123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983 |
- //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GraphWriter.h"
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "lcg"
- void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
- Edge::Kind EK) {
- EdgeIndexMap.insert({&TargetN, Edges.size()});
- Edges.emplace_back(TargetN, EK);
- }
- void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
- Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
- }
- bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
- auto IndexMapI = EdgeIndexMap.find(&TargetN);
- if (IndexMapI == EdgeIndexMap.end())
- return false;
- Edges[IndexMapI->second] = Edge();
- EdgeIndexMap.erase(IndexMapI);
- return true;
- }
- static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
- DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
- LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
- if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
- return;
- DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
- Edges.emplace_back(LazyCallGraph::Edge(N, EK));
- }
- LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
- assert(!Edges && "Must not have already populated the edges for this node!");
- DEBUG(dbgs() << " Adding functions called by '" << getName()
- << "' to the graph.\n");
- Edges = EdgeSequence();
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Function *, 4> Callees;
- SmallPtrSet<Constant *, 16> Visited;
- // Find all the potential call graph edges in this function. We track both
- // actual call edges and indirect references to functions. The direct calls
- // are trivially added, but to accumulate the latter we walk the instructions
- // and add every operand which is a constant to the worklist to process
- // afterward.
- //
- // Note that we consider *any* function with a definition to be a viable
- // edge. Even if the function's definition is subject to replacement by
- // some other module (say, a weak definition) there may still be
- // optimizations which essentially speculate based on the definition and
- // a way to check that the specific definition is in fact the one being
- // used. For example, this could be done by moving the weak definition to
- // a strong (internal) definition and making the weak definition be an
- // alias. Then a test of the address of the weak function against the new
- // strong definition's address would be an effective way to determine the
- // safety of optimizing a direct call edge.
- for (BasicBlock &BB : *F)
- for (Instruction &I : BB) {
- if (auto CS = CallSite(&I))
- if (Function *Callee = CS.getCalledFunction())
- if (!Callee->isDeclaration())
- if (Callees.insert(Callee).second) {
- Visited.insert(Callee);
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
- LazyCallGraph::Edge::Call);
- }
- for (Value *Op : I.operand_values())
- if (Constant *C = dyn_cast<Constant>(Op))
- if (Visited.insert(C).second)
- Worklist.push_back(C);
- }
- // We've collected all the constant (and thus potentially function or
- // function containing) operands to all of the instructions in the function.
- // Process them (recursively) collecting every function found.
- visitReferences(Worklist, Visited, [&](Function &F) {
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
- LazyCallGraph::Edge::Ref);
- });
- // Add implicit reference edges to any defined libcall functions (if we
- // haven't found an explicit edge).
- for (auto *F : G->LibFunctions)
- if (!Visited.count(F))
- addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
- LazyCallGraph::Edge::Ref);
- return *Edges;
- }
- void LazyCallGraph::Node::replaceFunction(Function &NewF) {
- assert(F != &NewF && "Must not replace a function with itself!");
- F = &NewF;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
- LibFunc LF;
- // Either this is a normal library function or a "vectorizable" function.
- return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
- }
- LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
- DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
- << "\n");
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- // If this function is a known lib function to LLVM then we want to
- // synthesize reference edges to it to model the fact that LLVM can turn
- // arbitrary code into a library function call.
- if (isKnownLibFunction(F, TLI))
- LibFunctions.push_back(&F);
- if (F.hasLocalLinkage())
- continue;
- // External linkage defined functions have edges to them from other
- // modules.
- DEBUG(dbgs() << " Adding '" << F.getName()
- << "' to entry set of the graph.\n");
- addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
- }
- // Now add entry nodes for functions reachable via initializers to globals.
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- for (GlobalVariable &GV : M.globals())
- if (GV.hasInitializer())
- if (Visited.insert(GV.getInitializer()).second)
- Worklist.push_back(GV.getInitializer());
- DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
- "entry set.\n");
- visitReferences(Worklist, Visited, [&](Function &F) {
- addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
- LazyCallGraph::Edge::Ref);
- });
- }
- LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
- : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
- EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
- SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
- LibFunctions(std::move(G.LibFunctions)) {
- updateGraphPtrs();
- }
- LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
- BPA = std::move(G.BPA);
- NodeMap = std::move(G.NodeMap);
- EntryEdges = std::move(G.EntryEdges);
- SCCBPA = std::move(G.SCCBPA);
- SCCMap = std::move(G.SCCMap);
- LeafRefSCCs = std::move(G.LeafRefSCCs);
- LibFunctions = std::move(G.LibFunctions);
- updateGraphPtrs();
- return *this;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- #ifndef NDEBUG
- void LazyCallGraph::SCC::verify() {
- assert(OuterRefSCC && "Can't have a null RefSCC!");
- assert(!Nodes.empty() && "Can't have an empty SCC!");
- for (Node *N : Nodes) {
- assert(N && "Can't have a null node!");
- assert(OuterRefSCC->G->lookupSCC(*N) == this &&
- "Node does not map to this SCC!");
- assert(N->DFSNumber == -1 &&
- "Must set DFS numbers to -1 when adding a node to an SCC!");
- assert(N->LowLink == -1 &&
- "Must set low link to -1 when adding a node to an SCC!");
- for (Edge &E : **N)
- assert(E.getNode() && "Can't have an unpopulated node!");
- }
- }
- #endif
- bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
- if (this == &C)
- return false;
- for (Node &N : *this)
- for (Edge &E : N->calls())
- if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
- return true;
- // No edges found.
- return false;
- }
- bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
- if (this == &TargetC)
- return false;
- LazyCallGraph &G = *OuterRefSCC->G;
- // Start with this SCC.
- SmallPtrSet<const SCC *, 16> Visited = {this};
- SmallVector<const SCC *, 16> Worklist = {this};
- // Walk down the graph until we run out of edges or find a path to TargetC.
- do {
- const SCC &C = *Worklist.pop_back_val();
- for (Node &N : C)
- for (Edge &E : N->calls()) {
- SCC *CalleeC = G.lookupSCC(E.getNode());
- if (!CalleeC)
- continue;
- // If the callee's SCC is the TargetC, we're done.
- if (CalleeC == &TargetC)
- return true;
- // If this is the first time we've reached this SCC, put it on the
- // worklist to recurse through.
- if (Visited.insert(CalleeC).second)
- Worklist.push_back(CalleeC);
- }
- } while (!Worklist.empty());
- // No paths found.
- return false;
- }
- LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
- dbgs() << *this << '\n';
- }
- #endif
- #ifndef NDEBUG
- void LazyCallGraph::RefSCC::verify() {
- assert(G && "Can't have a null graph!");
- assert(!SCCs.empty() && "Can't have an empty SCC!");
- // Verify basic properties of the SCCs.
- SmallPtrSet<SCC *, 4> SCCSet;
- for (SCC *C : SCCs) {
- assert(C && "Can't have a null SCC!");
- C->verify();
- assert(&C->getOuterRefSCC() == this &&
- "SCC doesn't think it is inside this RefSCC!");
- bool Inserted = SCCSet.insert(C).second;
- assert(Inserted && "Found a duplicate SCC!");
- auto IndexIt = SCCIndices.find(C);
- assert(IndexIt != SCCIndices.end() &&
- "Found an SCC that doesn't have an index!");
- }
- // Check that our indices map correctly.
