123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100 |
- //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the primary stateless implementation of the
- // Alias Analysis interface that implements identities (two different
- // globals cannot alias, etc), but does no stateful analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/PhiValues.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/KnownBits.h"
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <utility>
- #define DEBUG_TYPE "basicaa"
- using namespace llvm;
- /// Enable analysis of recursive PHI nodes.
- static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
- cl::init(false));
- /// By default, even on 32-bit architectures we use 64-bit integers for
- /// calculations. This will allow us to more-aggressively decompose indexing
- /// expressions calculated using i64 values (e.g., long long in C) which is
- /// common enough to worry about.
- static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
- cl::Hidden, cl::init(true));
- static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
- cl::Hidden, cl::init(false));
- /// SearchLimitReached / SearchTimes shows how often the limit of
- /// to decompose GEPs is reached. It will affect the precision
- /// of basic alias analysis.
- STATISTIC(SearchLimitReached, "Number of times the limit to "
- "decompose GEPs is reached");
- STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
- /// Cutoff after which to stop analysing a set of phi nodes potentially involved
- /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
- /// careful with value equivalence. We use reachability to make sure a value
- /// cannot be involved in a cycle.
- const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
- // The max limit of the search depth in DecomposeGEPExpression() and
- // GetUnderlyingObject(), both functions need to use the same search
- // depth otherwise the algorithm in aliasGEP will assert.
- static const unsigned MaxLookupSearchDepth = 6;
- bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // We don't care if this analysis itself is preserved, it has no state. But
- // we need to check that the analyses it depends on have been. Note that we
- // may be created without handles to some analyses and in that case don't
- // depend on them.
- if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
- (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
- (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
- (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
- return true;
- // Otherwise this analysis result remains valid.
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Useful predicates
- //===----------------------------------------------------------------------===//
- /// Returns true if the pointer is to a function-local object that never
- /// escapes from the function.
- static bool isNonEscapingLocalObject(
- const Value *V,
- SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
- SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
- if (IsCapturedCache) {
- bool Inserted;
- std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
- if (!Inserted)
- // Found cached result, return it!
- return CacheIt->second;
- }
- // If this is a local allocation, check to see if it escapes.
- if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
- // Set StoreCaptures to True so that we can assume in our callers that the
- // pointer is not the result of a load instruction. Currently
- // PointerMayBeCaptured doesn't have any special analysis for the
- // StoreCaptures=false case; if it did, our callers could be refined to be
- // more precise.
- auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- if (IsCapturedCache)
- CacheIt->second = Ret;
- return Ret;
- }
- // If this is an argument that corresponds to a byval or noalias argument,
- // then it has not escaped before entering the function. Check if it escapes
- // inside the function.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr() || A->hasNoAliasAttr()) {
- // Note even if the argument is marked nocapture, we still need to check
- // for copies made inside the function. The nocapture attribute only
- // specifies that there are no copies made that outlive the function.
- auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- if (IsCapturedCache)
- CacheIt->second = Ret;
- return Ret;
- }
- return false;
- }
- /// Returns true if the pointer is one which would have been considered an
- /// escape by isNonEscapingLocalObject.
- static bool isEscapeSource(const Value *V) {
- if (isa<CallBase>(V))
- return true;
- if (isa<Argument>(V))
- return true;
- // The load case works because isNonEscapingLocalObject considers all
- // stores to be escapes (it passes true for the StoreCaptures argument
- // to PointerMayBeCaptured).
- if (isa<LoadInst>(V))
- return true;
- return false;
- }
- /// Returns the size of the object specified by V or UnknownSize if unknown.
- static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool NullIsValidLoc,
- bool RoundToAlign = false) {
- uint64_t Size;
- ObjectSizeOpts Opts;
- Opts.RoundToAlign = RoundToAlign;
- Opts.NullIsUnknownSize = NullIsValidLoc;
- if (getObjectSize(V, Size, DL, &TLI, Opts))
- return Size;
- return MemoryLocation::UnknownSize;
- }
- /// Returns true if we can prove that the object specified by V is smaller than
- /// Size.
- static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool NullIsValidLoc) {
- // Note that the meanings of the "object" are slightly different in the
- // following contexts:
- // c1: llvm::getObjectSize()
- // c2: llvm.objectsize() intrinsic
- // c3: isObjectSmallerThan()
- // c1 and c2 share the same meaning; however, the meaning of "object" in c3
- // refers to the "entire object".
- //
- // Consider this example:
- // char *p = (char*)malloc(100)
- // char *q = p+80;
- //
- // In the context of c1 and c2, the "object" pointed by q refers to the
- // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
- //
- // However, in the context of c3, the "object" refers to the chunk of memory
- // being allocated. So, the "object" has 100 bytes, and q points to the middle
- // the "object". In case q is passed to isObjectSmallerThan() as the 1st
- // parameter, before the llvm::getObjectSize() is called to get the size of
- // entire object, we should:
- // - either rewind the pointer q to the base-address of the object in
- // question (in this case rewind to p), or
- // - just give up. It is up to caller to make sure the pointer is pointing
- // to the base address the object.
- //
- // We go for 2nd option for simplicity.
- if (!isIdentifiedObject(V))
- return false;
- // This function needs to use the aligned object size because we allow
- // reads a bit past the end given sufficient alignment.
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
- /*RoundToAlign*/ true);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
- }
- /// Return the minimal extent from \p V to the end of the underlying object,
- /// assuming the result is used in an aliasing query. E.g., we do use the query
- /// location size and the fact that null pointers cannot alias here.
- static uint64_t getMinimalExtentFrom(const Value &V,
- const LocationSize &LocSize,
- const DataLayout &DL,
- bool NullIsValidLoc) {
- // If we have dereferenceability information we know a lower bound for the
- // extent as accesses for a lower offset would be valid. We need to exclude
- // the "or null" part if null is a valid pointer.
- bool CanBeNull;
- uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
- DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
- // If queried with a precise location size, we assume that location size to be
- // accessed, thus valid.
- if (LocSize.isPrecise())
- DerefBytes = std::max(DerefBytes, LocSize.getValue());
- return DerefBytes;
- }
- /// Returns true if we can prove that the object specified by V has size Size.
- static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
- const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
- }
- //===----------------------------------------------------------------------===//
- // GetElementPtr Instruction Decomposition and Analysis
- //===----------------------------------------------------------------------===//
- /// Analyzes the specified value as a linear expression: "A*V + B", where A and
- /// B are constant integers.
- ///
- /// Returns the scale and offset values as APInts and return V as a Value*, and
- /// return whether we looked through any sign or zero extends. The incoming
- /// Value is known to have IntegerType, and it may already be sign or zero
- /// extended.
- ///
- /// Note that this looks through extends, so the high bits may not be
- /// represented in the result.
- /*static*/ const Value *BasicAAResult::GetLinearExpression(
- const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
- unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
- assert(V->getType()->isIntegerTy() && "Not an integer value");
- // Limit our recursion depth.
- if (Depth == 6) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
- // If it's a constant, just convert it to an offset and remove the variable.
- // If we've been called recursively, the Offset bit width will be greater
- // than the constant's (the Offset's always as wide as the outermost call),
- // so we'll zext here and process any extension in the isa<SExtInst> &
- // isa<ZExtInst> cases below.
- Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
- assert(Scale == 0 && "Constant values don't have a scale");
- return V;
- }
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- // If we've been called recursively, then Offset and Scale will be wider
- // than the BOp operands. We'll always zext it here as we'll process sign
- // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
- APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
- switch (BOp->getOpcode()) {
- default:
- // We don't understand this instruction, so we can't decompose it any
- // further.
- Scale = 1;
- Offset = 0;
- return V;
- case Instruction::Or:
- // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
- // analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
- BOp, DT)) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- LLVM_FALLTHROUGH;
- case Instruction::Add:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset += RHS;
- break;
- case Instruction::Sub:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset -= RHS;
- break;
- case Instruction::Mul:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- Offset *= RHS;
- Scale *= RHS;
- break;
- case Instruction::Shl:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
- SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
- // We're trying to linearize an expression of the kind:
- // shl i8 -128, 36
- // where the shift count exceeds the bitwidth of the type.
- // We can't decompose this further (the expression would return
- // a poison value).
- if (Offset.getBitWidth() < RHS.getLimitedValue() ||
- Scale.getBitWidth() < RHS.getLimitedValue()) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- Offset <<= RHS.getLimitedValue();
- Scale <<= RHS.getLimitedValue();
- // the semantics of nsw and nuw for left shifts don't match those of
- // multiplications, so we won't propagate them.
- NSW = NUW = false;
- return V;
- }
- if (isa<OverflowingBinaryOperator>(BOp)) {
- NUW &= BOp->hasNoUnsignedWrap();
- NSW &= BOp->hasNoSignedWrap();
- }
- return V;
- }
- }
- // Since GEP indices are sign extended anyway, we don't care about the high
- // bits of a sign or zero extended value - just scales and offsets. The
- // extensions have to be consistent though.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
- Value *CastOp = cast<CastInst>(V)->getOperand(0);
- unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
- unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
- unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
- const Value *Result =
- GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
- Depth + 1, AC, DT, NSW, NUW);
- // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
- // by just incrementing the number of bits we've extended by.
- unsigned ExtendedBy = NewWidth - SmallWidth;
- if (isa<SExtInst>(V) && ZExtBits == 0) {
- // sext(sext(%x, a), b) == sext(%x, a + b)
- if (NSW) {
- // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
- // into sext(%x) + sext(c). We'll sext the Offset ourselves:
- unsigned OldWidth = Offset.getBitWidth();
- Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
- } else {
- // We may have signed-wrapped, so don't decompose sext(%x + c) into
- // sext(%x) + sext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- SExtBits += ExtendedBy;
- } else {
- // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
- if (!NUW) {
- // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
- // zext(%x) + zext(c)
- Scale = 1;
- Offset = 0;
- Result = CastOp;
- ZExtBits = OldZExtBits;
- SExtBits = OldSExtBits;
- }
- ZExtBits += ExtendedBy;
- }
- return Result;
- }
- Scale = 1;
- Offset = 0;
- return V;
- }
- /// To ensure a pointer offset fits in an integer of size PointerSize
- /// (in bits) when that size is smaller than the maximum pointer size. This is
- /// an issue, for example, in particular for 32b pointers with negative indices
- /// that rely on two's complement wrap-arounds for precise alias information
- /// where the maximum pointer size is 64b.
- static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
- assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
- unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
- return (Offset << ShiftBits).ashr(ShiftBits);
- }
- static unsigned getMaxPointerSize(const DataLayout &DL) {
- unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
- if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
- if (DoubleCalcBits) MaxPointerSize *= 2;
- return MaxPointerSize;
- }
- /// If V is a symbolic pointer expression, decompose it into a base pointer
- /// with a constant offset and a number of scaled symbolic offsets.
- ///
- /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
- /// in the VarIndices vector) are Value*'s that are known to be scaled by the
- /// specified amount, but which may have other unrepresented high bits. As
- /// such, the gep cannot necessarily be reconstructed from its decomposed form.
- ///
- /// When DataLayout is around, this function is capable of analyzing everything
- /// that GetUnderlyingObject can look through. To be able to do that
- /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
- /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
- /// through pointer casts.
- bool BasicAAResult::DecomposeGEPExpression(const Value *V,
- DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
- DominatorTree *DT) {
- // Limit recursion depth to limit compile time in crazy cases.
- unsigned MaxLookup = MaxLookupSearchDepth;
- SearchTimes++;
- unsigned MaxPointerSize = getMaxPointerSize(DL);
- Decomposed.VarIndices.clear();
- do {
- // See if this is a bitcast or GEP.
- const Operator *Op = dyn_cast<Operator>(V);
- if (!Op) {
- // The only non-operator case we can handle are GlobalAliases.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->isInterposable()) {
- V = GA->getAliasee();
- continue;
- }
- }
- Decomposed.Base = V;
- return false;
- }
- if (Op->getOpcode() == Instruction::BitCast ||
- Op->getOpcode() == Instruction::AddrSpaceCast) {
- V = Op->getOperand(0);
- continue;
- }
- const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (!GEPOp) {
- if (const auto *Call = dyn_cast<CallBase>(V)) {
- // CaptureTracking can know about special capturing properties of some
- // intrinsics like launder.invariant.group, that can't be expressed with
- // the attributes, but have properties like returning aliasing pointer.
- // Because some analysis may assume that nocaptured pointer is not
- // returned from some special intrinsic (because function would have to
- // be marked with returns attribute), it is crucial to use this function
- // because it should be in sync with CaptureTracking. Not using it may
- // cause weird miscompilations where 2 aliasing pointers are assumed to
- // noalias.
- if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
- V = RP;
- continue;
- }
- }
- // If it's not a GEP, hand it off to SimplifyInstruction to see if it
- // can come up with something. This matches what GetUnderlyingObject does.
- if (const Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Get a DominatorTree and AssumptionCache and use them here
- // (these are both now available in this function, but this should be
- // updated when GetUnderlyingObject is updated). TLI should be
- // provided also.
- if (const Value *Simplified =
- SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
- V = Simplified;
- continue;
- }
- Decomposed.Base = V;
- return false;
- }
- // Don't attempt to analyze GEPs over unsized objects.
- if (!GEPOp->getSourceElementType()->isSized()) {
- Decomposed.Base = V;
- return false;
- }
- unsigned AS = GEPOp->getPointerAddressSpace();
- // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
- gep_type_iterator GTI = gep_type_begin(GEPOp);
- unsigned PointerSize = DL.getPointerSizeInBits(AS);
- // Assume all GEP operands are constants until proven otherwise.
- bool GepHasConstantOffset = true;
- for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
- I != E; ++I, ++GTI) {
- const Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- if (FieldNo == 0)
- continue;
- Decomposed.StructOffset +=
- DL.getStructLayout(STy)->getElementOffset(FieldNo);
- continue;
- }
- // For an array/pointer, add the element offset, explicitly scaled.
- if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
- if (CIdx->isZero())
- continue;
- Decomposed.OtherOffset +=
- (DL.getTypeAllocSize(GTI.getIndexedType()) *
- CIdx->getValue().sextOrSelf(MaxPointerSize))
- .sextOrTrunc(MaxPointerSize);
- continue;
- }
- GepHasConstantOffset = false;
- APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
- unsigned ZExtBits = 0, SExtBits = 0;
- // If the integer type is smaller than the pointer size, it is implicitly
- // sign extended to pointer size.
