI;
- }
- if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
- continue;
- }
- // Do not break infinite loops.
- BasicBlock *DestBB = BI->getSuccessor(0);
- if (DestBB == BB)
- continue;
- if (!CanMergeBlocks(BB, DestBB))
- continue;
- EliminateMostlyEmptyBlock(BB);
- MadeChange = true;
- }
- return MadeChange;
- }
- /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
- /// single uncond branch between them, and BB contains no other non-phi
- /// instructions.
- bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
- const BasicBlock *DestBB) const {
- // We only want to eliminate blocks whose phi nodes are used by phi nodes in
- // the successor. If there are more complex condition (e.g. preheaders),
- // don't mess around with them.
- BasicBlock::const_iterator BBI = BB->begin();
- while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
- for (const User *U : PN->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (UI->getParent() != DestBB || !isa<PHINode>(UI))
- return false;
- // If User is inside DestBB block and it is a PHINode then check
- // incoming value. If incoming value is not from BB then this is
- // a complex condition (e.g. preheaders) we want to avoid here.
- if (UI->getParent() == DestBB) {
- if (const PHINode *UPN = dyn_cast<PHINode>(UI))
- for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
- Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
- if (Insn && Insn->getParent() == BB &&
- Insn->getParent() != UPN->getIncomingBlock(I))
- return false;
- }
- }
- }
- }
- // If BB and DestBB contain any common predecessors, then the phi nodes in BB
- // and DestBB may have conflicting incoming values for the block. If so, we
- // can't merge the block.
- const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
- if (!DestBBPN) return true; // no conflict.
- // Collect the preds of BB.
- SmallPtrSet<const BasicBlock*, 16> BBPreds;
- if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
- // It is faster to get preds from a PHI than with pred_iterator.
- for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
- BBPreds.insert(BBPN->getIncomingBlock(i));
- } else {
- BBPreds.insert(pred_begin(BB), pred_end(BB));
- }
- // Walk the preds of DestBB.
- for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
- if (BBPreds.count(Pred)) { // Common predecessor?
- BBI = DestBB->begin();
- while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
- const Value *V1 = PN->getIncomingValueForBlock(Pred);
- const Value *V2 = PN->getIncomingValueForBlock(BB);
- // If V2 is a phi node in BB, look up what the mapped value will be.
- if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
- if (V2PN->getParent() == BB)
- V2 = V2PN->getIncomingValueForBlock(Pred);
- // If there is a conflict, bail out.
- if (V1 != V2) return false;
- }
- }
- }
- return true;
- }
- /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
- /// an unconditional branch in it.
- void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
- BranchInst *BI = cast<BranchInst>(BB->getTerminator());
- BasicBlock *DestBB = BI->getSuccessor(0);
- DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
- // If the destination block has a single pred, then this is a trivial edge,
- // just collapse it.
- if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
- if (SinglePred != DestBB) {
- // Remember if SinglePred was the entry block of the function. If so, we
- // will need to move BB back to the entry position.
- bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
- MergeBasicBlockIntoOnlyPred(DestBB, this);
- if (isEntry && BB != &BB->getParent()->getEntryBlock())
- BB->moveBefore(&BB->getParent()->getEntryBlock());
- DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
- return;
- }
- }
- // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
- // to handle the new incoming edges it is about to have.
- PHINode *PN;
- for (BasicBlock::iterator BBI = DestBB->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- // Remove the incoming value for BB, and remember it.
- Value *InVal = PN->removeIncomingValue(BB, false);
- // Two options: either the InVal is a phi node defined in BB or it is some
- // value that dominates BB.
- PHINode *InValPhi = dyn_cast<PHINode>(InVal);
- if (InValPhi && InValPhi->getParent() == BB) {
- // Add all of the input values of the input PHI as inputs of this phi.
- for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
- PN->addIncoming(InValPhi->getIncomingValue(i),
- InValPhi->getIncomingBlock(i));
- } else {
- // Otherwise, add one instance of the dominating value for each edge that
- // we will be adding.
- if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
- for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
- PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
- } else {
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- PN->addIncoming(InVal, *PI);
- }
- }
- }
- // The PHIs are now updated, change everything that refers to BB to use
- // DestBB and remove BB.
- BB->replaceAllUsesWith(DestBB);
- if (DT && !ModifiedDT) {
- BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock();
- BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
- BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
- DT->changeImmediateDominator(DestBB, NewIDom);
- DT->eraseNode(BB);
- }
- BB->eraseFromParent();
- ++NumBlocksElim;
- DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
- }
- /// SinkCast - Sink the specified cast instruction into its user blocks
- static bool SinkCast(CastInst *CI) {
- BasicBlock *DefBB = CI->getParent();
- /// InsertedCasts - Only insert a cast in each block once.
- DenseMap<BasicBlock*, CastInst*> InsertedCasts;
- bool MadeChange = false;
- for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
- UI != E; ) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Figure out which BB this cast is used in. For PHI's this is the
- // appropriate predecessor block.
- BasicBlock *UserBB = User->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(User)) {
- UserBB = PN->getIncomingBlock(TheUse);
- }
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // If this user is in the same block as the cast, don't change the cast.
- if (UserBB == DefBB) continue;
- // If we have already inserted a cast into this block, use it.
- CastInst *&InsertedCast = InsertedCasts[UserBB];
- if (!InsertedCast) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedCast =
- CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
- InsertPt);
- MadeChange = true;
- }
- // Replace a use of the cast with a use of the new cast.
- TheUse = InsertedCast;
- ++NumCastUses;
- }
- // If we removed all uses, nuke the cast.
- if (CI->use_empty()) {
- CI->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
- /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
- /// sink it into user blocks to reduce the number of virtual
- /// registers that must be created and coalesced.
- ///
- /// Return true if any changes are made.
- ///
- static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
- // If this is a noop copy,
- EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
- EVT DstVT = TLI.getValueType(CI->getType());
- // This is an fp<->int conversion?
- if (SrcVT.isInteger() != DstVT.isInteger())
- return false;
- // If this is an extension, it will be a zero or sign extension, which
- // isn't a noop.
- if (SrcVT.bitsLT(DstVT)) return false;
- // If these values will be promoted, find out what they will be promoted
- // to. This helps us consider truncates on PPC as noop copies when they
- // are.
- if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
- TargetLowering::TypePromoteInteger)
- SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
- if (TLI.getTypeAction(CI->getContext(), DstVT) ==
- TargetLowering::TypePromoteInteger)
- DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
- // If, after promotion, these are the same types, this is a noop copy.
- if (SrcVT != DstVT)
- return false;
- return SinkCast(CI);
- }
- /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
- /// the number of virtual registers that must be created and coalesced. This is
- /// a clear win except on targets with multiple condition code registers
- /// (PowerPC), where it might lose; some adjustment may be wanted there.
- ///
- /// Return true if any changes are made.
- static bool OptimizeCmpExpression(CmpInst *CI) {
- BasicBlock *DefBB = CI->getParent();
- /// InsertedCmp - Only insert a cmp in each block once.
- DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
- bool MadeChange = false;
- for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
- UI != E; ) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(User))
- continue;
- // Figure out which BB this cmp is used in.
- BasicBlock *UserBB = User->getParent();
- // If this user is in the same block as the cmp, don't change the cmp.
- if (UserBB == DefBB) continue;
- // If we have already inserted a cmp into this block, use it.
- CmpInst *&InsertedCmp = InsertedCmps[UserBB];
- if (!InsertedCmp) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedCmp =
- CmpInst::Create(CI->getOpcode(),
- CI->getPredicate(), CI->getOperand(0),
- CI->getOperand(1), "", InsertPt);
- MadeChange = true;
- }
- // Replace a use of the cmp with a use of the new cmp.
- TheUse = InsertedCmp;
- ++NumCmpUses;
- }
- // If we removed all uses, nuke the cmp.
- if (CI->use_empty())
- CI->eraseFromParent();
- return MadeChange;
- }
- /// isExtractBitsCandidateUse - Check if the candidates could
- /// be combined with shift instruction, which includes:
- /// 1. Truncate instruction
- /// 2. And instruction and the imm is a mask of the low bits:
- /// imm & (imm+1) == 0
- static bool isExtractBitsCandidateUse(Instruction *User) {
- if (!isa<TruncInst>(User)) {
- if (User->getOpcode() != Instruction::And ||
- !isa<ConstantInt>(User->getOperand(1)))
- return false;
- const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
- if ((Cimm & (Cimm + 1)).getBoolValue())
- return false;
- }
- return true;
- }
- /// SinkShiftAndTruncate - sink both shift and truncate instruction
- /// to the use of truncate's BB.
- static bool
- SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
- DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
- const TargetLowering &TLI) {
- BasicBlock *UserBB = User->getParent();
- DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
- TruncInst *TruncI = dyn_cast<TruncInst>(User);
- bool MadeChange = false;
- for (Value::user_iterator TruncUI = TruncI->user_begin(),
- TruncE = TruncI->user_end();
- TruncUI != TruncE;) {
- Use &TruncTheUse = TruncUI.getUse();
- Instruction *TruncUser = cast<Instruction>(*TruncUI);
- // Preincrement use iterator so we don't invalidate it.
- ++TruncUI;
- int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
- if (!ISDOpcode)
- continue;
- // If the use is actually a legal node, there will not be an
- // implicit truncate.
- // FIXME: always querying the result type is just an
- // approximation; some nodes' legality is determined by the
- // operand or other means. There's no good way to find out though.
