123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269 |
- //===-- Local.cpp - Functions to perform local transformations ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform various local transformations to the
- // program.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/DIBuilder.h"
- #include "llvm/DebugInfo.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/CFG.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/ValueHandle.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
- //===----------------------------------------------------------------------===//
- // Local constant propagation.
- //
- /// ConstantFoldTerminator - If a terminator instruction is predicated on a
- /// constant value, convert it into an unconditional branch to the constant
- /// destination. This is a nontrivial operation because the successors of this
- /// basic block must have their PHI nodes updated.
- /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
- /// conditions and indirectbr addresses this might make dead if
- /// DeleteDeadConditions is true.
- bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
- const TargetLibraryInfo *TLI) {
- TerminatorInst *T = BB->getTerminator();
- IRBuilder<> Builder(T);
- // Branch - See if we are conditional jumping on constant
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- if (BI->isUnconditional()) return false; // Can't optimize uncond branch
- BasicBlock *Dest1 = BI->getSuccessor(0);
- BasicBlock *Dest2 = BI->getSuccessor(1);
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
- // Are we branching on constant?
- // YES. Change to unconditional branch...
- BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
- BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
- //cerr << "Function: " << T->getParent()->getParent()
- // << "\nRemoving branch from " << T->getParent()
- // << "\n\nTo: " << OldDest << endl;
- // Let the basic block know that we are letting go of it. Based on this,
- // it will adjust it's PHI nodes.
- OldDest->removePredecessor(BB);
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Destination);
- BI->eraseFromParent();
- return true;
- }
- if (Dest2 == Dest1) { // Conditional branch to same location?
- // This branch matches something like this:
- // br bool %cond, label %Dest, label %Dest
- // and changes it into: br label %Dest
- // Let the basic block know that we are letting go of one copy of it.
- assert(BI->getParent() && "Terminator not inserted in block!");
- Dest1->removePredecessor(BI->getParent());
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Dest1);
- Value *Cond = BI->getCondition();
- BI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- return false;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch into a
- // single branch instruction!
- ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *TheOnlyDest = SI->getDefaultDest();
- BasicBlock *DefaultDest = TheOnlyDest;
- // Figure out which case it goes to.
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- // Found case matching a constant operand?
- if (i.getCaseValue() == CI) {
- TheOnlyDest = i.getCaseSuccessor();
- break;
- }
- // Check to see if this branch is going to the same place as the default
- // dest. If so, eliminate it as an explicit compare.
- if (i.getCaseSuccessor() == DefaultDest) {
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
- // MD should have 2 + NumCases operands.
- if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
- ++MD_i) {
- ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
- assert(CI);
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // Merge weight of this case to the default weight.
- unsigned idx = i.getCaseIndex();
- Weights[0] += Weights[idx+1];
- // Remove weight for this case.
- std::swap(Weights[idx+1], Weights.back());
- Weights.pop_back();
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(Weights));
- }
- // Remove this entry.
- DefaultDest->removePredecessor(SI->getParent());
- SI->removeCase(i);
- --i; --e;
- continue;
- }
- // Otherwise, check to see if the switch only branches to one destination.
- // We do this by reseting "TheOnlyDest" to null when we find two non-equal
- // destinations.
- if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
- }
- if (CI && !TheOnlyDest) {
- // Branching on a constant, but not any of the cases, go to the default
- // successor.
- TheOnlyDest = SI->getDefaultDest();
- }
- // If we found a single destination that we can fold the switch into, do so
- // now.
- if (TheOnlyDest) {
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *BB = SI->getParent();
- // Remove entries from PHI nodes which we no longer branch to...
- for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
- // Found case matching a constant operand?
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == TheOnlyDest)
- TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
- else
- Succ->removePredecessor(BB);
- }
- // Delete the old switch.
- Value *Cond = SI->getCondition();
- SI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- if (SI->getNumCases() == 1) {
- // Otherwise, we can fold this switch into a conditional branch
- // instruction if it has only one non-default destination.
