123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130 |
- //===-- Local.cpp - Functions to perform local transformations ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform various local transformations to the
- // program.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/LazyValueInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "local"
- STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
- //===----------------------------------------------------------------------===//
- // Local constant propagation.
- //
- /// ConstantFoldTerminator - If a terminator instruction is predicated on a
- /// constant value, convert it into an unconditional branch to the constant
- /// destination. This is a nontrivial operation because the successors of this
- /// basic block must have their PHI nodes updated.
- /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
- /// conditions and indirectbr addresses this might make dead if
- /// DeleteDeadConditions is true.
- bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
- const TargetLibraryInfo *TLI) {
- TerminatorInst *T = BB->getTerminator();
- IRBuilder<> Builder(T);
- // Branch - See if we are conditional jumping on constant
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- if (BI->isUnconditional()) return false; // Can't optimize uncond branch
- BasicBlock *Dest1 = BI->getSuccessor(0);
- BasicBlock *Dest2 = BI->getSuccessor(1);
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
- // Are we branching on constant?
- // YES. Change to unconditional branch...
- BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
- BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
- //cerr << "Function: " << T->getParent()->getParent()
- // << "\nRemoving branch from " << T->getParent()
- // << "\n\nTo: " << OldDest << endl;
- // Let the basic block know that we are letting go of it. Based on this,
- // it will adjust it's PHI nodes.
- OldDest->removePredecessor(BB);
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Destination);
- BI->eraseFromParent();
- return true;
- }
- if (Dest2 == Dest1) { // Conditional branch to same location?
- // This branch matches something like this:
- // br bool %cond, label %Dest, label %Dest
- // and changes it into: br label %Dest
- // Let the basic block know that we are letting go of one copy of it.
- assert(BI->getParent() && "Terminator not inserted in block!");
- Dest1->removePredecessor(BI->getParent());
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Dest1);
- Value *Cond = BI->getCondition();
- BI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- return false;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch to an
- // unconditional branch.
- ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *DefaultDest = SI->getDefaultDest();
- BasicBlock *TheOnlyDest = DefaultDest;
- // If the default is unreachable, ignore it when searching for TheOnlyDest.
- if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
- SI->getNumCases() > 0) {
- TheOnlyDest = SI->case_begin()->getCaseSuccessor();
- }
- // Figure out which case it goes to.
- for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
- // Found case matching a constant operand?
- if (i->getCaseValue() == CI) {
- TheOnlyDest = i->getCaseSuccessor();
- break;
- }
- // Check to see if this branch is going to the same place as the default
- // dest. If so, eliminate it as an explicit compare.
- if (i->getCaseSuccessor() == DefaultDest) {
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- unsigned NCases = SI->getNumCases();
- // Fold the case metadata into the default if there will be any branches
- // left, unless the metadata doesn't match the switch.
- if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
- ++MD_i) {
- auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // Merge weight of this case to the default weight.
- unsigned idx = i->getCaseIndex();
- Weights[0] += Weights[idx+1];
- // Remove weight for this case.
- std::swap(Weights[idx+1], Weights.back());
- Weights.pop_back();
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(Weights));
- }
- // Remove this entry.
- DefaultDest->removePredecessor(SI->getParent());
- i = SI->removeCase(i);
- e = SI->case_end();
- continue;
- }
- // Otherwise, check to see if the switch only branches to one destination.
- // We do this by reseting "TheOnlyDest" to null when we find two non-equal
- // destinations.
- if (i->getCaseSuccessor() != TheOnlyDest)
- TheOnlyDest = nullptr;
- // Increment this iterator as we haven't removed the case.
- ++i;
- }
- if (CI && !TheOnlyDest) {
- // Branching on a constant, but not any of the cases, go to the default
- // successor.
- TheOnlyDest = SI->getDefaultDest();
- }
- // If we found a single destination that we can fold the switch into, do so
- // now.
- if (TheOnlyDest) {
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *BB = SI->getParent();
- // Remove entries from PHI nodes which we no longer branch to...
- for (BasicBlock *Succ : SI->successors()) {
- // Found case matching a constant operand?
- if (Succ == TheOnlyDest)
- TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
- else
- Succ->removePredecessor(BB);
- }
- // Delete the old switch.
- Value *Cond = SI->getCondition();
- SI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- if (SI->getNumCases() == 1) {
- // Otherwise, we can fold this switch into a conditional branch
- // instruction if it has only one non-default destination.
- auto FirstCase = *SI->case_begin();
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- FirstCase.getCaseValue(), "cond");
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
- assert(SICase && SIDef);
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(SICase->getValue().getZExtValue(),
- SIDef->getValue().getZExtValue()));
- }
- // Update make.implicit metadata to the newly-created conditional branch.
- MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
- if (MakeImplicitMD)
- NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
- }
- return false;
- }
- if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
- // indirectbr blockaddress(@F, @BB) -> br label @BB
- if (BlockAddress *BA =
- dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
- BasicBlock *TheOnlyDest = BA->getBasicBlock();
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- if (IBI->getDestination(i) == TheOnlyDest)
- TheOnlyDest = nullptr;
- else
- IBI->getDestination(i)->removePredecessor(IBI->getParent());
- }
- Value *Address = IBI->getAddress();
- IBI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
- // If we didn't find our destination in the IBI successor list, then we
- // have undefined behavior. Replace the unconditional branch with an
- // 'unreachable' instruction.
- if (TheOnlyDest) {
- BB->getTerminator()->eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- }
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Local dead code elimination.
- //
- /// isInstructionTriviallyDead - Return true if the result produced by the
- /// instruction is not used, and the instruction has no side effects.
- ///
- bool llvm::isInstructionTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (!I->use_empty())
- return false;
- return wouldInstructionBeTriviallyDead(I, TLI);
- }
- bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (isa<TerminatorInst>(I))
- return false;
- // We don't want the landingpad-like instructions removed by anything this
- // general.
- if (I->isEHPad())
- return false;
- // We don't want debug info removed by anything this general, unless
- // debug info is empty.
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
- if (DDI->getAddress())
- return false;
- return true;
- }
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
- if (DVI->getValue())
- return false;
- return true;
- }
- if (!I->mayHaveSideEffects())
- return true;
- // Special case intrinsics that "may have side effects" but can be deleted
- // when dead.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Safe to delete llvm.stacksave if dead.
- if (II->getIntrinsicID() == Intrinsic::stacksave)
- return true;
- // Lifetime intrinsics are dead when their right-hand is undef.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end)
- return isa<UndefValue>(II->getArgOperand(1));
- // Assumptions are dead if their condition is trivially true. Guards on
- // true are operationally no-ops. In the future we can consider more
- // sophisticated tradeoffs for guards considering potential for check
- // widening, but for now we keep things simple.
