12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192 |
- //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Jump Threading pass.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/JumpThreading.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include <algorithm>
- #include <memory>
- using namespace llvm;
- using namespace jumpthreading;
- #define DEBUG_TYPE "jump-threading"
- STATISTIC(NumThreads, "Number of jumps threaded");
- STATISTIC(NumFolds, "Number of terminators folded");
- STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
- static cl::opt<unsigned>
- BBDuplicateThreshold("jump-threading-threshold",
- cl::desc("Max block size to duplicate for jump threading"),
- cl::init(6), cl::Hidden);
- static cl::opt<unsigned>
- ImplicationSearchThreshold(
- "jump-threading-implication-search-threshold",
- cl::desc("The number of predecessors to search for a stronger "
- "condition to use to thread over a weaker condition"),
- cl::init(3), cl::Hidden);
- namespace {
- /// This pass performs 'jump threading', which looks at blocks that have
- /// multiple predecessors and multiple successors. If one or more of the
- /// predecessors of the block can be proven to always jump to one of the
- /// successors, we forward the edge from the predecessor to the successor by
- /// duplicating the contents of this block.
- ///
- /// An example of when this can occur is code like this:
- ///
- /// if () { ...
- /// X = 4;
- /// }
- /// if (X < 3) {
- ///
- /// In this case, the unconditional branch at the end of the first if can be
- /// revectored to the false side of the second if.
- ///
- class JumpThreading : public FunctionPass {
- JumpThreadingPass Impl;
- public:
- static char ID; // Pass identification
- JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
- initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<LazyValueInfoWrapperPass>();
- AU.addPreserved<LazyValueInfoWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- void releaseMemory() override { Impl.releaseMemory(); }
- };
- }
- char JumpThreading::ID = 0;
- INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
- "Jump Threading", false, false)
- INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(JumpThreading, "jump-threading",
- "Jump Threading", false, false)
- // Public interface to the Jump Threading pass
- FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
- JumpThreadingPass::JumpThreadingPass(int T) {
- BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
- }
- /// runOnFunction - Top level algorithm.
- ///
- bool JumpThreading::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
- auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- std::unique_ptr<BlockFrequencyInfo> BFI;
- std::unique_ptr<BranchProbabilityInfo> BPI;
- bool HasProfileData = F.getEntryCount().hasValue();
- if (HasProfileData) {
- LoopInfo LI{DominatorTree(F)};
- BPI.reset(new BranchProbabilityInfo(F, LI));
- BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
- }
- return Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
- std::move(BPI));
- }
- PreservedAnalyses JumpThreadingPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &LVI = AM.getResult<LazyValueAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- std::unique_ptr<BlockFrequencyInfo> BFI;
- std::unique_ptr<BranchProbabilityInfo> BPI;
- bool HasProfileData = F.getEntryCount().hasValue();
- if (HasProfileData) {
- LoopInfo LI{DominatorTree(F)};
- BPI.reset(new BranchProbabilityInfo(F, LI));
- BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
- }
- bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
- std::move(BPI));
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<GlobalsAA>();
- return PA;
- }
- bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
- LazyValueInfo *LVI_, AliasAnalysis *AA_,
- bool HasProfileData_,
- std::unique_ptr<BlockFrequencyInfo> BFI_,
- std::unique_ptr<BranchProbabilityInfo> BPI_) {
- DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
- TLI = TLI_;
- LVI = LVI_;
- AA = AA_;
- BFI.reset();
- BPI.reset();
- // When profile data is available, we need to update edge weights after
- // successful jump threading, which requires both BPI and BFI being available.
- HasProfileData = HasProfileData_;
- auto *GuardDecl = F.getParent()->getFunction(
- Intrinsic::getName(Intrinsic::experimental_guard));
- HasGuards = GuardDecl && !GuardDecl->use_empty();
- if (HasProfileData) {
- BPI = std::move(BPI_);
- BFI = std::move(BFI_);
- }
- // Remove unreachable blocks from function as they may result in infinite
- // loop. We do threading if we found something profitable. Jump threading a
- // branch can create other opportunities. If these opportunities form a cycle
- // i.e. if any jump threading is undoing previous threading in the path, then
- // we will loop forever. We take care of this issue by not jump threading for
- // back edges. This works for normal cases but not for unreachable blocks as
- // they may have cycle with no back edge.
- bool EverChanged = false;
- EverChanged |= removeUnreachableBlocks(F, LVI);
- FindLoopHeaders(F);
- bool Changed;
- do {
- Changed = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
- BasicBlock *BB = &*I;
- // Thread all of the branches we can over this block.
- while (ProcessBlock(BB))
- Changed = true;
- ++I;
- // If the block is trivially dead, zap it. This eliminates the successor
- // edges which simplifies the CFG.
- if (pred_empty(BB) &&
- BB != &BB->getParent()->getEntryBlock()) {
- DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
- << "' with terminator: " << *BB->getTerminator() << '\n');
- LoopHeaders.erase(BB);
- LVI->eraseBlock(BB);
- DeleteDeadBlock(BB);
- Changed = true;
- continue;
- }
- BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
- // Can't thread an unconditional jump, but if the block is "almost
- // empty", we can replace uses of it with uses of the successor and make
- // this dead.
- // We should not eliminate the loop header either, because eliminating
- // a loop header might later prevent LoopSimplify from transforming nested
- // loops into simplified form.
- if (BI && BI->isUnconditional() &&
- BB != &BB->getParent()->getEntryBlock() &&
- // If the terminator is the only non-phi instruction, try to nuke it.
- BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
- // FIXME: It is always conservatively correct to drop the info
- // for a block even if it doesn't get erased. This isn't totally
- // awesome, but it allows us to use AssertingVH to prevent nasty
- // dangling pointer issues within LazyValueInfo.
- LVI->eraseBlock(BB);
- if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
- Changed = true;
- }
- }
- EverChanged |= Changed;
- } while (Changed);
- LoopHeaders.clear();
- return EverChanged;
- }
- /// Return the cost of duplicating a piece of this block from first non-phi
- /// and before StopAt instruction to thread across it. Stop scanning the block
- /// when exceeding the threshold. If duplication is impossible, returns ~0U.
- static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
- Instruction *StopAt,
- unsigned Threshold) {
- assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
- /// Ignore PHI nodes, these will be flattened when duplication happens.
- BasicBlock::const_iterator I(BB->getFirstNonPHI());
- // FIXME: THREADING will delete values that are just used to compute the
- // branch, so they shouldn't count against the duplication cost.
- unsigned Bonus = 0;
- if (BB->getTerminator() == StopAt) {
- // Threading through a switch statement is particularly profitable. If this
- // block ends in a switch, decrease its cost to make it more likely to
- // happen.
- if (isa<SwitchInst>(StopAt))
- Bonus = 6;
- // The same holds for indirect branches, but slightly more so.
- if (isa<IndirectBrInst>(StopAt))
- Bonus = 8;
- }
- // Bump the threshold up so the early exit from the loop doesn't skip the
- // terminator-based Size adjustment at the end.
- Threshold += Bonus;
- // Sum up the cost of each instruction until we get to the terminator. Don't
- // include the terminator because the copy won't include it.
- unsigned Size = 0;
- for (; &*I != StopAt; ++I) {
- // Stop scanning the block if we've reached the threshold.
- if (Size > Threshold)
- return Size;
- // Debugger intrinsics don't incur code size.
- if (isa<DbgInfoIntrinsic>(I)) continue;
- // If this is a pointer->pointer bitcast, it is free.
- if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
- continue;
- // Bail out if this instruction gives back a token type, it is not possible
- // to duplicate it if it is used outside this BB.
- if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
- return ~0U;
- // All other instructions count for at least one unit.
- ++Size;
- // Calls are more expensive. If they are non-intrinsic calls, we model them
- // as having cost of 4. If they are a non-vector intrinsic, we model them
- // as having cost of 2 total, and if they are a vector intrinsic, we model
- // them as having cost 1.
- if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (CI->cannotDuplicate() || CI->isConvergent())
- // Blocks with NoDuplicate are modelled as having infinite cost, so they
- // are never duplicated.
