123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- // The code in this file for handling inlines through invoke
- // instructions preserves semantics only under some assumptions about
- // the behavior of unwinders which correspond to gcc-style libUnwind
- // exception personality functions. Eventually the IR will be
- // improved to make this unnecessary, but until then, this code is
- // marked [LIBUNWIND].
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Module.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/Attributes.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/DebugInfo.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Support/CallSite.h"
- #include "llvm/Support/IRBuilder.h"
- using namespace llvm;
- bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
- return InlineFunction(CallSite(CI), IFI);
- }
- bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
- return InlineFunction(CallSite(II), IFI);
- }
- /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
- static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
- for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
- EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
- if (exn) return exn;
- }
- return 0;
- }
- /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
- /// the given llvm.eh.exception call.
- static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
- BasicBlock *exnBlock = exn->getParent();
- EHSelectorInst *outOfBlockSelector = 0;
- for (Instruction::use_iterator
- ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
- EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
- if (!sel) continue;
- // Immediately accept an eh.selector in the same block as the
- // excepton call.
- if (sel->getParent() == exnBlock) return sel;
- // Otherwise, use the first selector we see.
- if (!outOfBlockSelector) outOfBlockSelector = sel;
- }
- return outOfBlockSelector;
- }
- /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
- /// in the given landing pad. In principle, llvm.eh.exception is
- /// required to be in the landing pad; in practice, SplitCriticalEdge
- /// can break that invariant, and then inlining can break it further.
- /// There's a real need for a reliable solution here, but until that
- /// happens, we have some fragile workarounds here.
- static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
- // Look for an exception call in the actual landing pad.
- EHExceptionInst *exn = findExceptionInBlock(lpad);
- if (exn) return findSelectorForException(exn);
- // Okay, if that failed, look for one in an obvious successor. If
- // we find one, we'll fix the IR by moving things back to the
- // landing pad.
- bool dominates = true; // does the lpad dominate the exn call
- BasicBlock *nonDominated = 0; // if not, the first non-dominated block
- BasicBlock *lastDominated = 0; // and the block which branched to it
- BasicBlock *exnBlock = lpad;
- // We need to protect against lpads that lead into infinite loops.
- SmallPtrSet<BasicBlock*,4> visited;
- visited.insert(exnBlock);
- do {
- // We're not going to apply this hack to anything more complicated
- // than a series of unconditional branches, so if the block
- // doesn't terminate in an unconditional branch, just fail. More
- // complicated cases can arise when, say, sinking a call into a
- // split unwind edge and then inlining it; but that can do almost
- // *anything* to the CFG, including leaving the selector
- // completely unreachable. The only way to fix that properly is
- // to (1) prohibit transforms which move the exception or selector
- // values away from the landing pad, e.g. by producing them with
- // instructions that are pinned to an edge like a phi, or
- // producing them with not-really-instructions, and (2) making
- // transforms which split edges deal with that.
- BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
- if (!branch || branch->isConditional()) return 0;
- BasicBlock *successor = branch->getSuccessor(0);
- // Fail if we found an infinite loop.
- if (!visited.insert(successor)) return 0;
- // If the successor isn't dominated by exnBlock:
- if (!successor->getSinglePredecessor()) {
- // We don't want to have to deal with threading the exception
- // through multiple levels of phi, so give up if we've already
- // followed a non-dominating edge.
- if (!dominates) return 0;
- // Otherwise, remember this as a non-dominating edge.
- dominates = false;
- nonDominated = successor;
- lastDominated = exnBlock;
- }
- exnBlock = successor;
- // Can we stop here?
- exn = findExceptionInBlock(exnBlock);
- } while (!exn);
- // Look for a selector call for the exception we found.
- EHSelectorInst *selector = findSelectorForException(exn);
- if (!selector) return 0;
- // The easy case is when the landing pad still dominates the
- // exception call, in which case we can just move both calls back to
- // the landing pad.
- if (dominates) {
- selector->moveBefore(lpad->getFirstNonPHI());
- exn->moveBefore(selector);
- return selector;
- }
- // Otherwise, we have to split at the first non-dominating block.
- // The CFG looks basically like this:
- // lpad:
- // phis_0
- // insnsAndBranches_1
- // br label %nonDominated
- // nonDominated:
- // phis_2
- // insns_3
- // %exn = call i8* @llvm.eh.exception()
- // insnsAndBranches_4
- // %selector = call @llvm.eh.selector(i8* %exn, ...