- if (II->getIntrinsicID() == Intrinsic::assume ||
- II->getIntrinsicID() == Intrinsic::experimental_guard) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- return !Cond->isZero();
- return false;
- }
- }
- if (isAllocLikeFn(I, TLI))
- return true;
- if (CallInst *CI = isFreeCall(I, TLI))
- if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
- return C->isNullValue() || isa<UndefValue>(C);
- if (CallSite CS = CallSite(I))
- if (isMathLibCallNoop(CS, TLI))
- return true;
- return false;
- }
- /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
- /// trivially dead instruction, delete it. If that makes any of its operands
- /// trivially dead, delete them too, recursively. Return true if any
- /// instructions were deleted.
- bool
- llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
- const TargetLibraryInfo *TLI) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
- return false;
- SmallVector<Instruction*, 16> DeadInsts;
- DeadInsts.push_back(I);
- do {
- I = DeadInsts.pop_back_val();
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty()) continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- DeadInsts.push_back(OpI);
- }
- I->eraseFromParent();
- } while (!DeadInsts.empty());
- return true;
- }
- /// areAllUsesEqual - Check whether the uses of a value are all the same.
- /// This is similar to Instruction::hasOneUse() except this will also return
- /// true when there are no uses or multiple uses that all refer to the same
- /// value.
- static bool areAllUsesEqual(Instruction *I) {
- Value::user_iterator UI = I->user_begin();
- Value::user_iterator UE = I->user_end();
- if (UI == UE)
- return true;
- User *TheUse = *UI;
- for (++UI; UI != UE; ++UI) {
- if (*UI != TheUse)
- return false;
- }
- return true;
- }
- /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
- /// dead PHI node, due to being a def-use chain of single-use nodes that
- /// either forms a cycle or is terminated by a trivially dead instruction,
- /// delete it. If that makes any of its operands trivially dead, delete them
- /// too, recursively. Return true if a change was made.
- bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
- const TargetLibraryInfo *TLI) {
- SmallPtrSet<Instruction*, 4> Visited;
- for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
- I = cast<Instruction>(*I->user_begin())) {
- if (I->use_empty())
- return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- // If we find an instruction more than once, we're on a cycle that
- // won't prove fruitful.
- if (!Visited.insert(I).second) {
- // Break the cycle and delete the instruction and its operands.
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- return true;
- }
- }
- return false;
- }
- static bool
- simplifyAndDCEInstruction(Instruction *I,
- SmallSetVector<Instruction *, 16> &WorkList,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- if (isInstructionTriviallyDead(I, TLI)) {
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty() || I == OpV)
- continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- WorkList.insert(OpI);
- }
- I->eraseFromParent();
- return true;
- }
- if (Value *SimpleV = SimplifyInstruction(I, DL)) {
- // Add the users to the worklist. CAREFUL: an instruction can use itself,
- // in the case of a phi node.
- for (User *U : I->users()) {
- if (U != I) {
- WorkList.insert(cast<Instruction>(U));
- }
- }
- // Replace the instruction with its simplified value.
- bool Changed = false;
- if (!I->use_empty()) {
- I->replaceAllUsesWith(SimpleV);
- Changed = true;
- }
- if (isInstructionTriviallyDead(I, TLI)) {
- I->eraseFromParent();
- Changed = true;
- }
- return Changed;
- }
- return false;
- }
- /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
- /// simplify any instructions in it and recursively delete dead instructions.
- ///
- /// This returns true if it changed the code, note that it can delete
- /// instructions in other blocks as well in this block.
- bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- const DataLayout &DL = BB->getModule()->getDataLayout();
- #ifndef NDEBUG
- // In debug builds, ensure that the terminator of the block is never replaced
- // or deleted by these simplifications. The idea of simplification is that it
- // cannot introduce new instructions, and there is no way to replace the
- // terminator of a block without introducing a new instruction.
- AssertingVH<Instruction> TerminatorVH(&BB->back());
- #endif
- SmallSetVector<Instruction *, 16> WorkList;
- // Iterate over the original function, only adding insts to the worklist
- // if they actually need to be revisited. This avoids having to pre-init
- // the worklist with the entire function's worth of instructions.
- for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
- BI != E;) {
- assert(!BI->isTerminator());
- Instruction *I = &*BI;
- ++BI;
- // We're visiting this instruction now, so make sure it's not in the
- // worklist from an earlier visit.
- if (!WorkList.count(I))
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- while (!WorkList.empty()) {
- Instruction *I = WorkList.pop_back_val();
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Control Flow Graph Restructuring.
- //
- /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
- /// method is called when we're about to delete Pred as a predecessor of BB. If
- /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
- ///
- /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
- /// nodes that collapse into identity values. For example, if we have:
- /// x = phi(1, 0, 0, 0)
- /// y = and x, z
- ///
- /// .. and delete the predecessor corresponding to the '1', this will attempt to
- /// recursively fold the and to 0.
- void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
- // This only adjusts blocks with PHI nodes.
- if (!isa<PHINode>(BB->begin()))
- return;
- // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
- // them down. This will leave us with single entry phi nodes and other phis
- // that can be removed.
- BB->removePredecessor(Pred, true);
- WeakVH PhiIt = &BB->front();
- while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
- PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
- Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN))
- continue;
- // If recursive simplification ended up deleting the next PHI node we would
- // iterate to, then our iterator is invalid, restart scanning from the top
- // of the block.
- if (PhiIt != OldPhiIt) PhiIt = &BB->front();
- }
- }
- /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
- /// predecessor is known to have one successor (DestBB!). Eliminate the edge
- /// between them, moving the instructions in the predecessor into DestBB and
- /// deleting the predecessor block.
- ///
- void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
- // If BB has single-entry PHI nodes, fold them.
- while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- Value *NewVal = PN->getIncomingValue(0);
- // Replace self referencing PHI with undef, it must be dead.
- if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NewVal);
- PN->eraseFromParent();
- }
- BasicBlock *PredBB = DestBB->getSinglePredecessor();
- assert(PredBB && "Block doesn't have a single predecessor!");
- // Zap anything that took the address of DestBB. Not doing this will give the
- // address an invalid value.
- if (DestBB->hasAddressTaken()) {
- BlockAddress *BA = BlockAddress::get(DestBB);
- Constant *Replacement =
- ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
- BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
- BA->getType()));
- BA->destroyConstant();
- }
- // Anything that branched to PredBB now branches to DestBB.
- PredBB->replaceAllUsesWith(DestBB);
- // Splice all the instructions from PredBB to DestBB.