- return ~0U;
- else if (!isa<IntrinsicInst>(CI))
- Size += 3;
- else if (!CI->getType()->isVectorTy())
- Size += 1;
- }
- }
- return Size > Bonus ? Size - Bonus : 0;
- }
- /// FindLoopHeaders - We do not want jump threading to turn proper loop
- /// structures into irreducible loops. Doing this breaks up the loop nesting
- /// hierarchy and pessimizes later transformations. To prevent this from
- /// happening, we first have to find the loop headers. Here we approximate this
- /// by finding targets of backedges in the CFG.
- ///
- /// Note that there definitely are cases when we want to allow threading of
- /// edges across a loop header. For example, threading a jump from outside the
- /// loop (the preheader) to an exit block of the loop is definitely profitable.
- /// It is also almost always profitable to thread backedges from within the loop
- /// to exit blocks, and is often profitable to thread backedges to other blocks
- /// within the loop (forming a nested loop). This simple analysis is not rich
- /// enough to track all of these properties and keep it up-to-date as the CFG
- /// mutates, so we don't allow any of these transformations.
- ///
- void JumpThreadingPass::FindLoopHeaders(Function &F) {
- SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
- FindFunctionBackedges(F, Edges);
- for (const auto &Edge : Edges)
- LoopHeaders.insert(Edge.second);
- }
- /// getKnownConstant - Helper method to determine if we can thread over a
- /// terminator with the given value as its condition, and if so what value to
- /// use for that. What kind of value this is depends on whether we want an
- /// integer or a block address, but an undef is always accepted.
- /// Returns null if Val is null or not an appropriate constant.
- static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
- if (!Val)
- return nullptr;
- // Undef is "known" enough.
- if (UndefValue *U = dyn_cast<UndefValue>(Val))
- return U;
- if (Preference == WantBlockAddress)
- return dyn_cast<BlockAddress>(Val->stripPointerCasts());
- return dyn_cast<ConstantInt>(Val);
- }
- /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
- /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
- /// in any of our predecessors. If so, return the known list of value and pred
- /// BB in the result vector.
- ///
- /// This returns true if there were any known values.
- ///
- bool JumpThreadingPass::ComputeValueKnownInPredecessors(
- Value *V, BasicBlock *BB, PredValueInfo &Result,
- ConstantPreference Preference, Instruction *CxtI) {
- // This method walks up use-def chains recursively. Because of this, we could
- // get into an infinite loop going around loops in the use-def chain. To
- // prevent this, keep track of what (value, block) pairs we've already visited
- // and terminate the search if we loop back to them
- if (!RecursionSet.insert(std::make_pair(V, BB)).second)
- return false;
- // An RAII help to remove this pair from the recursion set once the recursion
- // stack pops back out again.
- RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
- // If V is a constant, then it is known in all predecessors.
- if (Constant *KC = getKnownConstant(V, Preference)) {
- for (BasicBlock *Pred : predecessors(BB))
- Result.push_back(std::make_pair(KC, Pred));
- return !Result.empty();
- }
- // If V is a non-instruction value, or an instruction in a different block,
- // then it can't be derived from a PHI.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || I->getParent() != BB) {
- // Okay, if this is a live-in value, see if it has a known value at the end
- // of any of our predecessors.
- //
- // FIXME: This should be an edge property, not a block end property.
- /// TODO: Per PR2563, we could infer value range information about a
- /// predecessor based on its terminator.
- //
- // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
- // "I" is a non-local compare-with-a-constant instruction. This would be
- // able to handle value inequalities better, for example if the compare is
- // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
- // Perhaps getConstantOnEdge should be smart enough to do this?
- for (BasicBlock *P : predecessors(BB)) {
- // If the value is known by LazyValueInfo to be a constant in a
- // predecessor, use that information to try to thread this block.
- Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
- if (Constant *KC = getKnownConstant(PredCst, Preference))
- Result.push_back(std::make_pair(KC, P));
- }
- return !Result.empty();
- }
- /// If I is a PHI node, then we know the incoming values for any constants.
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- if (Constant *KC = getKnownConstant(InVal, Preference)) {
- Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
- } else {
- Constant *CI = LVI->getConstantOnEdge(InVal,
- PN->getIncomingBlock(i),
- BB, CxtI);
- if (Constant *KC = getKnownConstant(CI, Preference))
- Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
- }
- }
- return !Result.empty();
- }
- // Handle Cast instructions. Only see through Cast when the source operand is
- // PHI or Cmp and the source type is i1 to save the compilation time.
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Value *Source = CI->getOperand(0);
- if (!Source->getType()->isIntegerTy(1))
- return false;
- if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
- return false;
- ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
- if (Result.empty())
- return false;
- // Convert the known values.
- for (auto &R : Result)
- R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
- return true;
- }
- PredValueInfoTy LHSVals, RHSVals;
- // Handle some boolean conditions.
- if (I->getType()->getPrimitiveSizeInBits() == 1) {
- assert(Preference == WantInteger && "One-bit non-integer type?");
- // X | true -> true
- // X & false -> false
- if (I->getOpcode() == Instruction::Or ||
- I->getOpcode() == Instruction::And) {
- ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
- WantInteger, CxtI);
- ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
- WantInteger, CxtI);
- if (LHSVals.empty() && RHSVals.empty())
- return false;
- ConstantInt *InterestingVal;
- if (I->getOpcode() == Instruction::Or)
- InterestingVal = ConstantInt::getTrue(I->getContext());
- else
- InterestingVal = ConstantInt::getFalse(I->getContext());
- SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
- // Scan for the sentinel. If we find an undef, force it to the
- // interesting value: x|undef -> true and x&undef -> false.
- for (const auto &LHSVal : LHSVals)
- if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
- Result.emplace_back(InterestingVal, LHSVal.second);
- LHSKnownBBs.insert(LHSVal.second);
- }
- for (const auto &RHSVal : RHSVals)
- if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
- // If we already inferred a value for this block on the LHS, don't
- // re-add it.
- if (!LHSKnownBBs.count(RHSVal.second))
- Result.emplace_back(InterestingVal, RHSVal.second);
- }
- return !Result.empty();
- }
- // Handle the NOT form of XOR.
- if (I->getOpcode() == Instruction::Xor &&
- isa<ConstantInt>(I->getOperand(1)) &&
- cast<ConstantInt>(I->getOperand(1))->isOne()) {
- ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
- WantInteger, CxtI);
- if (Result.empty())
- return false;
- // Invert the known values.
- for (auto &R : Result)
- R.first = ConstantExpr::getNot(R.first);
- return true;
- }
- // Try to simplify some other binary operator values.
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- assert(Preference != WantBlockAddress
- && "A binary operator creating a block address?");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- PredValueInfoTy LHSVals;
- ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
- WantInteger, CxtI);
- // Try to use constant folding to simplify the binary operator.
- for (const auto &LHSVal : LHSVals) {
- Constant *V = LHSVal.first;
- Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
- if (Constant *KC = getKnownConstant(Folded, WantInteger))
- Result.push_back(std::make_pair(KC, LHSVal.second));
- }
- }
- return !Result.empty();
- }
- // Handle compare with phi operand, where the PHI is defined in this block.
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
- assert(Preference == WantInteger && "Compares only produce integers");
- PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
- if (PN && PN->getParent() == BB) {
- const DataLayout &DL = PN->getModule()->getDataLayout();
- // We can do this simplification if any comparisons fold to true or false.
- // See if any do.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- Value *LHS = PN->getIncomingValue(i);
- Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
- Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
- if (!Res) {
- if (!isa<Constant>(RHS))
- continue;
- LazyValueInfo::Tristate
- ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
- cast<Constant>(RHS), PredBB, BB,
- CxtI ? CxtI : Cmp);
- if (ResT == LazyValueInfo::Unknown)
- continue;
- Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
- }
- if (Constant *KC = getKnownConstant(Res, WantInteger))
- Result.push_back(std::make_pair(KC, PredBB));
- }
- return !Result.empty();
- }
- // If comparing a live-in value against a constant, see if we know the
- // live-in value on any predecessors.