- // We need to turn this into:
- // lpad:
- // phis_0
- // %exn0 = call i8* @llvm.eh.exception()
- // %selector0 = call @llvm.eh.selector(i8* %exn0, ...
- // insnsAndBranches_1
- // br label %split // from lastDominated
- // nonDominated:
- // phis_2 (without edge from lastDominated)
- // %exn1 = call i8* @llvm.eh.exception()
- // %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
- // br label %split
- // split:
- // phis_2 (edge from lastDominated, edge from split)
- // %exn = phi ...
- // %selector = phi ...
- // insns_3
- // insnsAndBranches_4
- assert(nonDominated);
- assert(lastDominated);
- // First, make clones of the intrinsics to go in lpad.
- EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
- EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
- lpadSelector->setArgOperand(0, lpadExn);
- lpadSelector->insertBefore(lpad->getFirstNonPHI());
- lpadExn->insertBefore(lpadSelector);
- // Split the non-dominated block.
- BasicBlock *split =
- nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
- nonDominated->getName() + ".lpad-fix");
- // Redirect the last dominated branch there.
- cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
- // Move the existing intrinsics to the end of the old block.
- selector->moveBefore(&nonDominated->back());
- exn->moveBefore(selector);
- Instruction *splitIP = &split->front();
- // For all the phis in nonDominated, make a new phi in split to join
- // that phi with the edge from lastDominated.
- for (BasicBlock::iterator
- i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
- PHINode *phi = dyn_cast<PHINode>(i);
- if (!phi) break;
- PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
- splitIP);
- phi->replaceAllUsesWith(splitPhi);
- splitPhi->addIncoming(phi, nonDominated);
- splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
- lastDominated);
- }
- // Make new phis for the exception and selector.
- PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
- exn->replaceAllUsesWith(exnPhi);
- selector->setArgOperand(0, exn); // except for this use
- exnPhi->addIncoming(exn, nonDominated);
- exnPhi->addIncoming(lpadExn, lastDominated);
- PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
- selector->replaceAllUsesWith(selectorPhi);
- selectorPhi->addIncoming(selector, nonDominated);
- selectorPhi->addIncoming(lpadSelector, lastDominated);
- return lpadSelector;
- }
- namespace {
- /// A class for recording information about inlining through an invoke.
- class InvokeInliningInfo {
- BasicBlock *OuterUnwindDest;
- EHSelectorInst *OuterSelector;
- BasicBlock *InnerUnwindDest;
- PHINode *InnerExceptionPHI;
- PHINode *InnerSelectorPHI;
- SmallVector<Value*, 8> UnwindDestPHIValues;
- public:
- InvokeInliningInfo(InvokeInst *II) :
- OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
- InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {
- // If there are PHI nodes in the unwind destination block, we
- // need to keep track of which values came into them from the
- // invoke before removing the edge from this block.
- llvm::BasicBlock *invokeBB = II->getParent();
- for (BasicBlock::iterator I = OuterUnwindDest->begin();
- isa<PHINode>(I); ++I) {
- // Save the value to use for this edge.
- PHINode *phi = cast<PHINode>(I);
- UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
- }
- }
- /// The outer unwind destination is the target of unwind edges
- /// introduced for calls within the inlined function.
- BasicBlock *getOuterUnwindDest() const {
- return OuterUnwindDest;
- }
- EHSelectorInst *getOuterSelector() {
- if (!OuterSelector)
- OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
- return OuterSelector;
- }
- BasicBlock *getInnerUnwindDest();
- bool forwardEHResume(CallInst *call, BasicBlock *src);
- /// Add incoming-PHI values to the unwind destination block for
- /// the given basic block, using the values for the original
- /// invoke's source block.
- void addIncomingPHIValuesFor(BasicBlock *BB) const {
- addIncomingPHIValuesForInto(BB, OuterUnwindDest);
- }
- void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
- BasicBlock::iterator I = dest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *phi = cast<PHINode>(I);
- phi->addIncoming(UnwindDestPHIValues[i], src);
- }
- }
- };
- }
- /// Get or create a target for the branch out of rewritten calls to
- /// llvm.eh.resume.
- BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
- if (InnerUnwindDest) return InnerUnwindDest;
- // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
- // in the outer landing pad to immediately following the phis.
- EHSelectorInst *selector = getOuterSelector();
- if (!selector) return 0;
- // The call to llvm.eh.exception *must* be in the landing pad.
- Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
- assert(exn->getParent() == OuterUnwindDest);
- // TODO: recognize when we've already done this, so that we don't
- // get a linear number of these when inlining calls into lots of
- // invokes with the same landing pad.
- // Do the hoisting.
- Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
- assert(splitPoint != selector && "selector-on-exception dominance broken!");
- if (splitPoint == exn) {
- selector->removeFromParent();
- selector->insertAfter(exn);
- splitPoint = selector->getNextNode();
- } else {
- exn->moveBefore(splitPoint);
- selector->moveBefore(splitPoint);
- }
- // Split the landing pad.
- InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
- OuterUnwindDest->getName() + ".body");
- // The number of incoming edges we expect to the inner landing pad.
- const unsigned phiCapacity = 2;
- // Create corresponding new phis for all the phis in the outer landing pad.
- BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
- BasicBlock::iterator I = OuterUnwindDest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *outerPhi = cast<PHINode>(I);
- PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
- outerPhi->getName() + ".lpad-body",
- insertPoint);
- outerPhi->replaceAllUsesWith(innerPhi);
- innerPhi->addIncoming(outerPhi, OuterUnwindDest);
- }
- // Create a phi for the exception value...
- InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
- "exn.lpad-body", insertPoint);
- exn->replaceAllUsesWith(InnerExceptionPHI);
- selector->setArgOperand(0, exn); // restore this use
- InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
- // ...and the selector.
- InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
- "selector.lpad-body", insertPoint);
- selector->replaceAllUsesWith(InnerSelectorPHI);
- InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
- // All done.
- return InnerUnwindDest;
- }
- /// [LIBUNWIND] Try to forward the given call, which logically occurs
- /// at the end of the given block, as a branch to the inner unwind
- /// block. Returns true if the call was forwarded.
- bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
- // First, check whether this is a call to the intrinsic.
- Function *fn = dyn_cast<Function>(call->getCalledValue());
- if (!fn || fn->getName() != "llvm.eh.resume")
- return false;
-
- // At this point, we need to return true on all paths, because
- // otherwise we'll construct an invoke of the intrinsic, which is
- // not well-formed.
- // Try to find or make an inner unwind dest, which will fail if we
- // can't find a selector call for the outer unwind dest.
- BasicBlock *dest = getInnerUnwindDest();
- bool hasSelector = (dest != 0);
- // If we failed, just use the outer unwind dest, dropping the
- // exception and selector on the floor.
- if (!hasSelector)
- dest = OuterUnwindDest;
- // Make a branch.
- BranchInst::Create(dest, src);
- // Update the phis in the destination. They were inserted in an
- // order which makes this work.
- addIncomingPHIValuesForInto(src, dest);
- if (hasSelector) {
- InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
- InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
- }
- return true;
- }
- /// [LIBUNWIND] Check whether this selector is "only cleanups":
- /// call i32 @llvm.eh.selector(blah, blah, i32 0)
- static bool isCleanupOnlySelector(EHSelectorInst *selector) {
- if (selector->getNumArgOperands() != 3) return false;
- ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
- return (val && val->isZero());
- }
- /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
- /// an invoke, we have to turn all of the calls that can throw into
- /// invokes. This function analyze BB to see if there are any calls, and if so,
- /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
- /// nodes in that block with the values specified in InvokeDestPHIValues.
- ///
- /// Returns true to indicate that the next block should be skipped.
- static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
- InvokeInliningInfo &Invoke) {
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *I = BBI++;
-
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- CallInst *CI = dyn_cast<CallInst>(I);
- if (CI == 0) continue;
- // LIBUNWIND: merge selector instructions.
- if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
- EHSelectorInst *Outer = Invoke.getOuterSelector();
- if (!Outer) continue;
- bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
- bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
- // If both selectors contain only cleanups, we don't need to do
- // anything. TODO: this is really just a very specific instance
- // of a much more general optimization.
- if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
- // Otherwise, we just append the outer selector to the inner selector.
- SmallVector<Value*, 16> NewSelector;
- for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
- NewSelector.push_back(Inner->getArgOperand(i));
- for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
- NewSelector.push_back(Outer->getArgOperand(i));
- CallInst *NewInner =
- IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(),
- NewSelector.begin(),
- NewSelector.end());
- // No need to copy attributes, calling convention, etc.
