123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246 |
- //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // InstructionCombining - Combine instructions to form fewer, simple
- // instructions. This pass does not modify the CFG. This pass is where
- // algebraic simplification happens.
- //
- // This pass combines things like:
- // %Y = add i32 %X, 1
- // %Z = add i32 %Y, 1
- // into:
- // %Z = add i32 %X, 2
- //
- // This is a simple worklist driven algorithm.
- //
- // This pass guarantees that the following canonicalizations are performed on
- // the program:
- // 1. If a binary operator has a constant operand, it is moved to the RHS
- // 2. Bitwise operators with constant operands are always grouped so that
- // shifts are performed first, then or's, then and's, then xor's.
- // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
- // 4. All cmp instructions on boolean values are replaced with logical ops
- // 5. add X, X is represented as (X*2) => (X << 1)
- // 6. Multiplies with a power-of-two constant argument are transformed into
- // shifts.
- // ... etc.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/InstCombine/InstCombine.h"
- #include "InstCombineInternal.h"
- #include "llvm-c/Initialization.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringSwitch.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- #include <climits>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "instcombine"
- STATISTIC(NumCombined , "Number of insts combined");
- STATISTIC(NumConstProp, "Number of constant folds");
- STATISTIC(NumDeadInst , "Number of dead inst eliminated");
- STATISTIC(NumSunkInst , "Number of instructions sunk");
- STATISTIC(NumExpand, "Number of expansions");
- STATISTIC(NumFactor , "Number of factorizations");
- STATISTIC(NumReassoc , "Number of reassociations");
- static cl::opt<bool>
- EnableExpensiveCombines("expensive-combines",
- cl::desc("Enable expensive instruction combines"));
- static cl::opt<unsigned>
- MaxArraySize("instcombine-maxarray-size", cl::init(1024),
- cl::desc("Maximum array size considered when doing a combine"));
- Value *InstCombiner::EmitGEPOffset(User *GEP) {
- return llvm::EmitGEPOffset(Builder, DL, GEP);
- }
- /// Return true if it is desirable to convert an integer computation from a
- /// given bit width to a new bit width.
- /// We don't want to convert from a legal to an illegal type or from a smaller
- /// to a larger illegal type. A width of '1' is always treated as a legal type
- /// because i1 is a fundamental type in IR, and there are many specialized
- /// optimizations for i1 types.
- bool InstCombiner::shouldChangeType(unsigned FromWidth,
- unsigned ToWidth) const {
- bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
- bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
- // If this is a legal integer from type, and the result would be an illegal
- // type, don't do the transformation.
- if (FromLegal && !ToLegal)
- return false;
- // Otherwise, if both are illegal, do not increase the size of the result. We
- // do allow things like i160 -> i64, but not i64 -> i160.
- if (!FromLegal && !ToLegal && ToWidth > FromWidth)
- return false;
- return true;
- }
- /// Return true if it is desirable to convert a computation from 'From' to 'To'.
- /// We don't want to convert from a legal to an illegal type or from a smaller
- /// to a larger illegal type. i1 is always treated as a legal type because it is
- /// a fundamental type in IR, and there are many specialized optimizations for
- /// i1 types.
- bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
- assert(From->isIntegerTy() && To->isIntegerTy());
- unsigned FromWidth = From->getPrimitiveSizeInBits();
- unsigned ToWidth = To->getPrimitiveSizeInBits();
- return shouldChangeType(FromWidth, ToWidth);
- }
- // Return true, if No Signed Wrap should be maintained for I.
- // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
- // where both B and C should be ConstantInts, results in a constant that does
- // not overflow. This function only handles the Add and Sub opcodes. For
- // all other opcodes, the function conservatively returns false.
- static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
- OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
- if (!OBO || !OBO->hasNoSignedWrap())
- return false;
- // We reason about Add and Sub Only.
- Instruction::BinaryOps Opcode = I.getOpcode();
- if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
- return false;
- const APInt *BVal, *CVal;
- if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
- return false;
- bool Overflow = false;
- if (Opcode == Instruction::Add)
- BVal->sadd_ov(*CVal, Overflow);
- else
- BVal->ssub_ov(*CVal, Overflow);
- return !Overflow;
- }
- /// Conservatively clears subclassOptionalData after a reassociation or
- /// commutation. We preserve fast-math flags when applicable as they can be
- /// preserved.
- static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
- FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
- if (!FPMO) {
- I.clearSubclassOptionalData();
- return;
- }
- FastMathFlags FMF = I.getFastMathFlags();
- I.clearSubclassOptionalData();
- I.setFastMathFlags(FMF);
- }
- /// Combine constant operands of associative operations either before or after a
- /// cast to eliminate one of the associative operations:
- /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
- /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
- static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
- auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
- if (!Cast || !Cast->hasOneUse())
- return false;
- // TODO: Enhance logic for other casts and remove this check.
- auto CastOpcode = Cast->getOpcode();
- if (CastOpcode != Instruction::ZExt)
- return false;
- // TODO: Enhance logic for other BinOps and remove this check.
- if (!BinOp1->isBitwiseLogicOp())
- return false;
- auto AssocOpcode = BinOp1->getOpcode();
- auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
- if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
- return false;
- Constant *C1, *C2;
- if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
- !match(BinOp2->getOperand(1), m_Constant(C2)))
- return false;
- // TODO: This assumes a zext cast.
- // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
- // to the destination type might lose bits.
- // Fold the constants together in the destination type:
- // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
- Type *DestTy = C1->getType();
- Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
- Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
- Cast->setOperand(0, BinOp2->getOperand(0));
- BinOp1->setOperand(1, FoldedC);
- return true;
- }
- /// This performs a few simplifications for operators that are associative or
- /// commutative:
- ///
- /// Commutative operators:
- ///
- /// 1. Order operands such that they are listed from right (least complex) to
- /// left (most complex). This puts constants before unary operators before
- /// binary operators.
- ///
- /// Associative operators:
- ///
- /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
- /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
- ///
- /// Associative and commutative operators:
- ///
- /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
- /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
- /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
- /// if C1 and C2 are constants.
- bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- bool Changed = false;
- do {
- // Order operands such that they are listed from right (least complex) to
- // left (most complex). This puts constants before unary operators before
- // binary operators.
- if (I.isCommutative() && getComplexity(I.getOperand(0)) <
- getComplexity(I.getOperand(1)))
- Changed = !I.swapOperands();
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
- if (I.isAssociative()) {
- // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = I.getOperand(1);
- // Does "B op C" simplify?
- if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
- // It simplifies to V. Form "A op V".
- I.setOperand(0, A);
- I.setOperand(1, V);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- if (MaintainNoSignedWrap(I, B, C) &&
- (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
- // Note: this is only valid because SimplifyBinOp doesn't look at
- // the operands to Op0.
- I.clearSubclassOptionalData();
- I.setHasNoSignedWrap(true);
- } else {
- ClearSubclassDataAfterReassociation(I);
- }
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
- // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = I.getOperand(0);
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "A op B" simplify?
- if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
- // It simplifies to V. Form "V op C".
- I.setOperand(0, V);
- I.setOperand(1, C);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
- }
- if (I.isAssociative() && I.isCommutative()) {
- if (simplifyAssocCastAssoc(&I)) {
- Changed = true;
- ++NumReassoc;
- continue;
- }
- // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = I.getOperand(1);
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
- // It simplifies to V. Form "V op B".
- I.setOperand(0, V);
- I.setOperand(1, B);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
- // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = I.getOperand(0);
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
- // It simplifies to V. Form "B op V".
- I.setOperand(0, B);
- I.setOperand(1, V);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- ++NumReassoc;
- continue;
- }
- }
- // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
- // if C1 and C2 are constants.
- if (Op0 && Op1 &&
- Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
- isa<Constant>(Op0->getOperand(1)) &&
- isa<Constant>(Op1->getOperand(1)) &&
- Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *A = Op0->getOperand(0);
- Constant *C1 = cast<Constant>(Op0->getOperand(1));
- Value *B = Op1->getOperand(0);
- Constant *C2 = cast<Constant>(Op1->getOperand(1));
- Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
- BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
- if (isa<FPMathOperator>(New)) {
- FastMathFlags Flags = I.getFastMathFlags();
- Flags &= Op0->getFastMathFlags();
- Flags &= Op1->getFastMathFlags();
- New->setFastMathFlags(Flags);
- }
- InsertNewInstWith(New, I);
- New->takeName(Op1);
- I.setOperand(0, New);
- I.setOperand(1, Folded);
- // Conservatively clear the optional flags, since they may not be
- // preserved by the reassociation.
- ClearSubclassDataAfterReassociation(I);
- Changed = true;
- continue;
- }
- }
- // No further simplifications.
- return Changed;
- } while (1);
- }
- /// Return whether "X LOp (Y ROp Z)" is always equal to
- /// "(X LOp Y) ROp (X LOp Z)".
- static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
- Instruction::BinaryOps ROp) {
- switch (LOp) {
- default:
- return false;
- case Instruction::And:
- // And distributes over Or and Xor.
- switch (ROp) {
- default:
- return false;
- case Instruction::Or:
- case Instruction::Xor:
- return true;
- }
- case Instruction::Mul:
- // Multiplication distributes over addition and subtraction.
- switch (ROp) {
- default:
- return false;
- case Instruction::Add:
- case Instruction::Sub:
- return true;
- }
- case Instruction::Or:
- // Or distributes over And.
- switch (ROp) {
- default:
- return false;
- case Instruction::And:
- return true;
- }
- }
- }
- /// Return whether "(X LOp Y) ROp Z" is always equal to
- /// "(X ROp Z) LOp (Y ROp Z)".
- static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
- Instruction::BinaryOps ROp) {
- if (Instruction::isCommutative(ROp))
- return LeftDistributesOverRight(ROp, LOp);
- switch (LOp) {
- default:
- return false;
- // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
- // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
- // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- switch (ROp) {
- default:
- return false;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- return true;
- }
- }
- // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
- // but this requires knowing that the addition does not overflow and other
- // such subtleties.
- return false;
- }
- /// This function returns identity value for given opcode, which can be used to
- /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
- static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
- if (isa<Constant>(V))
- return nullptr;
- return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
- }
- /// This function factors binary ops which can be combined using distributive
- /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
- /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
- /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
- /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
- /// RHS to 4.
- static Instruction::BinaryOps
- getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
- BinaryOperator *Op, Value *&LHS, Value *&RHS) {
- if (!Op)
- return Instruction::BinaryOpsEnd;
- LHS = Op->getOperand(0);
- RHS = Op->getOperand(1);
- switch (TopLevelOpcode) {
- default:
- return Op->getOpcode();
- case Instruction::Add:
- case Instruction::Sub:
- if (Op->getOpcode() == Instruction::Shl) {
- if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
- // The multiplier is really 1 << CST.
- RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
- return Instruction::Mul;
- }
- }
- return Op->getOpcode();
- }
- // TODO: We can add other conversions e.g. shr => div etc.