- if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
- if (!isa<Instruction>(Cmp->getOperand(0)) ||
- cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
- Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
- for (BasicBlock *P : predecessors(BB)) {
- // If the value is known by LazyValueInfo to be a constant in a
- // predecessor, use that information to try to thread this block.
- LazyValueInfo::Tristate Res =
- LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
- RHSCst, P, BB, CxtI ? CxtI : Cmp);
- if (Res == LazyValueInfo::Unknown)
- continue;
- Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
- Result.push_back(std::make_pair(ResC, P));
- }
- return !Result.empty();
- }
- // Try to find a constant value for the LHS of a comparison,
- // and evaluate it statically if we can.
- if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
- PredValueInfoTy LHSVals;
- ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
- WantInteger, CxtI);
- for (const auto &LHSVal : LHSVals) {
- Constant *V = LHSVal.first;
- Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
- V, CmpConst);
- if (Constant *KC = getKnownConstant(Folded, WantInteger))
- Result.push_back(std::make_pair(KC, LHSVal.second));
- }
- return !Result.empty();
- }
- }
- }
- if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
- // Handle select instructions where at least one operand is a known constant
- // and we can figure out the condition value for any predecessor block.
- Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
- Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
- PredValueInfoTy Conds;
- if ((TrueVal || FalseVal) &&
- ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
- WantInteger, CxtI)) {
- for (auto &C : Conds) {
- Constant *Cond = C.first;
- // Figure out what value to use for the condition.
- bool KnownCond;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
- // A known boolean.
- KnownCond = CI->isOne();
- } else {
- assert(isa<UndefValue>(Cond) && "Unexpected condition value");
- // Either operand will do, so be sure to pick the one that's a known
- // constant.
- // FIXME: Do this more cleverly if both values are known constants?
- KnownCond = (TrueVal != nullptr);
- }
- // See if the select has a known constant value for this predecessor.
- if (Constant *Val = KnownCond ? TrueVal : FalseVal)
- Result.push_back(std::make_pair(Val, C.second));
- }
- return !Result.empty();
- }
- }
- // If all else fails, see if LVI can figure out a constant value for us.
- Constant *CI = LVI->getConstant(V, BB, CxtI);
- if (Constant *KC = getKnownConstant(CI, Preference)) {
- for (BasicBlock *Pred : predecessors(BB))
- Result.push_back(std::make_pair(KC, Pred));
- }
- return !Result.empty();
- }
- /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
- /// in an undefined jump, decide which block is best to revector to.
- ///
- /// Since we can pick an arbitrary destination, we pick the successor with the
- /// fewest predecessors. This should reduce the in-degree of the others.
- ///
- static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
- TerminatorInst *BBTerm = BB->getTerminator();
- unsigned MinSucc = 0;
- BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
- // Compute the successor with the minimum number of predecessors.
- unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- TestBB = BBTerm->getSuccessor(i);
- unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- if (NumPreds < MinNumPreds) {
- MinSucc = i;
- MinNumPreds = NumPreds;
- }
- }
- return MinSucc;
- }
- static bool hasAddressTakenAndUsed(BasicBlock *BB) {
- if (!BB->hasAddressTaken()) return false;
- // If the block has its address taken, it may be a tree of dead constants
- // hanging off of it. These shouldn't keep the block alive.
- BlockAddress *BA = BlockAddress::get(BB);
- BA->removeDeadConstantUsers();
- return !BA->use_empty();
- }
- /// ProcessBlock - If there are any predecessors whose control can be threaded
- /// through to a successor, transform them now.
- bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
- // If the block is trivially dead, just return and let the caller nuke it.
- // This simplifies other transformations.
- if (pred_empty(BB) &&
- BB != &BB->getParent()->getEntryBlock())
- return false;
- // If this block has a single predecessor, and if that pred has a single
- // successor, merge the blocks. This encourages recursive jump threading
- // because now the condition in this block can be threaded through
- // predecessors of our predecessor block.
- if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
- const TerminatorInst *TI = SinglePred->getTerminator();
- if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
- SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
- // If SinglePred was a loop header, BB becomes one.
- if (LoopHeaders.erase(SinglePred))
- LoopHeaders.insert(BB);
- LVI->eraseBlock(SinglePred);
- MergeBasicBlockIntoOnlyPred(BB);
- return true;
- }
- }
- if (TryToUnfoldSelectInCurrBB(BB))
- return true;
- // Look if we can propagate guards to predecessors.
- if (HasGuards && ProcessGuards(BB))
- return true;
- // What kind of constant we're looking for.
- ConstantPreference Preference = WantInteger;
- // Look to see if the terminator is a conditional branch, switch or indirect
- // branch, if not we can't thread it.
- Value *Condition;
- Instruction *Terminator = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
- // Can't thread an unconditional jump.
- if (BI->isUnconditional()) return false;
- Condition = BI->getCondition();
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
- Condition = SI->getCondition();
- } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
- // Can't thread indirect branch with no successors.
- if (IB->getNumSuccessors() == 0) return false;
- Condition = IB->getAddress()->stripPointerCasts();
- Preference = WantBlockAddress;
- } else {
- return false; // Must be an invoke.
- }
- // Run constant folding to see if we can reduce the condition to a simple
- // constant.
- if (Instruction *I = dyn_cast<Instruction>(Condition)) {
- Value *SimpleVal =
- ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
- if (SimpleVal) {
- I->replaceAllUsesWith(SimpleVal);
- if (isInstructionTriviallyDead(I, TLI))
- I->eraseFromParent();
- Condition = SimpleVal;
- }
- }
- // If the terminator is branching on an undef, we can pick any of the
- // successors to branch to. Let GetBestDestForJumpOnUndef decide.
- if (isa<UndefValue>(Condition)) {
- unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
- // Fold the branch/switch.
- TerminatorInst *BBTerm = BB->getTerminator();
- for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- if (i == BestSucc) continue;
- BBTerm->getSuccessor(i)->removePredecessor(BB, true);
- }
- DEBUG(dbgs() << " In block '" << BB->getName()
- << "' folding undef terminator: " << *BBTerm << '\n');
- BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
- BBTerm->eraseFromParent();
- return true;
- }
- // If the terminator of this block is branching on a constant, simplify the
- // terminator to an unconditional branch. This can occur due to threading in
- // other blocks.
- if (getKnownConstant(Condition, Preference)) {
- DEBUG(dbgs() << " In block '" << BB->getName()
- << "' folding terminator: " << *BB->getTerminator() << '\n');
- ++NumFolds;
- ConstantFoldTerminator(BB, true);
- return true;
- }
- Instruction *CondInst = dyn_cast<Instruction>(Condition);
- // All the rest of our checks depend on the condition being an instruction.
- if (!CondInst) {
- // FIXME: Unify this with code below.
- if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
- return true;
- return false;
- }
- if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
- // If we're branching on a conditional, LVI might be able to determine
- // it's value at the branch instruction. We only handle comparisons
- // against a constant at this time.
- // TODO: This should be extended to handle switches as well.
- BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
- Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
- if (CondBr && CondConst) {
- // We should have returned as soon as we turn a conditional branch to
- // unconditional. Because its no longer interesting as far as jump
- // threading is concerned.
- assert(CondBr->isConditional() && "Threading on unconditional terminator");
- LazyValueInfo::Tristate Ret =
- LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
- CondConst, CondBr);
- if (Ret != LazyValueInfo::Unknown) {
- unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
- unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
- CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
- BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
- CondBr->eraseFromParent();
- if (CondCmp->use_empty())
- CondCmp->eraseFromParent();
- else if (CondCmp->getParent() == BB) {
- // If the fact we just learned is true for all uses of the
- // condition, replace it with a constant value
- auto *CI = Ret == LazyValueInfo::True ?
- ConstantInt::getTrue(CondCmp->getType()) :
- ConstantInt::getFalse(CondCmp->getType());
- CondCmp->replaceAllUsesWith(CI);
- CondCmp->eraseFromParent();
- }
- return true;
- }
- // We did not manage to simplify this branch, try to see whether
- // CondCmp depends on a known phi-select pattern.