- PredBB->getTerminator()->eraseFromParent();
- DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
- // If the PredBB is the entry block of the function, move DestBB up to
- // become the entry block after we erase PredBB.
- if (PredBB == &DestBB->getParent()->getEntryBlock())
- DestBB->moveAfter(PredBB);
- if (DT) {
- BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
- DT->changeImmediateDominator(DestBB, PredBBIDom);
- DT->eraseNode(PredBB);
- }
- // Nuke BB.
- PredBB->eraseFromParent();
- }
- /// CanMergeValues - Return true if we can choose one of these values to use
- /// in place of the other. Note that we will always choose the non-undef
- /// value to keep.
- static bool CanMergeValues(Value *First, Value *Second) {
- return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
- }
- /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
- /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
- ///
- /// Assumption: Succ is the single successor for BB.
- ///
- static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
- assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
- << Succ->getName() << "\n");
- // Shortcut, if there is only a single predecessor it must be BB and merging
- // is always safe
- if (Succ->getSinglePredecessor()) return true;
- // Make a list of the predecessors of BB
- SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
- // Look at all the phi nodes in Succ, to see if they present a conflict when
- // merging these blocks
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // If the incoming value from BB is again a PHINode in
- // BB which has the same incoming value for *PI as PN does, we can
- // merge the phi nodes and then the blocks can still be merged
- PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
- if (BBPN && BBPN->getParent() == BB) {
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
- PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
- << BBPN->getName() << " with regard to common predecessor "
- << IBB->getName() << "\n");
- return false;
- }
- }
- } else {
- Value* Val = PN->getIncomingValueForBlock(BB);
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- // See if the incoming value for the common predecessor is equal to the
- // one for BB, in which case this phi node will not prevent the merging
- // of the block.
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(Val, PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with regard to common "
- << "predecessor " << IBB->getName() << "\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- typedef SmallVector<BasicBlock *, 16> PredBlockVector;
- typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
- /// \brief Determines the value to use as the phi node input for a block.
- ///
- /// Select between \p OldVal any value that we know flows from \p BB
- /// to a particular phi on the basis of which one (if either) is not
- /// undef. Update IncomingValues based on the selected value.
- ///
- /// \param OldVal The value we are considering selecting.
- /// \param BB The block that the value flows in from.
- /// \param IncomingValues A map from block-to-value for other phi inputs
- /// that we have examined.
- ///
- /// \returns the selected value.
- static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
- IncomingValueMap &IncomingValues) {
- if (!isa<UndefValue>(OldVal)) {
- assert((!IncomingValues.count(BB) ||
- IncomingValues.find(BB)->second == OldVal) &&
- "Expected OldVal to match incoming value from BB!");
- IncomingValues.insert(std::make_pair(BB, OldVal));
- return OldVal;
- }
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It != IncomingValues.end()) return It->second;
- return OldVal;
- }
- /// \brief Create a map from block to value for the operands of a
- /// given phi.
- ///
- /// Create a map from block to value for each non-undef value flowing
- /// into \p PN.
- ///
- /// \param PN The phi we are collecting the map for.
- /// \param IncomingValues [out] The map from block to value for this phi.
- static void gatherIncomingValuesToPhi(PHINode *PN,
- IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V))
- IncomingValues.insert(std::make_pair(BB, V));
- }
- }
- /// \brief Replace the incoming undef values to a phi with the values
- /// from a block-to-value map.
- ///
- /// \param PN The phi we are replacing the undefs in.
- /// \param IncomingValues A map from block to value.
- static void replaceUndefValuesInPhi(PHINode *PN,
- const IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V)) continue;
- BasicBlock *BB = PN->getIncomingBlock(i);
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It == IncomingValues.end()) continue;
- PN->setIncomingValue(i, It->second);
- }
- }
- /// \brief Replace a value flowing from a block to a phi with
- /// potentially multiple instances of that value flowing from the
- /// block's predecessors to the phi.
- ///
- /// \param BB The block with the value flowing into the phi.
- /// \param BBPreds The predecessors of BB.
- /// \param PN The phi that we are updating.
- static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
- const PredBlockVector &BBPreds,
- PHINode *PN) {
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
- IncomingValueMap IncomingValues;
- // We are merging two blocks - BB, and the block containing PN - and
- // as a result we need to redirect edges from the predecessors of BB
- // to go to the block containing PN, and update PN
- // accordingly. Since we allow merging blocks in the case where the
- // predecessor and successor blocks both share some predecessors,
- // and where some of those common predecessors might have undef
- // values flowing into PN, we want to rewrite those values to be
- // consistent with the non-undef values.
- gatherIncomingValuesToPhi(PN, IncomingValues);
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
- Value *PredVal = OldValPN->getIncomingValue(i);
- Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- } else {
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
- // Update existing incoming values in PN for this
- // predecessor of BB.
- BasicBlock *PredBB = BBPreds[i];
- Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- }
- replaceUndefValuesInPhi(PN, IncomingValues);
- }
- /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
- /// unconditional branch, and contains no instructions other than PHI nodes,
- /// potential side-effect free intrinsics and the branch. If possible,
- /// eliminate BB by rewriting all the predecessors to branch to the successor
- /// block and return true. If we can't transform, return false.
- bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
- assert(BB != &BB->getParent()->getEntryBlock() &&
- "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
- // We can't eliminate infinite loops.
- BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
- if (BB == Succ) return false;
- // Check to see if merging these blocks would cause conflicts for any of the
- // phi nodes in BB or Succ. If not, we can safely merge.
- if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
- // Check for cases where Succ has multiple predecessors and a PHI node in BB
- // has uses which will not disappear when the PHI nodes are merged. It is
- // possible to handle such cases, but difficult: it requires checking whether
- // BB dominates Succ, which is non-trivial to calculate in the case where
- // Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't introduce any
- // conflicts; this isn't too difficult, but the previous code for doing this
- // was incorrect.
- //
- // Note that if this check finds a live use, BB dominates Succ, so BB is
- // something like a loop pre-header (or rarely, a part of an irreducible CFG);
- // folding the branch isn't profitable in that case anyway.
- if (!Succ->getSinglePredecessor()) {
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) {
- for (Use &U : BBI->uses()) {
- if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
- if (PN->getIncomingBlock(U) != BB)
- return false;
- } else {
- return false;
- }
- }
- ++BBI;
- }
- }
- DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
- if (isa<PHINode>(Succ->begin())) {
- // If there is more than one pred of succ, and there are PHI nodes in
- // the successor, then we need to add incoming edges for the PHI nodes
- //
- const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
- // Loop over all of the PHI nodes in the successor of BB.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
- }
- }
- if (Succ->getSinglePredecessor()) {
- // BB is the only predecessor of Succ, so Succ will end up with exactly
- // the same predecessors BB had.