- }
- /// This tries to simplify binary operations by factorizing out common terms
- /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
- static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
- const DataLayout &DL, BinaryOperator &I,
- Instruction::BinaryOps InnerOpcode, Value *A,
- Value *B, Value *C, Value *D) {
- // If any of A, B, C, D are null, we can not factor I, return early.
- // Checking A and C should be enough.
- if (!A || !C || !B || !D)
- return nullptr;
- Value *V = nullptr;
- Value *SimplifiedInst = nullptr;
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
- // Does "X op' Y" always equal "Y op' X"?
- bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
- // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
- if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
- // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
- // commutative case, "(A op' B) op (C op' A)"?
- if (A == C || (InnerCommutative && A == D)) {
- if (A != C)
- std::swap(C, D);
- // Consider forming "A op' (B op D)".
- // If "B op D" simplifies then it can be formed with no cost.
- V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
- // If "B op D" doesn't simplify then only go on if both of the existing
- // operations "A op' B" and "C op' D" will be zapped as no longer used.
- if (!V && LHS->hasOneUse() && RHS->hasOneUse())
- V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
- if (V) {
- SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
- }
- }
- // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
- if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
- // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
- // commutative case, "(A op' B) op (B op' D)"?
- if (B == D || (InnerCommutative && B == C)) {
- if (B != D)
- std::swap(C, D);
- // Consider forming "(A op C) op' B".
- // If "A op C" simplifies then it can be formed with no cost.
- V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
- // If "A op C" doesn't simplify then only go on if both of the existing
- // operations "A op' B" and "C op' D" will be zapped as no longer used.
- if (!V && LHS->hasOneUse() && RHS->hasOneUse())
- V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
- if (V) {
- SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
- }
- }
- if (SimplifiedInst) {
- ++NumFactor;
- SimplifiedInst->takeName(&I);
- // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
- // TODO: Check for NUW.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
- if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
- bool HasNSW = false;
- if (isa<OverflowingBinaryOperator>(&I))
- HasNSW = I.hasNoSignedWrap();
- if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
- HasNSW &= LOBO->hasNoSignedWrap();
- if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
- HasNSW &= ROBO->hasNoSignedWrap();
- // We can propagate 'nsw' if we know that
- // %Y = mul nsw i16 %X, C
- // %Z = add nsw i16 %Y, %X
- // =>
- // %Z = mul nsw i16 %X, C+1
- //
- // iff C+1 isn't INT_MIN
- const APInt *CInt;
- if (TopLevelOpcode == Instruction::Add &&
- InnerOpcode == Instruction::Mul)
- if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
- BO->setHasNoSignedWrap(HasNSW);
- }
- }
- }
- return SimplifiedInst;
- }
- /// This tries to simplify binary operations which some other binary operation
- /// distributes over either by factorizing out common terms
- /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
- /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
- /// Returns the simplified value, or null if it didn't simplify.
- Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
- // Factorization.
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- auto TopLevelOpcode = I.getOpcode();
- auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
- auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
- // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
- // a common term.
- if (LHSOpcode == RHSOpcode) {
- if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
- return V;
- }
- // The instruction has the form "(A op' B) op (C)". Try to factorize common
- // term.
- if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
- getIdentityValue(LHSOpcode, RHS)))
- return V;
- // The instruction has the form "(B) op (C op' D)". Try to factorize common
- // term.
- if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
- getIdentityValue(RHSOpcode, LHS), C, D))
- return V;
- // Expansion.
- if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
- // The instruction has the form "(A op' B) op C". See if expanding it out
- // to "(A op C) op' (B op C)" results in simplifications.
- Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
- Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
- // Do "A op C" and "B op C" both simplify?
- if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
- if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
- // They do! Return "L op' R".
- ++NumExpand;
- // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
- if ((L == A && R == B) ||
- (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
- return Op0;
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
- return V;
- // Otherwise, create a new instruction.
- C = Builder->CreateBinOp(InnerOpcode, L, R);
- C->takeName(&I);
- return C;
- }
- }
- if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
- // The instruction has the form "A op (B op' C)". See if expanding it out
- // to "(A op B) op' (A op C)" results in simplifications.
- Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
- Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
- // Do "A op B" and "A op C" both simplify?
- if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
- if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
- // They do! Return "L op' R".
- ++NumExpand;
- // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
- if ((L == B && R == C) ||
- (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
- return Op1;
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
- return V;
- // Otherwise, create a new instruction.
- A = Builder->CreateBinOp(InnerOpcode, L, R);
- A->takeName(&I);
- return A;
- }
- }
- // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
- // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
- if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
- if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
- if (SI0->getCondition() == SI1->getCondition()) {
- Value *SI = nullptr;
- if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
- SI1->getFalseValue(), DL, &TLI, &DT, &AC))
- SI = Builder->CreateSelect(SI0->getCondition(),
- Builder->CreateBinOp(TopLevelOpcode,
- SI0->getTrueValue(),
- SI1->getTrueValue()),
- V);
- if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
- SI1->getTrueValue(), DL, &TLI, &DT, &AC))
- SI = Builder->CreateSelect(
- SI0->getCondition(), V,
- Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
- SI1->getFalseValue()));
- if (SI) {
- SI->takeName(&I);
- return SI;
- }
- }
- }
- }
- return nullptr;
- }
- /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
- /// constant zero (which is the 'negate' form).
- Value *InstCombiner::dyn_castNegVal(Value *V) const {
- if (BinaryOperator::isNeg(V))
- return BinaryOperator::getNegArgument(V);
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantExpr::getNeg(C);
- if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
- if (C->getType()->getElementType()->isIntegerTy())
- return ConstantExpr::getNeg(C);
- if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
- for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
- Constant *Elt = CV->getAggregateElement(i);
- if (!Elt)
- return nullptr;
- if (isa<UndefValue>(Elt))
- continue;
- if (!isa<ConstantInt>(Elt))
- return nullptr;
- }
- return ConstantExpr::getNeg(CV);
- }
- return nullptr;
- }
- /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
- /// a constant negative zero (which is the 'negate' form).
- Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
- if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
- return BinaryOperator::getFNegArgument(V);
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantFP *C = dyn_cast<ConstantFP>(V))
- return ConstantExpr::getFNeg(C);
- if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
- if (C->getType()->getElementType()->isFloatingPointTy())
- return ConstantExpr::getFNeg(C);
- return nullptr;
- }
- static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
- InstCombiner *IC) {
- if (auto *Cast = dyn_cast<CastInst>(&I))
- return IC->Builder->CreateCast(Cast->getOpcode(), SO, I.getType());
- assert(I.isBinaryOp() && "Unexpected opcode for select folding");
- // Figure out if the constant is the left or the right argument.
- bool ConstIsRHS = isa<Constant>(I.getOperand(1));
- Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
- if (auto *SOC = dyn_cast<Constant>(SO)) {
- if (ConstIsRHS)
- return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
- return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
- }
- Value *Op0 = SO, *Op1 = ConstOperand;
- if (!ConstIsRHS)
- std::swap(Op0, Op1);
- auto *BO = cast<BinaryOperator>(&I);
- Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
- SO->getName() + ".op");
- auto *FPInst = dyn_cast<Instruction>(RI);
- if (FPInst && isa<FPMathOperator>(FPInst))
- FPInst->copyFastMathFlags(BO);
- return RI;
- }
- Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
- // Don't modify shared select instructions.
- if (!SI->hasOneUse())
- return nullptr;
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- if (!(isa<Constant>(TV) || isa<Constant>(FV)))
- return nullptr;
- // Bool selects with constant operands can be folded to logical ops.
- if (SI->getType()->getScalarType()->isIntegerTy(1))
- return nullptr;
- // If it's a bitcast involving vectors, make sure it has the same number of
- // elements on both sides.
- if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
- VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
- VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
- // Verify that either both or neither are vectors.
- if ((SrcTy == nullptr) != (DestTy == nullptr))
- return nullptr;
- // If vectors, verify that they have the same number of elements.
- if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
- return nullptr;
- }
- // Test if a CmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
- if (CI->hasOneUse()) {
- Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
- if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
- (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
- return nullptr;
- }
- }
- Value *NewTV = foldOperationIntoSelectOperand(Op, TV, this);
- Value *NewFV = foldOperationIntoSelectOperand(Op, FV, this);
- return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
- }
- Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
- PHINode *PN = cast<PHINode>(I.getOperand(0));
- unsigned NumPHIValues = PN->getNumIncomingValues();
- if (NumPHIValues == 0)
- return nullptr;
- // We normally only transform phis with a single use. However, if a PHI has
- // multiple uses and they are all the same operation, we can fold *all* of the
- // uses into the PHI.
- if (!PN->hasOneUse()) {
- // Walk the use list for the instruction, comparing them to I.
- for (User *U : PN->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (UI != &I && !I.isIdenticalTo(UI))
- return nullptr;
- }
- // Otherwise, we can replace *all* users with the new PHI we form.
- }
- // Check to see if all of the operands of the PHI are simple constants
- // (constantint/constantfp/undef). If there is one non-constant value,
- // remember the BB it is in. If there is more than one or if *it* is a PHI,
- // bail out. We don't do arbitrary constant expressions here because moving
- // their computation can be expensive without a cost model.
- BasicBlock *NonConstBB = nullptr;
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
- continue;
- if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
- if (NonConstBB) return nullptr; // More than one non-const value.
- NonConstBB = PN->getIncomingBlock(i);
- // If the InVal is an invoke at the end of the pred block, then we can't
- // insert a computation after it without breaking the edge.
- if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
- if (II->getParent() == NonConstBB)
- return nullptr;
- // If the incoming non-constant value is in I's block, we will remove one
- // instruction, but insert another equivalent one, leading to infinite
- // instcombine.
- if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
- return nullptr;
- }
- // If there is exactly one non-constant value, we can insert a copy of the
- // operation in that block. However, if this is a critical edge, we would be
- // inserting the computation on some other paths (e.g. inside a loop). Only
- // do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB != nullptr) {
- BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
- if (!BI || !BI->isUnconditional()) return nullptr;
- }
- // Okay, we can do the transformation: create the new PHI node.
- PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
- InsertNewInstBefore(NewPN, *PN);
- NewPN->takeName(PN);
- // If we are going to have to insert a new computation, do so right before the
- // predecessor's terminator.
- if (NonConstBB)
- Builder->SetInsertPoint(NonConstBB->getTerminator());
- // Next, add all of the operands to the PHI.
- if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
- // We only currently try to fold the condition of a select when it is a phi,
- // not the true/false values.
- Value *TrueV = SI->getTrueValue();
- Value *FalseV = SI->getFalseValue();
- BasicBlock *PhiTransBB = PN->getParent();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- BasicBlock *ThisBB = PN->getIncomingBlock(i);
- Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *InV = nullptr;
- // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
- // even if currently isNullValue gives false.
- Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
- // For vector constants, we cannot use isNullValue to fold into
- // FalseVInPred versus TrueVInPred. When we have individual nonzero
- // elements in the vector, we will incorrectly fold InC to
- // `TrueVInPred`.