- SwitchInst::CaseIt FirstCase = SI->case_begin();
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- FirstCase.getCaseValue(), "cond");
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
- if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
- assert(SICase && SIDef);
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(SICase->getValue().getZExtValue(),
- SIDef->getValue().getZExtValue()));
- }
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
- }
- return false;
- }
- if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
- // indirectbr blockaddress(@F, @BB) -> br label @BB
- if (BlockAddress *BA =
- dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
- BasicBlock *TheOnlyDest = BA->getBasicBlock();
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- if (IBI->getDestination(i) == TheOnlyDest)
- TheOnlyDest = 0;
- else
- IBI->getDestination(i)->removePredecessor(IBI->getParent());
- }
- Value *Address = IBI->getAddress();
- IBI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
- // If we didn't find our destination in the IBI successor list, then we
- // have undefined behavior. Replace the unconditional branch with an
- // 'unreachable' instruction.
- if (TheOnlyDest) {
- BB->getTerminator()->eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- }
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Local dead code elimination.
- //
- /// isInstructionTriviallyDead - Return true if the result produced by the
- /// instruction is not used, and the instruction has no side effects.
- ///
- bool llvm::isInstructionTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
- // We don't want the landingpad instruction removed by anything this general.
- if (isa<LandingPadInst>(I))
- return false;
- // We don't want debug info removed by anything this general, unless
- // debug info is empty.
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
- if (DDI->getAddress())
- return false;
- return true;
- }
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
- if (DVI->getValue())
- return false;
- return true;
- }
- if (!I->mayHaveSideEffects()) return true;
- // Special case intrinsics that "may have side effects" but can be deleted
- // when dead.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Safe to delete llvm.stacksave if dead.
- if (II->getIntrinsicID() == Intrinsic::stacksave)
- return true;
- // Lifetime intrinsics are dead when their right-hand is undef.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end)
- return isa<UndefValue>(II->getArgOperand(1));
- }
- if (isAllocLikeFn(I, TLI)) return true;
- if (CallInst *CI = isFreeCall(I, TLI))
- if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
- return C->isNullValue() || isa<UndefValue>(C);
- return false;
- }
- /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
- /// trivially dead instruction, delete it. If that makes any of its operands
- /// trivially dead, delete them too, recursively. Return true if any
- /// instructions were deleted.
- bool
- llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
- const TargetLibraryInfo *TLI) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
- return false;
- SmallVector<Instruction*, 16> DeadInsts;
- DeadInsts.push_back(I);
- do {
- I = DeadInsts.pop_back_val();
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, 0);
- if (!OpV->use_empty()) continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- DeadInsts.push_back(OpI);
- }
- I->eraseFromParent();
- } while (!DeadInsts.empty());
- return true;
- }
- /// areAllUsesEqual - Check whether the uses of a value are all the same.
- /// This is similar to Instruction::hasOneUse() except this will also return
- /// true when there are no uses or multiple uses that all refer to the same
- /// value.
- static bool areAllUsesEqual(Instruction *I) {
- Value::use_iterator UI = I->use_begin();
- Value::use_iterator UE = I->use_end();
- if (UI == UE)
- return true;
- User *TheUse = *UI;
- for (++UI; UI != UE; ++UI) {
- if (*UI != TheUse)
- return false;
- }
- return true;
- }
- /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
- /// dead PHI node, due to being a def-use chain of single-use nodes that
- /// either forms a cycle or is terminated by a trivially dead instruction,
- /// delete it. If that makes any of its operands trivially dead, delete them
- /// too, recursively. Return true if a change was made.
- bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
- const TargetLibraryInfo *TLI) {
- SmallPtrSet<Instruction*, 4> Visited;
- for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
- I = cast<Instruction>(*I->use_begin())) {
- if (I->use_empty())
- return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- // If we find an instruction more than once, we're on a cycle that
- // won't prove fruitful.
- if (!Visited.insert(I)) {
- // Break the cycle and delete the instruction and its operands.
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- return true;
- }
- }
- return false;
- }
- /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
- /// simplify any instructions in it and recursively delete dead instructions.
- ///
- /// This returns true if it changed the code, note that it can delete
- /// instructions in other blocks as well in this block.
- bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- #ifndef NDEBUG
- // In debug builds, ensure that the terminator of the block is never replaced
- // or deleted by these simplifications. The idea of simplification is that it
- // cannot introduce new instructions, and there is no way to replace the
- // terminator of a block without introducing a new instruction.
- AssertingVH<Instruction> TerminatorVH(--BB->end());
- #endif
- for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
- assert(!BI->isTerminator());
- Instruction *Inst = BI++;
- WeakVH BIHandle(BI);
- if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
- MadeChange = true;
- if (BIHandle != BI)
- BI = BB->begin();
- continue;
- }
- MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
- if (BIHandle != BI)
- BI = BB->begin();
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Control Flow Graph Restructuring.
- //
- /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
- /// method is called when we're about to delete Pred as a predecessor of BB. If
- /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
- ///
- /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
- /// nodes that collapse into identity values. For example, if we have:
- /// x = phi(1, 0, 0, 0)
- /// y = and x, z
- ///
- /// .. and delete the predecessor corresponding to the '1', this will attempt to
- /// recursively fold the and to 0.
- void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- DataLayout *TD) {
- // This only adjusts blocks with PHI nodes.
- if (!isa<PHINode>(BB->begin()))
- return;
- // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
- // them down. This will leave us with single entry phi nodes and other phis
- // that can be removed.
- BB->removePredecessor(Pred, true);
- WeakVH PhiIt = &BB->front();
- while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
- PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
- Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN, TD))
- continue;
- // If recursive simplification ended up deleting the next PHI node we would
- // iterate to, then our iterator is invalid, restart scanning from the top
- // of the block.
- if (PhiIt != OldPhiIt) PhiIt = &BB->front();
- }
- }
- /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
- /// predecessor is known to have one successor (DestBB!). Eliminate the edge
- /// between them, moving the instructions in the predecessor into DestBB and
- /// deleting the predecessor block.
- ///
- void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
- // If BB has single-entry PHI nodes, fold them.
- while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- Value *NewVal = PN->getIncomingValue(0);
- // Replace self referencing PHI with undef, it must be dead.
- if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NewVal);
- PN->eraseFromParent();
- }
- BasicBlock *PredBB = DestBB->getSinglePredecessor();
- assert(PredBB && "Block doesn't have a single predecessor!");
- // Zap anything that took the address of DestBB. Not doing this will give the
- // address an invalid value.
- if (DestBB->hasAddressTaken()) {
- BlockAddress *BA = BlockAddress::get(DestBB);
- Constant *Replacement =
- ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
- BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
- BA->getType()));
- BA->destroyConstant();
- }
- // Anything that branched to PredBB now branches to DestBB.
- PredBB->replaceAllUsesWith(DestBB);
- // Splice all the instructions from PredBB to DestBB.
- PredBB->getTerminator()->eraseFromParent();
- DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
- if (P) {
- DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
- if (DT) {
- BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
- DT->changeImmediateDominator(DestBB, PredBBIDom);
- DT->eraseNode(PredBB);
- }
- }
- // Nuke BB.
- PredBB->eraseFromParent();
- }
- /// CanMergeValues - Return true if we can choose one of these values to use
- /// in place of the other. Note that we will always choose the non-undef
- /// value to keep.
- static bool CanMergeValues(Value *First, Value *Second) {
- return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
- }
- /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
- /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
- ///
- /// Assumption: Succ is the single successor for BB.
- ///
- static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
- assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
- << Succ->getName() << "\n");
- // Shortcut, if there is only a single predecessor it must be BB and merging
- // is always safe
- if (Succ->getSinglePredecessor()) return true;
- // Make a list of the predecessors of BB
- SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
- // Look at all the phi nodes in Succ, to see if they present a conflict when
- // merging these blocks
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // If the incoming value from BB is again a PHINode in
- // BB which has the same incoming value for *PI as PN does, we can
- // merge the phi nodes and then the blocks can still be merged
- PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
- if (BBPN && BBPN->getParent() == BB) {
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
- PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
- << BBPN->getName() << " with regard to common predecessor "
- << IBB->getName() << "\n");
- return false;
- }
- }
- } else {
- Value* Val = PN->getIncomingValueForBlock(BB);
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- // See if the incoming value for the common predecessor is equal to the
- // one for BB, in which case this phi node will not prevent the merging
- // of the block.