- NewInner->takeName(Inner);
- Inner->replaceAllUsesWith(NewInner);
- Inner->eraseFromParent();
- continue;
- }
-
- // If this call cannot unwind, don't convert it to an invoke.
- if (CI->doesNotThrow())
- continue;
-
- // Convert this function call into an invoke instruction.
- // First, split the basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
- // directly to the new landing pad.
- if (Invoke.forwardEHResume(CI, BB)) {
- // TODO: 'Split' is now unreachable; clean it up.
- // We want to leave the original call intact so that the call
- // graph and other structures won't get misled. We also have to
- // avoid processing the next block, or we'll iterate here forever.
- return true;
- }
- // Otherwise, create the new invoke instruction.
- ImmutableCallSite CS(CI);
- SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
- InvokeInst *II =
- InvokeInst::Create(CI->getCalledValue(), Split,
- Invoke.getOuterUnwindDest(),
- InvokeArgs.begin(), InvokeArgs.end(),
- CI->getName(), BB);
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
-
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakVH.
- CI->replaceAllUsesWith(II);
- Split->getInstList().pop_front(); // Delete the original call
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- Invoke.addIncomingPHIValuesFor(BB);
- return false;
- }
- return false;
- }
-
- /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes and turn unwind
- /// instructions into branches to the invoke unwind dest.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite. If the code doesn't have calls or unwinds, we know there is
- // nothing to rewrite.
- if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- return;
- }
- InvokeInliningInfo Invoke(II);
-
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
- if (InlinedCodeInfo.ContainsCalls)
- if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
- // Honor a request to skip the next block. We don't need to
- // consider UnwindInsts in this case either.
- ++BB;
- continue;
- }
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- // An UnwindInst requires special handling when it gets inlined into an
- // invoke site. Once this happens, we know that the unwind would cause
- // a control transfer to the invoke exception destination, so we can
- // transform it into a direct branch to the exception destination.
- BranchInst::Create(InvokeDest, UI);
- // Delete the unwind instruction!
- UI->eraseFromParent();
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- Invoke.addIncomingPHIValuesFor(BB);
- }
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
- /// into the caller, update the specified callgraph to reflect the changes we
- /// made. Note that it's possible that not all code was copied over, so only
- /// some edges of the callgraph may remain.
- static void UpdateCallGraphAfterInlining(CallSite CS,
- Function::iterator FirstNewBlock,
- ValueToValueMapTy &VMap,
- InlineFunctionInfo &IFI) {
- CallGraph &CG = *IFI.CG;
- const Function *Caller = CS.getInstruction()->getParent()->getParent();
- const Function *Callee = CS.getCalledFunction();
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
- // Consider the case where CalleeNode == CallerNode.
- CallGraphNode::CalledFunctionsVector CallCache;
- if (CalleeNode == CallerNode) {
- CallCache.assign(I, E);
- I = CallCache.begin();
- E = CallCache.end();
- }
- for (; I != E; ++I) {
- const Value *OrigCall = I->first;
- ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI == VMap.end() || VMI->second == 0)
- continue;
-
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
- if (NewCall == 0) continue;
- // Remember that this call site got inlined for the client of
- // InlineFunction.
- IFI.InlinedCalls.push_back(NewCall);
- // It's possible that inlining the callsite will cause it to go from an
- // indirect to a direct call by resolving a function pointer. If this
- // happens, set the callee of the new call site to a more precise
- // destination. This can also happen if the call graph node of the caller
- // was just unnecessarily imprecise.
- if (I->second->getFunction() == 0)
- if (Function *F = CallSite(NewCall).getCalledFunction()) {
- // Indirect call site resolved to direct call.
- CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
- continue;
- }
- CallerNode->addCalledFunction(CallSite(NewCall), I->second);
- }
-
- // Update the call graph by deleting the edge from Callee to Caller. We must
- // do this after the loop above in case Caller and Callee are the same.
- CallerNode->removeCallEdgeFor(CS);
- }
- /// HandleByValArgument - When inlining a call site that has a byval argument,
- /// we have to make the implicit memcpy explicit by adding it.
- static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
- const Function *CalledFunc,
- InlineFunctionInfo &IFI,
- unsigned ByValAlignment) {
- const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
- // If the called function is readonly, then it could not mutate the caller's
- // copy of the byval'd memory. In this case, it is safe to elide the copy and
- // temporary.