- if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
- InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
- else
- InV = Builder->CreateSelect(PN->getIncomingValue(i),
- TrueVInPred, FalseVInPred, "phitmp");
- NewPN->addIncoming(InV, ThisBB);
- }
- } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
- Constant *C = cast<Constant>(I.getOperand(1));
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV = nullptr;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
- InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
- else if (isa<ICmpInst>(CI))
- InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
- C, "phitmp");
- else
- InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
- C, "phitmp");
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- } else if (I.getNumOperands() == 2) {
- Constant *C = cast<Constant>(I.getOperand(1));
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV = nullptr;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- InV = ConstantExpr::get(I.getOpcode(), InC, C);
- } else {
- InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
- PN->getIncomingValue(i), C, "phitmp");
- auto *FPInst = dyn_cast<Instruction>(InV);
- if (FPInst && isa<FPMathOperator>(FPInst))
- FPInst->copyFastMathFlags(&I);
- }
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- } else {
- CastInst *CI = cast<CastInst>(&I);
- Type *RetTy = CI->getType();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
- InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
- else
- InV = Builder->CreateCast(CI->getOpcode(),
- PN->getIncomingValue(i), I.getType(), "phitmp");
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- }
- for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- if (User == &I) continue;
- replaceInstUsesWith(*User, NewPN);
- eraseInstFromFunction(*User);
- }
- return replaceInstUsesWith(I, NewPN);
- }
- Instruction *InstCombiner::foldOpWithConstantIntoOperand(BinaryOperator &I) {
- assert(isa<Constant>(I.getOperand(1)) && "Unexpected operand type");
- if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
- if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
- return NewSel;
- } else if (isa<PHINode>(I.getOperand(0))) {
- if (Instruction *NewPhi = FoldOpIntoPhi(I))
- return NewPhi;
- }
- return nullptr;
- }
- /// Given a pointer type and a constant offset, determine whether or not there
- /// is a sequence of GEP indices into the pointed type that will land us at the
- /// specified offset. If so, fill them into NewIndices and return the resultant
- /// element type, otherwise return null.
- Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
- SmallVectorImpl<Value *> &NewIndices) {
- Type *Ty = PtrTy->getElementType();
- if (!Ty->isSized())
- return nullptr;
- // Start with the index over the outer type. Note that the type size
- // might be zero (even if the offset isn't zero) if the indexed type
- // is something like [0 x {int, int}]
- Type *IntPtrTy = DL.getIntPtrType(PtrTy);
- int64_t FirstIdx = 0;
- if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
- FirstIdx = Offset/TySize;
- Offset -= FirstIdx*TySize;
- // Handle hosts where % returns negative instead of values [0..TySize).
- if (Offset < 0) {
- --FirstIdx;
- Offset += TySize;
- assert(Offset >= 0);
- }
- assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
- }
- NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
- // Index into the types. If we fail, set OrigBase to null.
- while (Offset) {
- // Indexing into tail padding between struct/array elements.
- if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
- return nullptr;
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- assert(Offset < (int64_t)SL->getSizeInBytes() &&
- "Offset must stay within the indexed type");
- unsigned Elt = SL->getElementContainingOffset(Offset);
- NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
- Elt));
- Offset -= SL->getElementOffset(Elt);
- Ty = STy->getElementType(Elt);
- } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
- assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
- Offset %= EltSize;
- Ty = AT->getElementType();
- } else {
- // Otherwise, we can't index into the middle of this atomic type, bail.
- return nullptr;
- }
- }
- return Ty;
- }
- static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
- // If this GEP has only 0 indices, it is the same pointer as
- // Src. If Src is not a trivial GEP too, don't combine
- // the indices.
- if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
- !Src.hasOneUse())
- return false;
- return true;
- }
- /// Return a value X such that Val = X * Scale, or null if none.
- /// If the multiplication is known not to overflow, then NoSignedWrap is set.
- Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
- assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
- assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
- Scale.getBitWidth() && "Scale not compatible with value!");
- // If Val is zero or Scale is one then Val = Val * Scale.
- if (match(Val, m_Zero()) || Scale == 1) {
- NoSignedWrap = true;
- return Val;
- }
- // If Scale is zero then it does not divide Val.
- if (Scale.isMinValue())
- return nullptr;
- // Look through chains of multiplications, searching for a constant that is
- // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
- // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
- // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
- // down from Val:
- //
- // Val = M1 * X || Analysis starts here and works down
- // M1 = M2 * Y || Doesn't descend into terms with more
- // M2 = Z * 4 \/ than one use
- //
- // Then to modify a term at the bottom:
- //
- // Val = M1 * X
- // M1 = Z * Y || Replaced M2 with Z
- //
- // Then to work back up correcting nsw flags.
- // Op - the term we are currently analyzing. Starts at Val then drills down.
- // Replaced with its descaled value before exiting from the drill down loop.
- Value *Op = Val;
- // Parent - initially null, but after drilling down notes where Op came from.
- // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
- // 0'th operand of Val.
- std::pair<Instruction*, unsigned> Parent;
- // Set if the transform requires a descaling at deeper levels that doesn't
- // overflow.
- bool RequireNoSignedWrap = false;
- // Log base 2 of the scale. Negative if not a power of 2.
- int32_t logScale = Scale.exactLogBase2();
- for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- // If Op is a constant divisible by Scale then descale to the quotient.
- APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
- APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
- if (!Remainder.isMinValue())
- // Not divisible by Scale.
- return nullptr;
- // Replace with the quotient in the parent.
- Op = ConstantInt::get(CI->getType(), Quotient);
- NoSignedWrap = true;
- break;
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
- if (BO->getOpcode() == Instruction::Mul) {
- // Multiplication.
- NoSignedWrap = BO->hasNoSignedWrap();
- if (RequireNoSignedWrap && !NoSignedWrap)
- return nullptr;
- // There are three cases for multiplication: multiplication by exactly
- // the scale, multiplication by a constant different to the scale, and
- // multiplication by something else.
- Value *LHS = BO->getOperand(0);
- Value *RHS = BO->getOperand(1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Multiplication by a constant.
- if (CI->getValue() == Scale) {
- // Multiplication by exactly the scale, replace the multiplication
- // by its left-hand side in the parent.
- Op = LHS;
- break;
- }
- // Otherwise drill down into the constant.
- if (!Op->hasOneUse())
- return nullptr;
- Parent = std::make_pair(BO, 1);
- continue;
- }
- // Multiplication by something else. Drill down into the left-hand side
- // since that's where the reassociate pass puts the good stuff.
- if (!Op->hasOneUse())
- return nullptr;
- Parent = std::make_pair(BO, 0);
- continue;
- }
- if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(BO->getOperand(1))) {
- // Multiplication by a power of 2.
- NoSignedWrap = BO->hasNoSignedWrap();
- if (RequireNoSignedWrap && !NoSignedWrap)
- return nullptr;
- Value *LHS = BO->getOperand(0);
- int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
- getLimitedValue(Scale.getBitWidth());
- // Op = LHS << Amt.
- if (Amt == logScale) {
- // Multiplication by exactly the scale, replace the multiplication
- // by its left-hand side in the parent.
- Op = LHS;
- break;
- }
- if (Amt < logScale || !Op->hasOneUse())
- return nullptr;
- // Multiplication by more than the scale. Reduce the multiplying amount
- // by the scale in the parent.
- Parent = std::make_pair(BO, 1);
- Op = ConstantInt::get(BO->getType(), Amt - logScale);
- break;
- }
- }
- if (!Op->hasOneUse())
- return nullptr;
- if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
- if (Cast->getOpcode() == Instruction::SExt) {
- // Op is sign-extended from a smaller type, descale in the smaller type.
- unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
- APInt SmallScale = Scale.trunc(SmallSize);
- // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
- // descale Op as (sext Y) * Scale. In order to have
- // sext (Y * SmallScale) = (sext Y) * Scale
- // some conditions need to hold however: SmallScale must sign-extend to
- // Scale and the multiplication Y * SmallScale should not overflow.
- if (SmallScale.sext(Scale.getBitWidth()) != Scale)
- // SmallScale does not sign-extend to Scale.
- return nullptr;
- assert(SmallScale.exactLogBase2() == logScale);
- // Require that Y * SmallScale must not overflow.
- RequireNoSignedWrap = true;
- // Drill down through the cast.
- Parent = std::make_pair(Cast, 0);
- Scale = SmallScale;
- continue;
- }
- if (Cast->getOpcode() == Instruction::Trunc) {
- // Op is truncated from a larger type, descale in the larger type.
- // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
- // trunc (Y * sext Scale) = (trunc Y) * Scale
- // always holds. However (trunc Y) * Scale may overflow even if
- // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
- // from this point up in the expression (see later).
- if (RequireNoSignedWrap)
- return nullptr;
- // Drill down through the cast.
- unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
- Parent = std::make_pair(Cast, 0);
- Scale = Scale.sext(LargeSize);
- if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
- logScale = -1;
- assert(Scale.exactLogBase2() == logScale);
- continue;
- }
- }
- // Unsupported expression, bail out.
- return nullptr;
- }
- // If Op is zero then Val = Op * Scale.
- if (match(Op, m_Zero())) {
- NoSignedWrap = true;
- return Op;
- }
- // We know that we can successfully descale, so from here on we can safely
- // modify the IR. Op holds the descaled version of the deepest term in the
- // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
- // not to overflow.
- if (!Parent.first)
- // The expression only had one term.
- return Op;
- // Rewrite the parent using the descaled version of its operand.
- assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
- assert(Op != Parent.first->getOperand(Parent.second) &&
- "Descaling was a no-op?");
- Parent.first->setOperand(Parent.second, Op);
- Worklist.Add(Parent.first);
- // Now work back up the expression correcting nsw flags. The logic is based
- // on the following observation: if X * Y is known not to overflow as a signed
- // multiplication, and Y is replaced by a value Z with smaller absolute value,
- // then X * Z will not overflow as a signed multiplication either. As we work
- // our way up, having NoSignedWrap 'true' means that the descaled value at the
- // current level has strictly smaller absolute value than the original.
- Instruction *Ancestor = Parent.first;
- do {
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
- // If the multiplication wasn't nsw then we can't say anything about the
- // value of the descaled multiplication, and we have to clear nsw flags
- // from this point on up.
- bool OpNoSignedWrap = BO->hasNoSignedWrap();
- NoSignedWrap &= OpNoSignedWrap;
- if (NoSignedWrap != OpNoSignedWrap) {
- BO->setHasNoSignedWrap(NoSignedWrap);
- Worklist.Add(Ancestor);
- }
- } else if (Ancestor->getOpcode() == Instruction::Trunc) {
- // The fact that the descaled input to the trunc has smaller absolute
- // value than the original input doesn't tell us anything useful about
- // the absolute values of the truncations.
- NoSignedWrap = false;
- }
- assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
- "Failed to keep proper track of nsw flags while drilling down?");
- if (Ancestor == Val)
- // Got to the top, all done!
- return Val;
- // Move up one level in the expression.
- assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
- Ancestor = Ancestor->user_back();
- } while (1);
- }
- /// \brief Creates node of binary operation with the same attributes as the
- /// specified one but with other operands.