- for (auto &SCCIndexPair : SCCIndices) {
- SCC *C = SCCIndexPair.first;
- int i = SCCIndexPair.second;
- assert(C && "Can't have a null SCC in the indices!");
- assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
- assert(SCCs[i] == C && "Index doesn't point to SCC!");
- }
- // Check that the SCCs are in fact in post-order.
- for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
- SCC &SourceSCC = *SCCs[i];
- for (Node &N : SourceSCC)
- for (Edge &E : *N) {
- if (!E.isCall())
- continue;
- SCC &TargetSCC = *G->lookupSCC(E.getNode());
- if (&TargetSCC.getOuterRefSCC() == this) {
- assert(SCCIndices.find(&TargetSCC)->second <= i &&
- "Edge between SCCs violates post-order relationship.");
- continue;
- }
- assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
- "Edge to a RefSCC missing us in its parent set.");
- }
- }
- // Check that our parents are actually parents.
- for (RefSCC *ParentRC : Parents) {
- assert(ParentRC != this && "Cannot be our own parent!");
- auto HasConnectingEdge = [&] {
- for (SCC &C : *ParentRC)
- for (Node &N : C)
- for (Edge &E : *N)
- if (G->lookupRefSCC(E.getNode()) == this)
- return true;
- return false;
- };
- assert(HasConnectingEdge() && "No edge connects the parent to us!");
- }
- }
- #endif
- bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
- // Walk up the parents of this SCC and verify that we eventually find C.
- SmallVector<const RefSCC *, 4> AncestorWorklist;
- AncestorWorklist.push_back(this);
- do {
- const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
- if (AncestorC->isChildOf(C))
- return true;
- for (const RefSCC *ParentC : AncestorC->Parents)
- AncestorWorklist.push_back(ParentC);
- } while (!AncestorWorklist.empty());
- return false;
- }
- /// Generic helper that updates a postorder sequence of SCCs for a potentially
- /// cycle-introducing edge insertion.
- ///
- /// A postorder sequence of SCCs of a directed graph has one fundamental
- /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
- /// all edges in the SCC DAG point to prior SCCs in the sequence.
- ///
- /// This routine both updates a postorder sequence and uses that sequence to
- /// compute the set of SCCs connected into a cycle. It should only be called to
- /// insert a "downward" edge which will require changing the sequence to
- /// restore it to a postorder.
- ///
- /// When inserting an edge from an earlier SCC to a later SCC in some postorder
- /// sequence, all of the SCCs which may be impacted are in the closed range of
- /// those two within the postorder sequence. The algorithm used here to restore
- /// the state is as follows:
- ///
- /// 1) Starting from the source SCC, construct a set of SCCs which reach the
- /// source SCC consisting of just the source SCC. Then scan toward the
- /// target SCC in postorder and for each SCC, if it has an edge to an SCC
- /// in the set, add it to the set. Otherwise, the source SCC is not
- /// a successor, move it in the postorder sequence to immediately before
- /// the source SCC, shifting the source SCC and all SCCs in the set one
- /// position toward the target SCC. Stop scanning after processing the
- /// target SCC.
- /// 2) If the source SCC is now past the target SCC in the postorder sequence,
- /// and thus the new edge will flow toward the start, we are done.
- /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
- /// SCC between the source and the target, and add them to the set of
- /// connected SCCs, then recurse through them. Once a complete set of the
- /// SCCs the target connects to is known, hoist the remaining SCCs between
- /// the source and the target to be above the target. Note that there is no
- /// need to process the source SCC, it is already known to connect.
- /// 4) At this point, all of the SCCs in the closed range between the source
- /// SCC and the target SCC in the postorder sequence are connected,
- /// including the target SCC and the source SCC. Inserting the edge from
- /// the source SCC to the target SCC will form a cycle out of precisely
- /// these SCCs. Thus we can merge all of the SCCs in this closed range into
- /// a single SCC.
- ///
- /// This process has various important properties:
- /// - Only mutates the SCCs when adding the edge actually changes the SCC
- /// structure.
- /// - Never mutates SCCs which are unaffected by the change.
- /// - Updates the postorder sequence to correctly satisfy the postorder
- /// constraint after the edge is inserted.
- /// - Only reorders SCCs in the closed postorder sequence from the source to
- /// the target, so easy to bound how much has changed even in the ordering.
- /// - Big-O is the number of edges in the closed postorder range of SCCs from
- /// source to target.
- ///
- /// This helper routine, in addition to updating the postorder sequence itself
- /// will also update a map from SCCs to indices within that sequecne.
- ///
- /// The sequence and the map must operate on pointers to the SCC type.
- ///
- /// Two callbacks must be provided. The first computes the subset of SCCs in
- /// the postorder closed range from the source to the target which connect to
- /// the source SCC via some (transitive) set of edges. The second computes the
- /// subset of the same range which the target SCC connects to via some
- /// (transitive) set of edges. Both callbacks should populate the set argument
- /// provided.
- template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
- typename ComputeSourceConnectedSetCallableT,
- typename ComputeTargetConnectedSetCallableT>
- static iterator_range<typename PostorderSequenceT::iterator>
- updatePostorderSequenceForEdgeInsertion(
- SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
- SCCIndexMapT &SCCIndices,
- ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
- ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
- int SourceIdx = SCCIndices[&SourceSCC];
- int TargetIdx = SCCIndices[&TargetSCC];
- assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
- SmallPtrSet<SCCT *, 4> ConnectedSet;
- // Compute the SCCs which (transitively) reach the source.
- ComputeSourceConnectedSet(ConnectedSet);
- // Partition the SCCs in this part of the port-order sequence so only SCCs
- // connecting to the source remain between it and the target. This is
- // a benign partition as it preserves postorder.
- auto SourceI = std::stable_partition(
- SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
- [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
- for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
- SCCIndices.find(SCCs[i])->second = i;
- // If the target doesn't connect to the source, then we've corrected the
- // post-order and there are no cycles formed.
- if (!ConnectedSet.count(&TargetSCC)) {
- assert(SourceI > (SCCs.begin() + SourceIdx) &&
- "Must have moved the source to fix the post-order.");
- assert(*std::prev(SourceI) == &TargetSCC &&
- "Last SCC to move should have bene the target.");
- // Return an empty range at the target SCC indicating there is nothing to
- // merge.
- return make_range(std::prev(SourceI), std::prev(SourceI));
- }
- assert(SCCs[TargetIdx] == &TargetSCC &&
- "Should not have moved target if connected!");
- SourceIdx = SourceI - SCCs.begin();
- assert(SCCs[SourceIdx] == &SourceSCC &&
- "Bad updated index computation for the source SCC!");
- // See whether there are any remaining intervening SCCs between the source
- // and target. If so we need to make sure they all are reachable form the
- // target.
- if (SourceIdx + 1 < TargetIdx) {
- ConnectedSet.clear();
- ComputeTargetConnectedSet(ConnectedSet);
- // Partition SCCs so that only SCCs reached from the target remain between
- // the source and the target. This preserves postorder.
- auto TargetI = std::stable_partition(
- SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
- [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
- for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
- SCCIndices.find(SCCs[i])->second = i;
- TargetIdx = std::prev(TargetI) - SCCs.begin();
- assert(SCCs[TargetIdx] == &TargetSCC &&
- "Should always end with the target!");
- }
- // At this point, we know that connecting source to target forms a cycle
- // because target connects back to source, and we know that all of the SCCs
- // between the source and target in the postorder sequence participate in that
- // cycle.