- if (CalledFunc->onlyReadsMemory()) {
- // If the byval argument has a specified alignment that is greater than the
- // passed in pointer, then we either have to round up the input pointer or
- // give up on this transformation.
- if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
- return Arg;
- // If the pointer is already known to be sufficiently aligned, or if we can
- // round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
- IFI.TD) >= ByValAlignment)
- return Arg;
-
- // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
- // for code quality, but rarely happens and is required for correctness.
- }
-
- LLVMContext &Context = Arg->getContext();
- Type *VoidPtrTy = Type::getInt8PtrTy(Context);
-
- // Create the alloca. If we have TargetData, use nice alignment.
- unsigned Align = 1;
- if (IFI.TD)
- Align = IFI.TD->getPrefTypeAlignment(AggTy);
-
- // If the byval had an alignment specified, we *must* use at least that
- // alignment, as it is required by the byval argument (and uses of the
- // pointer inside the callee).
- Align = std::max(Align, ByValAlignment);
-
- Function *Caller = TheCall->getParent()->getParent();
-
- Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
- &*Caller->begin()->begin());
- // Emit a memcpy.
- Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
- Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
- Intrinsic::memcpy,
- Tys);
- Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
- Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
-
- Value *Size;
- if (IFI.TD == 0)
- Size = ConstantExpr::getSizeOf(AggTy);
- else
- Size = ConstantInt::get(Type::getInt64Ty(Context),
- IFI.TD->getTypeStoreSize(AggTy));
-
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Value *CallArgs[] = {
- DestCast, SrcCast, Size,
- ConstantInt::get(Type::getInt32Ty(Context), 1),
- ConstantInt::getFalse(Context) // isVolatile
- };
- IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs, CallArgs+5);
-
- // Uses of the argument in the function should use our new alloca
- // instead.
- return NewAlloca;
- }
- // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
- // intrinsic.
- static bool isUsedByLifetimeMarker(Value *V) {
- for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
- ++UI) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return true;
- }
- }
- }
- return false;
- }
- // hasLifetimeMarkers - Check whether the given alloca already has
- // lifetime.start or lifetime.end intrinsics.
- static bool hasLifetimeMarkers(AllocaInst *AI) {
- const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
- if (AI->getType() == Int8PtrTy)
- return isUsedByLifetimeMarker(AI);
- // Do a scan to find all the casts to i8*.
- for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
- ++I) {
- if (I->getType() != Int8PtrTy) continue;
- if (I->stripPointerCasts() != AI) continue;
- if (isUsedByLifetimeMarker(*I))
- return true;
- }
- return false;
- }
- /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
- /// update InlinedAtEntry of a DebugLoc.
- static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
- const DebugLoc &InlinedAtDL,
- LLVMContext &Ctx) {
- if (MDNode *IA = DL.getInlinedAt(Ctx)) {
- DebugLoc NewInlinedAtDL
- = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- NewInlinedAtDL.getAsMDNode(Ctx));
- }
-
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- InlinedAtDL.getAsMDNode(Ctx));
- }
- /// fixupLineNumbers - Update inlined instructions' line numbers to
- /// to encode location where these instructions are inlined.
- static void fixupLineNumbers(Function *Fn, Function::iterator FI,
- Instruction *TheCall) {
- DebugLoc TheCallDL = TheCall->getDebugLoc();
- if (TheCallDL.isUnknown())
- return;
- for (; FI != Fn->end(); ++FI) {
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
- BI != BE; ++BI) {
- DebugLoc DL = BI->getDebugLoc();
- if (!DL.isUnknown())
- BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
- }
- }
- }
- // InlineFunction - This function inlines the called function into the basic
- // block of the caller. This returns false if it is not possible to inline this
- // call. The program is still in a well defined state if this occurs though.
- //
- // Note that this only does one level of inlining. For example, if the
- // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- // exists in the instruction stream. Similarly this will inline a recursive
- // function by one level.
- //
- bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
- Instruction *TheCall = CS.getInstruction();
- LLVMContext &Context = TheCall->getContext();
- assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
- "Instruction not in function!");
- // If IFI has any state in it, zap it before we fill it in.
- IFI.reset();
-
- const Function *CalledFunc = CS.getCalledFunction();
- if (CalledFunc == 0 || // Can't inline external function or indirect
- CalledFunc->isDeclaration() || // call, or call to a vararg function!
- CalledFunc->getFunctionType()->isVarArg()) return false;
- // If the call to the callee is not a tail call, we must clear the 'tail'
- // flags on any calls that we inline.