- static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy *B) {
- Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
- // If LHS and RHS are constant, BO won't be a binary operator.
- if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
- NewBO->copyIRFlags(&Inst);
- return BO;
- }
- /// \brief Makes transformation of binary operation specific for vector types.
- /// \param Inst Binary operator to transform.
- /// \return Pointer to node that must replace the original binary operator, or
- /// null pointer if no transformation was made.
- Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
- if (!Inst.getType()->isVectorTy()) return nullptr;
- // It may not be safe to reorder shuffles and things like div, urem, etc.
- // because we may trap when executing those ops on unknown vector elements.
- // See PR20059.
- if (!isSafeToSpeculativelyExecute(&Inst))
- return nullptr;
- unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
- Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
- assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
- assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
- // If both arguments of the binary operation are shuffles that use the same
- // mask and shuffle within a single vector, move the shuffle after the binop:
- // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
- auto *LShuf = dyn_cast<ShuffleVectorInst>(LHS);
- auto *RShuf = dyn_cast<ShuffleVectorInst>(RHS);
- if (LShuf && RShuf && LShuf->getMask() == RShuf->getMask() &&
- isa<UndefValue>(LShuf->getOperand(1)) &&
- isa<UndefValue>(RShuf->getOperand(1)) &&
- LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType()) {
- Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
- RShuf->getOperand(0), Builder);
- return Builder->CreateShuffleVector(
- NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask());
- }
- // If one argument is a shuffle within one vector, the other is a constant,
- // try moving the shuffle after the binary operation.
- ShuffleVectorInst *Shuffle = nullptr;
- Constant *C1 = nullptr;
- if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
- if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
- if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
- if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
- if (Shuffle && C1 &&
- (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
- isa<UndefValue>(Shuffle->getOperand(1)) &&
- Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
- SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
- // Find constant C2 that has property:
- // shuffle(C2, ShMask) = C1
- // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
- // reorder is not possible.
- SmallVector<Constant*, 16> C2M(VWidth,
- UndefValue::get(C1->getType()->getScalarType()));
- bool MayChange = true;
- for (unsigned I = 0; I < VWidth; ++I) {
- if (ShMask[I] >= 0) {
- assert(ShMask[I] < (int)VWidth);
- if (!isa<UndefValue>(C2M[ShMask[I]])) {
- MayChange = false;
- break;
- }
- C2M[ShMask[I]] = C1->getAggregateElement(I);
- }
- }
- if (MayChange) {
- Constant *C2 = ConstantVector::get(C2M);
- Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
- Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
- Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
- return Builder->CreateShuffleVector(NewBO,
- UndefValue::get(Inst.getType()), Shuffle->getMask());
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
- if (Value *V =
- SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, &TLI, &DT, &AC))
- return replaceInstUsesWith(GEP, V);
- Value *PtrOp = GEP.getOperand(0);
- // Eliminate unneeded casts for indices, and replace indices which displace
- // by multiples of a zero size type with zero.
- bool MadeChange = false;
- Type *IntPtrTy =
- DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
- ++I, ++GTI) {
- // Skip indices into struct types.
- if (GTI.isStruct())
- continue;
- // Index type should have the same width as IntPtr
- Type *IndexTy = (*I)->getType();
- Type *NewIndexType = IndexTy->isVectorTy() ?
- VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
- // If the element type has zero size then any index over it is equivalent
- // to an index of zero, so replace it with zero if it is not zero already.
- Type *EltTy = GTI.getIndexedType();
- if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
- if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
- *I = Constant::getNullValue(NewIndexType);
- MadeChange = true;
- }
- if (IndexTy != NewIndexType) {
- // If we are using a wider index than needed for this platform, shrink
- // it to what we need. If narrower, sign-extend it to what we need.
- // This explicit cast can make subsequent optimizations more obvious.
- *I = Builder->CreateIntCast(*I, NewIndexType, true);
- MadeChange = true;
- }
- }
- if (MadeChange)
- return &GEP;
- // Check to see if the inputs to the PHI node are getelementptr instructions.
- if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
- GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
- if (!Op1)
- return nullptr;
- // Don't fold a GEP into itself through a PHI node. This can only happen
- // through the back-edge of a loop. Folding a GEP into itself means that
- // the value of the previous iteration needs to be stored in the meantime,
- // thus requiring an additional register variable to be live, but not
- // actually achieving anything (the GEP still needs to be executed once per
- // loop iteration).
- if (Op1 == &GEP)
- return nullptr;
- int DI = -1;
- for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
- GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
- if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
- return nullptr;
- // As for Op1 above, don't try to fold a GEP into itself.
- if (Op2 == &GEP)
- return nullptr;
- // Keep track of the type as we walk the GEP.
- Type *CurTy = nullptr;
- for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
- if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
- return nullptr;
- if (Op1->getOperand(J) != Op2->getOperand(J)) {
- if (DI == -1) {
- // We have not seen any differences yet in the GEPs feeding the
- // PHI yet, so we record this one if it is allowed to be a
- // variable.
- // The first two arguments can vary for any GEP, the rest have to be
- // static for struct slots
- if (J > 1 && CurTy->isStructTy())
- return nullptr;
- DI = J;
- } else {
- // The GEP is different by more than one input. While this could be
- // extended to support GEPs that vary by more than one variable it
- // doesn't make sense since it greatly increases the complexity and
- // would result in an R+R+R addressing mode which no backend
- // directly supports and would need to be broken into several
- // simpler instructions anyway.
- return nullptr;
- }
- }
- // Sink down a layer of the type for the next iteration.
- if (J > 0) {
- if (J == 1) {
- CurTy = Op1->getSourceElementType();
- } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
- CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
- } else {
- CurTy = nullptr;
- }
- }
- }
- }
- // If not all GEPs are identical we'll have to create a new PHI node.
- // Check that the old PHI node has only one use so that it will get
- // removed.
- if (DI != -1 && !PN->hasOneUse())
- return nullptr;
- GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
- if (DI == -1) {
- // All the GEPs feeding the PHI are identical. Clone one down into our
- // BB so that it can be merged with the current GEP.
- GEP.getParent()->getInstList().insert(
- GEP.getParent()->getFirstInsertionPt(), NewGEP);
- } else {
- // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
- // into the current block so it can be merged, and create a new PHI to
- // set that index.
- PHINode *NewPN;
- {
- IRBuilderBase::InsertPointGuard Guard(*Builder);
- Builder->SetInsertPoint(PN);
- NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
- PN->getNumOperands());
- }
- for (auto &I : PN->operands())
- NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
- PN->getIncomingBlock(I));
- NewGEP->setOperand(DI, NewPN);
- GEP.getParent()->getInstList().insert(
- GEP.getParent()->getFirstInsertionPt(), NewGEP);
- NewGEP->setOperand(DI, NewPN);
- }
- GEP.setOperand(0, NewGEP);
- PtrOp = NewGEP;
- }
- // Combine Indices - If the source pointer to this getelementptr instruction
- // is a getelementptr instruction, combine the indices of the two
- // getelementptr instructions into a single instruction.
- //
- if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
- if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
- return nullptr;
- // Note that if our source is a gep chain itself then we wait for that
- // chain to be resolved before we perform this transformation. This
- // avoids us creating a TON of code in some cases.
- if (GEPOperator *SrcGEP =
- dyn_cast<GEPOperator>(Src->getOperand(0)))
- if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
- return nullptr; // Wait until our source is folded to completion.
- SmallVector<Value*, 8> Indices;
- // Find out whether the last index in the source GEP is a sequential idx.
- bool EndsWithSequential = false;
- for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
- I != E; ++I)
- EndsWithSequential = I.isSequential();
- // Can we combine the two pointer arithmetics offsets?
- if (EndsWithSequential) {
- // Replace: gep (gep %P, long B), long A, ...
- // With: T = long A+B; gep %P, T, ...
- //
- Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
- Value *GO1 = GEP.getOperand(1);
- // If they aren't the same type, then the input hasn't been processed
- // by the loop above yet (which canonicalizes sequential index types to
- // intptr_t). Just avoid transforming this until the input has been
- // normalized.
- if (SO1->getType() != GO1->getType())
- return nullptr;
- Value* Sum = SimplifyAddInst(GO1, SO1, false, false, DL, &TLI, &DT, &AC);
- // Only do the combine when we are sure the cost after the
- // merge is never more than that before the merge.
- if (Sum == nullptr)
- return nullptr;
- // Update the GEP in place if possible.
- if (Src->getNumOperands() == 2) {
- GEP.setOperand(0, Src->getOperand(0));
- GEP.setOperand(1, Sum);
- return &GEP;
- }
- Indices.append(Src->op_begin()+1, Src->op_end()-1);
- Indices.push_back(Sum);
- Indices.append(GEP.op_begin()+2, GEP.op_end());
- } else if (isa<Constant>(*GEP.idx_begin()) &&
- cast<Constant>(*GEP.idx_begin())->isNullValue() &&
- Src->getNumOperands() != 1) {
- // Otherwise we can do the fold if the first index of the GEP is a zero
- Indices.append(Src->op_begin()+1, Src->op_end());
- Indices.append(GEP.idx_begin()+1, GEP.idx_end());
- }
- if (!Indices.empty())
- return GEP.isInBounds() && Src->isInBounds()
- ? GetElementPtrInst::CreateInBounds(
- Src->getSourceElementType(), Src->getOperand(0), Indices,
- GEP.getName())
- : GetElementPtrInst::Create(Src->getSourceElementType(),
- Src->getOperand(0), Indices,
- GEP.getName());
- }
- if (GEP.getNumIndices() == 1) {
- unsigned AS = GEP.getPointerAddressSpace();
- if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
- DL.getPointerSizeInBits(AS)) {
- Type *Ty = GEP.getSourceElementType();
- uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
- bool Matched = false;
- uint64_t C;
- Value *V = nullptr;
- if (TyAllocSize == 1) {
- V = GEP.getOperand(1);
- Matched = true;
- } else if (match(GEP.getOperand(1),
- m_AShr(m_Value(V), m_ConstantInt(C)))) {
- if (TyAllocSize == 1ULL << C)
- Matched = true;
- } else if (match(GEP.getOperand(1),
- m_SDiv(m_Value(V), m_ConstantInt(C)))) {
- if (TyAllocSize == C)
- Matched = true;
- }
- if (Matched) {
- // Canonicalize (gep i8* X, -(ptrtoint Y))
- // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
- // The GEP pattern is emitted by the SCEV expander for certain kinds of
- // pointer arithmetic.
- if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
- Operator *Index = cast<Operator>(V);
- Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
- Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
- return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
- }
- // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
- // to (bitcast Y)
- Value *Y;
- if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
- m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
- GEP.getType());
- }
- }
- }
- }
- // We do not handle pointer-vector geps here.
- if (GEP.getType()->isVectorTy())
- return nullptr;
- // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
- Value *StrippedPtr = PtrOp->stripPointerCasts();
- PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
- if (StrippedPtr != PtrOp) {
- bool HasZeroPointerIndex = false;
- if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
- HasZeroPointerIndex = C->isZero();
- // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
- // into : GEP [10 x i8]* X, i32 0, ...