- unsigned Width = Index->getType()->getIntegerBitWidth();
- if (PointerSize > Width)
- SExtBits += PointerSize - Width;
- // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
- APInt IndexScale(Width, 0), IndexOffset(Width, 0);
- bool NSW = true, NUW = true;
- const Value *OrigIndex = Index;
- Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
- SExtBits, DL, 0, AC, DT, NSW, NUW);
- // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
- // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
- // It can be the case that, even through C1*V+C2 does not overflow for
- // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
- // decompose the expression in this way.
- //
- // FIXME: C1*Scale and the other operations in the decomposed
- // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
- // possibility.
- APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
- Scale.sext(MaxPointerSize*2);
- if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
- Index = OrigIndex;
- IndexScale = 1;
- IndexOffset = 0;
- ZExtBits = SExtBits = 0;
- if (PointerSize > Width)
- SExtBits += PointerSize - Width;
- } else {
- Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
- Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
- }
- // If we already had an occurrence of this index variable, merge this
- // scale into it. For example, we want to handle:
- // A[x][x] -> x*16 + x*4 -> x*20
- // This also ensures that 'x' only appears in the index list once.
- for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
- if (Decomposed.VarIndices[i].V == Index &&
- Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
- Decomposed.VarIndices[i].SExtBits == SExtBits) {
- Scale += Decomposed.VarIndices[i].Scale;
- Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
- break;
- }
- }
- // Make sure that we have a scale that makes sense for this target's
- // pointer size.
- Scale = adjustToPointerSize(Scale, PointerSize);
- if (!!Scale) {
- VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
- Decomposed.VarIndices.push_back(Entry);
- }
- }
- // Take care of wrap-arounds
- if (GepHasConstantOffset) {
- Decomposed.StructOffset =
- adjustToPointerSize(Decomposed.StructOffset, PointerSize);
- Decomposed.OtherOffset =
- adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
- }
- // Analyze the base pointer next.
- V = GEPOp->getOperand(0);
- } while (--MaxLookup);
- // If the chain of expressions is too deep, just return early.
- Decomposed.Base = V;
- SearchLimitReached++;
- return true;
- }
- /// Returns whether the given pointer value points to memory that is local to
- /// the function, with global constants being considered local to all
- /// functions.
- bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
- AAQueryInfo &AAQI, bool OrLocal) {
- assert(Visited.empty() && "Visited must be cleared after use!");
- unsigned MaxLookup = 8;
- SmallVector<const Value *, 16> Worklist;
- Worklist.push_back(Loc.Ptr);
- do {
- const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
- if (!Visited.insert(V).second) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- // An alloca instruction defines local memory.
- if (OrLocal && isa<AllocaInst>(V))
- continue;
- // A global constant counts as local memory for our purposes.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- // Note: this doesn't require GV to be "ODR" because it isn't legal for a
- // global to be marked constant in some modules and non-constant in
- // others. GV may even be a declaration, not a definition.
- if (!GV->isConstant()) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- continue;
- }
- // If both select values point to local memory, then so does the select.
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- // If all values incoming to a phi node point to local memory, then so does
- // the phi.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- // Don't bother inspecting phi nodes with many operands.
- if (PN->getNumIncomingValues() > MaxLookup) {
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- }
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
- // Otherwise be conservative.
- Visited.clear();
- return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
- } while (!Worklist.empty() && --MaxLookup);
- Visited.clear();
- return Worklist.empty();
- }
- /// Returns the behavior when calling the given call site.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
- if (Call->doesNotAccessMemory())
- // Can't do better than this.
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the callsite knows it only reads memory, don't return worse
- // than that.
- if (Call->onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- else if (Call->doesNotReadMemory())
- Min = FMRB_DoesNotReadMemory;
- if (Call->onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- else if (Call->onlyAccessesInaccessibleMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
- else if (Call->onlyAccessesInaccessibleMemOrArgMem())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
- // If the call has operand bundles then aliasing attributes from the function
- // it calls do not directly apply to the call. This can be made more precise
- // in the future.
- if (!Call->hasOperandBundles())
- if (const Function *F = Call->getCalledFunction())
- Min =
- FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
- return Min;
- }
- /// Returns the behavior when calling the given function. For use when the call
- /// site is not known.
- FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
- // If the function declares it doesn't access memory, we can't do better.
- if (F->doesNotAccessMemory())
- return FMRB_DoesNotAccessMemory;
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
- // If the function declares it only reads memory, go with that.
- if (F->onlyReadsMemory())
- Min = FMRB_OnlyReadsMemory;
- else if (F->doesNotReadMemory())
- Min = FMRB_DoesNotReadMemory;
- if (F->onlyAccessesArgMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
- else if (F->onlyAccessesInaccessibleMemory())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
- else if (F->onlyAccessesInaccessibleMemOrArgMem())
- Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
- return Min;
- }
- /// Returns true if this is a writeonly (i.e Mod only) parameter.
- static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
- const TargetLibraryInfo &TLI) {
- if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
- return true;
- // We can bound the aliasing properties of memset_pattern16 just as we can
- // for memcpy/memset. This is particularly important because the
- // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
- // whenever possible.
- // FIXME Consider handling this in InferFunctionAttr.cpp together with other
- // attributes.
- LibFunc F;
- if (Call->getCalledFunction() &&
- TLI.getLibFunc(*Call->getCalledFunction(), F) &&
- F == LibFunc_memset_pattern16 && TLI.has(F))
- if (ArgIdx == 0)
- return true;
- // TODO: memset_pattern4, memset_pattern8
- // TODO: _chk variants
- // TODO: strcmp, strcpy
- return false;
- }
- ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
- unsigned ArgIdx) {
- // Checking for known builtin intrinsics and target library functions.
- if (isWriteOnlyParam(Call, ArgIdx, TLI))
- return ModRefInfo::Mod;
- if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
- return ModRefInfo::Ref;
- if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
- return ModRefInfo::NoModRef;
- return AAResultBase::getArgModRefInfo(Call, ArgIdx);
- }
- static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
- return II && II->getIntrinsicID() == IID;
- }
- #ifndef NDEBUG
- static const Function *getParent(const Value *V) {
- if (const Instruction *inst = dyn_cast<Instruction>(V)) {
- if (!inst->getParent())
- return nullptr;
- return inst->getParent()->getParent();
- }
- if (const Argument *arg = dyn_cast<Argument>(V))
- return arg->getParent();
- return nullptr;
- }
- static bool notDifferentParent(const Value *O1, const Value *O2) {
- const Function *F1 = getParent(O1);
- const Function *F2 = getParent(O2);
- return !F1 || !F2 || F1 == F2;
- }
- #endif
- AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB,
- AAQueryInfo &AAQI) {
- assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
- "BasicAliasAnalysis doesn't support interprocedural queries.");
- // If we have a directly cached entry for these locations, we have recursed
- // through this once, so just return the cached results. Notably, when this
- // happens, we don't clear the cache.
- auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
- if (CacheIt != AAQI.AliasCache.end())
- return CacheIt->second;
- CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
- if (CacheIt != AAQI.AliasCache.end())
- return CacheIt->second;
- AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
- LocB.Size, LocB.AATags, AAQI);
- VisitedPhiBBs.clear();
- return Alias;
- }
- /// Checks to see if the specified callsite can clobber the specified memory
- /// object.