- bool MustClearTailCallFlags =
- !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CS.doesNotThrow();
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasGC()) {
- if (!Caller->hasGC())
- Caller->setGC(CalledFunc->getGC());
- else if (CalledFunc->getGC() != Caller->getGC())
- return false;
- }
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- //
- Function::iterator LastBlock = &Caller->back();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- SmallVector<ReturnInst*, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
- { // Scope to destroy VMap after cloning.
- ValueToValueMapTy VMap;
- assert(CalledFunc->arg_size() == CS.arg_size() &&
- "No varargs calls can be inlined!");
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- CallSite::arg_iterator AI = CS.arg_begin();
- unsigned ArgNo = 0;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
- ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
- CalledFunc->getParamAlignment(ArgNo+1));
-
- // Calls that we inline may use the new alloca, so we need to clear
- // their 'tail' flags if HandleByValArgument introduced a new alloca and
- // the callee has calls.
- MustClearTailCallFlags |= ActualArg != *AI;
- }
- VMap[I] = ActualArg;
- }
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
- /*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, IFI.TD, TheCall);
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
- // Update the callgraph if requested.
- if (IFI.CG)
- UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
- // Update inlined instructions' line number information.
- fixupLineNumbers(Caller, FirstNewBlock, TheCall);
- }
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- //
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; ) {
- AllocaInst *AI = dyn_cast<AllocaInst>(I++);
- if (AI == 0) continue;
-
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
- if (!isa<Constant>(AI->getArraySize()))
- continue;
-
- // Keep track of the static allocas that we inline into the caller.
- IFI.StaticAllocas.push_back(AI);
-
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
- IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
- ++I;
- }
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
- }
- // Leave lifetime markers for the static alloca's, scoping them to the
- // function we just inlined.
- if (!IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(FirstNewBlock->begin());
- for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
- AllocaInst *AI = IFI.StaticAllocas[ai];
- // If the alloca is already scoped to something smaller than the whole
- // function then there's no need to add redundant, less accurate markers.
- if (hasLifetimeMarkers(AI))
- continue;
- builder.CreateLifetimeStart(AI);
- for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
- IRBuilder<> builder(Returns[ri]);
- builder.CreateLifetimeEnd(AI);
- }
- }
- }
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, "savedstack");
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
- }
- // Count the number of StackRestore calls we insert.
- unsigned NumStackRestores = Returns.size();
- // If we are inlining an invoke instruction, insert restores before each
- // unwind. These unwinds will be rewritten into branches later.
- if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
- ++NumStackRestores;
- }
- }
- }
- // If we are inlining tail call instruction through a call site that isn't
- // marked 'tail', we must remove the tail marker for any calls in the inlined
- // code. Also, calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (InlinedFunctionInfo.ContainsCalls &&
- (MustClearTailCallFlags || MarkNoUnwind)) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- if (MustClearTailCallFlags)
- CI->setTailCall(false);
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
- // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
- // instructions are unreachable.
- if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB) {
- TerminatorInst *Term = BB->getTerminator();
- if (isa<UnwindInst>(Term)) {
- new UnreachableInst(Context, Term);
- BB->getInstList().erase(Term);
- }
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any inlined 'unwind' instructions into branches to the invoke exception
- // destination, and call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- BranchInst::Create(II->getNormalDest(), TheCall);
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty()) {
- ReturnInst *R = Returns[0];
- if (TheCall == R->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->eraseFromParent();
- // We are now done with the inlining.
- return true;
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- // Add an unconditional branch to make this look like the CallInst case...
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(NewBr,
- CalledFunc->getName()+".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- TerminatorInst *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- const Type *RTy = CalledFunc->getReturnType();
- PHINode *PHI = 0;
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- if (!TheCall->use_empty()) {
- PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
- AfterCallBB->begin());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- TheCall->replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions adding entries to the PHI node
- // as appropriate.
- if (PHI) {
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- }
- // Add a branch to the merge points and remove return instructions.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst::Create(AfterCallBB, RI);
- RI->eraseFromParent();
- }
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty()) {
- if (TheCall == Returns[0]->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- }
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- // If we inserted a phi node, check to see if it has a single value (e.g. all
- // the entries are the same or undef). If so, remove the PHI so it doesn't
- // block other optimizations.
- if (PHI)
- if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
- return true;
- }
|