- //
- // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
- // into : GEP i8* X, ...
- //
- // This occurs when the program declares an array extern like "int X[];"
- if (HasZeroPointerIndex) {
- if (ArrayType *CATy =
- dyn_cast<ArrayType>(GEP.getSourceElementType())) {
- // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
- // -> GEP i8* X, ...
- SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
- GetElementPtrInst *Res = GetElementPtrInst::Create(
- StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
- Res->setIsInBounds(GEP.isInBounds());
- if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
- return Res;
- // Insert Res, and create an addrspacecast.
- // e.g.,
- // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
- // ->
- // %0 = GEP i8 addrspace(1)* X, ...
- // addrspacecast i8 addrspace(1)* %0 to i8*
- return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
- }
- if (ArrayType *XATy =
- dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
- // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == XATy->getElementType()) {
- // -> GEP [10 x i8]* X, i32 0, ...
- // At this point, we know that the cast source type is a pointer
- // to an array of the same type as the destination pointer
- // array. Because the array type is never stepped over (there
- // is a leading zero) we can fold the cast into this GEP.
- if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
- GEP.setOperand(0, StrippedPtr);
- GEP.setSourceElementType(XATy);
- return &GEP;
- }
- // Cannot replace the base pointer directly because StrippedPtr's
- // address space is different. Instead, create a new GEP followed by
- // an addrspacecast.
- // e.g.,
- // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
- // i32 0, ...
- // ->
- // %0 = GEP [10 x i8] addrspace(1)* X, ...
- // addrspacecast i8 addrspace(1)* %0 to i8*
- SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
- Value *NewGEP = GEP.isInBounds()
- ? Builder->CreateInBoundsGEP(
- nullptr, StrippedPtr, Idx, GEP.getName())
- : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
- GEP.getName());
- return new AddrSpaceCastInst(NewGEP, GEP.getType());
- }
- }
- }
- } else if (GEP.getNumOperands() == 2) {
- // Transform things like:
- // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
- // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
- Type *SrcElTy = StrippedPtrTy->getElementType();
- Type *ResElTy = GEP.getSourceElementType();
- if (SrcElTy->isArrayTy() &&
- DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
- DL.getTypeAllocSize(ResElTy)) {
- Type *IdxType = DL.getIntPtrType(GEP.getType());
- Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
- Value *NewGEP =
- GEP.isInBounds()
- ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
- GEP.getName())
- : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
- // V and GEP are both pointer types --> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
- }
- // Transform things like:
- // %V = mul i64 %N, 4
- // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
- // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
- if (ResElTy->isSized() && SrcElTy->isSized()) {
- // Check that changing the type amounts to dividing the index by a scale
- // factor.
- uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
- uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
- if (ResSize && SrcSize % ResSize == 0) {
- Value *Idx = GEP.getOperand(1);
- unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
- uint64_t Scale = SrcSize / ResSize;
- // Earlier transforms ensure that the index has type IntPtrType, which
- // considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
- "Index not cast to pointer width?");
- bool NSW;
- if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
- // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
- // If the multiplication NewIdx * Scale may overflow then the new
- // GEP may not be "inbounds".
- Value *NewGEP =
- GEP.isInBounds() && NSW
- ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
- GEP.getName())
- : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
- GEP.getName());
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
- }
- }
- }
- // Similarly, transform things like:
- // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
- // (where tmp = 8*tmp2) into:
- // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
- // Check that changing to the array element type amounts to dividing the
- // index by a scale factor.
- uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
- uint64_t ArrayEltSize =
- DL.getTypeAllocSize(SrcElTy->getArrayElementType());
- if (ResSize && ArrayEltSize % ResSize == 0) {
- Value *Idx = GEP.getOperand(1);
- unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
- uint64_t Scale = ArrayEltSize / ResSize;
- // Earlier transforms ensure that the index has type IntPtrType, which
- // considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
- "Index not cast to pointer width?");
- bool NSW;
- if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
- // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
- // If the multiplication NewIdx * Scale may overflow then the new
- // GEP may not be "inbounds".
- Value *Off[2] = {
- Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
- NewIdx};
- Value *NewGEP = GEP.isInBounds() && NSW
- ? Builder->CreateInBoundsGEP(
- SrcElTy, StrippedPtr, Off, GEP.getName())
- : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
- GEP.getName());
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
- GEP.getType());
- }
- }
- }
- }
- }
- // addrspacecast between types is canonicalized as a bitcast, then an
- // addrspacecast. To take advantage of the below bitcast + struct GEP, look
- // through the addrspacecast.
- if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
- // X = bitcast A addrspace(1)* to B addrspace(1)*
- // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
- // Z = gep Y, <...constant indices...>
- // Into an addrspacecasted GEP of the struct.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
- PtrOp = BC;
- }
- /// See if we can simplify:
- /// X = bitcast A* to B*
- /// Y = gep X, <...constant indices...>
- /// into a gep of the original struct. This is important for SROA and alias
- /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
- Value *Operand = BCI->getOperand(0);
- PointerType *OpType = cast<PointerType>(Operand->getType());
- unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
- APInt Offset(OffsetBits, 0);
- if (!isa<BitCastInst>(Operand) &&
- GEP.accumulateConstantOffset(DL, Offset)) {
- // If this GEP instruction doesn't move the pointer, just replace the GEP
- // with a bitcast of the real input to the dest type.
- if (!Offset) {
- // If the bitcast is of an allocation, and the allocation will be
- // converted to match the type of the cast, don't touch this.
- if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, &TLI)) {
- // See if the bitcast simplifies, if so, don't nuke this GEP yet.
- if (Instruction *I = visitBitCast(*BCI)) {
- if (I != BCI) {
- I->takeName(BCI);
- BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
- replaceInstUsesWith(*BCI, I);
- }
- return &GEP;
- }
- }
- if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(Operand, GEP.getType());
- return new BitCastInst(Operand, GEP.getType());
- }
- // Otherwise, if the offset is non-zero, we need to find out if there is a
- // field at Offset in 'A's type. If so, we can pull the cast through the
- // GEP.
- SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
- Value *NGEP =
- GEP.isInBounds()
- ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
- : Builder->CreateGEP(nullptr, Operand, NewIndices);
- if (NGEP->getType() == GEP.getType())
- return replaceInstUsesWith(GEP, NGEP);
- NGEP->takeName(&GEP);
- if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
- return new AddrSpaceCastInst(NGEP, GEP.getType());
- return new BitCastInst(NGEP, GEP.getType());
- }
- }
- }
- if (!GEP.isInBounds()) {
- unsigned PtrWidth =
- DL.getPointerSizeInBits(PtrOp->getType()->getPointerAddressSpace());
- APInt BasePtrOffset(PtrWidth, 0);
- Value *UnderlyingPtrOp =
- PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
- BasePtrOffset);
- if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
- if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
- BasePtrOffset.isNonNegative()) {
- APInt AllocSize(PtrWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
- if (BasePtrOffset.ule(AllocSize)) {
- return GetElementPtrInst::CreateInBounds(
- PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
- }
- }
- }
- }
- return nullptr;
- }
- static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
- Instruction *AI) {
- if (isa<ConstantPointerNull>(V))
- return true;
- if (auto *LI = dyn_cast<LoadInst>(V))
- return isa<GlobalVariable>(LI->getPointerOperand());
- // Two distinct allocations will never be equal.
- // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
- // through bitcasts of V can cause
- // the result statement below to be true, even when AI and V (ex:
- // i8* ->i32* ->i8* of AI) are the same allocations.
- return isAllocLikeFn(V, TLI) && V != AI;
- }
- static bool
- isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
- const TargetLibraryInfo *TLI) {
- SmallVector<Instruction*, 4> Worklist;
- Worklist.push_back(AI);
- do {
- Instruction *PI = Worklist.pop_back_val();
- for (User *U : PI->users()) {
- Instruction *I = cast<Instruction>(U);
- switch (I->getOpcode()) {
- default:
- // Give up the moment we see something we can't handle.
- return false;
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- Users.emplace_back(I);
- Worklist.push_back(I);
- continue;
- case Instruction::ICmp: {
- ICmpInst *ICI = cast<ICmpInst>(I);
- // We can fold eq/ne comparisons with null to false/true, respectively.
- // We also fold comparisons in some conditions provided the alloc has
- // not escaped (see isNeverEqualToUnescapedAlloc).
- if (!ICI->isEquality())
- return false;
- unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
- if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
- return false;
- Users.emplace_back(I);
- continue;
- }
- case Instruction::Call:
- // Ignore no-op and store intrinsics.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- return false;
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- case Intrinsic::memset: {
- MemIntrinsic *MI = cast<MemIntrinsic>(II);
- if (MI->isVolatile() || MI->getRawDest() != PI)
- return false;
- LLVM_FALLTHROUGH;
- }
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- Users.emplace_back(I);
- continue;
- }
- }
- if (isFreeCall(I, TLI)) {
- Users.emplace_back(I);
- continue;
- }
- return false;
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- if (SI->isVolatile() || SI->getPointerOperand() != PI)
- return false;
- Users.emplace_back(I);
- continue;
- }
- }
- llvm_unreachable("missing a return?");
- }
- } while (!Worklist.empty());
- return true;
- }
- Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
- // If we have a malloc call which is only used in any amount of comparisons
- // to null and free calls, delete the calls and replace the comparisons with
- // true or false as appropriate.
- SmallVector<WeakVH, 64> Users;
- if (isAllocSiteRemovable(&MI, Users, &TLI)) {
- for (unsigned i = 0, e = Users.size(); i != e; ++i) {
- // Lowering all @llvm.objectsize calls first because they may
- // use a bitcast/GEP of the alloca we are removing.
- if (!Users[i])
- continue;
- Instruction *I = cast<Instruction>(&*Users[i]);
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::objectsize) {
- ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
- /*MustSucceed=*/true);
- replaceInstUsesWith(*I, Result);
- eraseInstFromFunction(*I);
- Users[i] = nullptr; // Skip examining in the next loop.
- }
- }
- }
- for (unsigned i = 0, e = Users.size(); i != e; ++i) {
- if (!Users[i])
- continue;
- Instruction *I = cast<Instruction>(&*Users[i]);
- if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
- replaceInstUsesWith(*C,
- ConstantInt::get(Type::getInt1Ty(C->getContext()),
- C->isFalseWhenEqual()));
- } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
- replaceInstUsesWith(*I, UndefValue::get(I->getType()));
- }
- eraseInstFromFunction(*I);
- }
- if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
- // Replace invoke with a NOP intrinsic to maintain the original CFG
- Module *M = II->getModule();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
- InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
- None, "", II->getParent());
- }
- return eraseInstFromFunction(MI);
- }
- return nullptr;
- }
- /// \brief Move the call to free before a NULL test.
- ///
- /// Check if this free is accessed after its argument has been test
- /// against NULL (property 0).