- if (TryToUnfoldSelect(CondCmp, BB))
- return true;
- }
- }
- // Check for some cases that are worth simplifying. Right now we want to look
- // for loads that are used by a switch or by the condition for the branch. If
- // we see one, check to see if it's partially redundant. If so, insert a PHI
- // which can then be used to thread the values.
- //
- Value *SimplifyValue = CondInst;
- if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
- if (isa<Constant>(CondCmp->getOperand(1)))
- SimplifyValue = CondCmp->getOperand(0);
- // TODO: There are other places where load PRE would be profitable, such as
- // more complex comparisons.
- if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
- if (SimplifyPartiallyRedundantLoad(LI))
- return true;
- // Handle a variety of cases where we are branching on something derived from
- // a PHI node in the current block. If we can prove that any predecessors
- // compute a predictable value based on a PHI node, thread those predecessors.
- //
- if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
- return true;
- // If this is an otherwise-unfoldable branch on a phi node in the current
- // block, see if we can simplify.
- if (PHINode *PN = dyn_cast<PHINode>(CondInst))
- if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
- return ProcessBranchOnPHI(PN);
- // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
- if (CondInst->getOpcode() == Instruction::Xor &&
- CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
- return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
- // Search for a stronger dominating condition that can be used to simplify a
- // conditional branch leaving BB.
- if (ProcessImpliedCondition(BB))
- return true;
- return false;
- }
- bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
- auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || !BI->isConditional())
- return false;
- Value *Cond = BI->getCondition();
- BasicBlock *CurrentBB = BB;
- BasicBlock *CurrentPred = BB->getSinglePredecessor();
- unsigned Iter = 0;
- auto &DL = BB->getModule()->getDataLayout();
- while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
- auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
- if (!PBI || !PBI->isConditional())
- return false;
- if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
- return false;
- bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
- Optional<bool> Implication =
- isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
- if (Implication) {
- BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
- BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
- BI->eraseFromParent();
- return true;
- }
- CurrentBB = CurrentPred;
- CurrentPred = CurrentBB->getSinglePredecessor();
- }
- return false;
- }
- /// Return true if Op is an instruction defined in the given block.
- static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
- if (Instruction *OpInst = dyn_cast<Instruction>(Op))
- if (OpInst->getParent() == BB)
- return true;
- return false;
- }
- /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
- /// load instruction, eliminate it by replacing it with a PHI node. This is an
- /// important optimization that encourages jump threading, and needs to be run
- /// interlaced with other jump threading tasks.
- bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
- // Don't hack volatile and ordered loads.
- if (!LI->isUnordered()) return false;
- // If the load is defined in a block with exactly one predecessor, it can't be
- // partially redundant.
- BasicBlock *LoadBB = LI->getParent();
- if (LoadBB->getSinglePredecessor())
- return false;
- // If the load is defined in an EH pad, it can't be partially redundant,
- // because the edges between the invoke and the EH pad cannot have other
- // instructions between them.
- if (LoadBB->isEHPad())
- return false;
- Value *LoadedPtr = LI->getOperand(0);
- // If the loaded operand is defined in the LoadBB and its not a phi,
- // it can't be available in predecessors.
- if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
- return false;
- // Scan a few instructions up from the load, to see if it is obviously live at
- // the entry to its block.
- BasicBlock::iterator BBIt(LI);
- bool IsLoadCSE;
- if (Value *AvailableVal = FindAvailableLoadedValue(
- LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
- // If the value of the load is locally available within the block, just use
- // it. This frequently occurs for reg2mem'd allocas.
- if (IsLoadCSE) {
- LoadInst *NLI = cast<LoadInst>(AvailableVal);
- combineMetadataForCSE(NLI, LI);
- };
- // If the returned value is the load itself, replace with an undef. This can
- // only happen in dead loops.
- if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
- if (AvailableVal->getType() != LI->getType())
- AvailableVal =
- CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
- LI->replaceAllUsesWith(AvailableVal);
- LI->eraseFromParent();
- return true;
- }
- // Otherwise, if we scanned the whole block and got to the top of the block,
- // we know the block is locally transparent to the load. If not, something
- // might clobber its value.
- if (BBIt != LoadBB->begin())
- return false;
- // If all of the loads and stores that feed the value have the same AA tags,
- // then we can propagate them onto any newly inserted loads.
- AAMDNodes AATags;
- LI->getAAMetadata(AATags);
- SmallPtrSet<BasicBlock*, 8> PredsScanned;
- typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
- AvailablePredsTy AvailablePreds;
- BasicBlock *OneUnavailablePred = nullptr;
- SmallVector<LoadInst*, 8> CSELoads;
- // If we got here, the loaded value is transparent through to the start of the
- // block. Check to see if it is available in any of the predecessor blocks.
- for (BasicBlock *PredBB : predecessors(LoadBB)) {
- // If we already scanned this predecessor, skip it.
- if (!PredsScanned.insert(PredBB).second)
- continue;
- BBIt = PredBB->end();
- unsigned NumScanedInst = 0;
- Value *PredAvailable = nullptr;
- // NOTE: We don't CSE load that is volatile or anything stronger than
- // unordered, that should have been checked when we entered the function.
- assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
- // If this is a load on a phi pointer, phi-translate it and search
- // for available load/store to the pointer in predecessors.
- Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
- PredAvailable = FindAvailablePtrLoadStore(
- Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
- AA, &IsLoadCSE, &NumScanedInst);
- // If PredBB has a single predecessor, continue scanning through the
- // single precessor.
- BasicBlock *SinglePredBB = PredBB;
- while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
- NumScanedInst < DefMaxInstsToScan) {
- SinglePredBB = SinglePredBB->getSinglePredecessor();
- if (SinglePredBB) {
- BBIt = SinglePredBB->end();
- PredAvailable = FindAvailablePtrLoadStore(
- Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
- (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
- &NumScanedInst);
- }
- }
- if (!PredAvailable) {
- OneUnavailablePred = PredBB;
- continue;
- }
- if (IsLoadCSE)
- CSELoads.push_back(cast<LoadInst>(PredAvailable));
- // If so, this load is partially redundant. Remember this info so that we
- // can create a PHI node.
- AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
- }
- // If the loaded value isn't available in any predecessor, it isn't partially
- // redundant.
- if (AvailablePreds.empty()) return false;
- // Okay, the loaded value is available in at least one (and maybe all!)
- // predecessors. If the value is unavailable in more than one unique
- // predecessor, we want to insert a merge block for those common predecessors.
- // This ensures that we only have to insert one reload, thus not increasing
- // code size.
- BasicBlock *UnavailablePred = nullptr;
- // If there is exactly one predecessor where the value is unavailable, the
- // already computed 'OneUnavailablePred' block is it. If it ends in an
- // unconditional branch, we know that it isn't a critical edge.
- if (PredsScanned.size() == AvailablePreds.size()+1 &&
- OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
- UnavailablePred = OneUnavailablePred;
- } else if (PredsScanned.size() != AvailablePreds.size()) {
- // Otherwise, we had multiple unavailable predecessors or we had a critical
- // edge from the one.
- SmallVector<BasicBlock*, 8> PredsToSplit;
- SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
- for (const auto &AvailablePred : AvailablePreds)
- AvailablePredSet.insert(AvailablePred.first);
- // Add all the unavailable predecessors to the PredsToSplit list.
- for (BasicBlock *P : predecessors(LoadBB)) {
- // If the predecessor is an indirect goto, we can't split the edge.
- if (isa<IndirectBrInst>(P->getTerminator()))
- return false;
- if (!AvailablePredSet.count(P))
- PredsToSplit.push_back(P);
- }
- // Split them out to their own block.
- UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
- }
- // If the value isn't available in all predecessors, then there will be
- // exactly one where it isn't available. Insert a load on that edge and add
- // it to the AvailablePreds list.
- if (UnavailablePred) {
- assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
- "Can't handle critical edge here!");
- LoadInst *NewVal = new LoadInst(
- LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
- LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
- LI->getSynchScope(), UnavailablePred->getTerminator());
- NewVal->setDebugLoc(LI->getDebugLoc());
- if (AATags)
- NewVal->setAAMetadata(AATags);
- AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
- }
- // Now we know that each predecessor of this block has a value in
- // AvailablePreds, sort them for efficient access as we're walking the preds.