- // Copy over any phi, debug or lifetime instruction.
- BB->getTerminator()->eraseFromParent();
- Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
- BB->getInstList());
- } else {
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
- assert(PN->use_empty() && "There shouldn't be any uses here!");
- PN->eraseFromParent();
- }
- }
- // If the unconditional branch we replaced contains llvm.loop metadata, we
- // add the metadata to the branch instructions in the predecessors.
- unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
- Instruction *TI = BB->getTerminator();
- if (TI)
- if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *Pred = *PI;
- Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
- }
- // Everything that jumped to BB now goes to Succ.
- BB->replaceAllUsesWith(Succ);
- if (!Succ->hasName()) Succ->takeName(BB);
- BB->eraseFromParent(); // Delete the old basic block.
- return true;
- }
- /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
- /// nodes in this block. This doesn't try to be clever about PHI nodes
- /// which differ only in the order of the incoming values, but instcombine
- /// orders them so it usually won't matter.
- ///
- bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- struct PHIDenseMapInfo {
- static PHINode *getEmptyKey() {
- return DenseMapInfo<PHINode *>::getEmptyKey();
- }
- static PHINode *getTombstoneKey() {
- return DenseMapInfo<PHINode *>::getTombstoneKey();
- }
- static unsigned getHashValue(PHINode *PN) {
- // Compute a hash value on the operands. Instcombine will likely have
- // sorted them, which helps expose duplicates, but we have to check all
- // the operands to be safe in case instcombine hasn't run.
- return static_cast<unsigned>(hash_combine(
- hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
- hash_combine_range(PN->block_begin(), PN->block_end())));
- }
- static bool isEqual(PHINode *LHS, PHINode *RHS) {
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- // Set of unique PHINodes.
- DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
- // Examine each PHI.
- bool Changed = false;
- for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
- auto Inserted = PHISet.insert(PN);
- if (!Inserted.second) {
- // A duplicate. Replace this PHI with its duplicate.
- PN->replaceAllUsesWith(*Inserted.first);
- PN->eraseFromParent();
- Changed = true;
- // The RAUW can change PHIs that we already visited. Start over from the
- // beginning.
- PHISet.clear();
- I = BB->begin();
- }
- }
- return Changed;
- }
- /// enforceKnownAlignment - If the specified pointer points to an object that
- /// we control, modify the object's alignment to PrefAlign. This isn't
- /// often possible though. If alignment is important, a more reliable approach
- /// is to simply align all global variables and allocation instructions to
- /// their preferred alignment from the beginning.
- ///
- static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign,
- const DataLayout &DL) {
- assert(PrefAlign > Align);
- V = V->stripPointerCasts();
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // TODO: ideally, computeKnownBits ought to have used
- // AllocaInst::getAlignment() in its computation already, making
- // the below max redundant. But, as it turns out,
- // stripPointerCasts recurses through infinite layers of bitcasts,
- // while computeKnownBits is not allowed to traverse more than 6
- // levels.
- Align = std::max(AI->getAlignment(), Align);
- if (PrefAlign <= Align)
- return Align;
- // If the preferred alignment is greater than the natural stack alignment
- // then don't round up. This avoids dynamic stack realignment.
- if (DL.exceedsNaturalStackAlignment(PrefAlign))
- return Align;
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- // TODO: as above, this shouldn't be necessary.
- Align = std::max(GO->getAlignment(), Align);
- if (PrefAlign <= Align)
- return Align;
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global. If the memory we set aside for the global may not be the
- // memory used by the final program then it is impossible for us to reliably
- // enforce the preferred alignment.
- if (!GO->canIncreaseAlignment())
- return Align;
- GO->setAlignment(PrefAlign);
- return PrefAlign;
- }
- return Align;
- }
- unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout &DL,
- const Instruction *CxtI,
- AssumptionCache *AC,
- const DominatorTree *DT) {
- assert(V->getType()->isPointerTy() &&
- "getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
- unsigned TrailZ = KnownZero.countTrailingOnes();
- // Avoid trouble with ridiculously large TrailZ values, such as
- // those computed from a null pointer.
- TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
- // LLVM doesn't support alignments larger than this currently.
- Align = std::min(Align, +Value::MaximumAlignment);
- if (PrefAlign > Align)
- Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
- // We don't need to make any adjustment.
- return Align;
- }
- ///===---------------------------------------------------------------------===//
- /// Dbg Intrinsic utilities
- ///
- /// See if there is a dbg.value intrinsic for DIVar before I.
- static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
- Instruction *I) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- llvm::BasicBlock::InstListType::iterator PrevI(I);
- if (PrevI != I->getParent()->getInstList().begin()) {
- --PrevI;
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
- if (DVI->getValue() == I->getOperand(0) &&
- DVI->getOffset() == 0 &&
- DVI->getVariable() == DIVar &&
- DVI->getExpression() == DIExpr)
- return true;
- }
- return false;
- }
- /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
- static bool PhiHasDebugValue(DILocalVariable *DIVar,
- DIExpression *DIExpr,
- PHINode *APN) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- SmallVector<DbgValueInst *, 1> DbgValues;
- findDbgValues(DbgValues, APN);
- for (auto *DVI : DbgValues) {
- assert(DVI->getValue() == APN);
- assert(DVI->getOffset() == 0);
- if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
- return true;
- }
- return false;
- }
- /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- StoreInst *SI, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- Argument *ExtendedArg = nullptr;
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
- if (ExtendedArg) {
- // We're now only describing a subset of the variable. The fragment we're
- // describing will always be smaller than the variable size, because
- // VariableSize == Size of Alloca described by DDI. Since SI stores
- // to the alloca described by DDI, if it's first operand is an extend,
- // we're guaranteed that before extension, the value was narrower than
- // the size of the alloca, hence the size of the described variable.
- SmallVector<uint64_t, 3> Ops;
- unsigned FragmentOffset = 0;
- // If this already is a bit fragment, we drop the bit fragment from the
- // expression and record the offset.
- auto Fragment = DIExpr->getFragmentInfo();
- if (Fragment) {
- Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
- FragmentOffset = Fragment->OffsetInBits;
- } else {
- Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
- }
- Ops.push_back(dwarf::DW_OP_LLVM_fragment);
- Ops.push_back(FragmentOffset);
- const DataLayout &DL = DDI->getModule()->getDataLayout();
- Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
- auto NewDIExpr = Builder.createExpression(Ops);
- if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
- Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
- DDI->getDebugLoc(), SI);
- } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
- Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
- DDI->getDebugLoc(), SI);
- }
- /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- LoadInst *LI, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- if (LdStHasDebugValue(DIVar, DIExpr, LI))
- return;
- // We are now tracking the loaded value instead of the address. In the
- // future if multi-location support is added to the IR, it might be
- // preferable to keep tracking both the loaded value and the original
- // address in case the alloca can not be elided.
- Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
- LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
- DbgValue->insertAfter(LI);
- }
- /// Inserts a llvm.dbg.value intrinsic after a phi
- /// that has an associated llvm.dbg.decl intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- PHINode *APN, DIBuilder &Builder) {
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- if (PhiHasDebugValue(DIVar, DIExpr, APN))
- return;
- BasicBlock *BB = APN->getParent();
- auto InsertionPt = BB->getFirstInsertionPt();
- // The block may be a catchswitch block, which does not have a valid
- // insertion point.
- // FIXME: Insert dbg.value markers in the successors when appropriate.
- if (InsertionPt != BB->end())
- Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(),
- &*InsertionPt);
- }
- /// Determine whether this alloca is either a VLA or an array.
- static bool isArray(AllocaInst *AI) {
- return AI->isArrayAllocation() ||
- AI->getType()->getElementType()->isArrayTy();
- }
- /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
- /// of llvm.dbg.value intrinsics.
- bool llvm::LowerDbgDeclare(Function &F) {
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- SmallVector<DbgDeclareInst *, 4> Dbgs;
- for (auto &FI : F)
- for (Instruction &BI : FI)
- if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
- Dbgs.push_back(DDI);
- if (Dbgs.empty())
- return false;
- for (auto &I : Dbgs) {
- DbgDeclareInst *DDI = I;
- AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
- // If this is an alloca for a scalar variable, insert a dbg.value
- // at each load and store to the alloca and erase the dbg.declare.
- // The dbg.values allow tracking a variable even if it is not
- // stored on the stack, while the dbg.declare can only describe
- // the stack slot (and at a lexical-scope granularity). Later
- // passes will attempt to elide the stack slot.
- if (AI && !isArray(AI)) {
- for (auto &AIUse : AI->uses()) {
- User *U = AIUse.getUser();
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (AIUse.getOperandNo() == 1)
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // This is a call by-value or some other instruction that
- // takes a pointer to the variable. Insert a *value*
- // intrinsic that describes the alloca.
- SmallVector<uint64_t, 1> NewDIExpr;
- auto *DIExpr = DDI->getExpression();
- NewDIExpr.push_back(dwarf::DW_OP_deref);
- NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
- DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
- DIB.createExpression(NewDIExpr),
- DDI->getDebugLoc(), CI);
- }
- }
- DDI->eraseFromParent();
- }
- }
- return true;
- }
- /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
- /// alloca 'V', if any.
- DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
- if (auto *L = LocalAsMetadata::getIfExists(V))
- if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
- for (User *U : MDV->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- return DDI;
- return nullptr;
- }
- void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
- if (auto *L = LocalAsMetadata::getIfExists(V))
- if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
- for (User *U : MDV->users())
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DbgValues.push_back(DVI);
- }
- static void appendOffset(SmallVectorImpl<uint64_t> &Ops, int64_t Offset) {
- if (Offset > 0) {
- Ops.push_back(dwarf::DW_OP_plus);
- Ops.push_back(Offset);
- } else if (Offset < 0) {
- Ops.push_back(dwarf::DW_OP_minus);
- Ops.push_back(-Offset);
- }
- }
- /// Prepend \p DIExpr with a deref and offset operation.
- static DIExpression *prependDIExpr(DIBuilder &Builder, DIExpression *DIExpr,
- bool Deref, int64_t Offset) {
- if (!Deref && !Offset)
- return DIExpr;
- // Create a copy of the original DIDescriptor for user variable, prepending
- // "deref" operation to a list of address elements, as new llvm.dbg.declare
- // will take a value storing address of the memory for variable, not
- // alloca itself.
- SmallVector<uint64_t, 4> Ops;
- if (Deref)
- Ops.push_back(dwarf::DW_OP_deref);
- appendOffset(Ops, Offset);
- if (DIExpr)
- Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
- return Builder.createExpression(Ops);
- }
- bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
- Instruction *InsertBefore, DIBuilder &Builder,
- bool Deref, int Offset) {
- DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
- if (!DDI)
- return false;
- DebugLoc Loc = DDI->getDebugLoc();
- auto *DIVar = DDI->getVariable();
- auto *DIExpr = DDI->getExpression();
- assert(DIVar && "Missing variable");
- DIExpr = prependDIExpr(Builder, DIExpr, Deref, Offset);
- // Insert llvm.dbg.declare immediately after the original alloca, and remove
- // old llvm.dbg.declare.
- Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
- DDI->eraseFromParent();
- return true;
- }
- bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder, bool Deref, int Offset) {
- return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
- Deref, Offset);
- }
- static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
- DIBuilder &Builder, int Offset) {
- DebugLoc Loc = DVI->getDebugLoc();
- auto *DIVar = DVI->getVariable();
- auto *DIExpr = DVI->getExpression();
- assert(DIVar && "Missing variable");
- // This is an alloca-based llvm.dbg.value. The first thing it should do with
- // the alloca pointer is dereference it. Otherwise we don't know how to handle
- // it and give up.
- if (!DIExpr || DIExpr->getNumElements() < 1 ||
- DIExpr->getElement(0) != dwarf::DW_OP_deref)
- return;
- // Insert the offset immediately after the first deref.
- // We could just change the offset argument of dbg.value, but it's unsigned...
- if (Offset) {
- SmallVector<uint64_t, 4> Ops;
- Ops.push_back(dwarf::DW_OP_deref);
- appendOffset(Ops, Offset);
- Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
- DIExpr = Builder.createExpression(Ops);
- }
- Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
- Loc, DVI);
- DVI->eraseFromParent();
- }
- void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder, int Offset) {
- if (auto *L = LocalAsMetadata::getIfExists(AI))
- if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
- for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
- Use &U = *UI++;
- if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
- replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
- }
- }
- void llvm::salvageDebugInfo(Instruction &I) {
- SmallVector<DbgValueInst *, 1> DbgValues;
- auto &M = *I.getModule();
- auto MDWrap = [&](Value *V) {
- return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
- };
- if (isa<BitCastInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
- // to use the cast's source.
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- unsigned BitWidth =
- M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
- APInt Offset(BitWidth, 0);
- // Rewrite a constant GEP into a DIExpression.
- if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
- auto *DIExpr = DVI->getExpression();
- DIBuilder DIB(M, /*AllowUnresolved*/ false);
- // GEP offsets are i32 and thus alwaus fit into an int64_t.