- /// If yes, it is legal to move this call in its predecessor block.
- ///
- /// The move is performed only if the block containing the call to free
- /// will be removed, i.e.:
- /// 1. it has only one predecessor P, and P has two successors
- /// 2. it contains the call and an unconditional branch
- /// 3. its successor is the same as its predecessor's successor
- ///
- /// The profitability is out-of concern here and this function should
- /// be called only if the caller knows this transformation would be
- /// profitable (e.g., for code size).
- static Instruction *
- tryToMoveFreeBeforeNullTest(CallInst &FI) {
- Value *Op = FI.getArgOperand(0);
- BasicBlock *FreeInstrBB = FI.getParent();
- BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
- // Validate part of constraint #1: Only one predecessor
- // FIXME: We can extend the number of predecessor, but in that case, we
- // would duplicate the call to free in each predecessor and it may
- // not be profitable even for code size.
- if (!PredBB)
- return nullptr;
- // Validate constraint #2: Does this block contains only the call to
- // free and an unconditional branch?
- // FIXME: We could check if we can speculate everything in the
- // predecessor block
- if (FreeInstrBB->size() != 2)
- return nullptr;
- BasicBlock *SuccBB;
- if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
- return nullptr;
- // Validate the rest of constraint #1 by matching on the pred branch.
- TerminatorInst *TI = PredBB->getTerminator();
- BasicBlock *TrueBB, *FalseBB;
- ICmpInst::Predicate Pred;
- if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
- return nullptr;
- if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
- return nullptr;
- // Validate constraint #3: Ensure the null case just falls through.
- if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
- return nullptr;
- assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
- "Broken CFG: missing edge from predecessor to successor");
- FI.moveBefore(TI);
- return &FI;
- }
- Instruction *InstCombiner::visitFree(CallInst &FI) {
- Value *Op = FI.getArgOperand(0);
- // free undef -> unreachable.
- if (isa<UndefValue>(Op)) {
- // Insert a new store to null because we cannot modify the CFG here.
- Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
- UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
- return eraseInstFromFunction(FI);
- }
- // If we have 'free null' delete the instruction. This can happen in stl code
- // when lots of inlining happens.
- if (isa<ConstantPointerNull>(Op))
- return eraseInstFromFunction(FI);
- // If we optimize for code size, try to move the call to free before the null
- // test so that simplify cfg can remove the empty block and dead code
- // elimination the branch. I.e., helps to turn something like:
- // if (foo) free(foo);
- // into
- // free(foo);
- if (MinimizeSize)
- if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
- return I;
- return nullptr;
- }
- Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
- if (RI.getNumOperands() == 0) // ret void
- return nullptr;
- Value *ResultOp = RI.getOperand(0);
- Type *VTy = ResultOp->getType();
- if (!VTy->isIntegerTy())
- return nullptr;
- // There might be assume intrinsics dominating this return that completely
- // determine the value. If so, constant fold it.
- unsigned BitWidth = VTy->getPrimitiveSizeInBits();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
- if ((KnownZero|KnownOne).isAllOnesValue())
- RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
- return nullptr;
- }
- Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
- // Change br (not X), label True, label False to: br X, label False, True
- Value *X = nullptr;
- BasicBlock *TrueDest;
- BasicBlock *FalseDest;
- if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
- !isa<Constant>(X)) {
- // Swap Destinations and condition...
- BI.setCondition(X);
- BI.swapSuccessors();
- return &BI;
- }
- // If the condition is irrelevant, remove the use so that other
- // transforms on the condition become more effective.
- if (BI.isConditional() &&
- BI.getSuccessor(0) == BI.getSuccessor(1) &&
- !isa<UndefValue>(BI.getCondition())) {
- BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
- return &BI;
- }
- // Canonicalize fcmp_one -> fcmp_oeq
- FCmpInst::Predicate FPred; Value *Y;
- if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)) &&
- BI.getCondition()->hasOneUse())
- if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
- FPred == FCmpInst::FCMP_OGE) {
- FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
- Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
- // Swap Destinations and condition.
- BI.swapSuccessors();
- Worklist.Add(Cond);
- return &BI;
- }
- // Canonicalize icmp_ne -> icmp_eq
- ICmpInst::Predicate IPred;
- if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)) &&
- BI.getCondition()->hasOneUse())
- if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
- IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
- IPred == ICmpInst::ICMP_SGE) {
- ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
- Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
- // Swap Destinations and condition.
- BI.swapSuccessors();
- Worklist.Add(Cond);
- return &BI;
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
- Value *Cond = SI.getCondition();
- Value *Op0;
- ConstantInt *AddRHS;
- if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
- // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
- for (auto Case : SI.cases()) {
- Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
- assert(isa<ConstantInt>(NewCase) &&
- "Result of expression should be constant");
- Case.setValue(cast<ConstantInt>(NewCase));
- }
- SI.setCondition(Op0);
- return &SI;
- }
- unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
- unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
- unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
- // Compute the number of leading bits we can ignore.
- // TODO: A better way to determine this would use ComputeNumSignBits().
- for (auto &C : SI.cases()) {
- LeadingKnownZeros = std::min(
- LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
- LeadingKnownOnes = std::min(
- LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
- }
- unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
- // Shrink the condition operand if the new type is smaller than the old type.
- // This may produce a non-standard type for the switch, but that's ok because
- // the backend should extend back to a legal type for the target.
- if (NewWidth > 0 && NewWidth < BitWidth) {
- IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
- Builder->SetInsertPoint(&SI);
- Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
- SI.setCondition(NewCond);
- for (auto Case : SI.cases()) {
- APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
- Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
- }
- return &SI;
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
- Value *Agg = EV.getAggregateOperand();
- if (!EV.hasIndices())
- return replaceInstUsesWith(EV, Agg);
- if (Value *V =
- SimplifyExtractValueInst(Agg, EV.getIndices(), DL, &TLI, &DT, &AC))
- return replaceInstUsesWith(EV, V);
- if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
- // We're extracting from an insertvalue instruction, compare the indices
- const unsigned *exti, *exte, *insi, *inse;
- for (exti = EV.idx_begin(), insi = IV->idx_begin(),
- exte = EV.idx_end(), inse = IV->idx_end();
- exti != exte && insi != inse;
- ++exti, ++insi) {
- if (*insi != *exti)
- // The insert and extract both reference distinctly different elements.
- // This means the extract is not influenced by the insert, and we can
- // replace the aggregate operand of the extract with the aggregate
- // operand of the insert. i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 0
- // with
- // %E = extractvalue { i32, { i32 } } %A, 0
- return ExtractValueInst::Create(IV->getAggregateOperand(),
- EV.getIndices());
- }
- if (exti == exte && insi == inse)
- // Both iterators are at the end: Index lists are identical. Replace
- // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %C = extractvalue { i32, { i32 } } %B, 1, 0
- // with "i32 42"
- return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
- if (exti == exte) {
- // The extract list is a prefix of the insert list. i.e. replace
- // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %E = extractvalue { i32, { i32 } } %I, 1
- // with
- // %X = extractvalue { i32, { i32 } } %A, 1
- // %E = insertvalue { i32 } %X, i32 42, 0
- // by switching the order of the insert and extract (though the
- // insertvalue should be left in, since it may have other uses).
- Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
- EV.getIndices());
- return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
- makeArrayRef(insi, inse));
- }
- if (insi == inse)
- // The insert list is a prefix of the extract list
- // We can simply remove the common indices from the extract and make it
- // operate on the inserted value instead of the insertvalue result.
- // i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 1, 0
- // with
- // %E extractvalue { i32 } { i32 42 }, 0
- return ExtractValueInst::Create(IV->getInsertedValueOperand(),
- makeArrayRef(exti, exte));
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
- // We're extracting from an intrinsic, see if we're the only user, which
- // allows us to simplify multiple result intrinsics to simpler things that
- // just get one value.
- if (II->hasOneUse()) {
- // Check if we're grabbing the overflow bit or the result of a 'with
- // overflow' intrinsic. If it's the latter we can remove the intrinsic
- // and replace it with a traditional binary instruction.
- switch (II->getIntrinsicID()) {
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateAdd(LHS, RHS);
- }
- // If the normal result of the add is dead, and the RHS is a constant,
- // we can transform this into a range comparison.
- // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
- if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
- return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
- ConstantExpr::getNot(CI));
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateSub(LHS, RHS);
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- replaceInstUsesWith(*II, UndefValue::get(II->getType()));
- eraseInstFromFunction(*II);
- return BinaryOperator::CreateMul(LHS, RHS);
- }
- break;
- default:
- break;
- }
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Agg))
- // If the (non-volatile) load only has one use, we can rewrite this to a
- // load from a GEP. This reduces the size of the load. If a load is used
- // only by extractvalue instructions then this either must have been
- // optimized before, or it is a struct with padding, in which case we
- // don't want to do the transformation as it loses padding knowledge.
- if (L->isSimple() && L->hasOneUse()) {
- // extractvalue has integer indices, getelementptr has Value*s. Convert.
- SmallVector<Value*, 4> Indices;
- // Prefix an i32 0 since we need the first element.
- Indices.push_back(Builder->getInt32(0));
- for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
- I != E; ++I)
- Indices.push_back(Builder->getInt32(*I));
- // We need to insert these at the location of the old load, not at that of
- // the extractvalue.
- Builder->SetInsertPoint(L);
- Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
- L->getPointerOperand(), Indices);
- // Returning the load directly will cause the main loop to insert it in
- // the wrong spot, so use replaceInstUsesWith().
- return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
- }
- // We could simplify extracts from other values. Note that nested extracts may
- // already be simplified implicitly by the above: extract (extract (insert) )
- // will be translated into extract ( insert ( extract ) ) first and then just
- // the value inserted, if appropriate. Similarly for extracts from single-use
- // loads: extract (extract (load)) will be translated to extract (load (gep))
- // and if again single-use then via load (gep (gep)) to load (gep).
- // However, double extracts from e.g. function arguments or return values
- // aren't handled yet.
- return nullptr;
- }
- /// Return 'true' if the given typeinfo will match anything.
- static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
- switch (Personality) {
- case EHPersonality::GNU_C:
- case EHPersonality::GNU_C_SjLj:
- case EHPersonality::Rust:
- // The GCC C EH and Rust personality only exists to support cleanups, so
- // it's not clear what the semantics of catch clauses are.
- return false;
- case EHPersonality::Unknown:
- return false;
- case EHPersonality::GNU_Ada:
- // While __gnat_all_others_value will match any Ada exception, it doesn't
- // match foreign exceptions (or didn't, before gcc-4.7).
- return false;
- case EHPersonality::GNU_CXX:
- case EHPersonality::GNU_CXX_SjLj:
- case EHPersonality::GNU_ObjC:
- case EHPersonality::MSVC_X86SEH:
- case EHPersonality::MSVC_Win64SEH:
- case EHPersonality::MSVC_CXX:
- case EHPersonality::CoreCLR:
- return TypeInfo->isNullValue();
- }
- llvm_unreachable("invalid enum");
- }
- static bool shorter_filter(const Value *LHS, const Value *RHS) {
- return
- cast<ArrayType>(LHS->getType())->getNumElements()
- <
- cast<ArrayType>(RHS->getType())->getNumElements();
- }
- Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
- // The logic here should be correct for any real-world personality function.