- if (TLI.isOperationLegalOrCustom(ISDOpcode,
- EVT::getEVT(TruncUser->getType(), true)))
- continue;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(TruncUser))
- continue;
- BasicBlock *TruncUserBB = TruncUser->getParent();
- if (UserBB == TruncUserBB)
- continue;
- BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
- CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
- if (!InsertedShift && !InsertedTrunc) {
- BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
- // Sink the shift
- if (ShiftI->getOpcode() == Instruction::AShr)
- InsertedShift =
- BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
- else
- InsertedShift =
- BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
- // Sink the trunc
- BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
- TruncInsertPt++;
- InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
- TruncI->getType(), "", TruncInsertPt);
- MadeChange = true;
- TruncTheUse = InsertedTrunc;
- }
- }
- return MadeChange;
- }
- /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
- /// the uses could potentially be combined with this shift instruction and
- /// generate BitExtract instruction. It will only be applied if the architecture
- /// supports BitExtract instruction. Here is an example:
- /// BB1:
- /// %x.extract.shift = lshr i64 %arg1, 32
- /// BB2:
- /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
- /// ==>
- ///
- /// BB2:
- /// %x.extract.shift.1 = lshr i64 %arg1, 32
- /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
- ///
- /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
- /// instruction.
- /// Return true if any changes are made.
- static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
- const TargetLowering &TLI) {
- BasicBlock *DefBB = ShiftI->getParent();
- /// Only insert instructions in each block once.
- DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
- bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
- bool MadeChange = false;
- for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
- UI != E;) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(User))
- continue;
- if (!isExtractBitsCandidateUse(User))
- continue;
- BasicBlock *UserBB = User->getParent();
- if (UserBB == DefBB) {
- // If the shift and truncate instruction are in the same BB. The use of
- // the truncate(TruncUse) may still introduce another truncate if not
- // legal. In this case, we would like to sink both shift and truncate
- // instruction to the BB of TruncUse.
- // for example:
- // BB1:
- // i64 shift.result = lshr i64 opnd, imm
- // trunc.result = trunc shift.result to i16
- //
- // BB2:
- // ----> We will have an implicit truncate here if the architecture does
- // not have i16 compare.
- // cmp i16 trunc.result, opnd2
- //
- if (isa<TruncInst>(User) && shiftIsLegal
- // If the type of the truncate is legal, no trucate will be
- // introduced in other basic blocks.
- && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
- MadeChange =
- SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
- continue;
- }
- // If we have already inserted a shift into this block, use it.
- BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
- if (!InsertedShift) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- if (ShiftI->getOpcode() == Instruction::AShr)
- InsertedShift =
- BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
- else
- InsertedShift =
- BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
- MadeChange = true;
- }
- // Replace a use of the shift with a use of the new shift.
- TheUse = InsertedShift;
- }
- // If we removed all uses, nuke the shift.
- if (ShiftI->use_empty())
- ShiftI->eraseFromParent();
- return MadeChange;
- }
- namespace {
- class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
- protected:
- void replaceCall(Value *With) override {
- CI->replaceAllUsesWith(With);
- CI->eraseFromParent();
- }
- bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
- if (ConstantInt *SizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
- return SizeCI->isAllOnesValue();
- return false;
- }
- };
- } // end anonymous namespace
- bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
- BasicBlock *BB = CI->getParent();
- // Lower inline assembly if we can.
- // If we found an inline asm expession, and if the target knows how to
- // lower it to normal LLVM code, do so now.
- if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
- if (TLI->ExpandInlineAsm(CI)) {
- // Avoid invalidating the iterator.
- CurInstIterator = BB->begin();
- // Avoid processing instructions out of order, which could cause
- // reuse before a value is defined.
- SunkAddrs.clear();
- return true;
- }
- // Sink address computing for memory operands into the block.
- if (OptimizeInlineAsmInst(CI))
- return true;
- }
- // Lower all uses of llvm.objectsize.*
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
- if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
- bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
- Type *ReturnTy = CI->getType();
- Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
- // Substituting this can cause recursive simplifications, which can
- // invalidate our iterator. Use a WeakVH to hold onto it in case this
- // happens.
- WeakVH IterHandle(CurInstIterator);
- replaceAndRecursivelySimplify(CI, RetVal,
- TLI ? TLI->getDataLayout() : nullptr,
- TLInfo, ModifiedDT ? nullptr : DT);
- // If the iterator instruction was recursively deleted, start over at the
- // start of the block.
- if (IterHandle != CurInstIterator) {
- CurInstIterator = BB->begin();
- SunkAddrs.clear();
- }
- return true;
- }
- if (II && TLI) {
- SmallVector<Value*, 2> PtrOps;
- Type *AccessTy;
- if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
- while (!PtrOps.empty())
- if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
- return true;
- }
- // From here on out we're working with named functions.
- if (!CI->getCalledFunction()) return false;
- // We'll need DataLayout from here on out.
- const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
- if (!TD) return false;
- // Lower all default uses of _chk calls. This is very similar
- // to what InstCombineCalls does, but here we are only lowering calls
- // that have the default "don't know" as the objectsize. Anything else
- // should be left alone.
- CodeGenPrepareFortifiedLibCalls Simplifier;
- return Simplifier.fold(CI, TD, TLInfo);
- }
- /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
- /// instructions to the predecessor to enable tail call optimizations. The
- /// case it is currently looking for is:
- /// @code
- /// bb0:
- /// %tmp0 = tail call i32 @f0()
- /// br label %return
- /// bb1:
- /// %tmp1 = tail call i32 @f1()
- /// br label %return
- /// bb2:
- /// %tmp2 = tail call i32 @f2()
- /// br label %return
- /// return:
- /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
- /// ret i32 %retval
- /// @endcode
- ///
- /// =>
- ///
- /// @code
- /// bb0:
- /// %tmp0 = tail call i32 @f0()
- /// ret i32 %tmp0
- /// bb1:
- /// %tmp1 = tail call i32 @f1()
- /// ret i32 %tmp1
- /// bb2:
- /// %tmp2 = tail call i32 @f2()
- /// ret i32 %tmp2
- /// @endcode
- bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
- if (!TLI)
- return false;
- ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
- if (!RI)
- return false;
- PHINode *PN = nullptr;
- BitCastInst *BCI = nullptr;
- Value *V = RI->getReturnValue();
- if (V) {
- BCI = dyn_cast<BitCastInst>(V);
- if (BCI)
- V = BCI->getOperand(0);
- PN = dyn_cast<PHINode>(V);
- if (!PN)
- return false;
- }
- if (PN && PN->getParent() != BB)
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- // See llvm::isInTailCallPosition().
- const Function *F = BB->getParent();
- AttributeSet CallerAttrs = F->getAttributes();
- if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
- return false;
- // Make sure there are no instructions between the PHI and return, or that the
- // return is the first instruction in the block.
- if (PN) {
- BasicBlock::iterator BI = BB->begin();
- do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
- if (&*BI == BCI)
- // Also skip over the bitcast.
- ++BI;
- if (&*BI != RI)
- return false;
- } else {
- BasicBlock::iterator BI = BB->begin();
- while (isa<DbgInfoIntrinsic>(BI)) ++BI;
- if (&*BI != RI)
- return false;
- }
- /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
- /// call.
- SmallVector<CallInst*, 4> TailCalls;
- if (PN) {
- for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
- CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
- // Make sure the phi value is indeed produced by the tail call.
- if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
- TLI->mayBeEmittedAsTailCall(CI))
- TailCalls.push_back(CI);
- }
- } else {
- SmallPtrSet<BasicBlock*, 4> VisitedBBs;
- for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
- if (!VisitedBBs.insert(*PI))
- continue;
- BasicBlock::InstListType &InstList = (*PI)->getInstList();
- BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
- BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
- do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
- if (RI == RE)
- continue;
- CallInst *CI = dyn_cast<CallInst>(&*RI);
- if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
- TailCalls.push_back(CI);
- }
- }
- bool Changed = false;
- for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
- CallInst *CI = TailCalls[i];
- CallSite CS(CI);
- // Conservatively require the attributes of the call to match those of the
- // return. Ignore noalias because it doesn't affect the call sequence.
- AttributeSet CalleeAttrs = CS.getAttributes();
- if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias) !=
- AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias))
- continue;
- // Make sure the call instruction is followed by an unconditional branch to
- // the return block.
- BasicBlock *CallBB = CI->getParent();
- BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
- if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
- continue;
- // Duplicate the return into CallBB.
- (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
- ModifiedDT = Changed = true;
- ++NumRetsDup;
- }
- // If we eliminated all predecessors of the block, delete the block now.
- if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
- BB->eraseFromParent();
- return Changed;
- }
- //===----------------------------------------------------------------------===//
- // Memory Optimization
- //===----------------------------------------------------------------------===//
- namespace {
- /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
- /// which holds actual Value*'s for register values.
- struct ExtAddrMode : public TargetLowering::AddrMode {
- Value *BaseReg;
- Value *ScaledReg;
- ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
- void print(raw_ostream &OS) const;
- void dump() const;
- bool operator==(const ExtAddrMode& O) const {
- return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
- (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
- (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
- }
- };
- #ifndef NDEBUG
- static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
- AM.print(OS);
- return OS;
- }
- #endif
- void ExtAddrMode::print(raw_ostream &OS) const {
- bool NeedPlus = false;
- OS << "[";
- if (BaseGV) {
- OS << (NeedPlus ? " + " : "")
- << "GV:";
- BaseGV->printAsOperand(OS, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (BaseOffs) {
- OS << (NeedPlus ? " + " : "")
- << BaseOffs;
- NeedPlus = true;
- }
- if (BaseReg) {
- OS << (NeedPlus ? " + " : "")
- << "Base:";
- BaseReg->printAsOperand(OS, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (Scale) {
- OS << (NeedPlus ? " + " : "")
- << Scale << "*";
- ScaledReg->printAsOperand(OS, /*PrintType=*/false);
- }
- OS << ']';
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void ExtAddrMode::dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- #endif
- /// \brief This class provides transaction based operation on the IR.
- /// Every change made through this class is recorded in the internal state and
- /// can be undone (rollback) until commit is called.