- return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
- }
- bool
- LazyCallGraph::RefSCC::switchInternalEdgeToCall(
- Node &SourceN, Node &TargetN,
- function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
- assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
- SmallVector<SCC *, 1> DeletedSCCs;
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- SCC &SourceSCC = *G->lookupSCC(SourceN);
- SCC &TargetSCC = *G->lookupSCC(TargetN);
- // If the two nodes are already part of the same SCC, we're also done as
- // we've just added more connectivity.
- if (&SourceSCC == &TargetSCC) {
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- // At this point we leverage the postorder list of SCCs to detect when the
- // insertion of an edge changes the SCC structure in any way.
- //
- // First and foremost, we can eliminate the need for any changes when the
- // edge is toward the beginning of the postorder sequence because all edges
- // flow in that direction already. Thus adding a new one cannot form a cycle.
- int SourceIdx = SCCIndices[&SourceSCC];
- int TargetIdx = SCCIndices[&TargetSCC];
- if (TargetIdx < SourceIdx) {
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- // Compute the SCCs which (transitively) reach the source.
- auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
- #ifndef NDEBUG
- // Check that the RefSCC is still valid before computing this as the
- // results will be nonsensical of we've broken its invariants.
- verify();
- #endif
- ConnectedSet.insert(&SourceSCC);
- auto IsConnected = [&](SCC &C) {
- for (Node &N : C)
- for (Edge &E : N->calls())
- if (ConnectedSet.count(G->lookupSCC(E.getNode())))
- return true;
- return false;
- };
- for (SCC *C :
- make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
- if (IsConnected(*C))
- ConnectedSet.insert(C);
- };
- // Use a normal worklist to find which SCCs the target connects to. We still
- // bound the search based on the range in the postorder list we care about,
- // but because this is forward connectivity we just "recurse" through the
- // edges.
- auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
- #ifndef NDEBUG
- // Check that the RefSCC is still valid before computing this as the
- // results will be nonsensical of we've broken its invariants.
- verify();
- #endif
- ConnectedSet.insert(&TargetSCC);
- SmallVector<SCC *, 4> Worklist;
- Worklist.push_back(&TargetSCC);
- do {
- SCC &C = *Worklist.pop_back_val();
- for (Node &N : C)
- for (Edge &E : *N) {
- if (!E.isCall())
- continue;
- SCC &EdgeC = *G->lookupSCC(E.getNode());
- if (&EdgeC.getOuterRefSCC() != this)
- // Not in this RefSCC...
- continue;
- if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
- // Not in the postorder sequence between source and target.
- continue;
- if (ConnectedSet.insert(&EdgeC).second)
- Worklist.push_back(&EdgeC);
- }
- } while (!Worklist.empty());
- };
- // Use a generic helper to update the postorder sequence of SCCs and return
- // a range of any SCCs connected into a cycle by inserting this edge. This
- // routine will also take care of updating the indices into the postorder
- // sequence.
- auto MergeRange = updatePostorderSequenceForEdgeInsertion(
- SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
- ComputeTargetConnectedSet);
- // Run the user's callback on the merged SCCs before we actually merge them.
- if (MergeCB)
- MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
- // If the merge range is empty, then adding the edge didn't actually form any
- // new cycles. We're done.
- if (MergeRange.begin() == MergeRange.end()) {
- // Now that the SCC structure is finalized, flip the kind to call.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- return false; // No new cycle.
- }
- #ifndef NDEBUG
- // Before merging, check that the RefSCC remains valid after all the
- // postorder updates.
- verify();
- #endif
- // Otherwise we need to merge all of the SCCs in the cycle into a single
- // result SCC.
- //
- // NB: We merge into the target because all of these functions were already
- // reachable from the target, meaning any SCC-wide properties deduced about it
- // other than the set of functions within it will not have changed.
- for (SCC *C : MergeRange) {
- assert(C != &TargetSCC &&
- "We merge *into* the target and shouldn't process it here!");
- SCCIndices.erase(C);
- TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
- for (Node *N : C->Nodes)
- G->SCCMap[N] = &TargetSCC;
- C->clear();
- DeletedSCCs.push_back(C);
- }
- // Erase the merged SCCs from the list and update the indices of the
- // remaining SCCs.
- int IndexOffset = MergeRange.end() - MergeRange.begin();
- auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
- for (SCC *C : make_range(EraseEnd, SCCs.end()))
- SCCIndices[C] -= IndexOffset;
- // Now that the SCC structure is finalized, flip the kind to call.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- // And we're done, but we did form a new cycle.
- return true;
- }
- void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
- Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- assert(G->lookupRefSCC(SourceN) == this &&
- "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this &&
- "Target must be in this RefSCC.");
- assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
- "Source and Target must be in separate SCCs for this to be trivial!");
- // Set the edge kind.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- }
- iterator_range<LazyCallGraph::RefSCC::iterator>
- LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- assert(G->lookupRefSCC(SourceN) == this &&
- "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this &&
- "Target must be in this RefSCC.");
- SCC &TargetSCC = *G->lookupSCC(TargetN);
- assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
- "the same SCC to require the "
- "full CG update.");
- // Set the edge kind.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- // Otherwise we are removing a call edge from a single SCC. This may break
- // the cycle. In order to compute the new set of SCCs, we need to do a small
- // DFS over the nodes within the SCC to form any sub-cycles that remain as
- // distinct SCCs and compute a postorder over the resulting SCCs.
- //
- // However, we specially handle the target node. The target node is known to
- // reach all other nodes in the original SCC by definition. This means that
- // we want the old SCC to be replaced with an SCC contaning that node as it
- // will be the root of whatever SCC DAG results from the DFS. Assumptions
- // about an SCC such as the set of functions called will continue to hold,
- // etc.
- SCC &OldSCC = TargetSCC;
- SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
- SmallVector<Node *, 16> PendingSCCStack;
- SmallVector<SCC *, 4> NewSCCs;
- // Prepare the nodes for a fresh DFS.
- SmallVector<Node *, 16> Worklist;
- Worklist.swap(OldSCC.Nodes);
- for (Node *N : Worklist) {
- N->DFSNumber = N->LowLink = 0;
- G->SCCMap.erase(N);
- }
- // Force the target node to be in the old SCC. This also enables us to take
- // a very significant short-cut in the standard Tarjan walk to re-form SCCs
- // below: whenever we build an edge that reaches the target node, we know
- // that the target node eventually connects back to all other nodes in our
- // walk. As a consequence, we can detect and handle participants in that
- // cycle without walking all the edges that form this connection, and instead
- // by relying on the fundamental guarantee coming into this operation (all
- // nodes are reachable from the target due to previously forming an SCC).
- TargetN.DFSNumber = TargetN.LowLink = -1;
- OldSCC.Nodes.push_back(&TargetN);
- G->SCCMap[&TargetN] = &OldSCC;
- // Scan down the stack and DFS across the call edges.
- for (Node *RootN : Worklist) {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.push_back({RootN, (*RootN)->call_begin()});
- do {
- Node *N;
- EdgeSequence::call_iterator I;
- std::tie(N, I) = DFSStack.pop_back_val();
- auto E = (*N)->call_end();
- while (I != E) {
- Node &ChildN = I->getNode();
- if (ChildN.DFSNumber == 0) {
- // We haven't yet visited this child, so descend, pushing the current
- // node onto the stack.
- DFSStack.push_back({N, I});
- assert(!G->SCCMap.count(&ChildN) &&
- "Found a node with 0 DFS number but already in an SCC!");
- ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
- N = &ChildN;
- I = (*N)->call_begin();
- E = (*N)->call_end();
- continue;
- }
- // Check for the child already being part of some component.