- ///
- /// Since we only look at local properties of this function, we really can't
- /// say much about this query. We do, however, use simple "address taken"
- /// analysis on local objects.
- ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
- const MemoryLocation &Loc,
- AAQueryInfo &AAQI) {
- assert(notDifferentParent(Call, Loc.Ptr) &&
- "AliasAnalysis query involving multiple functions!");
- const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
- // Calls marked 'tail' cannot read or write allocas from the current frame
- // because the current frame might be destroyed by the time they run. However,
- // a tail call may use an alloca with byval. Calling with byval copies the
- // contents of the alloca into argument registers or stack slots, so there is
- // no lifetime issue.
- if (isa<AllocaInst>(Object))
- if (const CallInst *CI = dyn_cast<CallInst>(Call))
- if (CI->isTailCall() &&
- !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
- return ModRefInfo::NoModRef;
- // Stack restore is able to modify unescaped dynamic allocas. Assume it may
- // modify them even though the alloca is not escaped.
- if (auto *AI = dyn_cast<AllocaInst>(Object))
- if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
- return ModRefInfo::Mod;
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the pointer
- // as an argument, and itself doesn't capture it.
- if (!isa<Constant>(Object) && Call != Object &&
- isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
- // Optimistically assume that call doesn't touch Object and check this
- // assumption in the following loop.
- ModRefInfo Result = ModRefInfo::NoModRef;
- bool IsMustAlias = true;
- unsigned OperandNo = 0;
- for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
- CI != CE; ++CI, ++OperandNo) {
- // Only look at the no-capture or byval pointer arguments. If this
- // pointer were passed to arguments that were neither of these, then it
- // couldn't be no-capture.
- if (!(*CI)->getType()->isPointerTy() ||
- (!Call->doesNotCapture(OperandNo) &&
- OperandNo < Call->getNumArgOperands() &&
- !Call->isByValArgument(OperandNo)))
- continue;
- // Call doesn't access memory through this operand, so we don't care
- // if it aliases with Object.
- if (Call->doesNotAccessMemory(OperandNo))
- continue;
- // If this is a no-capture pointer argument, see if we can tell that it
- // is impossible to alias the pointer we're checking.
- AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
- MemoryLocation(Object), AAQI);
- if (AR != MustAlias)
- IsMustAlias = false;
- // Operand doesn't alias 'Object', continue looking for other aliases
- if (AR == NoAlias)
- continue;
- // Operand aliases 'Object', but call doesn't modify it. Strengthen
- // initial assumption and keep looking in case if there are more aliases.
- if (Call->onlyReadsMemory(OperandNo)) {
- Result = setRef(Result);
- continue;
- }
- // Operand aliases 'Object' but call only writes into it.
- if (Call->doesNotReadMemory(OperandNo)) {
- Result = setMod(Result);
- continue;
- }
- // This operand aliases 'Object' and call reads and writes into it.
- // Setting ModRef will not yield an early return below, MustAlias is not
- // used further.
- Result = ModRefInfo::ModRef;
- break;
- }
- // No operand aliases, reset Must bit. Add below if at least one aliases
- // and all aliases found are MustAlias.
- if (isNoModRef(Result))
- IsMustAlias = false;
- // Early return if we improved mod ref information
- if (!isModAndRefSet(Result)) {
- if (isNoModRef(Result))
- return ModRefInfo::NoModRef;
- return IsMustAlias ? setMust(Result) : clearMust(Result);
- }
- }
- // If the call is to malloc or calloc, we can assume that it doesn't
- // modify any IR visible value. This is only valid because we assume these
- // routines do not read values visible in the IR. TODO: Consider special
- // casing realloc and strdup routines which access only their arguments as
- // well. Or alternatively, replace all of this with inaccessiblememonly once
- // that's implemented fully.
- if (isMallocOrCallocLikeFn(Call, &TLI)) {
- // Be conservative if the accessed pointer may alias the allocation -
- // fallback to the generic handling below.
- if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
- return ModRefInfo::NoModRef;
- }
- // The semantics of memcpy intrinsics forbid overlap between their respective
- // operands, i.e., source and destination of any given memcpy must no-alias.
- // If Loc must-aliases either one of these two locations, then it necessarily
- // no-aliases the other.
- if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
- AliasResult SrcAA, DestAA;
- if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
- Loc, AAQI)) == MustAlias)
- // Loc is exactly the memcpy source thus disjoint from memcpy dest.
- return ModRefInfo::Ref;
- if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
- Loc, AAQI)) == MustAlias)
- // The converse case.
- return ModRefInfo::Mod;
- // It's also possible for Loc to alias both src and dest, or neither.
- ModRefInfo rv = ModRefInfo::NoModRef;
- if (SrcAA != NoAlias)
- rv = setRef(rv);
- if (DestAA != NoAlias)
- rv = setMod(rv);
- return rv;
- }
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isIntrinsicCall(Call, Intrinsic::assume))
- return ModRefInfo::NoModRef;
- // Like assumes, guard intrinsics are also marked as arbitrarily writing so
- // that proper control dependencies are maintained but they never mods any
- // particular memory location.
- //
- // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
- // heap state at the point the guard is issued needs to be consistent in case
- // the guard invokes the "deopt" continuation.
- if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
- return ModRefInfo::Ref;
- // Like assumes, invariant.start intrinsics were also marked as arbitrarily
- // writing so that proper control dependencies are maintained but they never
- // mod any particular memory location visible to the IR.
- // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
- // intrinsic is now modeled as reading memory. This prevents hoisting the
- // invariant.start intrinsic over stores. Consider:
- // *ptr = 40;
- // *ptr = 50;
- // invariant_start(ptr)
- // int val = *ptr;
- // print(val);
- //
- // This cannot be transformed to:
- //
- // *ptr = 40;
- // invariant_start(ptr)
- // *ptr = 50;
- // int val = *ptr;
- // print(val);
- //
- // The transformation will cause the second store to be ignored (based on
- // rules of invariant.start) and print 40, while the first program always
- // prints 50.
- if (isIntrinsicCall(Call, Intrinsic::invariant_start))
- return ModRefInfo::Ref;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(Call, Loc, AAQI);
- }
- ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
- const CallBase *Call2,
- AAQueryInfo &AAQI) {
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isIntrinsicCall(Call1, Intrinsic::assume) ||
- isIntrinsicCall(Call2, Intrinsic::assume))
- return ModRefInfo::NoModRef;
- // Like assumes, guard intrinsics are also marked as arbitrarily writing so
- // that proper control dependencies are maintained but they never mod any
- // particular memory location.
- //
- // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
- // heap state at the point the guard is issued needs to be consistent in case
- // the guard invokes the "deopt" continuation.
- // NB! This function is *not* commutative, so we special case two
- // possibilities for guard intrinsics.
- if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
- return isModSet(createModRefInfo(getModRefBehavior(Call2)))
- ? ModRefInfo::Ref
- : ModRefInfo::NoModRef;
- if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
- return isModSet(createModRefInfo(getModRefBehavior(Call1)))
- ? ModRefInfo::Mod
- : ModRefInfo::NoModRef;
- // The AAResultBase base class has some smarts, lets use them.
- return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
- }
- /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
- /// both having the exact same pointer operand.