- DIExpr = prependDIExpr(DIB, DIExpr, NoDeref, Offset.getSExtValue());
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- }
- } else if (isa<LoadInst>(&I)) {
- findDbgValues(DbgValues, &I);
- for (auto *DVI : DbgValues) {
- // Rewrite the load into DW_OP_deref.
- auto *DIExpr = DVI->getExpression();
- DIBuilder DIB(M, /*AllowUnresolved*/ false);
- DIExpr = prependDIExpr(DIB, DIExpr, WithDeref, 0);
- DVI->setOperand(0, MDWrap(I.getOperand(0)));
- DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
- DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
- }
- }
- }
- unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
- unsigned NumDeadInst = 0;
- // Delete the instructions backwards, as it has a reduced likelihood of
- // having to update as many def-use and use-def chains.
- Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
- while (EndInst != &BB->front()) {
- // Delete the next to last instruction.
- Instruction *Inst = &*--EndInst->getIterator();
- if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
- Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
- if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
- EndInst = Inst;
- continue;
- }
- if (!isa<DbgInfoIntrinsic>(Inst))
- ++NumDeadInst;
- Inst->eraseFromParent();
- }
- return NumDeadInst;
- }
- unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
- bool PreserveLCSSA) {
- BasicBlock *BB = I->getParent();
- // Loop over all of the successors, removing BB's entry from any PHI
- // nodes.
- for (BasicBlock *Successor : successors(BB))
- Successor->removePredecessor(BB, PreserveLCSSA);
- // Insert a call to llvm.trap right before this. This turns the undefined
- // behavior into a hard fail instead of falling through into random code.
- if (UseLLVMTrap) {
- Function *TrapFn =
- Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
- CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
- CallTrap->setDebugLoc(I->getDebugLoc());
- }
- new UnreachableInst(I->getContext(), I);
- // All instructions after this are dead.
- unsigned NumInstrsRemoved = 0;
- BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
- while (BBI != BBE) {
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
- BB->getInstList().erase(BBI++);
- ++NumInstrsRemoved;
- }
- return NumInstrsRemoved;
- }
- /// changeToCall - Convert the specified invoke into a normal call.
- static void changeToCall(InvokeInst *II) {
- SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
- CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
- "", II);
- NewCall->takeName(II);
- NewCall->setCallingConv(II->getCallingConv());
- NewCall->setAttributes(II->getAttributes());
- NewCall->setDebugLoc(II->getDebugLoc());
- II->replaceAllUsesWith(NewCall);
- // Follow the call by a branch to the normal destination.
- BranchInst::Create(II->getNormalDest(), II);
- // Update PHI nodes in the unwind destination
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- }
- BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
- BasicBlock *UnwindEdge) {
- BasicBlock *BB = CI->getParent();
- // Convert this function call into an invoke instruction. First, split the
- // basic block.
- BasicBlock *Split =
- BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- // Create the new invoke instruction.
- SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- // Note: we're round tripping operand bundles through memory here, and that
- // can potentially be avoided with a cleverer API design that we do not have
- // as of this time.
- InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
- InvokeArgs, OpBundles, CI->getName(), BB);
- II->setDebugLoc(CI->getDebugLoc());
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakVH.
- CI->replaceAllUsesWith(II);
- // Delete the original call
- Split->getInstList().pop_front();
- return Split;
- }
- static bool markAliveBlocks(Function &F,
- SmallPtrSetImpl<BasicBlock*> &Reachable) {
- SmallVector<BasicBlock*, 128> Worklist;
- BasicBlock *BB = &F.front();
- Worklist.push_back(BB);
- Reachable.insert(BB);
- bool Changed = false;
- do {
- BB = Worklist.pop_back_val();
- // Do a quick scan of the basic block, turning any obviously unreachable
- // instructions into LLVM unreachable insts. The instruction combining pass
- // canonicalizes unreachable insts into stores to null or undef.
- for (Instruction &I : *BB) {
- // Assumptions that are known to be false are equivalent to unreachable.
- // Also, if the condition is undefined, then we make the choice most
- // beneficial to the optimizer, and choose that to also be unreachable.
- if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
- if (II->getIntrinsicID() == Intrinsic::assume) {
- if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(II, false);
- Changed = true;
- break;
- }
- }
- if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
- // A call to the guard intrinsic bails out of the current compilation
- // unit if the predicate passed to it is false. If the predicate is a
- // constant false, then we know the guard will bail out of the current
- // compile unconditionally, so all code following it is dead.
- //
- // Note: unlike in llvm.assume, it is not "obviously profitable" for
- // guards to treat `undef` as `false` since a guard on `undef` can
- // still be useful for widening.
- if (match(II->getArgOperand(0), m_Zero()))
- if (!isa<UnreachableInst>(II->getNextNode())) {
- changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
- Changed = true;
- break;
- }
- }
- }
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- Value *Callee = CI->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(CI, /*UseLLVMTrap=*/false);
- Changed = true;
- break;
- }
- if (CI->doesNotReturn()) {
- // If we found a call to a no-return function, insert an unreachable
- // instruction after it. Make sure there isn't *already* one there
- // though.
- if (!isa<UnreachableInst>(CI->getNextNode())) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(CI->getNextNode(), false);
- Changed = true;
- }
- break;
- }
- }
- // Store to undef and store to null are undefined and used to signal that
- // they should be changed to unreachable by passes that can't modify the
- // CFG.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- // Don't touch volatile stores.
- if (SI->isVolatile()) continue;
- Value *Ptr = SI->getOperand(1);
- if (isa<UndefValue>(Ptr) ||
- (isa<ConstantPointerNull>(Ptr) &&
- SI->getPointerAddressSpace() == 0)) {
- changeToUnreachable(SI, true);
- Changed = true;
- break;
- }
- }
- }
- TerminatorInst *Terminator = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
- // Turn invokes that call 'nounwind' functions into ordinary calls.
- Value *Callee = II->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(II, true);
- Changed = true;
- } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
- if (II->use_empty() && II->onlyReadsMemory()) {
- // jump to the normal destination branch.
- BranchInst::Create(II->getNormalDest(), II);
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- } else
- changeToCall(II);
- Changed = true;
- }
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
- // Remove catchpads which cannot be reached.
- struct CatchPadDenseMapInfo {
- static CatchPadInst *getEmptyKey() {
- return DenseMapInfo<CatchPadInst *>::getEmptyKey();
- }
- static CatchPadInst *getTombstoneKey() {
- return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
- }
- static unsigned getHashValue(CatchPadInst *CatchPad) {
- return static_cast<unsigned>(hash_combine_range(
- CatchPad->value_op_begin(), CatchPad->value_op_end()));
- }
- static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- // Set of unique CatchPads.
- SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
- CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
- HandlerSet;
- detail::DenseSetEmpty Empty;
- for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
- E = CatchSwitch->handler_end();
- I != E; ++I) {
- BasicBlock *HandlerBB = *I;
- auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
- if (!HandlerSet.insert({CatchPad, Empty}).second) {
- CatchSwitch->removeHandler(I);
- --I;
- --E;
- Changed = true;
- }
- }
- }
- Changed |= ConstantFoldTerminator(BB, true);
- for (BasicBlock *Successor : successors(BB))
- if (Reachable.insert(Successor).second)
- Worklist.push_back(Successor);
- } while (!Worklist.empty());
- return Changed;
- }
- void llvm::removeUnwindEdge(BasicBlock *BB) {
- TerminatorInst *TI = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(TI)) {
- changeToCall(II);
- return;
- }
- TerminatorInst *NewTI;
- BasicBlock *UnwindDest;
- if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
- NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
- UnwindDest = CRI->getUnwindDest();
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
- auto *NewCatchSwitch = CatchSwitchInst::Create(
- CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
- CatchSwitch->getName(), CatchSwitch);
- for (BasicBlock *PadBB : CatchSwitch->handlers())
- NewCatchSwitch->addHandler(PadBB);
- NewTI = NewCatchSwitch;
- UnwindDest = CatchSwitch->getUnwindDest();
- } else {
- llvm_unreachable("Could not find unwind successor");
- }
- NewTI->takeName(TI);
- NewTI->setDebugLoc(TI->getDebugLoc());
- UnwindDest->removePredecessor(BB);
- TI->replaceAllUsesWith(NewTI);
- TI->eraseFromParent();
- }
- /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
- /// if they are in a dead cycle. Return true if a change was made, false
- /// otherwise.
- bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
- SmallPtrSet<BasicBlock*, 16> Reachable;
- bool Changed = markAliveBlocks(F, Reachable);
- // If there are unreachable blocks in the CFG...
- if (Reachable.size() == F.size())
- return Changed;
- assert(Reachable.size() < F.size());
- NumRemoved += F.size()-Reachable.size();
- // Loop over all of the basic blocks that are not reachable, dropping all of
- // their internal references...
- for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
- if (Reachable.count(&*BB))
- continue;
- for (BasicBlock *Successor : successors(&*BB))
- if (Reachable.count(Successor))
- Successor->removePredecessor(&*BB);
- if (LVI)
- LVI->eraseBlock(&*BB);
- BB->dropAllReferences();
- }
- for (Function::iterator I = ++F.begin(); I != F.end();)
- if (!Reachable.count(&*I))
- I = F.getBasicBlockList().erase(I);
- else
- ++I;
- return true;
- }
- void llvm::combineMetadata(Instruction *K, const Instruction *J,
- ArrayRef<unsigned> KnownIDs) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- K->dropUnknownNonDebugMetadata(KnownIDs);
- K->getAllMetadataOtherThanDebugLoc(Metadata);
- for (const auto &MD : Metadata) {
- unsigned Kind = MD.first;
- MDNode *JMD = J->getMetadata(Kind);
- MDNode *KMD = MD.second;
- switch (Kind) {
- default:
- K->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_dbg:
- llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
- case LLVMContext::MD_tbaa:
- K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
- break;
- case LLVMContext::MD_alias_scope:
- K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
- break;
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_mem_parallel_loop_access:
- K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
- break;
- case LLVMContext::MD_range:
- K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
- break;
- case LLVMContext::MD_fpmath:
- K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
- break;
- case LLVMContext::MD_invariant_load:
- // Only set the !invariant.load if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_nonnull:
- // Only set the !nonnull if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_invariant_group:
- // Preserve !invariant.group in K.
- break;
- case LLVMContext::MD_align:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- }
- }
- // Set !invariant.group from J if J has it. If both instructions have it
- // then we will just pick it from J - even when they are different.
- // Also make sure that K is load or store - f.e. combining bitcast with load
- // could produce bitcast with invariant.group metadata, which is invalid.
- // FIXME: we should try to preserve both invariant.group md if they are
- // different, but right now instruction can only have one invariant.group.
- if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
- if (isa<LoadInst>(K) || isa<StoreInst>(K))
- K->setMetadata(LLVMContext::MD_invariant_group, JMD);
- }
- void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias, LLVMContext::MD_range,
- LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
- LLVMContext::MD_invariant_group, LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null};
- combineMetadata(K, J, KnownIDs);
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlockEdge &Root) {
- assert(From->getType() == To->getType());
-
- unsigned Count = 0;
- for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
- UI != UE; ) {
- Use &U = *UI++;
- if (DT.dominates(Root, U)) {
- U.set(To);
- DEBUG(dbgs() << "Replace dominated use of '"
- << From->getName() << "' as "
- << *To << " in " << *U << "\n");
- ++Count;
- }
- }
- return Count;
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlock *BB) {
- assert(From->getType() == To->getType());
- unsigned Count = 0;
- for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
- UI != UE;) {
- Use &U = *UI++;
- auto *I = cast<Instruction>(U.getUser());
- if (DT.properlyDominates(BB, I->getParent())) {
- U.set(To);
- DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
- << *To << " in " << *U << "\n");
- ++Count;
- }
- }
- return Count;
- }
- bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
- // Check if the function is specifically marked as a gc leaf function.
- if (CS.hasFnAttr("gc-leaf-function"))
- return true;
- if (const Function *F = CS.getCalledFunction()) {
- if (F->hasFnAttribute("gc-leaf-function"))
- return true;
- if (auto IID = F->getIntrinsicID())
- // Most LLVM intrinsics do not take safepoints.
- return IID != Intrinsic::experimental_gc_statepoint &&
- IID != Intrinsic::experimental_deoptimize;
- }
- return false;
- }
- namespace {
- /// A potential constituent of a bitreverse or bswap expression. See
- /// collectBitParts for a fuller explanation.
- struct BitPart {
- BitPart(Value *P, unsigned BW) : Provider(P) {
- Provenance.resize(BW);
- }
- /// The Value that this is a bitreverse/bswap of.
- Value *Provider;
- /// The "provenance" of each bit. Provenance[A] = B means that bit A
- /// in Provider becomes bit B in the result of this expression.
- SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
- enum { Unset = -1 };
- };
- } // end anonymous namespace
- /// Analyze the specified subexpression and see if it is capable of providing
- /// pieces of a bswap or bitreverse. The subexpression provides a potential
- /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
- /// the output of the expression came from a corresponding bit in some other
- /// value. This function is recursive, and the end result is a mapping of
- /// bitnumber to bitnumber. It is the caller's responsibility to validate that
- /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
- ///
- /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
- /// that the expression deposits the low byte of %X into the high byte of the
- /// result and that all other bits are zero. This expression is accepted and a
- /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
- /// [0-7].