- array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
- // Create a PHI node at the start of the block for the PRE'd load value.
- pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
- PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
- &LoadBB->front());
- PN->takeName(LI);
- PN->setDebugLoc(LI->getDebugLoc());
- // Insert new entries into the PHI for each predecessor. A single block may
- // have multiple entries here.
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- AvailablePredsTy::iterator I =
- std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
- std::make_pair(P, (Value*)nullptr));
- assert(I != AvailablePreds.end() && I->first == P &&
- "Didn't find entry for predecessor!");
- // If we have an available predecessor but it requires casting, insert the
- // cast in the predecessor and use the cast. Note that we have to update the
- // AvailablePreds vector as we go so that all of the PHI entries for this
- // predecessor use the same bitcast.
- Value *&PredV = I->second;
- if (PredV->getType() != LI->getType())
- PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
- P->getTerminator());
- PN->addIncoming(PredV, I->first);
- }
- for (LoadInst *PredLI : CSELoads) {
- combineMetadataForCSE(PredLI, LI);
- }
- LI->replaceAllUsesWith(PN);
- LI->eraseFromParent();
- return true;
- }
- /// FindMostPopularDest - The specified list contains multiple possible
- /// threadable destinations. Pick the one that occurs the most frequently in
- /// the list.
- static BasicBlock *
- FindMostPopularDest(BasicBlock *BB,
- const SmallVectorImpl<std::pair<BasicBlock*,
- BasicBlock*> > &PredToDestList) {
- assert(!PredToDestList.empty());
- // Determine popularity. If there are multiple possible destinations, we
- // explicitly choose to ignore 'undef' destinations. We prefer to thread
- // blocks with known and real destinations to threading undef. We'll handle
- // them later if interesting.
- DenseMap<BasicBlock*, unsigned> DestPopularity;
- for (const auto &PredToDest : PredToDestList)
- if (PredToDest.second)
- DestPopularity[PredToDest.second]++;
- // Find the most popular dest.
- DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
- BasicBlock *MostPopularDest = DPI->first;
- unsigned Popularity = DPI->second;
- SmallVector<BasicBlock*, 4> SamePopularity;
- for (++DPI; DPI != DestPopularity.end(); ++DPI) {
- // If the popularity of this entry isn't higher than the popularity we've
- // seen so far, ignore it.
- if (DPI->second < Popularity)
- ; // ignore.
- else if (DPI->second == Popularity) {
- // If it is the same as what we've seen so far, keep track of it.
- SamePopularity.push_back(DPI->first);
- } else {
- // If it is more popular, remember it.
- SamePopularity.clear();
- MostPopularDest = DPI->first;
- Popularity = DPI->second;
- }
- }
- // Okay, now we know the most popular destination. If there is more than one
- // destination, we need to determine one. This is arbitrary, but we need
- // to make a deterministic decision. Pick the first one that appears in the
- // successor list.
- if (!SamePopularity.empty()) {
- SamePopularity.push_back(MostPopularDest);
- TerminatorInst *TI = BB->getTerminator();
- for (unsigned i = 0; ; ++i) {
- assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
- if (!is_contained(SamePopularity, TI->getSuccessor(i)))
- continue;
- MostPopularDest = TI->getSuccessor(i);
- break;
- }
- }
- // Okay, we have finally picked the most popular destination.
- return MostPopularDest;
- }
- bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
- ConstantPreference Preference,
- Instruction *CxtI) {
- // If threading this would thread across a loop header, don't even try to
- // thread the edge.
- if (LoopHeaders.count(BB))
- return false;
- PredValueInfoTy PredValues;
- if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
- return false;
- assert(!PredValues.empty() &&
- "ComputeValueKnownInPredecessors returned true with no values");
- DEBUG(dbgs() << "IN BB: " << *BB;
- for (const auto &PredValue : PredValues) {
- dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
- << *PredValue.first
- << " for pred '" << PredValue.second->getName() << "'.\n";
- });
- // Decide what we want to thread through. Convert our list of known values to
- // a list of known destinations for each pred. This also discards duplicate
- // predecessors and keeps track of the undefined inputs (which are represented
- // as a null dest in the PredToDestList).
- SmallPtrSet<BasicBlock*, 16> SeenPreds;
- SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
- BasicBlock *OnlyDest = nullptr;
- BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
- for (const auto &PredValue : PredValues) {
- BasicBlock *Pred = PredValue.second;
- if (!SeenPreds.insert(Pred).second)
- continue; // Duplicate predecessor entry.
- // If the predecessor ends with an indirect goto, we can't change its
- // destination.
- if (isa<IndirectBrInst>(Pred->getTerminator()))
- continue;
- Constant *Val = PredValue.first;
- BasicBlock *DestBB;
- if (isa<UndefValue>(Val))
- DestBB = nullptr;
- else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
- else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
- DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
- } else {
- assert(isa<IndirectBrInst>(BB->getTerminator())
- && "Unexpected terminator");
- DestBB = cast<BlockAddress>(Val)->getBasicBlock();
- }
- // If we have exactly one destination, remember it for efficiency below.
- if (PredToDestList.empty())
- OnlyDest = DestBB;
- else if (OnlyDest != DestBB)
- OnlyDest = MultipleDestSentinel;
- PredToDestList.push_back(std::make_pair(Pred, DestBB));
- }
- // If all edges were unthreadable, we fail.
- if (PredToDestList.empty())
- return false;
- // Determine which is the most common successor. If we have many inputs and
- // this block is a switch, we want to start by threading the batch that goes
- // to the most popular destination first. If we only know about one
- // threadable destination (the common case) we can avoid this.
- BasicBlock *MostPopularDest = OnlyDest;
- if (MostPopularDest == MultipleDestSentinel)
- MostPopularDest = FindMostPopularDest(BB, PredToDestList);
- // Now that we know what the most popular destination is, factor all
- // predecessors that will jump to it into a single predecessor.
- SmallVector<BasicBlock*, 16> PredsToFactor;
- for (const auto &PredToDest : PredToDestList)
- if (PredToDest.second == MostPopularDest) {
- BasicBlock *Pred = PredToDest.first;
- // This predecessor may be a switch or something else that has multiple
- // edges to the block. Factor each of these edges by listing them
- // according to # occurrences in PredsToFactor.
- for (BasicBlock *Succ : successors(Pred))
- if (Succ == BB)
- PredsToFactor.push_back(Pred);
- }
- // If the threadable edges are branching on an undefined value, we get to pick
- // the destination that these predecessors should get to.
- if (!MostPopularDest)
- MostPopularDest = BB->getTerminator()->
- getSuccessor(GetBestDestForJumpOnUndef(BB));
- // Ok, try to thread it!
- return ThreadEdge(BB, PredsToFactor, MostPopularDest);
- }
- /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
- /// a PHI node in the current block. See if there are any simplifications we
- /// can do based on inputs to the phi node.
- ///
- bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
- BasicBlock *BB = PN->getParent();
- // TODO: We could make use of this to do it once for blocks with common PHI
- // values.
- SmallVector<BasicBlock*, 1> PredBBs;
- PredBBs.resize(1);
- // If any of the predecessor blocks end in an unconditional branch, we can
- // *duplicate* the conditional branch into that block in order to further
- // encourage jump threading and to eliminate cases where we have branch on a
- // phi of an icmp (branch on icmp is much better).
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
- if (PredBr->isUnconditional()) {
- PredBBs[0] = PredBB;
- // Try to duplicate BB into PredBB.
- if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
- return true;
- }
- }
- return false;
- }
- /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
- /// a xor instruction in the current block. See if there are any
- /// simplifications we can do based on inputs to the xor.
- ///
- bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
- BasicBlock *BB = BO->getParent();
- // If either the LHS or RHS of the xor is a constant, don't do this
- // optimization.