- static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
- LocationSize MaybeV1Size,
- const GEPOperator *GEP2,
- LocationSize MaybeV2Size,
- const DataLayout &DL) {
- assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
- GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
- GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
- "Expected GEPs with the same pointer operand");
- // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
- // such that the struct field accesses provably cannot alias.
- // We also need at least two indices (the pointer, and the struct field).
- if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
- GEP1->getNumIndices() < 2)
- return MayAlias;
- // If we don't know the size of the accesses through both GEPs, we can't
- // determine whether the struct fields accessed can't alias.
- if (MaybeV1Size == LocationSize::unknown() ||
- MaybeV2Size == LocationSize::unknown())
- return MayAlias;
- const uint64_t V1Size = MaybeV1Size.getValue();
- const uint64_t V2Size = MaybeV2Size.getValue();
- ConstantInt *C1 =
- dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
- ConstantInt *C2 =
- dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
- // If the last (struct) indices are constants and are equal, the other indices
- // might be also be dynamically equal, so the GEPs can alias.
- if (C1 && C2) {
- unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
- if (C1->getValue().sextOrSelf(BitWidth) ==
- C2->getValue().sextOrSelf(BitWidth))
- return MayAlias;
- }
- // Find the last-indexed type of the GEP, i.e., the type you'd get if
- // you stripped the last index.
- // On the way, look at each indexed type. If there's something other
- // than an array, different indices can lead to different final types.
- SmallVector<Value *, 8> IntermediateIndices;
- // Insert the first index; we don't need to check the type indexed
- // through it as it only drops the pointer indirection.
- assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
- IntermediateIndices.push_back(GEP1->getOperand(1));
- // Insert all the remaining indices but the last one.
- // Also, check that they all index through arrays.
- for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
- if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices)))
- return MayAlias;
- IntermediateIndices.push_back(GEP1->getOperand(i + 1));
- }
- auto *Ty = GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices);
- StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
- if (isa<SequentialType>(Ty)) {
- // We know that:
- // - both GEPs begin indexing from the exact same pointer;
- // - the last indices in both GEPs are constants, indexing into a sequential
- // type (array or pointer);
- // - both GEPs only index through arrays prior to that.
- //
- // Because array indices greater than the number of elements are valid in
- // GEPs, unless we know the intermediate indices are identical between
- // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
- // partially overlap. We also need to check that the loaded size matches
- // the element size, otherwise we could still have overlap.
- const uint64_t ElementSize =
- DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
- if (V1Size != ElementSize || V2Size != ElementSize)
- return MayAlias;
- for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
- if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
- return MayAlias;
- // Now we know that the array/pointer that GEP1 indexes into and that
- // that GEP2 indexes into must either precisely overlap or be disjoint.
- // Because they cannot partially overlap and because fields in an array
- // cannot overlap, if we can prove the final indices are different between
- // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
- // If the last indices are constants, we've already checked they don't
- // equal each other so we can exit early.
- if (C1 && C2)
- return NoAlias;
- {
- Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
- Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
- if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
- // If one of the indices is a PHI node, be safe and only use
- // computeKnownBits so we don't make any assumptions about the
- // relationships between the two indices. This is important if we're
- // asking about values from different loop iterations. See PR32314.
- // TODO: We may be able to change the check so we only do this when
- // we definitely looked through a PHINode.
- if (GEP1LastIdx != GEP2LastIdx &&
- GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
- KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
- KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
- if (Known1.Zero.intersects(Known2.One) ||
- Known1.One.intersects(Known2.Zero))
- return NoAlias;
- }
- } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
- return NoAlias;
- }
- return MayAlias;
- } else if (!LastIndexedStruct || !C1 || !C2) {
- return MayAlias;
- }
- if (C1->getValue().getActiveBits() > 64 ||
- C2->getValue().getActiveBits() > 64)
- return MayAlias;
- // We know that:
- // - both GEPs begin indexing from the exact same pointer;
- // - the last indices in both GEPs are constants, indexing into a struct;
- // - said indices are different, hence, the pointed-to fields are different;
- // - both GEPs only index through arrays prior to that.
- //
- // This lets us determine that the struct that GEP1 indexes into and the
- // struct that GEP2 indexes into must either precisely overlap or be
- // completely disjoint. Because they cannot partially overlap, indexing into
- // different non-overlapping fields of the struct will never alias.
- // Therefore, the only remaining thing needed to show that both GEPs can't
- // alias is that the fields are not overlapping.
- const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
- const uint64_t StructSize = SL->getSizeInBytes();
- const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
- const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
- auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
- uint64_t V2Off, uint64_t V2Size) {
- return V1Off < V2Off && V1Off + V1Size <= V2Off &&
- ((V2Off + V2Size <= StructSize) ||
- (V2Off + V2Size - StructSize <= V1Off));
- };
- if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
- EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
- return NoAlias;
- return MayAlias;
- }
- // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
- // beginning of the object the GEP points would have a negative offset with
- // repsect to the alloca, that means the GEP can not alias pointer (b).
- // Note that the pointer based on the alloca may not be a GEP. For
- // example, it may be the alloca itself.
- // The same applies if (b) is based on a GlobalVariable. Note that just being
- // based on isIdentifiedObject() is not enough - we need an identified object
- // that does not permit access to negative offsets. For example, a negative
- // offset from a noalias argument or call can be inbounds w.r.t the actual
- // underlying object.
- //
- // For example, consider:
- //
- // struct { int f0, int f1, ...} foo;
- // foo alloca;
- // foo* random = bar(alloca);
- // int *f0 = &alloca.f0
- // int *f1 = &random->f1;
- //
- // Which is lowered, approximately, to:
- //
- // %alloca = alloca %struct.foo
- // %random = call %struct.foo* @random(%struct.foo* %alloca)
- // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
- // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
- //
- // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
- // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
- // point into the same object. But since %f0 points to the beginning of %alloca,
- // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
- // than (%alloca - 1), and so is not inbounds, a contradiction.
- bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
- const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
- LocationSize MaybeObjectAccessSize) {
- // If the object access size is unknown, or the GEP isn't inbounds, bail.
- if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
- return false;
- const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
- // We need the object to be an alloca or a globalvariable, and want to know
- // the offset of the pointer from the object precisely, so no variable
- // indices are allowed.
- if (!(isa<AllocaInst>(DecompObject.Base) ||
- isa<GlobalVariable>(DecompObject.Base)) ||
- !DecompObject.VarIndices.empty())
- return false;
- APInt ObjectBaseOffset = DecompObject.StructOffset +
- DecompObject.OtherOffset;
- // If the GEP has no variable indices, we know the precise offset
- // from the base, then use it. If the GEP has variable indices,
- // we can't get exact GEP offset to identify pointer alias. So return
- // false in that case.
- if (!DecompGEP.VarIndices.empty())
- return false;
- APInt GEPBaseOffset = DecompGEP.StructOffset;
- GEPBaseOffset += DecompGEP.OtherOffset;
- return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
- /// another pointer.
- ///
- /// We know that V1 is a GEP, but we don't know anything about V2.
- /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
- /// V2.