- class TypePromotionTransaction {
- /// \brief This represents the common interface of the individual transaction.
- /// Each class implements the logic for doing one specific modification on
- /// the IR via the TypePromotionTransaction.
- class TypePromotionAction {
- protected:
- /// The Instruction modified.
- Instruction *Inst;
- public:
- /// \brief Constructor of the action.
- /// The constructor performs the related action on the IR.
- TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
- virtual ~TypePromotionAction() {}
- /// \brief Undo the modification done by this action.
- /// When this method is called, the IR must be in the same state as it was
- /// before this action was applied.
- /// \pre Undoing the action works if and only if the IR is in the exact same
- /// state as it was directly after this action was applied.
- virtual void undo() = 0;
- /// \brief Advocate every change made by this action.
- /// When the results on the IR of the action are to be kept, it is important
- /// to call this function, otherwise hidden information may be kept forever.
- virtual void commit() {
- // Nothing to be done, this action is not doing anything.
- }
- };
- /// \brief Utility to remember the position of an instruction.
- class InsertionHandler {
- /// Position of an instruction.
- /// Either an instruction:
- /// - Is the first in a basic block: BB is used.
- /// - Has a previous instructon: PrevInst is used.
- union {
- Instruction *PrevInst;
- BasicBlock *BB;
- } Point;
- /// Remember whether or not the instruction had a previous instruction.
- bool HasPrevInstruction;
- public:
- /// \brief Record the position of \p Inst.
- InsertionHandler(Instruction *Inst) {
- BasicBlock::iterator It = Inst;
- HasPrevInstruction = (It != (Inst->getParent()->begin()));
- if (HasPrevInstruction)
- Point.PrevInst = --It;
- else
- Point.BB = Inst->getParent();
- }
- /// \brief Insert \p Inst at the recorded position.
- void insert(Instruction *Inst) {
- if (HasPrevInstruction) {
- if (Inst->getParent())
- Inst->removeFromParent();
- Inst->insertAfter(Point.PrevInst);
- } else {
- Instruction *Position = Point.BB->getFirstInsertionPt();
- if (Inst->getParent())
- Inst->moveBefore(Position);
- else
- Inst->insertBefore(Position);
- }
- }
- };
- /// \brief Move an instruction before another.
- class InstructionMoveBefore : public TypePromotionAction {
- /// Original position of the instruction.
- InsertionHandler Position;
- public:
- /// \brief Move \p Inst before \p Before.
- InstructionMoveBefore(Instruction *Inst, Instruction *Before)
- : TypePromotionAction(Inst), Position(Inst) {
- DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
- Inst->moveBefore(Before);
- }
- /// \brief Move the instruction back to its original position.
- void undo() override {
- DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
- Position.insert(Inst);
- }
- };
- /// \brief Set the operand of an instruction with a new value.
- class OperandSetter : public TypePromotionAction {
- /// Original operand of the instruction.
- Value *Origin;
- /// Index of the modified instruction.
- unsigned Idx;
- public:
- /// \brief Set \p Idx operand of \p Inst with \p NewVal.
- OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
- : TypePromotionAction(Inst), Idx(Idx) {
- DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
- << "for:" << *Inst << "\n"
- << "with:" << *NewVal << "\n");
- Origin = Inst->getOperand(Idx);
- Inst->setOperand(Idx, NewVal);
- }
- /// \brief Restore the original value of the instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
- << "for: " << *Inst << "\n"
- << "with: " << *Origin << "\n");
- Inst->setOperand(Idx, Origin);
- }
- };
- /// \brief Hide the operands of an instruction.
- /// Do as if this instruction was not using any of its operands.
- class OperandsHider : public TypePromotionAction {
- /// The list of original operands.
- SmallVector<Value *, 4> OriginalValues;
- public:
- /// \brief Remove \p Inst from the uses of the operands of \p Inst.
- OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
- DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
- unsigned NumOpnds = Inst->getNumOperands();
- OriginalValues.reserve(NumOpnds);
- for (unsigned It = 0; It < NumOpnds; ++It) {
- // Save the current operand.
- Value *Val = Inst->getOperand(It);
- OriginalValues.push_back(Val);
- // Set a dummy one.
- // We could use OperandSetter here, but that would implied an overhead
- // that we are not willing to pay.
- Inst->setOperand(It, UndefValue::get(Val->getType()));
- }
- }
- /// \brief Restore the original list of uses.
- void undo() override {
- DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
- for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
- Inst->setOperand(It, OriginalValues[It]);
- }
- };
- /// \brief Build a truncate instruction.
- class TruncBuilder : public TypePromotionAction {
- public:
- /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
- /// result.
- /// trunc Opnd to Ty.
- TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
- IRBuilder<> Builder(Opnd);
- Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
- DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
- }
- /// \brief Get the built instruction.
- Instruction *getBuiltInstruction() { return Inst; }
- /// \brief Remove the built instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
- Inst->eraseFromParent();
- }
- };
- /// \brief Build a sign extension instruction.
- class SExtBuilder : public TypePromotionAction {
- public:
- /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
- /// result.
- /// sext Opnd to Ty.
- SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
- : TypePromotionAction(Inst) {
- IRBuilder<> Builder(InsertPt);
- Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
- DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
- }
- /// \brief Get the built instruction.
- Instruction *getBuiltInstruction() { return Inst; }
- /// \brief Remove the built instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
- Inst->eraseFromParent();
- }
- };
- /// \brief Mutate an instruction to another type.
- class TypeMutator : public TypePromotionAction {
- /// Record the original type.
- Type *OrigTy;
- public:
- /// \brief Mutate the type of \p Inst into \p NewTy.
- TypeMutator(Instruction *Inst, Type *NewTy)
- : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
- DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
- << "\n");
- Inst->mutateType(NewTy);
- }
- /// \brief Mutate the instruction back to its original type.
- void undo() override {
- DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
- << "\n");
- Inst->mutateType(OrigTy);
- }
- };
- /// \brief Replace the uses of an instruction by another instruction.
- class UsesReplacer : public TypePromotionAction {
- /// Helper structure to keep track of the replaced uses.
- struct InstructionAndIdx {
- /// The instruction using the instruction.
- Instruction *Inst;
- /// The index where this instruction is used for Inst.
- unsigned Idx;
- InstructionAndIdx(Instruction *Inst, unsigned Idx)
- : Inst(Inst), Idx(Idx) {}
- };
- /// Keep track of the original uses (pair Instruction, Index).
- SmallVector<InstructionAndIdx, 4> OriginalUses;
- typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
- public:
- /// \brief Replace all the use of \p Inst by \p New.
- UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
- DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
- << "\n");
- // Record the original uses.
- for (Use &U : Inst->uses()) {
- Instruction *UserI = cast<Instruction>(U.getUser());
- OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
- }
- // Now, we can replace the uses.
- Inst->replaceAllUsesWith(New);
- }
- /// \brief Reassign the original uses of Inst to Inst.
- void undo() override {
- DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
- for (use_iterator UseIt = OriginalUses.begin(),
- EndIt = OriginalUses.end();
- UseIt != EndIt; ++UseIt) {
- UseIt->Inst->setOperand(UseIt->Idx, Inst);
- }
- }
- };
- /// \brief Remove an instruction from the IR.
- class InstructionRemover : public TypePromotionAction {
- /// Original position of the instruction.
- InsertionHandler Inserter;
- /// Helper structure to hide all the link to the instruction. In other
- /// words, this helps to do as if the instruction was removed.
- OperandsHider Hider;
- /// Keep track of the uses replaced, if any.
- UsesReplacer *Replacer;
- public:
- /// \brief Remove all reference of \p Inst and optinally replace all its
- /// uses with New.
- /// \pre If !Inst->use_empty(), then New != nullptr
- InstructionRemover(Instruction *Inst, Value *New = nullptr)
- : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
- Replacer(nullptr) {
- if (New)
- Replacer = new UsesReplacer(Inst, New);
- DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
- Inst->removeFromParent();
- }
- ~InstructionRemover() { delete Replacer; }
- /// \brief Really remove the instruction.
- void commit() override { delete Inst; }
- /// \brief Resurrect the instruction and reassign it to the proper uses if
- /// new value was provided when build this action.
- void undo() override {
- DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
- Inserter.insert(Inst);
- if (Replacer)
- Replacer->undo();
- Hider.undo();
- }
- };
- public:
- /// Restoration point.
- /// The restoration point is a pointer to an action instead of an iterator
- /// because the iterator may be invalidated but not the pointer.
- typedef const TypePromotionAction *ConstRestorationPt;
- /// Advocate every changes made in that transaction.
- void commit();
- /// Undo all the changes made after the given point.
- void rollback(ConstRestorationPt Point);
- /// Get the current restoration point.
- ConstRestorationPt getRestorationPoint() const;
- /// \name API for IR modification with state keeping to support rollback.
- /// @{
- /// Same as Instruction::setOperand.
- void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
- /// Same as Instruction::eraseFromParent.
- void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
- /// Same as Value::replaceAllUsesWith.
- void replaceAllUsesWith(Instruction *Inst, Value *New);
- /// Same as Value::mutateType.
- void mutateType(Instruction *Inst, Type *NewTy);
- /// Same as IRBuilder::createTrunc.
- Instruction *createTrunc(Instruction *Opnd, Type *Ty);
- /// Same as IRBuilder::createSExt.
- Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
- /// Same as Instruction::moveBefore.
- void moveBefore(Instruction *Inst, Instruction *Before);
- /// @}
- private:
- /// The ordered list of actions made so far.
- SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
- typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
- };
- void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
- Value *NewVal) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
- }
- void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
- Value *NewVal) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
- }
- void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
- Value *New) {
- Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
- }
- void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
- Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
- }
- Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
- Type *Ty) {
- std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
- Instruction *I = Ptr->getBuiltInstruction();
- Actions.push_back(std::move(Ptr));
- return I;
- }
- Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
- Value *Opnd, Type *Ty) {
- std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
- Instruction *I = Ptr->getBuiltInstruction();
- Actions.push_back(std::move(Ptr));
- return I;
- }
- void TypePromotionTransaction::moveBefore(Instruction *Inst,
- Instruction *Before) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
- }
- TypePromotionTransaction::ConstRestorationPt
- TypePromotionTransaction::getRestorationPoint() const {
- return !Actions.empty() ? Actions.back().get() : nullptr;
- }
- void TypePromotionTransaction::commit() {
- for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
- ++It)
- (*It)->commit();
- Actions.clear();
- }
- void TypePromotionTransaction::rollback(
- TypePromotionTransaction::ConstRestorationPt Point) {
- while (!Actions.empty() && Point != Actions.back().get()) {
- std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
- Curr->undo();
- }
- }
- /// \brief A helper class for matching addressing modes.
- ///
- /// This encapsulates the logic for matching the target-legal addressing modes.
- class AddressingModeMatcher {
- SmallVectorImpl<Instruction*> &AddrModeInsts;
- const TargetLowering &TLI;
- /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
- /// the memory instruction that we're computing this address for.
- Type *AccessTy;
- Instruction *MemoryInst;
- /// AddrMode - This is the addressing mode that we're building up. This is
- /// part of the return value of this addressing mode matching stuff.
- ExtAddrMode &AddrMode;
- /// The truncate instruction inserted by other CodeGenPrepare optimizations.
- const SetOfInstrs &InsertedTruncs;
- /// A map from the instructions to their type before promotion.
- InstrToOrigTy &PromotedInsts;
- /// The ongoing transaction where every action should be registered.
- TypePromotionTransaction &TPT;
- /// IgnoreProfitability - This is set to true when we should not do
- /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
- /// always returns true.
- bool IgnoreProfitability;
- AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
- const TargetLowering &T, Type *AT,
- Instruction *MI, ExtAddrMode &AM,
- const SetOfInstrs &InsertedTruncs,
- InstrToOrigTy &PromotedInsts,
- TypePromotionTransaction &TPT)
- : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
- InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
- IgnoreProfitability = false;
- }
- public:
- /// Match - Find the maximal addressing mode that a load/store of V can fold,
- /// give an access type of AccessTy. This returns a list of involved
- /// instructions in AddrModeInsts.
- /// \p InsertedTruncs The truncate instruction inserted by other
- /// CodeGenPrepare
- /// optimizations.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p The ongoing transaction where every action should be registered.
- static ExtAddrMode Match(Value *V, Type *AccessTy,
- Instruction *MemoryInst,
- SmallVectorImpl<Instruction*> &AddrModeInsts,
- const TargetLowering &TLI,
- const SetOfInstrs &InsertedTruncs,
- InstrToOrigTy &PromotedInsts,
- TypePromotionTransaction &TPT) {
- ExtAddrMode Result;
- bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
- MemoryInst, Result, InsertedTruncs,
- PromotedInsts, TPT).MatchAddr(V, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
- return Result;
- }
- private:
- bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
- bool MatchAddr(Value *V, unsigned Depth);
- bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
- bool *MovedAway = nullptr);
- bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
- ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter);
- bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
- bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
- Value *PromotedOperand) const;
- };
- /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
- /// Return true and update AddrMode if this addr mode is legal for the target,
- /// false if not.
- bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
- unsigned Depth) {
- // If Scale is 1, then this is the same as adding ScaleReg to the addressing
- // mode. Just process that directly.
- if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
- // If the scale is 0, it takes nothing to add this.
- if (Scale == 0)
- return true;
- // If we already have a scale of this value, we can add to it, otherwise, we
- // need an available scale field.
- if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
- return false;
- ExtAddrMode TestAddrMode = AddrMode;
- // Add scale to turn X*4+X*3 -> X*7. This could also do things like
- // [A+B + A*7] -> [B+A*8].
- TestAddrMode.Scale += Scale;
- TestAddrMode.ScaledReg = ScaleReg;
- // If the new address isn't legal, bail out.
- if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
- return false;
- // It was legal, so commit it.
- AddrMode = TestAddrMode;
- // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
- // to see if ScaleReg is actually X+C. If so, we can turn this into adding
- // X*Scale + C*Scale to addr mode.
- ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
- if (isa<Instruction>(ScaleReg) && // not a constant expr.
- match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
- TestAddrMode.ScaledReg = AddLHS;
- TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
- // If this addressing mode is legal, commit it and remember that we folded
- // this instruction.
- if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
- AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
- AddrMode = TestAddrMode;
- return true;
- }
- }
- // Otherwise, not (x+c)*scale, just return what we have.
- return true;
- }
- /// MightBeFoldableInst - This is a little filter, which returns true if an
- /// addressing computation involving I might be folded into a load/store
- /// accessing it. This doesn't need to be perfect, but needs to accept at least
- /// the set of instructions that MatchOperationAddr can.
- static bool MightBeFoldableInst(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- // Don't touch identity bitcasts.
- if (I->getType() == I->getOperand(0)->getType())
- return false;
- return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return true;
- case Instruction::IntToPtr:
- // We know the input is intptr_t, so this is foldable.
- return true;
- case Instruction::Add:
- return true;
- case Instruction::Mul:
- case Instruction::Shl:
- // Can only handle X*C and X << C.
- return isa<ConstantInt>(I->getOperand(1));
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
- }
- /// \brief Hepler class to perform type promotion.
- class TypePromotionHelper {
- /// \brief Utility function to check whether or not a sign extension of
- /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
- /// using the operands of \p Inst or promoting \p Inst.
- /// In other words, check if:
- /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
- /// #1 Promotion applies:
- /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
- /// #2 Operand reuses:
- /// sext opnd1 to ConsideredSExtType.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
- const InstrToOrigTy &PromotedInsts);
- /// \brief Utility function to determine if \p OpIdx should be promoted when
- /// promoting \p Inst.
- static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
- if (isa<SelectInst>(Inst) && OpIdx == 0)
- return false;
- return true;
- }
- /// \brief Utility function to promote the operand of \p SExt when this
- /// operand is a promotable trunc or sext.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p CreatedInsts[out] contains how many non-free instructions have been
- /// created to promote the operand of SExt.
- /// Should never be called directly.
- /// \return The promoted value which is used instead of SExt.
- static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
- /// \brief Utility function to promote the operand of \p SExt when this
- /// operand is promotable and is not a supported trunc or sext.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p CreatedInsts[out] contains how many non-free instructions have been
- /// created to promote the operand of SExt.
- /// Should never be called directly.
- /// \return The promoted value which is used instead of SExt.
- static Value *promoteOperandForOther(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
- public:
- /// Type for the utility function that promotes the operand of SExt.
- typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts);
- /// \brief Given a sign extend instruction \p SExt, return the approriate
- /// action to promote the operand of \p SExt instead of using SExt.
- /// \return NULL if no promotable action is possible with the current
- /// sign extension.
- /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
- /// the others CodeGenPrepare optimizations. This information is important
- /// because we do not want to promote these instructions as CodeGenPrepare
- /// will reinsert them later. Thus creating an infinite loop: create/remove.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
- const TargetLowering &TLI,
- const InstrToOrigTy &PromotedInsts);
- };
- bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
- Type *ConsideredSExtType,
- const InstrToOrigTy &PromotedInsts) {
- // We can always get through sext.
- if (isa<SExtInst>(Inst))
- return true;
- // We can get through binary operator, if it is legal. In other words, the
- // binary operator must have a nuw or nsw flag.
- const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
- if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
- (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
- return true;
- // Check if we can do the following simplification.
- // sext(trunc(sext)) --> sext
- if (!isa<TruncInst>(Inst))
- return false;
- Value *OpndVal = Inst->getOperand(0);
- // Check if we can use this operand in the sext.
- // If the type is larger than the result type of the sign extension,
- // we cannot.
- if (OpndVal->getType()->getIntegerBitWidth() >
- ConsideredSExtType->getIntegerBitWidth())
- return false;
- // If the operand of the truncate is not an instruction, we will not have
- // any information on the dropped bits.
- // (Actually we could for constant but it is not worth the extra logic).
- Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
- if (!Opnd)
- return false;
- // Check if the source of the type is narrow enough.
- // I.e., check that trunc just drops sign extended bits.
- // #1 get the type of the operand.
- const Type *OpndType;
- InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
- if (It != PromotedInsts.end())
- OpndType = It->second;
- else if (isa<SExtInst>(Opnd))
- OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
- else
- return false;
- // #2 check that the truncate just drop sign extended bits.
- if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
- return true;
- return false;
- }
- TypePromotionHelper::Action TypePromotionHelper::getAction(
- Instruction *SExt, const SetOfInstrs &InsertedTruncs,
- const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
- Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
- Type *SExtTy = SExt->getType();
- // If the operand of the sign extension is not an instruction, we cannot
- // get through.
- // If it, check we can get through.
- if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
- return nullptr;
- // Do not promote if the operand has been added by codegenprepare.
- // Otherwise, it means we are undoing an optimization that is likely to be
- // redone, thus causing potential infinite loop.
- if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
- return nullptr;
- // SExt or Trunc instructions.
- // Return the related handler.
- if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
- return promoteOperandForTruncAndSExt;
- // Regular instruction.
- // Abort early if we will have to insert non-free instructions.
- if (!SExtOpnd->hasOneUse() &&
- !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
- return nullptr;
- return promoteOperandForOther;
- }
- Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
- llvm::Instruction *SExt, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
- // By construction, the operand of SExt is an instruction. Otherwise we cannot
- // get through it and this method should not be called.
- Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
- // Replace sext(trunc(opnd)) or sext(sext(opnd))
- // => sext(opnd).
- TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
- CreatedInsts = 0;
- // Remove dead code.
- if (SExtOpnd->use_empty())
- TPT.eraseInstruction(SExtOpnd);
- // Check if the sext is still needed.
- if (SExt->getType() != SExt->getOperand(0)->getType())
- return SExt;
- // At this point we have: sext ty opnd to ty.
- // Reassign the uses of SExt to the opnd and remove SExt.
- Value *NextVal = SExt->getOperand(0);
- TPT.eraseInstruction(SExt, NextVal);
- return NextVal;
- }
- Value *
- TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInsts) {
- // By construction, the operand of SExt is an instruction. Otherwise we cannot
- // get through it and this method should not be called.
- Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
- CreatedInsts = 0;
- if (!SExtOpnd->hasOneUse()) {
- // SExtOpnd will be promoted.
- // All its uses, but SExt, will need to use a truncated value of the
- // promoted version.
- // Create the truncate now.
- Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
- Trunc->removeFromParent();
- // Insert it just after the definition.
- Trunc->insertAfter(SExtOpnd);
- TPT.replaceAllUsesWith(SExtOpnd, Trunc);
- // Restore the operand of SExt (which has been replace by the previous call
- // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
- TPT.setOperand(SExt, 0, SExtOpnd);
- }
- // Get through the Instruction:
- // 1. Update its type.
- // 2. Replace the uses of SExt by Inst.
- // 3. Sign extend each operand that needs to be sign extended.
- // Remember the original type of the instruction before promotion.
- // This is useful to know that the high bits are sign extended bits.
- PromotedInsts.insert(
- std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
- // Step #1.
- TPT.mutateType(SExtOpnd, SExt->getType());
- // Step #2.
- TPT.replaceAllUsesWith(SExt, SExtOpnd);
- // Step #3.
- Instruction *SExtForOpnd = SExt;
- DEBUG(dbgs() << "Propagate SExt to operands\n");
- for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
- ++OpIdx) {
- DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
- if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
- !shouldSExtOperand(SExtOpnd, OpIdx)) {
- DEBUG(dbgs() << "No need to propagate\n");
- continue;
- }
- // Check if we can statically sign extend the operand.
- Value *Opnd = SExtOpnd->getOperand(OpIdx);
- if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
- DEBUG(dbgs() << "Statically sign extend\n");
- TPT.setOperand(
- SExtOpnd, OpIdx,
- ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
- continue;
- }
- // UndefValue are typed, so we have to statically sign extend them.
- if (isa<UndefValue>(Opnd)) {
- DEBUG(dbgs() << "Statically sign extend\n");
- TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
- continue;
- }
- // Otherwise we have to explicity sign extend the operand.
- // Check if SExt was reused to sign extend an operand.
- if (!SExtForOpnd) {
- // If yes, create a new one.
- DEBUG(dbgs() << "More operands to sext\n");
- SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
- ++CreatedInsts;
- }
- TPT.setOperand(SExtForOpnd, 0, Opnd);
- // Move the sign extension before the insertion point.
- TPT.moveBefore(SExtForOpnd, SExtOpnd);
- TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
- // If more sext are required, new instructions will have to be created.
- SExtForOpnd = nullptr;
- }
- if (SExtForOpnd == SExt) {
- DEBUG(dbgs() << "Sign extension is useless now\n");
- TPT.eraseInstruction(SExt);
- }
- return SExtOpnd;
- }
- /// IsPromotionProfitable - Check whether or not promoting an instruction
- /// to a wider type was profitable.
- /// \p MatchedSize gives the number of instructions that have been matched
- /// in the addressing mode after the promotion was applied.
- /// \p SizeWithPromotion gives the number of created instructions for
- /// the promotion plus the number of instructions that have been
- /// matched in the addressing mode before the promotion.
- /// \p PromotedOperand is the value that has been promoted.
- /// \return True if the promotion is profitable, false otherwise.
- bool
- AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
- unsigned SizeWithPromotion,
- Value *PromotedOperand) const {
- // We folded less instructions than what we created to promote the operand.
- // This is not profitable.
- if (MatchedSize < SizeWithPromotion)
- return false;
- if (MatchedSize > SizeWithPromotion)
- return true;
- // The promotion is neutral but it may help folding the sign extension in
- // loads for instance.
- // Check that we did not create an illegal instruction.
- Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
- if (!PromotedInst)
- return false;
- int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
- // If the ISDOpcode is undefined, it was undefined before the promotion.
- if (!ISDOpcode)
- return true;
- // Otherwise, check if the promoted instruction is legal or not.
- return TLI.isOperationLegalOrCustom(ISDOpcode,
- EVT::getEVT(PromotedInst->getType()));
- }
- /// MatchOperationAddr - Given an instruction or constant expr, see if we can
- /// fold the operation into the addressing mode. If so, update the addressing
- /// mode and return true, otherwise return false without modifying AddrMode.
- /// If \p MovedAway is not NULL, it contains the information of whether or
- /// not AddrInst has to be folded into the addressing mode on success.
- /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
- /// because it has been moved away.
- /// Thus AddrInst must not be added in the matched instructions.
- /// This state can happen when AddrInst is a sext, since it may be moved away.
- /// Therefore, AddrInst may not be valid when MovedAway is true and it must
- /// not be referenced anymore.
- bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
- unsigned Depth,
- bool *MovedAway) {
- // Avoid exponential behavior on extremely deep expression trees.
- if (Depth >= 5) return false;
- // By default, all matched instructions stay in place.
- if (MovedAway)
- *MovedAway = false;
- switch (Opcode) {
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
- case Instruction::IntToPtr:
- // This inttoptr is a no-op if the integer type is pointer sized.
- if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
- TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- // BitCast is always a noop, and we can handle it as long as it is
- // int->int or pointer->pointer (we don't want int<->fp or something).
- if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
- AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
- // Don't touch identity bitcasts. These were probably put here by LSR,
- // and we don't want to mess around with them. Assume it knows what it
- // is doing.
- AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::Add: {
- // Check to see if we can merge in the RHS then the LHS. If so, we win.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // Start a transaction at this point.
- // The LHS may match but not the RHS.
- // Therefore, we need a higher level restoration point to undo partially
- // matched operation.
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- // Restore the old addr mode info.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
- return true;
- // Otherwise we definitely can't merge the ADD in.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- break;
- }
- //case Instruction::Or:
- // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
- //break;
- case Instruction::Mul:
- case Instruction::Shl: {
- // Can only handle X*C and X << C.
- ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
- if (!RHS)
- return false;
- int64_t Scale = RHS->getSExtValue();
- if (Opcode == Instruction::Shl)
- Scale = 1LL << Scale;
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
- }
- case Instruction::GetElementPtr: {
- // Scan the GEP. We check it if it contains constant offsets and at most
- // one variable offset.
- int VariableOperand = -1;
- unsigned VariableScale = 0;
- int64_t ConstantOffset = 0;
- const DataLayout *TD = TLI.getDataLayout();
- gep_type_iterator GTI = gep_type_begin(AddrInst);
- for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- const StructLayout *SL = TD->getStructLayout(STy);
- unsigned Idx =
- cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
- ConstantOffset += SL->getElementOffset(Idx);
- } else {
- uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
- ConstantOffset += CI->getSExtValue()*TypeSize;
- } else if (TypeSize) { // Scales of zero don't do anything.
- // We only allow one variable index at the moment.
- if (VariableOperand != -1)
- return false;
- // Remember the variable index.
- VariableOperand = i;
- VariableScale = TypeSize;
- }
- }
- }
- // A common case is for the GEP to only do a constant offset. In this case,
- // just add it to the disp field and check validity.
- if (VariableOperand == -1) {
- AddrMode.BaseOffs += ConstantOffset;
- if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
- // Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- }
- AddrMode.BaseOffs -= ConstantOffset;
- return false;
- }
- // Save the valid addressing mode in case we can't match.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // See if the scale and offset amount is valid for this target.
- AddrMode.BaseOffs += ConstantOffset;
- // Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
- // If it couldn't be matched, just stuff the value in a register.
- if (AddrMode.HasBaseReg) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- }
- // Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
- Depth)) {
- // If it couldn't be matched, try stuffing the base into a register
- // instead of matching it, and retrying the match of the scale.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- if (AddrMode.HasBaseReg)
- return false;
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
- VariableScale, Depth)) {
- // If even that didn't work, bail.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- }
- return true;
- }
- case Instruction::SExt: {
- Instruction *SExt = dyn_cast<Instruction>(AddrInst);
- if (!SExt)
- return false;
- // Try to move this sext out of the way of the addressing mode.
- // Ask for a method for doing so.
- TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
- SExt, InsertedTruncs, TLI, PromotedInsts);
- if (!TPH)
- return false;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- unsigned CreatedInsts = 0;
- Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
- // SExt has been moved away.
- // Thus either it will be rematched later in the recursive calls or it is
- // gone. Anyway, we must not fold it into the addressing mode at this point.
- // E.g.,
- // op = add opnd, 1
- // idx = sext op
- // addr = gep base, idx
- // is now:
- // promotedOpnd = sext opnd <- no match here
- // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
- // addr = gep base, op <- match
- if (MovedAway)
- *MovedAway = true;
- assert(PromotedOperand &&
- "TypePromotionHelper should have filtered out those cases");
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- if (!MatchAddr(PromotedOperand, Depth) ||
- !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
- PromotedOperand)) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
- TPT.rollback(LastKnownGood);
- return false;
- }
- return true;
- }
- }
- return false;
- }
- /// MatchAddr - If we can, try to add the value of 'Addr' into the current
- /// addressing mode. If Addr can't be added to AddrMode this returns false and
- /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
- /// or intptr_t for the target.
- ///
- bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
- // Start a transaction at this point that we will rollback if the matching
- // fails.
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
- // Fold in immediates if legal for the target.