- if (isa<ConstantInt>(BO->getOperand(0)) ||
- isa<ConstantInt>(BO->getOperand(1)))
- return false;
- // If the first instruction in BB isn't a phi, we won't be able to infer
- // anything special about any particular predecessor.
- if (!isa<PHINode>(BB->front()))
- return false;
- // If this BB is a landing pad, we won't be able to split the edge into it.
- if (BB->isEHPad())
- return false;
- // If we have a xor as the branch input to this block, and we know that the
- // LHS or RHS of the xor in any predecessor is true/false, then we can clone
- // the condition into the predecessor and fix that value to true, saving some
- // logical ops on that path and encouraging other paths to simplify.
- //
- // This copies something like this:
- //
- // BB:
- // %X = phi i1 [1], [%X']
- // %Y = icmp eq i32 %A, %B
- // %Z = xor i1 %X, %Y
- // br i1 %Z, ...
- //
- // Into:
- // BB':
- // %Y = icmp ne i32 %A, %B
- // br i1 %Y, ...
- PredValueInfoTy XorOpValues;
- bool isLHS = true;
- if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
- WantInteger, BO)) {
- assert(XorOpValues.empty());
- if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
- WantInteger, BO))
- return false;
- isLHS = false;
- }
- assert(!XorOpValues.empty() &&
- "ComputeValueKnownInPredecessors returned true with no values");
- // Scan the information to see which is most popular: true or false. The
- // predecessors can be of the set true, false, or undef.
- unsigned NumTrue = 0, NumFalse = 0;
- for (const auto &XorOpValue : XorOpValues) {
- if (isa<UndefValue>(XorOpValue.first))
- // Ignore undefs for the count.
- continue;
- if (cast<ConstantInt>(XorOpValue.first)->isZero())
- ++NumFalse;
- else
- ++NumTrue;
- }
- // Determine which value to split on, true, false, or undef if neither.
- ConstantInt *SplitVal = nullptr;
- if (NumTrue > NumFalse)
- SplitVal = ConstantInt::getTrue(BB->getContext());
- else if (NumTrue != 0 || NumFalse != 0)
- SplitVal = ConstantInt::getFalse(BB->getContext());
- // Collect all of the blocks that this can be folded into so that we can
- // factor this once and clone it once.
- SmallVector<BasicBlock*, 8> BlocksToFoldInto;
- for (const auto &XorOpValue : XorOpValues) {
- if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
- continue;
- BlocksToFoldInto.push_back(XorOpValue.second);
- }
- // If we inferred a value for all of the predecessors, then duplication won't
- // help us. However, we can just replace the LHS or RHS with the constant.
- if (BlocksToFoldInto.size() ==
- cast<PHINode>(BB->front()).getNumIncomingValues()) {
- if (!SplitVal) {
- // If all preds provide undef, just nuke the xor, because it is undef too.
- BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
- BO->eraseFromParent();
- } else if (SplitVal->isZero()) {
- // If all preds provide 0, replace the xor with the other input.
- BO->replaceAllUsesWith(BO->getOperand(isLHS));
- BO->eraseFromParent();
- } else {
- // If all preds provide 1, set the computed value to 1.
- BO->setOperand(!isLHS, SplitVal);
- }
- return true;
- }
- // Try to duplicate BB into PredBB.
- return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
- }
- /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
- /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
- /// NewPred using the entries from OldPred (suitably mapped).
- static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
- BasicBlock *OldPred,
- BasicBlock *NewPred,
- DenseMap<Instruction*, Value*> &ValueMap) {
- for (BasicBlock::iterator PNI = PHIBB->begin();
- PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
- // Ok, we have a PHI node. Figure out what the incoming value was for the
- // DestBlock.
- Value *IV = PN->getIncomingValueForBlock(OldPred);
- // Remap the value if necessary.
- if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
- DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
- if (I != ValueMap.end())
- IV = I->second;
- }
- PN->addIncoming(IV, NewPred);
- }
- }
- /// ThreadEdge - We have decided that it is safe and profitable to factor the
- /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
- /// across BB. Transform the IR to reflect this change.
- bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
- const SmallVectorImpl<BasicBlock *> &PredBBs,
- BasicBlock *SuccBB) {
- // If threading to the same block as we come from, we would infinite loop.
- if (SuccBB == BB) {
- DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
- << "' - would thread to self!\n");
- return false;
- }
- // If threading this would thread across a loop header, don't thread the edge.
- // See the comments above FindLoopHeaders for justifications and caveats.
- if (LoopHeaders.count(BB)) {
- DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
- << "' to dest BB '" << SuccBB->getName()
- << "' - it might create an irreducible loop!\n");
- return false;
- }
- unsigned JumpThreadCost =
- getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
- if (JumpThreadCost > BBDupThreshold) {
- DEBUG(dbgs() << " Not threading BB '" << BB->getName()
- << "' - Cost is too high: " << JumpThreadCost << "\n");
- return false;
- }
- // And finally, do it! Start by factoring the predecessors if needed.
- BasicBlock *PredBB;
- if (PredBBs.size() == 1)
- PredBB = PredBBs[0];
- else {
- DEBUG(dbgs() << " Factoring out " << PredBBs.size()
- << " common predecessors.\n");
- PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
- }
- // And finally, do it!
- DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
- << SuccBB->getName() << "' with cost: " << JumpThreadCost
- << ", across block:\n "
- << *BB << "\n");
- LVI->threadEdge(PredBB, BB, SuccBB);
- // We are going to have to map operands from the original BB block to the new
- // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
- // account for entry from PredBB.
- DenseMap<Instruction*, Value*> ValueMapping;
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
- BB->getName()+".thread",
- BB->getParent(), BB);
- NewBB->moveAfter(PredBB);
- // Set the block frequency of NewBB.
- if (HasProfileData) {
- auto NewBBFreq =
- BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
- BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
- }
- BasicBlock::iterator BI = BB->begin();
- for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
- ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
- // Clone the non-phi instructions of BB into NewBB, keeping track of the
- // mapping and using it to remap operands in the cloned instructions.
- for (; !isa<TerminatorInst>(BI); ++BI) {
- Instruction *New = BI->clone();
- New->setName(BI->getName());
- NewBB->getInstList().push_back(New);
- ValueMapping[&*BI] = New;
- // Remap operands to patch up intra-block references.
- for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
- if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
- DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
- if (I != ValueMapping.end())
- New->setOperand(i, I->second);
- }
- }
- // We didn't copy the terminator from BB over to NewBB, because there is now
- // an unconditional jump to SuccBB. Insert the unconditional jump.
- BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
- NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
- // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
- // PHI nodes for NewBB now.
- AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
- // If there were values defined in BB that are used outside the block, then we
- // now have to update all uses of the value to use either the original value,
- // the cloned value, or some PHI derived value. This can require arbitrary
- // PHI insertion, of which we are prepared to do, clean these up now.
- SSAUpdater SSAUpdate;
- SmallVector<Use*, 16> UsesToRename;
- for (Instruction &I : *BB) {
- // Scan all uses of this instruction to see if it is used outside of its
- // block, and if so, record them in UsesToRename.
- for (Use &U : I.uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
- if (UserPN->getIncomingBlock(U) == BB)
- continue;
- } else if (User->getParent() == BB)
- continue;
- UsesToRename.push_back(&U);
- }
- // If there are no uses outside the block, we're done with this instruction.
- if (UsesToRename.empty())
- continue;
- DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
- // We found a use of I outside of BB. Rename all uses of I that are outside
- // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
- // with the two values we know.
- SSAUpdate.Initialize(I.getType(), I.getName());
- SSAUpdate.AddAvailableValue(BB, &I);
- SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
- while (!UsesToRename.empty())
- SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
- DEBUG(dbgs() << "\n");
- }
- // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
- // NewBB instead of BB. This eliminates predecessors from BB, which requires
- // us to simplify any PHI nodes in BB.
- TerminatorInst *PredTerm = PredBB->getTerminator();
- for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
- if (PredTerm->getSuccessor(i) == BB) {
- BB->removePredecessor(PredBB, true);
- PredTerm->setSuccessor(i, NewBB);
- }
- // At this point, the IR is fully up to date and consistent. Do a quick scan
- // over the new instructions and zap any that are constants or dead. This
- // frequently happens because of phi translation.