- AliasResult BasicAAResult::aliasGEP(
- const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
- const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
- const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
- DecomposedGEP DecompGEP1, DecompGEP2;
- unsigned MaxPointerSize = getMaxPointerSize(DL);
- DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
- DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
- bool GEP1MaxLookupReached =
- DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
- bool GEP2MaxLookupReached =
- DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
- APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
- APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
- assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
- "DecomposeGEPExpression returned a result different from "
- "GetUnderlyingObject");
- // If the GEP's offset relative to its base is such that the base would
- // fall below the start of the object underlying V2, then the GEP and V2
- // cannot alias.
- if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
- isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
- return NoAlias;
- // If we have two gep instructions with must-alias or not-alias'ing base
- // pointers, figure out if the indexes to the GEP tell us anything about the
- // derived pointer.
- if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
- // Check for the GEP base being at a negative offset, this time in the other
- // direction.
- if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
- isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
- return NoAlias;
- // Do the base pointers alias?
- AliasResult BaseAlias =
- aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
- UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
- // Check for geps of non-aliasing underlying pointers where the offsets are
- // identical.
- if ((BaseAlias == MayAlias) && V1Size == V2Size) {
- // Do the base pointers alias assuming type and size.
- AliasResult PreciseBaseAlias = aliasCheck(
- UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
- if (PreciseBaseAlias == NoAlias) {
- // See if the computed offset from the common pointer tells us about the
- // relation of the resulting pointer.
- // If the max search depth is reached the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Same offsets.
- if (GEP1BaseOffset == GEP2BaseOffset &&
- DecompGEP1.VarIndices == DecompGEP2.VarIndices)
- return NoAlias;
- }
- }
- // If we get a No or May, then return it immediately, no amount of analysis
- // will improve this situation.
- if (BaseAlias != MustAlias) {
- assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
- return BaseAlias;
- }
- // Otherwise, we have a MustAlias. Since the base pointers alias each other
- // exactly, see if the computed offset from the common pointer tells us
- // about the relation of the resulting pointer.
- // If we know the two GEPs are based off of the exact same pointer (and not
- // just the same underlying object), see if that tells us anything about
- // the resulting pointers.
- if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
- GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
- GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
- AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
- // If we couldn't find anything interesting, don't abandon just yet.
- if (R != MayAlias)
- return R;
- }
- // If the max search depth is reached, the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Subtract the GEP2 pointer from the GEP1 pointer to find out their
- // symbolic difference.
- GEP1BaseOffset -= GEP2BaseOffset;
- GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
- } else {
- // Check to see if these two pointers are related by the getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
- // If both accesses are unknown size, we can't do anything useful here.
- if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
- return MayAlias;
- AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
- AAMDNodes(), V2, LocationSize::unknown(),
- V2AAInfo, AAQI, nullptr, UnderlyingV2);
- if (R != MustAlias) {
- // If V2 may alias GEP base pointer, conservatively returns MayAlias.
- // If V2 is known not to alias GEP base pointer, then the two values
- // cannot alias per GEP semantics: "Any memory access must be done through
- // a pointer value associated with an address range of the memory access,
- // otherwise the behavior is undefined.".
- assert(R == NoAlias || R == MayAlias);
- return R;
- }
- // If the max search depth is reached the result is undefined
- if (GEP1MaxLookupReached)
- return MayAlias;
- }
- // In the two GEP Case, if there is no difference in the offsets of the
- // computed pointers, the resultant pointers are a must alias. This
- // happens when we have two lexically identical GEP's (for example).
- //
- // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
- // must aliases the GEP, the end result is a must alias also.
- if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
- return MustAlias;
- // If there is a constant difference between the pointers, but the difference
- // is less than the size of the associated memory object, then we know
- // that the objects are partially overlapping. If the difference is
- // greater, we know they do not overlap.
- if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
- if (GEP1BaseOffset.sge(0)) {
- if (V2Size != LocationSize::unknown()) {
- if (GEP1BaseOffset.ult(V2Size.getValue()))
- return PartialAlias;
- return NoAlias;
- }
- } else {
- // We have the situation where:
- // + +
- // | BaseOffset |
- // ---------------->|
- // |-->V1Size |-------> V2Size
- // GEP1 V2
- // We need to know that V2Size is not unknown, otherwise we might have
- // stripped a gep with negative index ('gep <ptr>, -1, ...).
- if (V1Size != LocationSize::unknown() &&
- V2Size != LocationSize::unknown()) {
- if ((-GEP1BaseOffset).ult(V1Size.getValue()))
- return PartialAlias;
- return NoAlias;
- }
- }
- }
- if (!DecompGEP1.VarIndices.empty()) {
- APInt Modulo(MaxPointerSize, 0);
- bool AllPositive = true;
- for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
- // Try to distinguish something like &A[i][1] against &A[42][0].
- // Grab the least significant bit set in any of the scales. We
- // don't need std::abs here (even if the scale's negative) as we'll
- // be ^'ing Modulo with itself later.
- Modulo |= DecompGEP1.VarIndices[i].Scale;
- if (AllPositive) {
- // If the Value could change between cycles, then any reasoning about
- // the Value this cycle may not hold in the next cycle. We'll just
- // give up if we can't determine conditions that hold for every cycle:
- const Value *V = DecompGEP1.VarIndices[i].V;
- KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
- bool SignKnownZero = Known.isNonNegative();
- bool SignKnownOne = Known.isNegative();
- // Zero-extension widens the variable, and so forces the sign
- // bit to zero.
- bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
- SignKnownZero |= IsZExt;
- SignKnownOne &= !IsZExt;
- // If the variable begins with a zero then we know it's
- // positive, regardless of whether the value is signed or
- // unsigned.
- APInt Scale = DecompGEP1.VarIndices[i].Scale;
- AllPositive =
- (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
- }
- }
- Modulo = Modulo ^ (Modulo & (Modulo - 1));
- // We can compute the difference between the two addresses
- // mod Modulo. Check whether that difference guarantees that the
- // two locations do not alias.
- APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
- if (V1Size != LocationSize::unknown() &&
- V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
- (Modulo - ModOffset).uge(V1Size.getValue()))
- return NoAlias;
- // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
- // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
- // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
- if (AllPositive && GEP1BaseOffset.sgt(0) &&
- V2Size != LocationSize::unknown() &&
- GEP1BaseOffset.uge(V2Size.getValue()))
- return NoAlias;
- if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
- GEP1BaseOffset, &AC, DT))
- return NoAlias;
- }
- // Statically, we can see that the base objects are the same, but the
- // pointers have dynamic offsets which we can't resolve. And none of our
- // little tricks above worked.
- return MayAlias;
- }
- static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
- // If the results agree, take it.
- if (A == B)
- return A;
- // A mix of PartialAlias and MustAlias is PartialAlias.
- if ((A == PartialAlias && B == MustAlias) ||
- (B == PartialAlias && A == MustAlias))
- return PartialAlias;
- // Otherwise, we don't know anything.
- return MayAlias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
- /// against another.
- AliasResult
- BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
- const AAMDNodes &SIAAInfo, const Value *V2,
- LocationSize V2Size, const AAMDNodes &V2AAInfo,
- const Value *UnderV2, AAQueryInfo &AAQI) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for aliases between the values on corresponding arms.