- // However if that turns out not to be true, the offending logic can always
- // be conditioned on the personality function, like the catch-all logic is.
- EHPersonality Personality =
- classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
- // Simplify the list of clauses, eg by removing repeated catch clauses
- // (these are often created by inlining).
- bool MakeNewInstruction = false; // If true, recreate using the following:
- SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
- bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
- SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
- for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
- bool isLastClause = i + 1 == e;
- if (LI.isCatch(i)) {
- // A catch clause.
- Constant *CatchClause = LI.getClause(i);
- Constant *TypeInfo = CatchClause->stripPointerCasts();
- // If we already saw this clause, there is no point in having a second
- // copy of it.
- if (AlreadyCaught.insert(TypeInfo).second) {
- // This catch clause was not already seen.
- NewClauses.push_back(CatchClause);
- } else {
- // Repeated catch clause - drop the redundant copy.
- MakeNewInstruction = true;
- }
- // If this is a catch-all then there is no point in keeping any following
- // clauses or marking the landingpad as having a cleanup.
- if (isCatchAll(Personality, TypeInfo)) {
- if (!isLastClause)
- MakeNewInstruction = true;
- CleanupFlag = false;
- break;
- }
- } else {
- // A filter clause. If any of the filter elements were already caught
- // then they can be dropped from the filter. It is tempting to try to
- // exploit the filter further by saying that any typeinfo that does not
- // occur in the filter can't be caught later (and thus can be dropped).
- // However this would be wrong, since typeinfos can match without being
- // equal (for example if one represents a C++ class, and the other some
- // class derived from it).
- assert(LI.isFilter(i) && "Unsupported landingpad clause!");
- Constant *FilterClause = LI.getClause(i);
- ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
- unsigned NumTypeInfos = FilterType->getNumElements();
- // An empty filter catches everything, so there is no point in keeping any
- // following clauses or marking the landingpad as having a cleanup. By
- // dealing with this case here the following code is made a bit simpler.
- if (!NumTypeInfos) {
- NewClauses.push_back(FilterClause);
- if (!isLastClause)
- MakeNewInstruction = true;
- CleanupFlag = false;
- break;
- }
- bool MakeNewFilter = false; // If true, make a new filter.
- SmallVector<Constant *, 16> NewFilterElts; // New elements.
- if (isa<ConstantAggregateZero>(FilterClause)) {
- // Not an empty filter - it contains at least one null typeinfo.
- assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
- Constant *TypeInfo =
- Constant::getNullValue(FilterType->getElementType());
- // If this typeinfo is a catch-all then the filter can never match.
- if (isCatchAll(Personality, TypeInfo)) {
- // Throw the filter away.
- MakeNewInstruction = true;
- continue;
- }
- // There is no point in having multiple copies of this typeinfo, so
- // discard all but the first copy if there is more than one.
- NewFilterElts.push_back(TypeInfo);
- if (NumTypeInfos > 1)
- MakeNewFilter = true;
- } else {
- ConstantArray *Filter = cast<ConstantArray>(FilterClause);
- SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
- NewFilterElts.reserve(NumTypeInfos);
- // Remove any filter elements that were already caught or that already
- // occurred in the filter. While there, see if any of the elements are
- // catch-alls. If so, the filter can be discarded.
- bool SawCatchAll = false;
- for (unsigned j = 0; j != NumTypeInfos; ++j) {
- Constant *Elt = Filter->getOperand(j);
- Constant *TypeInfo = Elt->stripPointerCasts();
- if (isCatchAll(Personality, TypeInfo)) {
- // This element is a catch-all. Bail out, noting this fact.
- SawCatchAll = true;
- break;
- }
- // Even if we've seen a type in a catch clause, we don't want to
- // remove it from the filter. An unexpected type handler may be
- // set up for a call site which throws an exception of the same
- // type caught. In order for the exception thrown by the unexpected
- // handler to propagate correctly, the filter must be correctly
- // described for the call site.
- //
- // Example:
- //
- // void unexpected() { throw 1;}
- // void foo() throw (int) {
- // std::set_unexpected(unexpected);
- // try {
- // throw 2.0;
- // } catch (int i) {}
- // }
- // There is no point in having multiple copies of the same typeinfo in
- // a filter, so only add it if we didn't already.
- if (SeenInFilter.insert(TypeInfo).second)
- NewFilterElts.push_back(cast<Constant>(Elt));
- }
- // A filter containing a catch-all cannot match anything by definition.
- if (SawCatchAll) {
- // Throw the filter away.
- MakeNewInstruction = true;
- continue;
- }
- // If we dropped something from the filter, make a new one.
- if (NewFilterElts.size() < NumTypeInfos)
- MakeNewFilter = true;
- }
- if (MakeNewFilter) {
- FilterType = ArrayType::get(FilterType->getElementType(),
- NewFilterElts.size());
- FilterClause = ConstantArray::get(FilterType, NewFilterElts);
- MakeNewInstruction = true;
- }
- NewClauses.push_back(FilterClause);
- // If the new filter is empty then it will catch everything so there is
- // no point in keeping any following clauses or marking the landingpad
- // as having a cleanup. The case of the original filter being empty was
- // already handled above.
- if (MakeNewFilter && !NewFilterElts.size()) {
- assert(MakeNewInstruction && "New filter but not a new instruction!");
- CleanupFlag = false;
- break;
- }
- }
- }
- // If several filters occur in a row then reorder them so that the shortest
- // filters come first (those with the smallest number of elements). This is
- // advantageous because shorter filters are more likely to match, speeding up
- // unwinding, but mostly because it increases the effectiveness of the other
- // filter optimizations below.
- for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
- unsigned j;
- // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
- for (j = i; j != e; ++j)
- if (!isa<ArrayType>(NewClauses[j]->getType()))
- break;
- // Check whether the filters are already sorted by length. We need to know
- // if sorting them is actually going to do anything so that we only make a
- // new landingpad instruction if it does.
- for (unsigned k = i; k + 1 < j; ++k)
- if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
- // Not sorted, so sort the filters now. Doing an unstable sort would be
- // correct too but reordering filters pointlessly might confuse users.
- std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
- shorter_filter);
- MakeNewInstruction = true;
- break;
- }
- // Look for the next batch of filters.
- i = j + 1;
- }
- // If typeinfos matched if and only if equal, then the elements of a filter L
- // that occurs later than a filter F could be replaced by the intersection of
- // the elements of F and L. In reality two typeinfos can match without being
- // equal (for example if one represents a C++ class, and the other some class
- // derived from it) so it would be wrong to perform this transform in general.
- // However the transform is correct and useful if F is a subset of L. In that
- // case L can be replaced by F, and thus removed altogether since repeating a
- // filter is pointless. So here we look at all pairs of filters F and L where
- // L follows F in the list of clauses, and remove L if every element of F is
- // an element of L. This can occur when inlining C++ functions with exception
- // specifications.
- for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
- // Examine each filter in turn.
- Value *Filter = NewClauses[i];
- ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
- if (!FTy)
- // Not a filter - skip it.
- continue;
- unsigned FElts = FTy->getNumElements();
- // Examine each filter following this one. Doing this backwards means that
- // we don't have to worry about filters disappearing under us when removed.
- for (unsigned j = NewClauses.size() - 1; j != i; --j) {
- Value *LFilter = NewClauses[j];
- ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
- if (!LTy)
- // Not a filter - skip it.
- continue;
- // If Filter is a subset of LFilter, i.e. every element of Filter is also
- // an element of LFilter, then discard LFilter.
- SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
- // If Filter is empty then it is a subset of LFilter.
- if (!FElts) {
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- // Move on to the next filter.
- continue;
- }
- unsigned LElts = LTy->getNumElements();
- // If Filter is longer than LFilter then it cannot be a subset of it.
- if (FElts > LElts)
- // Move on to the next filter.
- continue;
- // At this point we know that LFilter has at least one element.
- if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
- // Filter is a subset of LFilter iff Filter contains only zeros (as we
- // already know that Filter is not longer than LFilter).
- if (isa<ConstantAggregateZero>(Filter)) {
- assert(FElts <= LElts && "Should have handled this case earlier!");
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- }
- // Move on to the next filter.
- continue;
- }
- ConstantArray *LArray = cast<ConstantArray>(LFilter);
- if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
- // Since Filter is non-empty and contains only zeros, it is a subset of
- // LFilter iff LFilter contains a zero.
- assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
- for (unsigned l = 0; l != LElts; ++l)
- if (LArray->getOperand(l)->isNullValue()) {
- // LFilter contains a zero - discard it.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- break;
- }
- // Move on to the next filter.
- continue;
- }
- // At this point we know that both filters are ConstantArrays. Loop over
- // operands to see whether every element of Filter is also an element of
- // LFilter. Since filters tend to be short this is probably faster than
- // using a method that scales nicely.
- ConstantArray *FArray = cast<ConstantArray>(Filter);
- bool AllFound = true;
- for (unsigned f = 0; f != FElts; ++f) {
- Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
- AllFound = false;
- for (unsigned l = 0; l != LElts; ++l) {
- Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
- if (LTypeInfo == FTypeInfo) {
- AllFound = true;
- break;
- }
- }
- if (!AllFound)
- break;
- }
- if (AllFound) {
- // Discard LFilter.
- NewClauses.erase(J);
- MakeNewInstruction = true;
- }
- // Move on to the next filter.
- }
- }
- // If we changed any of the clauses, replace the old landingpad instruction
- // with a new one.
- if (MakeNewInstruction) {
- LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
- NewClauses.size());
- for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
- NLI->addClause(NewClauses[i]);
- // A landing pad with no clauses must have the cleanup flag set. It is
- // theoretically possible, though highly unlikely, that we eliminated all
- // clauses. If so, force the cleanup flag to true.
- if (NewClauses.empty())
- CleanupFlag = true;
- NLI->setCleanup(CleanupFlag);
- return NLI;
- }
- // Even if none of the clauses changed, we may nonetheless have understood
- // that the cleanup flag is pointless. Clear it if so.
- if (LI.isCleanup() != CleanupFlag) {
- assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
- LI.setCleanup(CleanupFlag);
- return &LI;
- }
- return nullptr;
- }
- /// Try to move the specified instruction from its current block into the
- /// beginning of DestBlock, which can only happen if it's safe to move the
- /// instruction past all of the instructions between it and the end of its
- /// block.
- static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
- assert(I->hasOneUse() && "Invariants didn't hold!");
- // Cannot move control-flow-involving, volatile loads, vaarg, etc.
- if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
- isa<TerminatorInst>(I))
- return false;
- // Do not sink alloca instructions out of the entry block.
- if (isa<AllocaInst>(I) && I->getParent() ==
- &DestBlock->getParent()->getEntryBlock())
- return false;
- // Do not sink into catchswitch blocks.