- ///
- /// To avoid revisiting values, the BitPart results are memoized into the
- /// provided map. To avoid unnecessary copying of BitParts, BitParts are
- /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
- /// store BitParts objects, not pointers. As we need the concept of a nullptr
- /// BitParts (Value has been analyzed and the analysis failed), we an Optional
- /// type instead to provide the same functionality.
- ///
- /// Because we pass around references into \c BPS, we must use a container that
- /// does not invalidate internal references (std::map instead of DenseMap).
- ///
- static const Optional<BitPart> &
- collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
- std::map<Value *, Optional<BitPart>> &BPS) {
- auto I = BPS.find(V);
- if (I != BPS.end())
- return I->second;
- auto &Result = BPS[V] = None;
- auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If this is an or instruction, it may be an inner node of the bswap.
- if (I->getOpcode() == Instruction::Or) {
- auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!A || !B)
- return Result;
- // Try and merge the two together.
- if (!A->Provider || A->Provider != B->Provider)
- return Result;
- Result = BitPart(A->Provider, BitWidth);
- for (unsigned i = 0; i < A->Provenance.size(); ++i) {
- if (A->Provenance[i] != BitPart::Unset &&
- B->Provenance[i] != BitPart::Unset &&
- A->Provenance[i] != B->Provenance[i])
- return Result = None;
- if (A->Provenance[i] == BitPart::Unset)
- Result->Provenance[i] = B->Provenance[i];
- else
- Result->Provenance[i] = A->Provenance[i];
- }
- return Result;
- }
- // If this is a logical shift by a constant, recurse then shift the result.
- if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned BitShift =
- cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
- // Ensure the shift amount is defined.
- if (BitShift > BitWidth)
- return Result;
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = Res;
- // Perform the "shift" on BitProvenance.
- auto &P = Result->Provenance;
- if (I->getOpcode() == Instruction::Shl) {
- P.erase(std::prev(P.end(), BitShift), P.end());
- P.insert(P.begin(), BitShift, BitPart::Unset);
- } else {
- P.erase(P.begin(), std::next(P.begin(), BitShift));
- P.insert(P.end(), BitShift, BitPart::Unset);
- }
- return Result;
- }
- // If this is a logical 'and' with a mask that clears bits, recurse then
- // unset the appropriate bits.
- if (I->getOpcode() == Instruction::And &&
- isa<ConstantInt>(I->getOperand(1))) {
- APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
- const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
- // Check that the mask allows a multiple of 8 bits for a bswap, for an
- // early exit.
- unsigned NumMaskedBits = AndMask.countPopulation();
- if (!MatchBitReversals && NumMaskedBits % 8 != 0)
- return Result;
-
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = Res;
- for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
- // If the AndMask is zero for this bit, clear the bit.
- if ((AndMask & Bit) == 0)
- Result->Provenance[i] = BitPart::Unset;
- return Result;
- }
- // If this is a zext instruction zero extend the result.
- if (I->getOpcode() == Instruction::ZExt) {
- auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
- MatchBitReversals, BPS);
- if (!Res)
- return Result;
- Result = BitPart(Res->Provider, BitWidth);
- auto NarrowBitWidth =
- cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
- for (unsigned i = 0; i < NarrowBitWidth; ++i)
- Result->Provenance[i] = Res->Provenance[i];
- for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
- Result->Provenance[i] = BitPart::Unset;
- return Result;
- }
- }
- // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
- // the input value to the bswap/bitreverse.
- Result = BitPart(V, BitWidth);
- for (unsigned i = 0; i < BitWidth; ++i)
- Result->Provenance[i] = i;
- return Result;
- }
- static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
- unsigned BitWidth) {
- if (From % 8 != To % 8)
- return false;
- // Convert from bit indices to byte indices and check for a byte reversal.
- From >>= 3;
- To >>= 3;
- BitWidth >>= 3;
- return From == BitWidth - To - 1;
- }
- static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
- unsigned BitWidth) {
- return From == BitWidth - To - 1;
- }
- /// Given an OR instruction, check to see if this is a bitreverse
- /// idiom. If so, insert the new intrinsic and return true.
- bool llvm::recognizeBSwapOrBitReverseIdiom(
- Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
- SmallVectorImpl<Instruction *> &InsertedInsts) {
- if (Operator::getOpcode(I) != Instruction::Or)
- return false;
- if (!MatchBSwaps && !MatchBitReversals)
- return false;
- IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
- if (!ITy || ITy->getBitWidth() > 128)
- return false; // Can't do vectors or integers > 128 bits.
- unsigned BW = ITy->getBitWidth();
- unsigned DemandedBW = BW;
- IntegerType *DemandedTy = ITy;
- if (I->hasOneUse()) {
- if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
- DemandedTy = cast<IntegerType>(Trunc->getType());
- DemandedBW = DemandedTy->getBitWidth();
- }
- }
- // Try to find all the pieces corresponding to the bswap.
- std::map<Value *, Optional<BitPart>> BPS;
- auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
- if (!Res)
- return false;
- auto &BitProvenance = Res->Provenance;
- // Now, is the bit permutation correct for a bswap or a bitreverse? We can
- // only byteswap values with an even number of bytes.
- bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
- for (unsigned i = 0; i < DemandedBW; ++i) {
- OKForBSwap &=
- bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
- OKForBitReverse &=
- bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
- }
- Intrinsic::ID Intrin;
- if (OKForBSwap && MatchBSwaps)
- Intrin = Intrinsic::bswap;
- else if (OKForBitReverse && MatchBitReversals)
- Intrin = Intrinsic::bitreverse;
- else
- return false;
- if (ITy != DemandedTy) {
- Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
- Value *Provider = Res->Provider;
- IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
- // We may need to truncate the provider.
- if (DemandedTy != ProviderTy) {
- auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
- "trunc", I);
- InsertedInsts.push_back(Trunc);
- Provider = Trunc;
- }
- auto *CI = CallInst::Create(F, Provider, "rev", I);
- InsertedInsts.push_back(CI);
- auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
- InsertedInsts.push_back(ExtInst);
- return true;
- }
- Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
- InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
- return true;
- }
- // CodeGen has special handling for some string functions that may replace
- // them with target-specific intrinsics. Since that'd skip our interceptors
- // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
- // we mark affected calls as NoBuiltin, which will disable optimization
- // in CodeGen.
- void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
- CallInst *CI, const TargetLibraryInfo *TLI) {
- Function *F = CI->getCalledFunction();
- LibFunc Func;
- if (F && !F->hasLocalLinkage() && F->hasName() &&
- TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
- !F->doesNotAccessMemory())
- CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
- }
|