- if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
- if (SI->getCondition() == SI2->getCondition()) {
- AliasResult Alias =
- aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
- V2Size, V2AAInfo, AAQI);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias =
- aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
- SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
- return MergeAliasResults(ThisAlias, Alias);
- }
- // If both arms of the Select node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
- SISize, SIAAInfo, AAQI, UnderV2);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
- SISize, SIAAInfo, AAQI, UnderV2);
- return MergeAliasResults(ThisAlias, Alias);
- }
- /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
- /// another.
- AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
- const AAMDNodes &PNAAInfo, const Value *V2,
- LocationSize V2Size,
- const AAMDNodes &V2AAInfo,
- const Value *UnderV2, AAQueryInfo &AAQI) {
- // Track phi nodes we have visited. We use this information when we determine
- // value equivalence.
- VisitedPhiBBs.insert(PN->getParent());
- // If the values are PHIs in the same block, we can do a more precise
- // as well as efficient check: just check for aliases between the values
- // on corresponding edges.
- if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
- if (PN2->getParent() == PN->getParent()) {
- AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (PN > V2)
- std::swap(Locs.first, Locs.second);
- // Analyse the PHIs' inputs under the assumption that the PHIs are
- // NoAlias.
- // If the PHIs are May/MustAlias there must be (recursively) an input
- // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
- // there must be an operation on the PHIs within the PHIs' value cycle
- // that causes a MayAlias.
- // Pretend the phis do not alias.
- AliasResult Alias = NoAlias;
- AliasResult OrigAliasResult;
- {
- // Limited lifetime iterator invalidated by the aliasCheck call below.
- auto CacheIt = AAQI.AliasCache.find(Locs);
- assert((CacheIt != AAQI.AliasCache.end()) &&
- "There must exist an entry for the phi node");
- OrigAliasResult = CacheIt->second;
- CacheIt->second = NoAlias;
- }
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- AliasResult ThisAlias =
- aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
- PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
- V2Size, V2AAInfo, AAQI);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- // Reset if speculation failed.
- if (Alias != NoAlias) {
- auto Pair =
- AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
- assert(!Pair.second && "Entry must have existed");
- Pair.first->second = OrigAliasResult;
- }
- return Alias;
- }
- SmallVector<Value *, 4> V1Srcs;
- bool isRecursive = false;
- if (PV) {
- // If we have PhiValues then use it to get the underlying phi values.
- const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
- // If we have more phi values than the search depth then return MayAlias
- // conservatively to avoid compile time explosion. The worst possible case
- // is if both sides are PHI nodes. In which case, this is O(m x n) time
- // where 'm' and 'n' are the number of PHI sources.
- if (PhiValueSet.size() > MaxLookupSearchDepth)
- return MayAlias;
- // Add the values to V1Srcs
- for (Value *PV1 : PhiValueSet) {
- if (EnableRecPhiAnalysis) {
- if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
- // Check whether the incoming value is a GEP that advances the pointer
- // result of this PHI node (e.g. in a loop). If this is the case, we
- // would recurse and always get a MayAlias. Handle this case specially
- // below.
- if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
- isa<ConstantInt>(PV1GEP->idx_begin())) {
- isRecursive = true;
- continue;
- }
- }
- }
- V1Srcs.push_back(PV1);
- }
- } else {
- // If we don't have PhiInfo then just look at the operands of the phi itself
- // FIXME: Remove this once we can guarantee that we have PhiInfo always
- SmallPtrSet<Value *, 4> UniqueSrc;
- for (Value *PV1 : PN->incoming_values()) {
- if (isa<PHINode>(PV1))
- // If any of the source itself is a PHI, return MayAlias conservatively
- // to avoid compile time explosion. The worst possible case is if both
- // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
- // and 'n' are the number of PHI sources.
- return MayAlias;
- if (EnableRecPhiAnalysis)
- if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
- // Check whether the incoming value is a GEP that advances the pointer
- // result of this PHI node (e.g. in a loop). If this is the case, we
- // would recurse and always get a MayAlias. Handle this case specially
- // below.
- if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
- isa<ConstantInt>(PV1GEP->idx_begin())) {
- isRecursive = true;
- continue;
- }
- }
- if (UniqueSrc.insert(PV1).second)
- V1Srcs.push_back(PV1);
- }
- }
- // If V1Srcs is empty then that means that the phi has no underlying non-phi
- // value. This should only be possible in blocks unreachable from the entry
- // block, but return MayAlias just in case.
- if (V1Srcs.empty())
- return MayAlias;
- // If this PHI node is recursive, set the size of the accessed memory to
- // unknown to represent all the possible values the GEP could advance the
- // pointer to.
- if (isRecursive)
- PNSize = LocationSize::unknown();
- AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
- PNAAInfo, AAQI, UnderV2);
- // Early exit if the check of the first PHI source against V2 is MayAlias.
- // Other results are not possible.
- if (Alias == MayAlias)
- return MayAlias;
- // If all sources of the PHI node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
- Value *V = V1Srcs[i];
- AliasResult ThisAlias =
- aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- return Alias;
- }
- /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
- /// array references.
- AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
- AAMDNodes V1AAInfo, const Value *V2,
- LocationSize V2Size, AAMDNodes V2AAInfo,
- AAQueryInfo &AAQI, const Value *O1,
- const Value *O2) {
- // If either of the memory references is empty, it doesn't matter what the
- // pointer values are.
- if (V1Size.isZero() || V2Size.isZero())
- return NoAlias;
- // Strip off any casts if they exist.
- V1 = V1->stripPointerCastsAndInvariantGroups();
- V2 = V2->stripPointerCastsAndInvariantGroups();
- // If V1 or V2 is undef, the result is NoAlias because we can always pick a
- // value for undef that aliases nothing in the program.
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return NoAlias;
- // Are we checking for alias of the same value?
- // Because we look 'through' phi nodes, we could look at "Value" pointers from
- // different iterations. We must therefore make sure that this is not the
- // case. The function isValueEqualInPotentialCycles ensures that this cannot
- // happen by looking at the visited phi nodes and making sure they cannot
- // reach the value.
- if (isValueEqualInPotentialCycles(V1, V2))
- return MustAlias;
- if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
- return NoAlias; // Scalars cannot alias each other
- // Figure out what objects these things are pointing to if we can.
- if (O1 == nullptr)
- O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
- if (O2 == nullptr)
- O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
- // Null values in the default address space don't point to any object, so they
- // don't alias any other pointer.
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
- if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return NoAlias;
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
- if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
- return NoAlias;
- if (O1 != O2) {
- // If V1/V2 point to two different objects, we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
- // Constant pointers can't alias with non-const isIdentifiedObject objects.
- if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
- (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
- return NoAlias;
- // Function arguments can't alias with things that are known to be
- // unambigously identified at the function level.
- if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
- (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
- return NoAlias;
- // If one pointer is the result of a call/invoke or load and the other is a
- // non-escaping local object within the same function, then we know the
- // object couldn't escape to a point where the call could return it.
- //
- // Note that if the pointers are in different functions, there are a
- // variety of complications. A call with a nocapture argument may still
- // temporary store the nocapture argument's value in a temporary memory
- // location if that memory location doesn't escape. Or it may pass a
- // nocapture value to other functions as long as they don't capture it.