- if (ChildN.DFSNumber == -1) {
- if (G->lookupSCC(ChildN) == &OldSCC) {
- // If the child is part of the old SCC, we know that it can reach
- // every other node, so we have formed a cycle. Pull the entire DFS
- // and pending stacks into it. See the comment above about setting
- // up the old SCC for why we do this.
- int OldSize = OldSCC.size();
- OldSCC.Nodes.push_back(N);
- OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
- PendingSCCStack.clear();
- while (!DFSStack.empty())
- OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
- for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
- N.DFSNumber = N.LowLink = -1;
- G->SCCMap[&N] = &OldSCC;
- }
- N = nullptr;
- break;
- }
- // If the child has already been added to some child component, it
- // couldn't impact the low-link of this parent because it isn't
- // connected, and thus its low-link isn't relevant so skip it.
- ++I;
- continue;
- }
- // Track the lowest linked child as the lowest link for this node.
- assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
- if (ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- // Move to the next edge.
- ++I;
- }
- if (!N)
- // Cleared the DFS early, start another round.
- break;
- // We've finished processing N and its descendents, put it on our pending
- // SCC stack to eventually get merged into an SCC of nodes.
- PendingSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber)
- continue;
- // Otherwise, we've completed an SCC. Append it to our post order list of
- // SCCs.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto SCCNodes = make_range(
- PendingSCCStack.rbegin(),
- find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Form a new SCC out of these nodes and then clear them off our pending
- // stack.
- NewSCCs.push_back(G->createSCC(*this, SCCNodes));
- for (Node &N : *NewSCCs.back()) {
- N.DFSNumber = N.LowLink = -1;
- G->SCCMap[&N] = NewSCCs.back();
- }
- PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
- } while (!DFSStack.empty());
- }
- // Insert the remaining SCCs before the old one. The old SCC can reach all
- // other SCCs we form because it contains the target node of the removed edge
- // of the old SCC. This means that we will have edges into all of the new
- // SCCs, which means the old one must come last for postorder.
- int OldIdx = SCCIndices[&OldSCC];
- SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
- // Update the mapping from SCC* to index to use the new SCC*s, and remove the
- // old SCC from the mapping.
- for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
- SCCIndices[SCCs[Idx]] = Idx;
- return make_range(SCCs.begin() + OldIdx,
- SCCs.begin() + OldIdx + NewSCCs.size());
- }
- void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
- Node &TargetN) {
- assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // Edges between RefSCCs are the same regardless of call or ref, so we can
- // just flip the edge here.
- SourceN->setEdgeKind(TargetN, Edge::Call);
- #ifndef NDEBUG
- // Check that the RefSCC is still valid.
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
- Node &TargetN) {
- assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) != this &&
- "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // Edges between RefSCCs are the same regardless of call or ref, so we can
- // just flip the edge here.
- SourceN->setEdgeKind(TargetN, Edge::Ref);
- #ifndef NDEBUG
- // Check that the RefSCC is still valid.
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
- Node &TargetN) {
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- SourceN->insertEdgeInternal(TargetN, Edge::Ref);
- #ifndef NDEBUG
- // Check that the RefSCC is still valid.
- verify();
- #endif
- }
- void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
- Edge::Kind EK) {
- // First insert it into the caller.
- SourceN->insertEdgeInternal(TargetN, EK);
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- RefSCC &TargetC = *G->lookupRefSCC(TargetN);
- assert(&TargetC != this && "Target must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(TargetC.isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // The only change required is to add this SCC to the parent set of the
- // callee.
- TargetC.Parents.insert(this);
- #ifndef NDEBUG
- // Check that the RefSCC is still valid.
- verify();
- #endif
- }
- SmallVector<LazyCallGraph::RefSCC *, 1>
- LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
- assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
- RefSCC &SourceC = *G->lookupRefSCC(SourceN);
- assert(&SourceC != this && "Source must not be in this RefSCC.");
- #ifdef EXPENSIVE_CHECKS
- assert(SourceC.isDescendantOf(*this) &&
- "Source must be a descendant of the Target.");
- #endif
- SmallVector<RefSCC *, 1> DeletedRefSCCs;
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- int SourceIdx = G->RefSCCIndices[&SourceC];
- int TargetIdx = G->RefSCCIndices[this];
- assert(SourceIdx < TargetIdx &&
- "Postorder list doesn't see edge as incoming!");
- // Compute the RefSCCs which (transitively) reach the source. We do this by
- // working backwards from the source using the parent set in each RefSCC,
- // skipping any RefSCCs that don't fall in the postorder range. This has the
- // advantage of walking the sparser parent edge (in high fan-out graphs) but
- // more importantly this removes examining all forward edges in all RefSCCs
- // within the postorder range which aren't in fact connected. Only connected
- // RefSCCs (and their edges) are visited here.
- auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
- Set.insert(&SourceC);
- SmallVector<RefSCC *, 4> Worklist;
- Worklist.push_back(&SourceC);
- do {
- RefSCC &RC = *Worklist.pop_back_val();
- for (RefSCC &ParentRC : RC.parents()) {
- // Skip any RefSCCs outside the range of source to target in the
- // postorder sequence.
- int ParentIdx = G->getRefSCCIndex(ParentRC);
- assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
- if (ParentIdx > TargetIdx)
- continue;
- if (Set.insert(&ParentRC).second)
- // First edge connecting to this parent, add it to our worklist.
- Worklist.push_back(&ParentRC);
- }
- } while (!Worklist.empty());
- };
- // Use a normal worklist to find which SCCs the target connects to. We still
- // bound the search based on the range in the postorder list we care about,
- // but because this is forward connectivity we just "recurse" through the
- // edges.
- auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
- Set.insert(this);
- SmallVector<RefSCC *, 4> Worklist;
- Worklist.push_back(this);
- do {
- RefSCC &RC = *Worklist.pop_back_val();
- for (SCC &C : RC)
- for (Node &N : C)
- for (Edge &E : *N) {
- RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
- if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
- // Not in the postorder sequence between source and target.
- continue;
- if (Set.insert(&EdgeRC).second)
- Worklist.push_back(&EdgeRC);
- }
- } while (!Worklist.empty());
- };
- // Use a generic helper to update the postorder sequence of RefSCCs and return
- // a range of any RefSCCs connected into a cycle by inserting this edge. This
- // routine will also take care of updating the indices into the postorder
- // sequence.
- iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
- updatePostorderSequenceForEdgeInsertion(
- SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
- ComputeSourceConnectedSet, ComputeTargetConnectedSet);
- // Build a set so we can do fast tests for whether a RefSCC will end up as
- // part of the merged RefSCC.
- SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
- // This RefSCC will always be part of that set, so just insert it here.
- MergeSet.insert(this);
- // Now that we have identified all of the SCCs which need to be merged into
- // a connected set with the inserted edge, merge all of them into this SCC.
- SmallVector<SCC *, 16> MergedSCCs;
- int SCCIndex = 0;
- for (RefSCC *RC : MergeRange) {
- assert(RC != this && "We're merging into the target RefSCC, so it "
- "shouldn't be in the range.");
- // Merge the parents which aren't part of the merge into the our parents.
- for (RefSCC *ParentRC : RC->Parents)
- if (!MergeSet.count(ParentRC))
- Parents.insert(ParentRC);
- RC->Parents.clear();
- // Walk the inner SCCs to update their up-pointer and walk all the edges to
- // update any parent sets.