- AddrMode.BaseOffs += CI->getSExtValue();
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseOffs -= CI->getSExtValue();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
- // If this is a global variable, try to fold it into the addressing mode.
- if (!AddrMode.BaseGV) {
- AddrMode.BaseGV = GV;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.BaseGV = nullptr;
- }
- } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // Check to see if it is possible to fold this operation.
- bool MovedAway = false;
- if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
- // This instruction may have been move away. If so, there is nothing
- // to check here.
- if (MovedAway)
- return true;
- // Okay, it's possible to fold this. Check to see if it is actually
- // *profitable* to do so. We use a simple cost model to avoid increasing
- // register pressure too much.
- if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
- AddrModeInsts.push_back(I);
- return true;
- }
- // It isn't profitable to do this, roll back.
- //cerr << "NOT FOLDING: " << *I;
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
- return true;
- TPT.rollback(LastKnownGood);
- } else if (isa<ConstantPointerNull>(Addr)) {
- // Null pointer gets folded without affecting the addressing mode.
- return true;
- }
- // Worse case, the target should support [reg] addressing modes. :)
- if (!AddrMode.HasBaseReg) {
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = Addr;
- // Still check for legality in case the target supports [imm] but not [i+r].
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.HasBaseReg = false;
- AddrMode.BaseReg = nullptr;
- }
- // If the base register is already taken, see if we can do [r+r].
- if (AddrMode.Scale == 0) {
- AddrMode.Scale = 1;
- AddrMode.ScaledReg = Addr;
- if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
- return true;
- AddrMode.Scale = 0;
- AddrMode.ScaledReg = nullptr;
- }
- // Couldn't match.
- TPT.rollback(LastKnownGood);
- return false;
- }
- /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
- /// inline asm call are due to memory operands. If so, return true, otherwise
- /// return false.
- static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
- const TargetLowering &TLI) {
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
- // If this asm operand is our Value*, and if it isn't an indirect memory
- // operand, we can't fold it!
- if (OpInfo.CallOperandVal == OpVal &&
- (OpInfo.ConstraintType != TargetLowering::C_Memory ||
- !OpInfo.isIndirect))
- return false;
- }
- return true;
- }
- /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
- /// memory use. If we find an obviously non-foldable instruction, return true.
- /// Add the ultimately found memory instructions to MemoryUses.
- static bool FindAllMemoryUses(Instruction *I,
- SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
- SmallPtrSetImpl<Instruction*> &ConsideredInsts,
- const TargetLowering &TLI) {
- // If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I))
- return false;
- // If this is an obviously unfoldable instruction, bail out.
- if (!MightBeFoldableInst(I))
- return true;
- // Loop over all the uses, recursively processing them.
- for (Use &U : I->uses()) {
- Instruction *UserI = cast<Instruction>(U.getUser());
- if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
- MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
- unsigned opNo = U.getOperandNo();
- if (opNo == 0) return true; // Storing addr, not into addr.
- MemoryUses.push_back(std::make_pair(SI, opNo));
- continue;
- }
- if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
- InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
- if (!IA) return true;
- // If this is a memory operand, we're cool, otherwise bail out.
- if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
- return true;
- continue;
- }
- if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
- return true;
- }
- return false;
- }
- /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
- /// the use site that we're folding it into. If so, there is no cost to
- /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
- /// that we know are live at the instruction already.
- bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
- Value *KnownLive2) {
- // If Val is either of the known-live values, we know it is live!
- if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
- return true;
- // All values other than instructions and arguments (e.g. constants) are live.
- if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
- // If Val is a constant sized alloca in the entry block, it is live, this is
- // true because it is just a reference to the stack/frame pointer, which is
- // live for the whole function.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
- if (AI->isStaticAlloca())
- return true;
- // Check to see if this value is already used in the memory instruction's
- // block. If so, it's already live into the block at the very least, so we
- // can reasonably fold it.
- return Val->isUsedInBasicBlock(MemoryInst->getParent());
- }
- /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
- /// mode of the machine to fold the specified instruction into a load or store
- /// that ultimately uses it. However, the specified instruction has multiple
- /// uses. Given this, it may actually increase register pressure to fold it
- /// into the load. For example, consider this code:
- ///
- /// X = ...
- /// Y = X+1
- /// use(Y) -> nonload/store
- /// Z = Y+1
- /// load Z
- ///
- /// In this case, Y has multiple uses, and can be folded into the load of Z
- /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
- /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
- /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
- /// number of computations either.
- ///
- /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
- /// X was live across 'load Z' for other reasons, we actually *would* want to
- /// fold the addressing mode in the Z case. This would make Y die earlier.
- bool AddressingModeMatcher::
- IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter) {
- if (IgnoreProfitability) return true;
- // AMBefore is the addressing mode before this instruction was folded into it,
- // and AMAfter is the addressing mode after the instruction was folded. Get
- // the set of registers referenced by AMAfter and subtract out those
- // referenced by AMBefore: this is the set of values which folding in this
- // address extends the lifetime of.
- //
- // Note that there are only two potential values being referenced here,
- // BaseReg and ScaleReg (global addresses are always available, as are any
- // folded immediates).
- Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
- // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
- // lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- BaseReg = nullptr;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- ScaledReg = nullptr;
- // If folding this instruction (and it's subexprs) didn't extend any live
- // ranges, we're ok with it.
- if (!BaseReg && !ScaledReg)
- return true;
- // If all uses of this instruction are ultimately load/store/inlineasm's,
- // check to see if their addressing modes will include this instruction. If
- // so, we can fold it into all uses, so it doesn't matter if it has multiple
- // uses.
- SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
- SmallPtrSet<Instruction*, 16> ConsideredInsts;
- if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
- return false; // Has a non-memory, non-foldable use!
- // Now that we know that all uses of this instruction are part of a chain of
- // computation involving only operations that could theoretically be folded
- // into a memory use, loop over each of these uses and see if they could
- // *actually* fold the instruction.
- SmallVector<Instruction*, 32> MatchedAddrModeInsts;
- for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
- Instruction *User = MemoryUses[i].first;
- unsigned OpNo = MemoryUses[i].second;
- // Get the access type of this use. If the use isn't a pointer, we don't
- // know what it accesses.
- Value *Address = User->getOperand(OpNo);
- if (!Address->getType()->isPointerTy())
- return false;
- Type *AddressAccessTy = Address->getType()->getPointerElementType();
- // Do a match against the root of this address, ignoring profitability. This
- // will tell us if the addressing mode for the memory operation will
- // *actually* cover the shared instruction.
- ExtAddrMode Result;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
- MemoryInst, Result, InsertedTruncs,
- PromotedInsts, TPT);
- Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
- // The match was to check the profitability, the changes made are not
- // part of the original matcher. Therefore, they should be dropped
- // otherwise the original matcher will not present the right state.
- TPT.rollback(LastKnownGood);
- // If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
- return false;
- MatchedAddrModeInsts.clear();
- }
- return true;
- }
- } // end anonymous namespace
- /// IsNonLocalValue - Return true if the specified values are defined in a
- /// different basic block than BB.
- static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() != BB;
- return false;
- }
- /// OptimizeMemoryInst - Load and Store Instructions often have
- /// addressing modes that can do significant amounts of computation. As such,
- /// instruction selection will try to get the load or store to do as much
- /// computation as possible for the program. The problem is that isel can only
- /// see within a single block. As such, we sink as much legal addressing mode
- /// stuff into the block as possible.
- ///
- /// This method is used to optimize both load/store and inline asms with memory
- /// operands.
- bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
- Type *AccessTy) {
- Value *Repl = Addr;
- // Try to collapse single-value PHI nodes. This is necessary to undo
- // unprofitable PRE transformations.
- SmallVector<Value*, 8> worklist;
- SmallPtrSet<Value*, 16> Visited;
- worklist.push_back(Addr);
- // Use a worklist to iteratively look through PHI nodes, and ensure that
- // the addressing mode obtained from the non-PHI roots of the graph
- // are equivalent.
- Value *Consensus = nullptr;
- unsigned NumUsesConsensus = 0;
- bool IsNumUsesConsensusValid = false;
- SmallVector<Instruction*, 16> AddrModeInsts;
- ExtAddrMode AddrMode;
- TypePromotionTransaction TPT;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- while (!worklist.empty()) {
- Value *V = worklist.back();
- worklist.pop_back();
- // Break use-def graph loops.
- if (!Visited.insert(V)) {
- Consensus = nullptr;
- break;
- }
- // For a PHI node, push all of its incoming values.
- if (PHINode *P = dyn_cast<PHINode>(V)) {
- for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
- worklist.push_back(P->getIncomingValue(i));
- continue;
- }
- // For non-PHIs, determine the addressing mode being computed.
- SmallVector<Instruction*, 16> NewAddrModeInsts;
- ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
- V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
- PromotedInsts, TPT);
- // This check is broken into two cases with very similar code to avoid using
- // getNumUses() as much as possible. Some values have a lot of uses, so
- // calling getNumUses() unconditionally caused a significant compile-time
- // regression.
- if (!Consensus) {
- Consensus = V;
- AddrMode = NewAddrMode;
- AddrModeInsts = NewAddrModeInsts;
- continue;
- } else if (NewAddrMode == AddrMode) {
- if (!IsNumUsesConsensusValid) {
- NumUsesConsensus = Consensus->getNumUses();
- IsNumUsesConsensusValid = true;
- }
- // Ensure that the obtained addressing mode is equivalent to that obtained
- // for all other roots of the PHI traversal. Also, when choosing one
- // such root as representative, select the one with the most uses in order
- // to keep the cost modeling heuristics in AddressingModeMatcher
- // applicable.