- if (isEscapeSource(O1) &&
- isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
- return NoAlias;
- if (isEscapeSource(O2) &&
- isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
- return NoAlias;
- }
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- bool NullIsValidLocation = NullPointerIsDefined(&F);
- if ((isObjectSmallerThan(
- O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
- TLI, NullIsValidLocation)) ||
- (isObjectSmallerThan(
- O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
- TLI, NullIsValidLocation)))
- return NoAlias;
- // Check the cache before climbing up use-def chains. This also terminates
- // otherwise infinitely recursive queries.
- AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (V1 > V2)
- std::swap(Locs.first, Locs.second);
- std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
- AAQI.AliasCache.try_emplace(Locs, MayAlias);
- if (!Pair.second)
- return Pair.first->second;
- // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
- // GEP can't simplify, we don't even look at the PHI cases.
- if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(O1, O2);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result =
- aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
- if (Result != MayAlias) {
- auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
- assert(!ItInsPair.second && "Entry must have existed");
- ItInsPair.first->second = Result;
- return Result;
- }
- }
- if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
- std::swap(V1, V2);
- std::swap(O1, O2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result =
- aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
- if (Result != MayAlias) {
- Pair = AAQI.AliasCache.try_emplace(Locs, Result);
- assert(!Pair.second && "Entry must have existed");
- return Pair.first->second = Result;
- }
- }
- if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
- std::swap(V1, V2);
- std::swap(O1, O2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result =
- aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
- if (Result != MayAlias) {
- Pair = AAQI.AliasCache.try_emplace(Locs, Result);
- assert(!Pair.second && "Entry must have existed");
- return Pair.first->second = Result;
- }
- }
- // If both pointers are pointing into the same object and one of them
- // accesses the entire object, then the accesses must overlap in some way.
- if (O1 == O2)
- if (V1Size.isPrecise() && V2Size.isPrecise() &&
- (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
- isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
- Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
- assert(!Pair.second && "Entry must have existed");
- return Pair.first->second = PartialAlias;
- }
- // Recurse back into the best AA results we have, potentially with refined
- // memory locations. We have already ensured that BasicAA has a MayAlias
- // cache result for these, so any recursion back into BasicAA won't loop.
- AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
- Pair = AAQI.AliasCache.try_emplace(Locs, Result);
- assert(!Pair.second && "Entry must have existed");
- return Pair.first->second = Result;
- }
- /// Check whether two Values can be considered equivalent.
- ///
- /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
- /// they can not be part of a cycle in the value graph by looking at all
- /// visited phi nodes an making sure that the phis cannot reach the value. We
- /// have to do this because we are looking through phi nodes (That is we say
- /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
- bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
- const Value *V2) {
- if (V != V2)
- return false;
- const Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return true;
- if (VisitedPhiBBs.empty())
- return true;
- if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
- return false;
- // Make sure that the visited phis cannot reach the Value. This ensures that
- // the Values cannot come from different iterations of a potential cycle the
- // phi nodes could be involved in.
- for (auto *P : VisitedPhiBBs)
- if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
- return false;
- return true;
- }
- /// Computes the symbolic difference between two de-composed GEPs.
- ///
- /// Dest and Src are the variable indices from two decomposed GetElementPtr
- /// instructions GEP1 and GEP2 which have common base pointers.
- void BasicAAResult::GetIndexDifference(
- SmallVectorImpl<VariableGEPIndex> &Dest,
- const SmallVectorImpl<VariableGEPIndex> &Src) {
- if (Src.empty())
- return;
- for (unsigned i = 0, e = Src.size(); i != e; ++i) {
- const Value *V = Src[i].V;
- unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
- APInt Scale = Src[i].Scale;
- // Find V in Dest. This is N^2, but pointer indices almost never have more
- // than a few variable indexes.
- for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
- if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
- Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
- continue;
- // If we found it, subtract off Scale V's from the entry in Dest. If it
- // goes to zero, remove the entry.
- if (Dest[j].Scale != Scale)
- Dest[j].Scale -= Scale;
- else
- Dest.erase(Dest.begin() + j);
- Scale = 0;
- break;
- }
- // If we didn't consume this entry, add it to the end of the Dest list.
- if (!!Scale) {
- VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
- Dest.push_back(Entry);
- }
- }
- }
- bool BasicAAResult::constantOffsetHeuristic(
- const SmallVectorImpl<VariableGEPIndex> &VarIndices,
- LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
- AssumptionCache *AC, DominatorTree *DT) {
- if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
- MaybeV2Size == LocationSize::unknown())
- return false;
- const uint64_t V1Size = MaybeV1Size.getValue();
- const uint64_t V2Size = MaybeV2Size.getValue();
- const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
- if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
- Var0.Scale != -Var1.Scale)
- return false;
- unsigned Width = Var1.V->getType()->getIntegerBitWidth();
- // We'll strip off the Extensions of Var0 and Var1 and do another round
- // of GetLinearExpression decomposition. In the example above, if Var0
- // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
- APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
- V1Offset(Width, 0);
- bool NSW = true, NUW = true;
- unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
- const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
- V0SExtBits, DL, 0, AC, DT, NSW, NUW);
- NSW = true;
- NUW = true;
- const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
- V1SExtBits, DL, 0, AC, DT, NSW, NUW);
- if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
- V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
- return false;
- // We have a hit - Var0 and Var1 only differ by a constant offset!
- // If we've been sext'ed then zext'd the maximum difference between Var0 and
- // Var1 is possible to calculate, but we're just interested in the absolute
- // minimum difference between the two. The minimum distance may occur due to
- // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
- // the minimum distance between %i and %i + 5 is 3.
- APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
- MinDiff = APIntOps::umin(MinDiff, Wrapped);
- APInt MinDiffBytes =
- MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
- // We can't definitely say whether GEP1 is before or after V2 due to wrapping
- // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
- // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
- // V2Size can fit in the MinDiffBytes gap.
- return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
- MinDiffBytes.uge(V2Size + BaseOffset.abs());
- }
- //===----------------------------------------------------------------------===//
- // BasicAliasAnalysis Pass
- //===----------------------------------------------------------------------===//
- AnalysisKey BasicAA::Key;
- BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
- return BasicAAResult(F.getParent()->getDataLayout(),
- F,
- AM.getResult<TargetLibraryAnalysis>(F),
- AM.getResult<AssumptionAnalysis>(F),
- &AM.getResult<DominatorTreeAnalysis>(F),
- AM.getCachedResult<LoopAnalysis>(F),
- AM.getCachedResult<PhiValuesAnalysis>(F));
- }
- BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
- initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- char BasicAAWrapperPass::ID = 0;
- void BasicAAWrapperPass::anchor() {}
- INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
- "Basic Alias Analysis (stateless AA impl)", false, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
- "Basic Alias Analysis (stateless AA impl)", false, true)
- FunctionPass *llvm::createBasicAAWrapperPass() {
- return new BasicAAWrapperPass();
- }
- bool BasicAAWrapperPass::runOnFunction(Function &F) {
- auto &ACT = getAnalysis<AssumptionCacheTracker>();
- auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
- auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
- Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
- TLIWP.getTLI(F), ACT.getAssumptionCache(F),
- &DTWP.getDomTree(),
- LIWP ? &LIWP->getLoopInfo() : nullptr,
- PVWP ? &PVWP->getResult() : nullptr));
- return false;
- }
- void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addUsedIfAvailable<PhiValuesWrapperPass>();
- }
- BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
- return BasicAAResult(
- F.getParent()->getDataLayout(), F,
- P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
- P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
- }
|