- // FIXME: We should try to find a way to avoid this (rather expensive) edge
- // walk by updating the parent sets in some other manner.
- for (SCC &InnerC : *RC) {
- InnerC.OuterRefSCC = this;
- SCCIndices[&InnerC] = SCCIndex++;
- for (Node &N : InnerC) {
- G->SCCMap[&N] = &InnerC;
- for (Edge &E : *N) {
- RefSCC &ChildRC = *G->lookupRefSCC(E.getNode());
- if (MergeSet.count(&ChildRC))
- continue;
- ChildRC.Parents.erase(RC);
- ChildRC.Parents.insert(this);
- }
- }
- }
- // Now merge in the SCCs. We can actually move here so try to reuse storage
- // the first time through.
- if (MergedSCCs.empty())
- MergedSCCs = std::move(RC->SCCs);
- else
- MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
- RC->SCCs.clear();
- DeletedRefSCCs.push_back(RC);
- }
- // Append our original SCCs to the merged list and move it into place.
- for (SCC &InnerC : *this)
- SCCIndices[&InnerC] = SCCIndex++;
- MergedSCCs.append(SCCs.begin(), SCCs.end());
- SCCs = std::move(MergedSCCs);
- // Remove the merged away RefSCCs from the post order sequence.
- for (RefSCC *RC : MergeRange)
- G->RefSCCIndices.erase(RC);
- int IndexOffset = MergeRange.end() - MergeRange.begin();
- auto EraseEnd =
- G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
- for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
- G->RefSCCIndices[RC] -= IndexOffset;
- // At this point we have a merged RefSCC with a post-order SCCs list, just
- // connect the nodes to form the new edge.
- SourceN->insertEdgeInternal(TargetN, Edge::Ref);
- // We return the list of SCCs which were merged so that callers can
- // invalidate any data they have associated with those SCCs. Note that these
- // SCCs are no longer in an interesting state (they are totally empty) but
- // the pointers will remain stable for the life of the graph itself.
- return DeletedRefSCCs;
- }
- void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
- assert(G->lookupRefSCC(SourceN) == this &&
- "The source must be a member of this RefSCC.");
- RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
- assert(&TargetRC != this && "The target must not be a member of this RefSCC");
- assert(!is_contained(G->LeafRefSCCs, this) &&
- "Cannot have a leaf RefSCC source.");
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- // First remove it from the node.
- bool Removed = SourceN->removeEdgeInternal(TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- bool HasOtherEdgeToChildRC = false;
- bool HasOtherChildRC = false;
- for (SCC *InnerC : SCCs) {
- for (Node &N : *InnerC) {
- for (Edge &E : *N) {
- RefSCC &OtherChildRC = *G->lookupRefSCC(E.getNode());
- if (&OtherChildRC == &TargetRC) {
- HasOtherEdgeToChildRC = true;
- break;
- }
- if (&OtherChildRC != this)
- HasOtherChildRC = true;
- }
- if (HasOtherEdgeToChildRC)
- break;
- }
- if (HasOtherEdgeToChildRC)
- break;
- }
- // Because the SCCs form a DAG, deleting such an edge cannot change the set
- // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
- // the source SCC no longer connected to the target SCC. If so, we need to
- // update the target SCC's map of its parents.
- if (!HasOtherEdgeToChildRC) {
- bool Removed = TargetRC.Parents.erase(this);
- (void)Removed;
- assert(Removed &&
- "Did not find the source SCC in the target SCC's parent list!");
- // It may orphan an SCC if it is the last edge reaching it, but that does
- // not violate any invariants of the graph.
- if (TargetRC.Parents.empty())
- DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
- << " -> " << TargetN.getFunction().getName()
- << " edge orphaned the callee's SCC!\n");
- // It may make the Source SCC a leaf SCC.
- if (!HasOtherChildRC)
- G->LeafRefSCCs.push_back(this);
- }
- }
- SmallVector<LazyCallGraph::RefSCC *, 1>
- LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
- assert(!(*SourceN)[TargetN].isCall() &&
- "Cannot remove a call edge, it must first be made a ref edge");
- #ifndef NDEBUG
- // In a debug build, verify the RefSCC is valid to start with and when this
- // routine finishes.
- verify();
- auto VerifyOnExit = make_scope_exit([&]() { verify(); });
- #endif
- // First remove the actual edge.
- bool Removed = SourceN->removeEdgeInternal(TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- // We return a list of the resulting *new* RefSCCs in post-order.
- SmallVector<RefSCC *, 1> Result;
- // Direct recursion doesn't impact the SCC graph at all.
- if (&SourceN == &TargetN)
- return Result;
- // If this ref edge is within an SCC then there are sufficient other edges to
- // form a cycle without this edge so removing it is a no-op.
- SCC &SourceC = *G->lookupSCC(SourceN);
- SCC &TargetC = *G->lookupSCC(TargetN);
- if (&SourceC == &TargetC)
- return Result;
- // We build somewhat synthetic new RefSCCs by providing a postorder mapping
- // for each inner SCC. We also store these associated with *nodes* rather
- // than SCCs because this saves a round-trip through the node->SCC map and in
- // the common case, SCCs are small. We will verify that we always give the
- // same number to every node in the SCC such that these are equivalent.
- const int RootPostOrderNumber = 0;
- int PostOrderNumber = RootPostOrderNumber + 1;
- SmallDenseMap<Node *, int> PostOrderMapping;
- // Every node in the target SCC can already reach every node in this RefSCC
- // (by definition). It is the only node we know will stay inside this RefSCC.
- // Everything which transitively reaches Target will also remain in the
- // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
- // back to the root post order number.
- //
- // This also enables us to take a very significant short-cut in the standard
- // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
- // references the target node, we know that the target node eventually
- // references all other nodes in our walk. As a consequence, we can detect
- // and handle participants in that cycle without walking all the edges that
- // form the connections, and instead by relying on the fundamental guarantee
- // coming into this operation.
- for (Node &N : TargetC)
- PostOrderMapping[&N] = RootPostOrderNumber;
- // Reset all the other nodes to prepare for a DFS over them, and add them to
- // our worklist.
- SmallVector<Node *, 8> Worklist;
- for (SCC *C : SCCs) {
- if (C == &TargetC)
- continue;
- for (Node &N : *C)
- N.DFSNumber = N.LowLink = 0;
- Worklist.append(C->Nodes.begin(), C->Nodes.end());
- }
- auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
- N.DFSNumber = N.LowLink = -1;
- PostOrderMapping[&N] = Number;
- };
- SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
- SmallVector<Node *, 4> PendingRefSCCStack;
- do {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingRefSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- Node *RootN = Worklist.pop_back_val();
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.push_back({RootN, (*RootN)->begin()});
- do {
- Node *N;
- EdgeSequence::iterator I;
- std::tie(N, I) = DFSStack.pop_back_val();
- auto E = (*N)->end();
- assert(N->DFSNumber != 0 && "We should always assign a DFS number "
- "before processing a node.");
- while (I != E) {
- Node &ChildN = I->getNode();
- if (ChildN.DFSNumber == 0) {
- // Mark that we should start at this child when next this node is the
- // top of the stack. We don't start at the next child to ensure this
- // child's lowlink is reflected.
- DFSStack.push_back({N, I});
- // Continue, resetting to the child node.
- ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
- N = &ChildN;
- I = ChildN->begin();
- E = ChildN->end();
- continue;
- }
- if (ChildN.DFSNumber == -1) {
- // Check if this edge's target node connects to the deleted edge's
- // target node. If so, we know that every node connected will end up
- // in this RefSCC, so collapse the entire current stack into the root
- // slot in our SCC numbering. See above for the motivation of
- // optimizing the target connected nodes in this way.
- auto PostOrderI = PostOrderMapping.find(&ChildN);
- if (PostOrderI != PostOrderMapping.end() &&
- PostOrderI->second == RootPostOrderNumber) {
- MarkNodeForSCCNumber(*N, RootPostOrderNumber);
- while (!PendingRefSCCStack.empty())
- MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
- RootPostOrderNumber);
- while (!DFSStack.empty())
- MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
- RootPostOrderNumber);
- // Ensure we break all the way out of the enclosing loop.
- N = nullptr;
- break;
- }
- // If this child isn't currently in this RefSCC, no need to process
- // it. However, we do need to remove this RefSCC from its RefSCC's
- // parent set.
- RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
- ChildRC.Parents.erase(this);
- ++I;
- continue;
- }
- // Track the lowest link of the children, if any are still in the stack.
- // Any child not on the stack will have a LowLink of -1.
- assert(ChildN.LowLink != 0 &&
- "Low-link must not be zero with a non-zero DFS number.");
- if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- ++I;
- }
- if (!N)
- // We short-circuited this node.
- break;
- // We've finished processing N and its descendents, put it on our pending
- // stack to eventually get merged into a RefSCC.
- PendingRefSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber) {
- assert(!DFSStack.empty() &&
- "We never found a viable root for a RefSCC to pop off!");
- continue;
- }
- // Otherwise, form a new RefSCC from the top of the pending node stack.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto RefSCCNodes = make_range(
- PendingRefSCCStack.rbegin(),
- find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Mark the postorder number for these nodes and clear them off the
- // stack. We'll use the postorder number to pull them into RefSCCs at the
- // end. FIXME: Fuse with the loop above.
- int RefSCCNumber = PostOrderNumber++;
- for (Node *N : RefSCCNodes)
- MarkNodeForSCCNumber(*N, RefSCCNumber);
- PendingRefSCCStack.erase(RefSCCNodes.end().base(),
- PendingRefSCCStack.end());
- } while (!DFSStack.empty());
- assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
- assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
- } while (!Worklist.empty());
- // We now have a post-order numbering for RefSCCs and a mapping from each
- // node in this RefSCC to its final RefSCC. We create each new RefSCC node
- // (re-using this RefSCC node for the root) and build a radix-sort style map
- // from postorder number to the RefSCC. We then append SCCs to each of these
- // RefSCCs in the order they occured in the original SCCs container.
- for (int i = 1; i < PostOrderNumber; ++i)
- Result.push_back(G->createRefSCC(*G));
- // Insert the resulting postorder sequence into the global graph postorder
- // sequence before the current RefSCC in that sequence. The idea being that
- // this RefSCC is the target of the reference edge removed, and thus has
- // a direct or indirect edge to every other RefSCC formed and so must be at
- // the end of any postorder traversal.
- //
- // FIXME: It'd be nice to change the APIs so that we returned an iterator
- // range over the global postorder sequence and generally use that sequence
- // rather than building a separate result vector here.
- if (!Result.empty()) {
- int Idx = G->getRefSCCIndex(*this);
- G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
- Result.begin(), Result.end());
- for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
- G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
- assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
- "Failed to update this RefSCC's index after insertion!");
- }
- for (SCC *C : SCCs) {
- auto PostOrderI = PostOrderMapping.find(&*C->begin());
- assert(PostOrderI != PostOrderMapping.end() &&
- "Cannot have missing mappings for nodes!");
- int SCCNumber = PostOrderI->second;
- #ifndef NDEBUG
- for (Node &N : *C)
- assert(PostOrderMapping.find(&N)->second == SCCNumber &&
- "Cannot have different numbers for nodes in the same SCC!");
- #endif
- if (SCCNumber == 0)
- // The root node is handled separately by removing the SCCs.
- continue;
- RefSCC &RC = *Result[SCCNumber - 1];
- int SCCIndex = RC.SCCs.size();
- RC.SCCs.push_back(C);
- RC.SCCIndices[C] = SCCIndex;
- C->OuterRefSCC = &RC;
- }
- // FIXME: We re-walk the edges in each RefSCC to establish whether it is
- // a leaf and connect it to the rest of the graph's parents lists. This is
- // really wasteful. We should instead do this during the DFS to avoid yet
- // another edge walk.
- for (RefSCC *RC : Result)
- G->connectRefSCC(*RC);
- // Now erase all but the root's SCCs.
- SCCs.erase(remove_if(SCCs,
- [&](SCC *C) {
- return PostOrderMapping.lookup(&*C->begin()) !=
- RootPostOrderNumber;
- }),
- SCCs.end());
- SCCIndices.clear();
- for (int i = 0, Size = SCCs.size(); i < Size; ++i)
- SCCIndices[SCCs[i]] = i;
- #ifndef NDEBUG
- // Now we need to reconnect the current (root) SCC to the graph. We do this
- // manually because we can special case our leaf handling and detect errors.
- bool IsLeaf = true;
- #endif
- for (SCC *C : SCCs)
- for (Node &N : *C) {
- for (Edge &E : *N) {
- RefSCC &ChildRC = *G->lookupRefSCC(E.getNode());
- if (&ChildRC == this)
- continue;
- ChildRC.Parents.insert(this);
- #ifndef NDEBUG
- IsLeaf = false;
- #endif
- }
- }
- #ifndef NDEBUG
- if (!Result.empty())
- assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
- "SCCs by removing this edge.");
- if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
- assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
- "SCCs before we removed this edge.");
- #endif
- // And connect both this RefSCC and all the new ones to the correct parents.
- // The easiest way to do this is just to re-analyze the old parent set.
- SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
- Parents.clear();
- for (RefSCC *ParentRC : OldParents)
- for (SCC &ParentC : *ParentRC)
- for (Node &ParentN : ParentC)
- for (Edge &E : *ParentN) {
- RefSCC &RC = *G->lookupRefSCC(E.getNode());
- if (&RC != ParentRC)
- RC.Parents.insert(ParentRC);
- }
- // If this SCC stopped being a leaf through this edge removal, remove it from
- // the leaf SCC list. Note that this DTRT in the case where this was never
- // a leaf.
- // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
- // entire list if this RefSCC wasn't a leaf before the edge removal.
- if (!Result.empty())
- G->LeafRefSCCs.erase(
- std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
- G->LeafRefSCCs.end());
- #ifndef NDEBUG
- // Verify all of the new RefSCCs.
- for (RefSCC *RC : Result)
- RC->verify();
- #endif
- // Return the new list of SCCs.
- return Result;
- }
- void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
- Node &TargetN) {
- // The only trivial case that requires any graph updates is when we add new
- // ref edge and may connect different RefSCCs along that path. This is only
- // because of the parents set. Every other part of the graph remains constant
- // after this edge insertion.
- assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
- RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
- if (&TargetRC == this) {
- return;
- }
- #ifdef EXPENSIVE_CHECKS
- assert(TargetRC.isDescendantOf(*this) &&
- "Target must be a descendant of the Source.");
- #endif
- // The only change required is to add this RefSCC to the parent set of the
- // target. This is a set and so idempotent if the edge already existed.