- unsigned NumUses = V->getNumUses();
- if (NumUses > NumUsesConsensus) {
- Consensus = V;
- NumUsesConsensus = NumUses;
- AddrModeInsts = NewAddrModeInsts;
- }
- continue;
- }
- Consensus = nullptr;
- break;
- }
- // If the addressing mode couldn't be determined, or if multiple different
- // ones were determined, bail out now.
- if (!Consensus) {
- TPT.rollback(LastKnownGood);
- return false;
- }
- TPT.commit();
- // Check to see if any of the instructions supersumed by this addr mode are
- // non-local to I's BB.
- bool AnyNonLocal = false;
- for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
- if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
- AnyNonLocal = true;
- break;
- }
- }
- // If all the instructions matched are already in this BB, don't do anything.
- if (!AnyNonLocal) {
- DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
- return false;
- }
- // Insert this computation right after this user. Since our caller is
- // scanning from the top of the BB to the bottom, reuse of the expr are
- // guaranteed to happen later.
- IRBuilder<> Builder(MemoryInst);
- // Now that we determined the addressing expression we want to use and know
- // that we have to sink it into this block. Check to see if we have already
- // done this for some other load/store instr in this block. If so, reuse the
- // computation.
- Value *&SunkAddr = SunkAddrs[Addr];
- if (SunkAddr) {
- DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- if (SunkAddr->getType() != Addr->getType())
- SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
- } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
- TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
- // By default, we use the GEP-based method when AA is used later. This
- // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
- DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
- Value *ResultPtr = nullptr, *ResultIndex = nullptr;
- // First, find the pointer.
- if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
- ResultPtr = AddrMode.BaseReg;
- AddrMode.BaseReg = nullptr;
- }
- if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
- // We can't add more than one pointer together, nor can we scale a
- // pointer (both of which seem meaningless).
- if (ResultPtr || AddrMode.Scale != 1)
- return false;
- ResultPtr = AddrMode.ScaledReg;
- AddrMode.Scale = 0;
- }
- if (AddrMode.BaseGV) {
- if (ResultPtr)
- return false;
- ResultPtr = AddrMode.BaseGV;
- }
- // If the real base value actually came from an inttoptr, then the matcher
- // will look through it and provide only the integer value. In that case,
- // use it here.
- if (!ResultPtr && AddrMode.BaseReg) {
- ResultPtr =
- Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
- AddrMode.BaseReg = nullptr;
- } else if (!ResultPtr && AddrMode.Scale == 1) {
- ResultPtr =
- Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
- AddrMode.Scale = 0;
- }
- if (!ResultPtr &&
- !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
- SunkAddr = Constant::getNullValue(Addr->getType());
- } else if (!ResultPtr) {
- return false;
- } else {
- Type *I8PtrTy =
- Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
- // Start with the base register. Do this first so that subsequent address
- // matching finds it last, which will prevent it from trying to match it
- // as the scaled value in case it happens to be a mul. That would be
- // problematic if we've sunk a different mul for the scale, because then
- // we'd end up sinking both muls.
- if (AddrMode.BaseReg) {
- Value *V = AddrMode.BaseReg;
- if (V->getType() != IntPtrTy)
- V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
- ResultIndex = V;
- }
- // Add the scale value.
- if (AddrMode.Scale) {
- Value *V = AddrMode.ScaledReg;
- if (V->getType() == IntPtrTy) {
- // done.
- } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
- cast<IntegerType>(V->getType())->getBitWidth()) {
- V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
- } else {
- // It is only safe to sign extend the BaseReg if we know that the math
- // required to create it did not overflow before we extend it. Since
- // the original IR value was tossed in favor of a constant back when
- // the AddrMode was created we need to bail out gracefully if widths
- // do not match instead of extending it.
- Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
- if (I && (ResultIndex != AddrMode.BaseReg))
- I->eraseFromParent();
- return false;
- }
- if (AddrMode.Scale != 1)
- V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
- "sunkaddr");
- if (ResultIndex)
- ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
- else
- ResultIndex = V;
- }
- // Add in the Base Offset if present.
- if (AddrMode.BaseOffs) {
- Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
- if (ResultIndex) {
- // We need to add this separately from the scale above to help with
- // SDAG consecutive load/store merging.
- if (ResultPtr->getType() != I8PtrTy)
- ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
- ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
- }
- ResultIndex = V;
- }
- if (!ResultIndex) {
- SunkAddr = ResultPtr;
- } else {
- if (ResultPtr->getType() != I8PtrTy)
- ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
- SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
- }
- if (SunkAddr->getType() != Addr->getType())
- SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
- }
- } else {
- DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
- Value *Result = nullptr;
- // Start with the base register. Do this first so that subsequent address
- // matching finds it last, which will prevent it from trying to match it
- // as the scaled value in case it happens to be a mul. That would be
- // problematic if we've sunk a different mul for the scale, because then
- // we'd end up sinking both muls.
- if (AddrMode.BaseReg) {
- Value *V = AddrMode.BaseReg;
- if (V->getType()->isPointerTy())
- V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
- if (V->getType() != IntPtrTy)
- V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
- Result = V;
- }
- // Add the scale value.
- if (AddrMode.Scale) {
- Value *V = AddrMode.ScaledReg;
- if (V->getType() == IntPtrTy) {
- // done.
- } else if (V->getType()->isPointerTy()) {
- V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
- } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
- cast<IntegerType>(V->getType())->getBitWidth()) {
- V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
- } else {
- // It is only safe to sign extend the BaseReg if we know that the math
- // required to create it did not overflow before we extend it. Since
- // the original IR value was tossed in favor of a constant back when
- // the AddrMode was created we need to bail out gracefully if widths
- // do not match instead of extending it.
- Instruction *I = dyn_cast_or_null<Instruction>(Result);
- if (I && (Result != AddrMode.BaseReg))
- I->eraseFromParent();
- return false;
- }
- if (AddrMode.Scale != 1)
- V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
- "sunkaddr");
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- // Add in the BaseGV if present.
- if (AddrMode.BaseGV) {
- Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- // Add in the Base Offset if present.
- if (AddrMode.BaseOffs) {
- Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- if (!Result)
- SunkAddr = Constant::getNullValue(Addr->getType());
- else
- SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
- }
- MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
- // If we have no uses, recursively delete the value and all dead instructions
- // using it.
- if (Repl->use_empty()) {
- // This can cause recursive deletion, which can invalidate our iterator.
- // Use a WeakVH to hold onto it in case this happens.
- WeakVH IterHandle(CurInstIterator);
- BasicBlock *BB = CurInstIterator->getParent();
- RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
- if (IterHandle != CurInstIterator) {
- // If the iterator instruction was recursively deleted, start over at the
- // start of the block.
- CurInstIterator = BB->begin();
- SunkAddrs.clear();
- }
- }
- ++NumMemoryInsts;
- return true;
- }
- /// OptimizeInlineAsmInst - If there are any memory operands, use
- /// OptimizeMemoryInst to sink their address computing into the block when
- /// possible / profitable.
- bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
- bool MadeChange = false;
- TargetLowering::AsmOperandInfoVector
- TargetConstraints = TLI->ParseConstraints(CS);
- unsigned ArgNo = 0;
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, SDValue());
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- OpInfo.isIndirect) {
- Value *OpVal = CS->getArgOperand(ArgNo++);
- MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
- } else if (OpInfo.Type == InlineAsm::isInput)
- ArgNo++;
- }
- return MadeChange;
- }
- /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
- /// basic block as the load, unless conditions are unfavorable. This allows
- /// SelectionDAG to fold the extend into the load.
- ///
- bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
- // Look for a load being extended.
- LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
- if (!LI) return false;
- // If they're already in the same block, there's nothing to do.
- if (LI->getParent() == I->getParent())
- return false;
- // If the load has other users and the truncate is not free, this probably
- // isn't worthwhile.
- if (!LI->hasOneUse() &&
- TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
- !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
- !TLI->isTruncateFree(I->getType(), LI->getType()))
- return false;
- // Check whether the target supports casts folded into loads.
- unsigned LType;
- if (isa<ZExtInst>(I))
- LType = ISD::ZEXTLOAD;
- else {
- assert(isa<SExtInst>(I) && "Unexpected ext type!");
- LType = ISD::SEXTLOAD;
- }
- if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
- return false;
- // Move the extend into the same block as the load, so that SelectionDAG
- // can fold it.
- I->removeFromParent();
- I->insertAfter(LI);
- ++NumExtsMoved;
- return true;
- }
- bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
- BasicBlock *DefBB = I->getParent();
- // If the result of a {s|z}ext and its source are both live out, rewrite all
- // other uses of the source with result of extension.
- Value *Src = I->getOperand(0);
- if (Src->hasOneUse())
- return false;
- // Only do this xform if truncating is free.
- if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
- return false;
- // Only safe to perform the optimization if the source is also defined in
- // this block.
- if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
- return false;
- bool DefIsLiveOut = false;
- for (User *U : I->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- DefIsLiveOut = true;
- break;
- }
- if (!DefIsLiveOut)
- return false;
- // Make sure none of the uses are PHI nodes.
- for (User *U : Src->users()) {
- Instruction *UI = cast<Instruction>(U);
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- // Be conservative. We don't want this xform to end up introducing
- // reloads just before load / store instructions.
- if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
- return false;
- }
- // InsertedTruncs - Only insert one trunc in each block once.
- DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
- bool MadeChange = false;
- for (Use &U : Src->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = User->getParent();
- if (UserBB == DefBB) continue;
- // Both src and def are live in this block. Rewrite the use.
- Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
- if (!InsertedTrunc) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
- InsertedTruncsSet.insert(InsertedTrunc);
- }
- // Replace a use of the {s|z}ext source with a use of the result.
- U = InsertedTrunc;
- ++NumExtUses;
- MadeChange = true;
- }
- return MadeChange;
- }
- /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
- /// turned into an explicit branch.