- if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
- return false;
- // Do not sink convergent call instructions.
- if (auto *CI = dyn_cast<CallInst>(I)) {
- if (CI->isConvergent())
- return false;
- }
- // We can only sink load instructions if there is nothing between the load and
- // the end of block that could change the value.
- if (I->mayReadFromMemory()) {
- for (BasicBlock::iterator Scan = I->getIterator(),
- E = I->getParent()->end();
- Scan != E; ++Scan)
- if (Scan->mayWriteToMemory())
- return false;
- }
- BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
- I->moveBefore(&*InsertPos);
- ++NumSunkInst;
- return true;
- }
- bool InstCombiner::run() {
- while (!Worklist.isEmpty()) {
- Instruction *I = Worklist.RemoveOne();
- if (I == nullptr) continue; // skip null values.
- // Check to see if we can DCE the instruction.
- if (isInstructionTriviallyDead(I, &TLI)) {
- DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
- eraseInstFromFunction(*I);
- ++NumDeadInst;
- MadeIRChange = true;
- continue;
- }
- // Instruction isn't dead, see if we can constant propagate it.
- if (!I->use_empty() &&
- (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
- if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
- DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
- // Add operands to the worklist.
- replaceInstUsesWith(*I, C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(I, &TLI))
- eraseInstFromFunction(*I);
- MadeIRChange = true;
- continue;
- }
- }
- // In general, it is possible for computeKnownBits to determine all bits in
- // a value even when the operands are not all constants.
- Type *Ty = I->getType();
- if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
- unsigned BitWidth = Ty->getScalarSizeInBits();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
- if ((KnownZero | KnownOne).isAllOnesValue()) {
- Constant *C = ConstantInt::get(Ty, KnownOne);
- DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
- " from: " << *I << '\n');
- // Add operands to the worklist.
- replaceInstUsesWith(*I, C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(I, &TLI))
- eraseInstFromFunction(*I);
- MadeIRChange = true;
- continue;
- }
- }
- // See if we can trivially sink this instruction to a successor basic block.
- if (I->hasOneUse()) {
- BasicBlock *BB = I->getParent();
- Instruction *UserInst = cast<Instruction>(*I->user_begin());
- BasicBlock *UserParent;
- // Get the block the use occurs in.
- if (PHINode *PN = dyn_cast<PHINode>(UserInst))
- UserParent = PN->getIncomingBlock(*I->use_begin());
- else
- UserParent = UserInst->getParent();
- if (UserParent != BB) {
- bool UserIsSuccessor = false;
- // See if the user is one of our successors.
- for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
- if (*SI == UserParent) {
- UserIsSuccessor = true;
- break;
- }
- // If the user is one of our immediate successors, and if that successor
- // only has us as a predecessors (we'd have to split the critical edge
- // otherwise), we can keep going.
- if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
- // Okay, the CFG is simple enough, try to sink this instruction.
- if (TryToSinkInstruction(I, UserParent)) {
- DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
- MadeIRChange = true;
- // We'll add uses of the sunk instruction below, but since sinking
- // can expose opportunities for it's *operands* add them to the
- // worklist
- for (Use &U : I->operands())
- if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
- Worklist.Add(OpI);
- }
- }
- }
- }
- // Now that we have an instruction, try combining it to simplify it.
- Builder->SetInsertPoint(I);
- Builder->SetCurrentDebugLocation(I->getDebugLoc());
- #ifndef NDEBUG
- std::string OrigI;
- #endif
- DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
- DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
- if (Instruction *Result = visit(*I)) {
- ++NumCombined;
- // Should we replace the old instruction with a new one?
- if (Result != I) {
- DEBUG(dbgs() << "IC: Old = " << *I << '\n'
- << " New = " << *Result << '\n');
- if (I->getDebugLoc())
- Result->setDebugLoc(I->getDebugLoc());
- // Everything uses the new instruction now.
- I->replaceAllUsesWith(Result);
- // Move the name to the new instruction first.
- Result->takeName(I);
- // Push the new instruction and any users onto the worklist.
- Worklist.AddUsersToWorkList(*Result);
- Worklist.Add(Result);
- // Insert the new instruction into the basic block...
- BasicBlock *InstParent = I->getParent();
- BasicBlock::iterator InsertPos = I->getIterator();
- // If we replace a PHI with something that isn't a PHI, fix up the
- // insertion point.
- if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
- InsertPos = InstParent->getFirstInsertionPt();
- InstParent->getInstList().insert(InsertPos, Result);
- eraseInstFromFunction(*I);
- } else {
- DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
- << " New = " << *I << '\n');
- // If the instruction was modified, it's possible that it is now dead.
- // if so, remove it.
- if (isInstructionTriviallyDead(I, &TLI)) {
- eraseInstFromFunction(*I);
- } else {
- Worklist.AddUsersToWorkList(*I);
- Worklist.Add(I);
- }
- }
- MadeIRChange = true;
- }
- }
- Worklist.Zap();
- return MadeIRChange;
- }
- /// Walk the function in depth-first order, adding all reachable code to the
- /// worklist.
- ///
- /// This has a couple of tricks to make the code faster and more powerful. In
- /// particular, we constant fold and DCE instructions as we go, to avoid adding
- /// them to the worklist (this significantly speeds up instcombine on code where
- /// many instructions are dead or constant). Additionally, if we find a branch
- /// whose condition is a known constant, we only visit the reachable successors.
- ///
- static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
- SmallPtrSetImpl<BasicBlock *> &Visited,
- InstCombineWorklist &ICWorklist,
- const TargetLibraryInfo *TLI) {
- bool MadeIRChange = false;
- SmallVector<BasicBlock*, 256> Worklist;
- Worklist.push_back(BB);
- SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
- DenseMap<Constant *, Constant *> FoldedConstants;
- do {
- BB = Worklist.pop_back_val();
- // We have now visited this block! If we've already been here, ignore it.
- if (!Visited.insert(BB).second)
- continue;
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *Inst = &*BBI++;
- // DCE instruction if trivially dead.
- if (isInstructionTriviallyDead(Inst, TLI)) {
- ++NumDeadInst;
- DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
- Inst->eraseFromParent();
- continue;
- }
- // ConstantProp instruction if trivially constant.
- if (!Inst->use_empty() &&
- (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
- if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
- DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
- << *Inst << '\n');
- Inst->replaceAllUsesWith(C);
- ++NumConstProp;
- if (isInstructionTriviallyDead(Inst, TLI))
- Inst->eraseFromParent();
- continue;
- }
- // See if we can constant fold its operands.
- for (Use &U : Inst->operands()) {
- if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
- continue;
- auto *C = cast<Constant>(U);
- Constant *&FoldRes = FoldedConstants[C];
- if (!FoldRes)
- FoldRes = ConstantFoldConstant(C, DL, TLI);
- if (!FoldRes)
- FoldRes = C;
- if (FoldRes != C) {
- DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
- << "\n Old = " << *C
- << "\n New = " << *FoldRes << '\n');
- U = FoldRes;
- MadeIRChange = true;
- }
- }
- InstrsForInstCombineWorklist.push_back(Inst);
- }
- // Recursively visit successors. If this is a branch or switch on a
- // constant, only visit the reachable successor.
- TerminatorInst *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
- bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
- BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
- Worklist.push_back(ReachableBB);
- continue;
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
- Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
- continue;
- }
- }
- for (BasicBlock *SuccBB : TI->successors())
- Worklist.push_back(SuccBB);
- } while (!Worklist.empty());
- // Once we've found all of the instructions to add to instcombine's worklist,
- // add them in reverse order. This way instcombine will visit from the top
- // of the function down. This jives well with the way that it adds all uses
- // of instructions to the worklist after doing a transformation, thus avoiding
- // some N^2 behavior in pathological cases.
- ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
- return MadeIRChange;
- }
- /// \brief Populate the IC worklist from a function, and prune any dead basic
- /// blocks discovered in the process.
- ///
- /// This also does basic constant propagation and other forward fixing to make
- /// the combiner itself run much faster.
- static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
- TargetLibraryInfo *TLI,
- InstCombineWorklist &ICWorklist) {
- bool MadeIRChange = false;
- // Do a depth-first traversal of the function, populate the worklist with
- // the reachable instructions. Ignore blocks that are not reachable. Keep
- // track of which blocks we visit.
- SmallPtrSet<BasicBlock *, 32> Visited;
- MadeIRChange |=
- AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
- // Do a quick scan over the function. If we find any blocks that are
- // unreachable, remove any instructions inside of them. This prevents
- // the instcombine code from having to deal with some bad special cases.
- for (BasicBlock &BB : F) {
- if (Visited.count(&BB))
- continue;
- unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
- MadeIRChange |= NumDeadInstInBB > 0;
- NumDeadInst += NumDeadInstInBB;
- }
- return MadeIRChange;
- }
- static bool
- combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
- AliasAnalysis *AA, AssumptionCache &AC,
- TargetLibraryInfo &TLI, DominatorTree &DT,
- bool ExpensiveCombines = true,
- LoopInfo *LI = nullptr) {
- auto &DL = F.getParent()->getDataLayout();
- ExpensiveCombines |= EnableExpensiveCombines;
- /// Builder - This is an IRBuilder that automatically inserts new
- /// instructions into the worklist when they are created.
- IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
- F.getContext(), TargetFolder(DL),
- IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
- Worklist.Add(I);
- using namespace llvm::PatternMatch;
- if (match(I, m_Intrinsic<Intrinsic::assume>()))
- AC.registerAssumption(cast<CallInst>(I));
- }));
- // Lower dbg.declare intrinsics otherwise their value may be clobbered
- // by instcombiner.
- bool DbgDeclaresChanged = LowerDbgDeclare(F);
- // Iterate while there is work to do.
- int Iteration = 0;
- for (;;) {
- ++Iteration;
- DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getName() << "\n");
- bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
- InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
- AA, AC, TLI, DT, DL, LI);
- IC.MaxArraySizeForCombine = MaxArraySize;
- Changed |= IC.run();
- if (!Changed)
- break;
- }
- return DbgDeclaresChanged || Iteration > 1;
- }
- PreservedAnalyses InstCombinePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
- // FIXME: The AliasAnalysis is not yet supported in the new pass manager
- if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
- ExpensiveCombines, LI))
- // No changes, all analyses are preserved.
- return PreservedAnalyses::all();
- // Mark all the analyses that instcombine updates as preserved.
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<GlobalsAA>();
- return PA;
- }
- void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- }
- bool InstructionCombiningPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- // Required analyses.
- auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- // Optional analyses.
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
- return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
- ExpensiveCombines, LI);
- }
- char InstructionCombiningPass::ID = 0;
- INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
- "Combine redundant instructions", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
- "Combine redundant instructions", false, false)
- // Initialization Routines
- void llvm::initializeInstCombine(PassRegistry &Registry) {
- initializeInstructionCombiningPassPass(Registry);
- }
- void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
- initializeInstructionCombiningPassPass(*unwrap(R));
- }
- FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
- return new InstructionCombiningPass(ExpensiveCombines);
- }
|