- TargetRC.Parents.insert(this);
- }
- void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
- Node &TargetN) {
- #ifndef NDEBUG
- // Check that the RefSCC is still valid when we finish.
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- #ifdef EXPENSIVE_CHECKS
- // Check that we aren't breaking some invariants of the SCC graph. Note that
- // this is quadratic in the number of edges in the call graph!
- SCC &SourceC = *G->lookupSCC(SourceN);
- SCC &TargetC = *G->lookupSCC(TargetN);
- if (&SourceC != &TargetC)
- assert(SourceC.isAncestorOf(TargetC) &&
- "Call edge is not trivial in the SCC graph!");
- #endif // EXPENSIVE_CHECKS
- #endif // NDEBUG
- // First insert it into the source or find the existing edge.
- auto InsertResult =
- SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
- if (!InsertResult.second) {
- // Already an edge, just update it.
- Edge &E = SourceN->Edges[InsertResult.first->second];
- if (E.isCall())
- return; // Nothing to do!
- E.setKind(Edge::Call);
- } else {
- // Create the new edge.
- SourceN->Edges.emplace_back(TargetN, Edge::Call);
- }
- // Now that we have the edge, handle the graph fallout.
- handleTrivialEdgeInsertion(SourceN, TargetN);
- }
- void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
- #ifndef NDEBUG
- // Check that the RefSCC is still valid when we finish.
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- #ifdef EXPENSIVE_CHECKS
- // Check that we aren't breaking some invariants of the RefSCC graph.
- RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
- RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
- if (&SourceRC != &TargetRC)
- assert(SourceRC.isAncestorOf(TargetRC) &&
- "Ref edge is not trivial in the RefSCC graph!");
- #endif // EXPENSIVE_CHECKS
- #endif // NDEBUG
- // First insert it into the source or find the existing edge.
- auto InsertResult =
- SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
- if (!InsertResult.second)
- // Already an edge, we're done.
- return;
- // Create the new edge.
- SourceN->Edges.emplace_back(TargetN, Edge::Ref);
- // Now that we have the edge, handle the graph fallout.
- handleTrivialEdgeInsertion(SourceN, TargetN);
- }
- void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
- Function &OldF = N.getFunction();
- #ifndef NDEBUG
- // Check that the RefSCC is still valid when we finish.
- auto ExitVerifier = make_scope_exit([this] { verify(); });
- assert(G->lookupRefSCC(N) == this &&
- "Cannot replace the function of a node outside this RefSCC.");
- assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
- "Must not have already walked the new function!'");
- // It is important that this replacement not introduce graph changes so we
- // insist that the caller has already removed every use of the original
- // function and that all uses of the new function correspond to existing
- // edges in the graph. The common and expected way to use this is when
- // replacing the function itself in the IR without changing the call graph
- // shape and just updating the analysis based on that.
- assert(&OldF != &NewF && "Cannot replace a function with itself!");
- assert(OldF.use_empty() &&
- "Must have moved all uses from the old function to the new!");
- #endif
- N.replaceFunction(NewF);
- // Update various call graph maps.
- G->NodeMap.erase(&OldF);
- G->NodeMap[&NewF] = &N;
- }
- void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
- assert(SCCMap.empty() &&
- "This method cannot be called after SCCs have been formed!");
- return SourceN->insertEdgeInternal(TargetN, EK);
- }
- void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
- assert(SCCMap.empty() &&
- "This method cannot be called after SCCs have been formed!");
- bool Removed = SourceN->removeEdgeInternal(TargetN);
- (void)Removed;
- assert(Removed && "Target not in the edge set for this caller?");
- }
- void LazyCallGraph::removeDeadFunction(Function &F) {
- // FIXME: This is unnecessarily restrictive. We should be able to remove
- // functions which recursively call themselves.
- assert(F.use_empty() &&
- "This routine should only be called on trivially dead functions!");
- auto NI = NodeMap.find(&F);
- if (NI == NodeMap.end())
- // Not in the graph at all!
- return;
- Node &N = *NI->second;
- NodeMap.erase(NI);
- // Remove this from the entry edges if present.
- EntryEdges.removeEdgeInternal(N);
- if (SCCMap.empty()) {
- // No SCCs have been formed, so removing this is fine and there is nothing
- // else necessary at this point but clearing out the node.
- N.clear();
- return;
- }
- // Cannot remove a function which has yet to be visited in the DFS walk, so
- // if we have a node at all then we must have an SCC and RefSCC.
- auto CI = SCCMap.find(&N);
- assert(CI != SCCMap.end() &&
- "Tried to remove a node without an SCC after DFS walk started!");
- SCC &C = *CI->second;
- SCCMap.erase(CI);
- RefSCC &RC = C.getOuterRefSCC();
- // This node must be the only member of its SCC as it has no callers, and
- // that SCC must be the only member of a RefSCC as it has no references.
- // Validate these properties first.
- assert(C.size() == 1 && "Dead functions must be in a singular SCC");
- assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
- // Clean up any remaining reference edges. Note that we walk an unordered set
- // here but are just removing and so the order doesn't matter.
- for (RefSCC &ParentRC : RC.parents())
- for (SCC &ParentC : ParentRC)
- for (Node &ParentN : ParentC)
- if (ParentN)
- ParentN->removeEdgeInternal(N);
- // Now remove this RefSCC from any parents sets and the leaf list.
- for (Edge &E : *N)
- if (RefSCC *TargetRC = lookupRefSCC(E.getNode()))
- TargetRC->Parents.erase(&RC);
- // FIXME: This is a linear operation which could become hot and benefit from
- // an index map.
- auto LRI = find(LeafRefSCCs, &RC);
- if (LRI != LeafRefSCCs.end())
- LeafRefSCCs.erase(LRI);
- auto RCIndexI = RefSCCIndices.find(&RC);
- int RCIndex = RCIndexI->second;
- PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
- RefSCCIndices.erase(RCIndexI);
- for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
- RefSCCIndices[PostOrderRefSCCs[i]] = i;
- // Finally clear out all the data structures from the node down through the
- // components.
- N.clear();
- C.clear();
- RC.clear();
- // Nothing to delete as all the objects are allocated in stable bump pointer
- // allocators.
- }
- LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
- return *new (MappedN = BPA.Allocate()) Node(*this, F);
- }
- void LazyCallGraph::updateGraphPtrs() {
- // Process all nodes updating the graph pointers.
- {
- SmallVector<Node *, 16> Worklist;
- for (Edge &E : EntryEdges)
- Worklist.push_back(&E.getNode());
- while (!Worklist.empty()) {
- Node &N = *Worklist.pop_back_val();
- N.G = this;
- if (N)
- for (Edge &E : *N)
- Worklist.push_back(&E.getNode());
- }
- }
- // Process all SCCs updating the graph pointers.
- {
- SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
- while (!Worklist.empty()) {
- RefSCC &C = *Worklist.pop_back_val();
- C.G = this;
- for (RefSCC &ParentC : C.parents())
- Worklist.push_back(&ParentC);
- }
- }
- }
- template <typename RootsT, typename GetBeginT, typename GetEndT,
- typename GetNodeT, typename FormSCCCallbackT>
- void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
- GetEndT &&GetEnd, GetNodeT &&GetNode,
- FormSCCCallbackT &&FormSCC) {
- typedef decltype(GetBegin(std::declval<Node &>())) EdgeItT;
- SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
- SmallVector<Node *, 16> PendingSCCStack;
- // Scan down the stack and DFS across the call edges.