- static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
- // FIXME: This should use the same heuristics as IfConversion to determine
- // whether a select is better represented as a branch. This requires that
- // branch probability metadata is preserved for the select, which is not the
- // case currently.
- CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
- // If the branch is predicted right, an out of order CPU can avoid blocking on
- // the compare. Emit cmovs on compares with a memory operand as branches to
- // avoid stalls on the load from memory. If the compare has more than one use
- // there's probably another cmov or setcc around so it's not worth emitting a
- // branch.
- if (!Cmp)
- return false;
- Value *CmpOp0 = Cmp->getOperand(0);
- Value *CmpOp1 = Cmp->getOperand(1);
- // We check that the memory operand has one use to avoid uses of the loaded
- // value directly after the compare, making branches unprofitable.
- return Cmp->hasOneUse() &&
- ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
- (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
- }
- /// If we have a SelectInst that will likely profit from branch prediction,
- /// turn it into a branch.
- bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
- bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
- // Can we convert the 'select' to CF ?
- if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
- return false;
- TargetLowering::SelectSupportKind SelectKind;
- if (VectorCond)
- SelectKind = TargetLowering::VectorMaskSelect;
- else if (SI->getType()->isVectorTy())
- SelectKind = TargetLowering::ScalarCondVectorVal;
- else
- SelectKind = TargetLowering::ScalarValSelect;
- // Do we have efficient codegen support for this kind of 'selects' ?
- if (TLI->isSelectSupported(SelectKind)) {
- // We have efficient codegen support for the select instruction.
- // Check if it is profitable to keep this 'select'.
- if (!TLI->isPredictableSelectExpensive() ||
- !isFormingBranchFromSelectProfitable(SI))
- return false;
- }
- ModifiedDT = true;
- // First, we split the block containing the select into 2 blocks.
- BasicBlock *StartBlock = SI->getParent();
- BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
- BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
- // Create a new block serving as the landing pad for the branch.
- BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
- NextBlock->getParent(), NextBlock);
- // Move the unconditional branch from the block with the select in it into our
- // landing pad block.
- StartBlock->getTerminator()->eraseFromParent();
- BranchInst::Create(NextBlock, SmallBlock);
- // Insert the real conditional branch based on the original condition.
- BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
- // The select itself is replaced with a PHI Node.
- PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
- PN->takeName(SI);
- PN->addIncoming(SI->getTrueValue(), StartBlock);
- PN->addIncoming(SI->getFalseValue(), SmallBlock);
- SI->replaceAllUsesWith(PN);
- SI->eraseFromParent();
- // Instruct OptimizeBlock to skip to the next block.
- CurInstIterator = StartBlock->end();
- ++NumSelectsExpanded;
- return true;
- }
- static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
- SmallVector<int, 16> Mask(SVI->getShuffleMask());
- int SplatElem = -1;
- for (unsigned i = 0; i < Mask.size(); ++i) {
- if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
- return false;
- SplatElem = Mask[i];
- }
- return true;
- }
- /// Some targets have expensive vector shifts if the lanes aren't all the same
- /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
- /// it's often worth sinking a shufflevector splat down to its use so that
- /// codegen can spot all lanes are identical.
- bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
- BasicBlock *DefBB = SVI->getParent();
- // Only do this xform if variable vector shifts are particularly expensive.
- if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
- return false;
- // We only expect better codegen by sinking a shuffle if we can recognise a
- // constant splat.
- if (!isBroadcastShuffle(SVI))
- return false;
- // InsertedShuffles - Only insert a shuffle in each block once.
- DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
- bool MadeChange = false;
- for (User *U : SVI->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- // For now only apply this when the splat is used by a shift instruction.
- if (!UI->isShift()) continue;
- // Everything checks out, sink the shuffle if the user's block doesn't
- // already have a copy.
- Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
- if (!InsertedShuffle) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
- SVI->getOperand(1),
- SVI->getOperand(2), "", InsertPt);
- }
- UI->replaceUsesOfWith(SVI, InsertedShuffle);
- MadeChange = true;
- }
- // If we removed all uses, nuke the shuffle.
- if (SVI->use_empty()) {
- SVI->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- bool CodeGenPrepare::OptimizeInst(Instruction *I) {
- if (PHINode *P = dyn_cast<PHINode>(I)) {
- // It is possible for very late stage optimizations (such as SimplifyCFG)
- // to introduce PHI nodes too late to be cleaned up. If we detect such a
- // trivial PHI, go ahead and zap it here.
- if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
- TLInfo, DT)) {
- P->replaceAllUsesWith(V);
- P->eraseFromParent();
- ++NumPHIsElim;
- return true;
- }
- return false;
- }
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- // If the source of the cast is a constant, then this should have
- // already been constant folded. The only reason NOT to constant fold
- // it is if something (e.g. LSR) was careful to place the constant
- // evaluation in a block other than then one that uses it (e.g. to hoist
- // the address of globals out of a loop). If this is the case, we don't
- // want to forward-subst the cast.
- if (isa<Constant>(CI->getOperand(0)))
- return false;
- if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
- return true;
- if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
- /// Sink a zext or sext into its user blocks if the target type doesn't
- /// fit in one register
- if (TLI && TLI->getTypeAction(CI->getContext(),
- TLI->getValueType(CI->getType())) ==
- TargetLowering::TypeExpandInteger) {
- return SinkCast(CI);
- } else {
- bool MadeChange = MoveExtToFormExtLoad(I);
- return MadeChange | OptimizeExtUses(I);
- }
- }
- return false;
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (!TLI || !TLI->hasMultipleConditionRegisters())
- return OptimizeCmpExpression(CI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (TLI)
- return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
- return false;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (TLI)
- return OptimizeMemoryInst(I, SI->getOperand(1),
- SI->getOperand(0)->getType());
- return false;
- }
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
- if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
- BinOp->getOpcode() == Instruction::LShr)) {
- ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
- if (TLI && CI && TLI->hasExtractBitsInsn())
- return OptimizeExtractBits(BinOp, CI, *TLI);
- return false;
- }
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
- if (GEPI->hasAllZeroIndices()) {
- /// The GEP operand must be a pointer, so must its result -> BitCast
- Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
- GEPI->getName(), GEPI);
- GEPI->replaceAllUsesWith(NC);
- GEPI->eraseFromParent();
- ++NumGEPsElim;
- OptimizeInst(NC);
- return true;
- }
- return false;
- }
- if (CallInst *CI = dyn_cast<CallInst>(I))
- return OptimizeCallInst(CI);
- if (SelectInst *SI = dyn_cast<SelectInst>(I))
- return OptimizeSelectInst(SI);
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
- return OptimizeShuffleVectorInst(SVI);
- return false;
- }
- // In this pass we look for GEP and cast instructions that are used
- // across basic blocks and rewrite them to improve basic-block-at-a-time
- // selection.
- bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
- SunkAddrs.clear();
- bool MadeChange = false;
- CurInstIterator = BB.begin();
- while (CurInstIterator != BB.end())
- MadeChange |= OptimizeInst(CurInstIterator++);
- MadeChange |= DupRetToEnableTailCallOpts(&BB);
- return MadeChange;
- }
- // llvm.dbg.value is far away from the value then iSel may not be able
- // handle it properly. iSel will drop llvm.dbg.value if it can not
- // find a node corresponding to the value.
- bool CodeGenPrepare::PlaceDbgValues(Function &F) {
- bool MadeChange = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- Instruction *PrevNonDbgInst = nullptr;
- for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
- Instruction *Insn = BI; ++BI;
- DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
- // Leave dbg.values that refer to an alloca alone. These
- // instrinsics describe the address of a variable (= the alloca)
- // being taken. They should not be moved next to the alloca
- // (and to the beginning of the scope), but rather stay close to
- // where said address is used.
- if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
- PrevNonDbgInst = Insn;
- continue;
- }
- Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
- if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
- DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
- DVI->removeFromParent();
- if (isa<PHINode>(VI))
- DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
- else
- DVI->insertAfter(VI);
- MadeChange = true;
- ++NumDbgValueMoved;
- }
- }
- }
- return MadeChange;
- }
- // If there is a sequence that branches based on comparing a single bit
- // against zero that can be combined into a single instruction, and the
- // target supports folding these into a single instruction, sink the
- // mask and compare into the branch uses. Do this before OptimizeBlock ->
- // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
- // searched for.
- bool CodeGenPrepare::sinkAndCmp(Function &F) {
- if (!EnableAndCmpSinking)
- return false;
- if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
- return false;
- bool MadeChange = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
- BasicBlock *BB = I++;
- // Does this BB end with the following?
- // %andVal = and %val, #single-bit-set
- // %icmpVal = icmp %andResult, 0
- // br i1 %cmpVal label %dest1, label %dest2"
- BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Brcc || !Brcc->isConditional())
- continue;
- ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
- if (!Cmp || Cmp->getParent() != BB)
- continue;
- ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
- if (!Zero || !Zero->isZero())
- continue;
- Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
- if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
- continue;
- ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
- if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
- continue;
- DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
- // Push the "and; icmp" for any users that are conditional branches.
- // Since there can only be one branch use per BB, we don't need to keep
- // track of which BBs we insert into.
- for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
- UI != E; ) {
- Use &TheUse = *UI;
- // Find brcc use.
- BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
- ++UI;
- if (!BrccUser || !BrccUser->isConditional())
- continue;
- BasicBlock *UserBB = BrccUser->getParent();
- if (UserBB == BB) continue;
- DEBUG(dbgs() << "found Brcc use\n");
- // Sink the "and; icmp" to use.
- MadeChange = true;
- BinaryOperator *NewAnd =
- BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
- BrccUser);
- CmpInst *NewCmp =
- CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
- "", BrccUser);
- TheUse = NewCmp;
- ++NumAndCmpsMoved;
- DEBUG(BrccUser->getParent()->dump());
- }
- }
- return MadeChange;
- }
|