- SimplifyInstructionsInBlock(NewBB, TLI);
- // Update the edge weight from BB to SuccBB, which should be less than before.
- UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
- // Threaded an edge!
- ++NumThreads;
- return true;
- }
- /// Create a new basic block that will be the predecessor of BB and successor of
- /// all blocks in Preds. When profile data is available, update the frequency of
- /// this new block.
- BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
- ArrayRef<BasicBlock *> Preds,
- const char *Suffix) {
- // Collect the frequencies of all predecessors of BB, which will be used to
- // update the edge weight on BB->SuccBB.
- BlockFrequency PredBBFreq(0);
- if (HasProfileData)
- for (auto Pred : Preds)
- PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
- BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
- // Set the block frequency of the newly created PredBB, which is the sum of
- // frequencies of Preds.
- if (HasProfileData)
- BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
- return PredBB;
- }
- bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
- const TerminatorInst *TI = BB->getTerminator();
- assert(TI->getNumSuccessors() > 1 && "not a split");
- MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
- if (!WeightsNode)
- return false;
- MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
- if (MDName->getString() != "branch_weights")
- return false;
- // Ensure there are weights for all of the successors. Note that the first
- // operand to the metadata node is a name, not a weight.
- return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
- }
- /// Update the block frequency of BB and branch weight and the metadata on the
- /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
- /// Freq(PredBB->BB) / Freq(BB->SuccBB).
- void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
- BasicBlock *BB,
- BasicBlock *NewBB,
- BasicBlock *SuccBB) {
- if (!HasProfileData)
- return;
- assert(BFI && BPI && "BFI & BPI should have been created here");
- // As the edge from PredBB to BB is deleted, we have to update the block
- // frequency of BB.
- auto BBOrigFreq = BFI->getBlockFreq(BB);
- auto NewBBFreq = BFI->getBlockFreq(NewBB);
- auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
- auto BBNewFreq = BBOrigFreq - NewBBFreq;
- BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
- // Collect updated outgoing edges' frequencies from BB and use them to update
- // edge probabilities.
- SmallVector<uint64_t, 4> BBSuccFreq;
- for (BasicBlock *Succ : successors(BB)) {
- auto SuccFreq = (Succ == SuccBB)
- ? BB2SuccBBFreq - NewBBFreq
- : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
- BBSuccFreq.push_back(SuccFreq.getFrequency());
- }
- uint64_t MaxBBSuccFreq =
- *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
- SmallVector<BranchProbability, 4> BBSuccProbs;
- if (MaxBBSuccFreq == 0)
- BBSuccProbs.assign(BBSuccFreq.size(),
- {1, static_cast<unsigned>(BBSuccFreq.size())});
- else {
- for (uint64_t Freq : BBSuccFreq)
- BBSuccProbs.push_back(
- BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
- // Normalize edge probabilities so that they sum up to one.
- BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
- BBSuccProbs.end());
- }
- // Update edge probabilities in BPI.
- for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
- BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
- // Update the profile metadata as well.
- //
- // Don't do this if the profile of the transformed blocks was statically
- // estimated. (This could occur despite the function having an entry
- // frequency in completely cold parts of the CFG.)
- //
- // In this case we don't want to suggest to subsequent passes that the
- // calculated weights are fully consistent. Consider this graph:
- //
- // check_1
- // 50% / |
- // eq_1 | 50%
- // \ |
- // check_2
- // 50% / |
- // eq_2 | 50%
- // \ |
- // check_3
- // 50% / |
- // eq_3 | 50%
- // \ |
- //
- // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
- // the overall probabilities are inconsistent; the total probability that the
- // value is either 1, 2 or 3 is 150%.
- //
- // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
- // becomes 0%. This is even worse if the edge whose probability becomes 0% is
- // the loop exit edge. Then based solely on static estimation we would assume
- // the loop was extremely hot.
- //
- // FIXME this locally as well so that BPI and BFI are consistent as well. We
- // shouldn't make edges extremely likely or unlikely based solely on static
- // estimation.
- if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
- SmallVector<uint32_t, 4> Weights;
- for (auto Prob : BBSuccProbs)
- Weights.push_back(Prob.getNumerator());
- auto TI = BB->getTerminator();
- TI->setMetadata(
- LLVMContext::MD_prof,
- MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
- }
- }
- /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
- /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
- /// If we can duplicate the contents of BB up into PredBB do so now, this
- /// improves the odds that the branch will be on an analyzable instruction like
- /// a compare.
- bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
- BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
- assert(!PredBBs.empty() && "Can't handle an empty set");
- // If BB is a loop header, then duplicating this block outside the loop would
- // cause us to transform this into an irreducible loop, don't do this.
- // See the comments above FindLoopHeaders for justifications and caveats.
- if (LoopHeaders.count(BB)) {
- DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
- << "' into predecessor block '" << PredBBs[0]->getName()
- << "' - it might create an irreducible loop!\n");
- return false;
- }
- unsigned DuplicationCost =
- getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
- if (DuplicationCost > BBDupThreshold) {
- DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
- << "' - Cost is too high: " << DuplicationCost << "\n");
- return false;
- }
- // And finally, do it! Start by factoring the predecessors if needed.
- BasicBlock *PredBB;
- if (PredBBs.size() == 1)
- PredBB = PredBBs[0];
- else {
- DEBUG(dbgs() << " Factoring out " << PredBBs.size()
- << " common predecessors.\n");
- PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
- }
- // Okay, we decided to do this! Clone all the instructions in BB onto the end
- // of PredBB.
- DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
- << PredBB->getName() << "' to eliminate branch on phi. Cost: "
- << DuplicationCost << " block is:" << *BB << "\n");
- // Unless PredBB ends with an unconditional branch, split the edge so that we
- // can just clone the bits from BB into the end of the new PredBB.
- BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
- if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
- PredBB = SplitEdge(PredBB, BB);
- OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
- }
- // We are going to have to map operands from the original BB block into the
- // PredBB block. Evaluate PHI nodes in BB.
- DenseMap<Instruction*, Value*> ValueMapping;
- BasicBlock::iterator BI = BB->begin();
- for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
- ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
- // Clone the non-phi instructions of BB into PredBB, keeping track of the
- // mapping and using it to remap operands in the cloned instructions.
- for (; BI != BB->end(); ++BI) {
- Instruction *New = BI->clone();
- // Remap operands to patch up intra-block references.
- for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
- if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
- DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
- if (I != ValueMapping.end())
- New->setOperand(i, I->second);
- }
- // If this instruction can be simplified after the operands are updated,
- // just use the simplified value instead. This frequently happens due to
- // phi translation.
- if (Value *IV =
- SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
- ValueMapping[&*BI] = IV;
- if (!New->mayHaveSideEffects()) {
- delete New;
- New = nullptr;
- }
- } else {
- ValueMapping[&*BI] = New;
- }
- if (New) {
- // Otherwise, insert the new instruction into the block.
- New->setName(BI->getName());
- PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
- }
- }
- // Check to see if the targets of the branch had PHI nodes. If so, we need to
- // add entries to the PHI nodes for branch from PredBB now.
- BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
- AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
- ValueMapping);
- AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
- ValueMapping);
- // If there were values defined in BB that are used outside the block, then we
- // now have to update all uses of the value to use either the original value,
- // the cloned value, or some PHI derived value. This can require arbitrary
- // PHI insertion, of which we are prepared to do, clean these up now.
- SSAUpdater SSAUpdate;
- SmallVector<Use*, 16> UsesToRename;
- for (Instruction &I : *BB) {
- // Scan all uses of this instruction to see if it is used outside of its
- // block, and if so, record them in UsesToRename.
- for (Use &U : I.uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
- if (UserPN->getIncomingBlock(U) == BB)
- continue;
- } else if (User->getParent() == BB)
- continue;
- UsesToRename.push_back(&U);
- }
- // If there are no uses outside the block, we're done with this instruction.
- if (UsesToRename.empty())
- continue;
- DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
- // We found a use of I outside of BB. Rename all uses of I that are outside
- // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
- // with the two values we know.