- for (Node *RootN : Roots) {
- assert(DFSStack.empty() &&
- "Cannot begin a new root with a non-empty DFS stack!");
- assert(PendingSCCStack.empty() &&
- "Cannot begin a new root with pending nodes for an SCC!");
- // Skip any nodes we've already reached in the DFS.
- if (RootN->DFSNumber != 0) {
- assert(RootN->DFSNumber == -1 &&
- "Shouldn't have any mid-DFS root nodes!");
- continue;
- }
- RootN->DFSNumber = RootN->LowLink = 1;
- int NextDFSNumber = 2;
- DFSStack.push_back({RootN, GetBegin(*RootN)});
- do {
- Node *N;
- EdgeItT I;
- std::tie(N, I) = DFSStack.pop_back_val();
- auto E = GetEnd(*N);
- while (I != E) {
- Node &ChildN = GetNode(I);
- if (ChildN.DFSNumber == 0) {
- // We haven't yet visited this child, so descend, pushing the current
- // node onto the stack.
- DFSStack.push_back({N, I});
- ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
- N = &ChildN;
- I = GetBegin(*N);
- E = GetEnd(*N);
- continue;
- }
- // If the child has already been added to some child component, it
- // couldn't impact the low-link of this parent because it isn't
- // connected, and thus its low-link isn't relevant so skip it.
- if (ChildN.DFSNumber == -1) {
- ++I;
- continue;
- }
- // Track the lowest linked child as the lowest link for this node.
- assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
- if (ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- // Move to the next edge.
- ++I;
- }
- // We've finished processing N and its descendents, put it on our pending
- // SCC stack to eventually get merged into an SCC of nodes.
- PendingSCCStack.push_back(N);
- // If this node is linked to some lower entry, continue walking up the
- // stack.
- if (N->LowLink != N->DFSNumber)
- continue;
- // Otherwise, we've completed an SCC. Append it to our post order list of
- // SCCs.
- int RootDFSNumber = N->DFSNumber;
- // Find the range of the node stack by walking down until we pass the
- // root DFS number.
- auto SCCNodes = make_range(
- PendingSCCStack.rbegin(),
- find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
- return N->DFSNumber < RootDFSNumber;
- }));
- // Form a new SCC out of these nodes and then clear them off our pending
- // stack.
- FormSCC(SCCNodes);
- PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
- } while (!DFSStack.empty());
- }
- }
- /// Build the internal SCCs for a RefSCC from a sequence of nodes.
- ///
- /// Appends the SCCs to the provided vector and updates the map with their
- /// indices. Both the vector and map must be empty when passed into this
- /// routine.
- void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
- assert(RC.SCCs.empty() && "Already built SCCs!");
- assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
- for (Node *N : Nodes) {
- assert(N->LowLink >= (*Nodes.begin())->LowLink &&
- "We cannot have a low link in an SCC lower than its root on the "
- "stack!");
- // This node will go into the next RefSCC, clear out its DFS and low link
- // as we scan.
- N->DFSNumber = N->LowLink = 0;
- }
- // Each RefSCC contains a DAG of the call SCCs. To build these, we do
- // a direct walk of the call edges using Tarjan's algorithm. We reuse the
- // internal storage as we won't need it for the outer graph's DFS any longer.
- buildGenericSCCs(
- Nodes, [](Node &N) { return N->call_begin(); },
- [](Node &N) { return N->call_end(); },
- [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
- [this, &RC](node_stack_range Nodes) {
- RC.SCCs.push_back(createSCC(RC, Nodes));
- for (Node &N : *RC.SCCs.back()) {
- N.DFSNumber = N.LowLink = -1;
- SCCMap[&N] = RC.SCCs.back();
- }
- });
- // Wire up the SCC indices.
- for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
- RC.SCCIndices[RC.SCCs[i]] = i;
- }
- void LazyCallGraph::buildRefSCCs() {
- if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
- // RefSCCs are either non-existent or already built!
- return;
- assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
- SmallVector<Node *, 16> Roots;
- for (Edge &E : *this)
- Roots.push_back(&E.getNode());
- // The roots will be popped of a stack, so use reverse to get a less
- // surprising order. This doesn't change any of the semantics anywhere.
- std::reverse(Roots.begin(), Roots.end());
- buildGenericSCCs(
- Roots,
- [](Node &N) {
- // We need to populate each node as we begin to walk its edges.
- N.populate();
- return N->begin();
- },
- [](Node &N) { return N->end(); },
- [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
- [this](node_stack_range Nodes) {
- RefSCC *NewRC = createRefSCC(*this);
- buildSCCs(*NewRC, Nodes);
- connectRefSCC(*NewRC);
- // Push the new node into the postorder list and remember its position
- // in the index map.
- bool Inserted =
- RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
- (void)Inserted;
- assert(Inserted && "Cannot already have this RefSCC in the index map!");
- PostOrderRefSCCs.push_back(NewRC);
- #ifndef NDEBUG
- NewRC->verify();
- #endif
- });
- }
- // FIXME: We should move callers of this to embed the parent linking and leaf
- // tracking into their DFS in order to remove a full walk of all edges.
- void LazyCallGraph::connectRefSCC(RefSCC &RC) {
- // Walk all edges in the RefSCC (this remains linear as we only do this once
- // when we build the RefSCC) to connect it to the parent sets of its
- // children.
- bool IsLeaf = true;
- for (SCC &C : RC)
- for (Node &N : C)
- for (Edge &E : *N) {
- RefSCC &ChildRC = *lookupRefSCC(E.getNode());
- if (&ChildRC == &RC)
- continue;
- ChildRC.Parents.insert(&RC);
- IsLeaf = false;
- }
- // For the SCCs where we find no child SCCs, add them to the leaf list.
- if (IsLeaf)
- LeafRefSCCs.push_back(&RC);
- }
- AnalysisKey LazyCallGraphAnalysis::Key;
- LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
- static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
- OS << " Edges in function: " << N.getFunction().getName() << "\n";
- for (LazyCallGraph::Edge &E : N.populate())
- OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
- << E.getFunction().getName() << "\n";
- OS << "\n";
- }
- static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
- ptrdiff_t Size = std::distance(C.begin(), C.end());
- OS << " SCC with " << Size << " functions:\n";
- for (LazyCallGraph::Node &N : C)
- OS << " " << N.getFunction().getName() << "\n";
- }
- static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
- ptrdiff_t Size = std::distance(C.begin(), C.end());
- OS << " RefSCC with " << Size << " call SCCs:\n";
- for (LazyCallGraph::SCC &InnerC : C)
- printSCC(OS, InnerC);
- OS << "\n";
- }
- PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
- OS << "Printing the call graph for module: " << M.getModuleIdentifier()
- << "\n\n";
- for (Function &F : M)
- printNode(OS, G.get(F));
- G.buildRefSCCs();
- for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
- printRefSCC(OS, C);
- return PreservedAnalyses::all();
- }
- LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
- : OS(OS) {}
- static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
- std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
- for (LazyCallGraph::Edge &E : N.populate()) {
- OS << " " << Name << " -> \""
- << DOT::EscapeString(E.getFunction().getName()) << "\"";
- if (!E.isCall()) // It is a ref edge.
- OS << " [style=dashed,label=\"ref\"]";
- OS << ";\n";
- }
- OS << "\n";
- }
- PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
- OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
- for (Function &F : M)
- printNodeDOT(OS, G.get(F));
- OS << "}\n";
- return PreservedAnalyses::all();
- }
|