- SSAUpdate.Initialize(I.getType(), I.getName());
- SSAUpdate.AddAvailableValue(BB, &I);
- SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
- while (!UsesToRename.empty())
- SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
- DEBUG(dbgs() << "\n");
- }
- // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
- // that we nuked.
- BB->removePredecessor(PredBB, true);
- // Remove the unconditional branch at the end of the PredBB block.
- OldPredBranch->eraseFromParent();
- ++NumDupes;
- return true;
- }
- /// TryToUnfoldSelect - Look for blocks of the form
- /// bb1:
- /// %a = select
- /// br bb2
- ///
- /// bb2:
- /// %p = phi [%a, %bb1] ...
- /// %c = icmp %p
- /// br i1 %c
- ///
- /// And expand the select into a branch structure if one of its arms allows %c
- /// to be folded. This later enables threading from bb1 over bb2.
- bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
- BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
- PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
- Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
- if (!CondBr || !CondBr->isConditional() || !CondLHS ||
- CondLHS->getParent() != BB)
- return false;
- for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
- BasicBlock *Pred = CondLHS->getIncomingBlock(I);
- SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
- // Look if one of the incoming values is a select in the corresponding
- // predecessor.
- if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
- continue;
- BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
- if (!PredTerm || !PredTerm->isUnconditional())
- continue;
- // Now check if one of the select values would allow us to constant fold the
- // terminator in BB. We don't do the transform if both sides fold, those
- // cases will be threaded in any case.
- LazyValueInfo::Tristate LHSFolds =
- LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
- CondRHS, Pred, BB, CondCmp);
- LazyValueInfo::Tristate RHSFolds =
- LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
- CondRHS, Pred, BB, CondCmp);
- if ((LHSFolds != LazyValueInfo::Unknown ||
- RHSFolds != LazyValueInfo::Unknown) &&
- LHSFolds != RHSFolds) {
- // Expand the select.
- //
- // Pred --
- // | v
- // | NewBB
- // | |
- // |-----
- // v
- // BB
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
- BB->getParent(), BB);
- // Move the unconditional branch to NewBB.
- PredTerm->removeFromParent();
- NewBB->getInstList().insert(NewBB->end(), PredTerm);
- // Create a conditional branch and update PHI nodes.
- BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
- CondLHS->setIncomingValue(I, SI->getFalseValue());
- CondLHS->addIncoming(SI->getTrueValue(), NewBB);
- // The select is now dead.
- SI->eraseFromParent();
- // Update any other PHI nodes in BB.
- for (BasicBlock::iterator BI = BB->begin();
- PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
- if (Phi != CondLHS)
- Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
- return true;
- }
- }
- return false;
- }
- /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
- /// bb:
- /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
- /// %s = select p, trueval, falseval
- ///
- /// And expand the select into a branch structure. This later enables
- /// jump-threading over bb in this pass.
- ///
- /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
- /// select if the associated PHI has at least one constant. If the unfolded
- /// select is not jump-threaded, it will be folded again in the later
- /// optimizations.
- bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
- // If threading this would thread across a loop header, don't thread the edge.
- // See the comments above FindLoopHeaders for justifications and caveats.
- if (LoopHeaders.count(BB))
- return false;
- // Look for a Phi/Select pair in the same basic block. The Phi feeds the
- // condition of the Select and at least one of the incoming values is a
- // constant.
- for (BasicBlock::iterator BI = BB->begin();
- PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
- unsigned NumPHIValues = PN->getNumIncomingValues();
- if (NumPHIValues == 0 || !PN->hasOneUse())
- continue;
- SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
- if (!SI || SI->getParent() != BB)
- continue;
- Value *Cond = SI->getCondition();
- if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
- continue;
- bool HasConst = false;
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- if (PN->getIncomingBlock(i) == BB)
- return false;
- if (isa<ConstantInt>(PN->getIncomingValue(i)))
- HasConst = true;
- }
- if (HasConst) {
- // Expand the select.
- TerminatorInst *Term =
- SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
- PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
- NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
- NewPN->addIncoming(SI->getFalseValue(), BB);
- SI->replaceAllUsesWith(NewPN);
- SI->eraseFromParent();
- return true;
- }
- }
-
- return false;
- }
- /// Try to propagate a guard from the current BB into one of its predecessors
- /// in case if another branch of execution implies that the condition of this
- /// guard is always true. Currently we only process the simplest case that
- /// looks like:
- ///
- /// Start:
- /// %cond = ...
- /// br i1 %cond, label %T1, label %F1
- /// T1:
- /// br label %Merge
- /// F1:
- /// br label %Merge
- /// Merge:
- /// %condGuard = ...
- /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
- ///
- /// And cond either implies condGuard or !condGuard. In this case all the
- /// instructions before the guard can be duplicated in both branches, and the
- /// guard is then threaded to one of them.
- bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
- using namespace PatternMatch;
- // We only want to deal with two predecessors.
- BasicBlock *Pred1, *Pred2;
- auto PI = pred_begin(BB), PE = pred_end(BB);
- if (PI == PE)
- return false;
- Pred1 = *PI++;
- if (PI == PE)
- return false;
- Pred2 = *PI++;
- if (PI != PE)
- return false;
- if (Pred1 == Pred2)
- return false;
- // Try to thread one of the guards of the block.
- // TODO: Look up deeper than to immediate predecessor?
- auto *Parent = Pred1->getSinglePredecessor();
- if (!Parent || Parent != Pred2->getSinglePredecessor())
- return false;
- if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
- for (auto &I : *BB)
- if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
- if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
- return true;
- return false;
- }
- /// Try to propagate the guard from BB which is the lower block of a diamond
- /// to one of its branches, in case if diamond's condition implies guard's
- /// condition.
- bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
- BranchInst *BI) {
- assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
- assert(BI->isConditional() && "Unconditional branch has 2 successors?");
- Value *GuardCond = Guard->getArgOperand(0);
- Value *BranchCond = BI->getCondition();
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- auto &DL = BB->getModule()->getDataLayout();
- bool TrueDestIsSafe = false;
- bool FalseDestIsSafe = false;
- // True dest is safe if BranchCond => GuardCond.
- auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
- if (Impl && *Impl)
- TrueDestIsSafe = true;
- else {
- // False dest is safe if !BranchCond => GuardCond.
- Impl =
- isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true);
- if (Impl && *Impl)
- FalseDestIsSafe = true;
- }
- if (!TrueDestIsSafe && !FalseDestIsSafe)
- return false;
- BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
- BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
- ValueToValueMapTy UnguardedMapping, GuardedMapping;
- Instruction *AfterGuard = Guard->getNextNode();
- unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
- if (Cost > BBDupThreshold)
- return false;
- // Duplicate all instructions before the guard and the guard itself to the
- // branch where implication is not proved.
- GuardedBlock = DuplicateInstructionsInSplitBetween(
- BB, GuardedBlock, AfterGuard, GuardedMapping);
- assert(GuardedBlock && "Could not create the guarded block?");
- // Duplicate all instructions before the guard in the unguarded branch.
- // Since we have successfully duplicated the guarded block and this block
- // has fewer instructions, we expect it to succeed.
- UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
- Guard, UnguardedMapping);
- assert(UnguardedBlock && "Could not create the unguarded block?");
- DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
- << GuardedBlock->getName() << "\n");
- // Some instructions before the guard may still have uses. For them, we need
- // to create Phi nodes merging their copies in both guarded and unguarded
- // branches. Those instructions that have no uses can be just removed.
- SmallVector<Instruction *, 4> ToRemove;
- for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
- if (!isa<PHINode>(&*BI))
- ToRemove.push_back(&*BI);
- Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
- assert(InsertionPoint && "Empty block?");
- // Substitute with Phis & remove.
- for (auto *Inst : reverse(ToRemove)) {
- if (!Inst->use_empty()) {
- PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
- NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
- NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
- NewPN->insertBefore(InsertionPoint);
- Inst->replaceAllUsesWith(NewPN);
- }
- Inst->eraseFromParent();
- }
- return true;
- }
|