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(Val, PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with regard to common "
- << "predecessor " << IBB->getName() << "\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- typedef SmallVector<BasicBlock *, 16> PredBlockVector;
- typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
- /// \brief Determines the value to use as the phi node input for a block.
- ///
- /// Select between \p OldVal any value that we know flows from \p BB
- /// to a particular phi on the basis of which one (if either) is not
- /// undef. Update IncomingValues based on the selected value.
- ///
- /// \param OldVal The value we are considering selecting.
- /// \param BB The block that the value flows in from.
- /// \param IncomingValues A map from block-to-value for other phi inputs
- /// that we have examined.
- ///
- /// \returns the selected value.
- static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
- IncomingValueMap &IncomingValues) {
- if (!isa<UndefValue>(OldVal)) {
- assert((!IncomingValues.count(BB) ||
- IncomingValues.find(BB)->second == OldVal) &&
- "Expected OldVal to match incoming value from BB!");
- IncomingValues.insert(std::make_pair(BB, OldVal));
- return OldVal;
- }
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It != IncomingValues.end()) return It->second;
- return OldVal;
- }
- /// \brief Create a map from block to value for the operands of a
- /// given phi.
- ///
- /// Create a map from block to value for each non-undef value flowing
- /// into \p PN.
- ///
- /// \param PN The phi we are collecting the map for.
- /// \param IncomingValues [out] The map from block to value for this phi.
- static void gatherIncomingValuesToPhi(PHINode *PN,
- IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V))
- IncomingValues.insert(std::make_pair(BB, V));
- }
- }
- /// \brief Replace the incoming undef values to a phi with the values
- /// from a block-to-value map.
- ///
- /// \param PN The phi we are replacing the undefs in.
- /// \param IncomingValues A map from block to value.
- static void replaceUndefValuesInPhi(PHINode *PN,
- const IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V)) continue;
- BasicBlock *BB = PN->getIncomingBlock(i);
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It == IncomingValues.end()) continue;
- PN->setIncomingValue(i, It->second);
- }
- }
- /// \brief Replace a value flowing from a block to a phi with
- /// potentially multiple instances of that value flowing from the
- /// block's predecessors to the phi.
- ///
- /// \param BB The block with the value flowing into the phi.
- /// \param BBPreds The predecessors of BB.
- /// \param PN The phi that we are updating.
- static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
- const PredBlockVector &BBPreds,
- PHINode *PN) {
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
- IncomingValueMap IncomingValues;
- // We are merging two blocks - BB, and the block containing PN - and
- // as a result we need to redirect edges from the predecessors of BB
- // to go to the block containing PN, and update PN
- // accordingly. Since we allow merging blocks in the case where the
- // predecessor and successor blocks both share some predecessors,
- // and where some of those common predecessors might have undef
- // values flowing into PN, we want to rewrite those values to be
- // consistent with the non-undef values.
- gatherIncomingValuesToPhi(PN, IncomingValues);
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
- Value *PredVal = OldValPN->getIncomingValue(i);
- Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- } else {
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
- // Update existing incoming values in PN for this
- // predecessor of BB.
- BasicBlock *PredBB = BBPreds[i];
- Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- }
- replaceUndefValuesInPhi(PN, IncomingValues);
- }
- /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
- /// unconditional branch, and contains no instructions other than PHI nodes,
- /// potential side-effect free intrinsics and the branch. If possible,
- /// eliminate BB by rewriting all the predecessors to branch to the successor
- /// block and return true. If we can't transform, return false.
- bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
- assert(BB != &BB->getParent()->getEntryBlock() &&
- "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
- // We can't eliminate infinite loops.
- BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
- if (BB == Succ) return false;
- // Check to see if merging these blocks would cause conflicts for any of the
- // phi nodes in BB or Succ. If not, we can safely merge.
- if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
- // Check for cases where Succ has multiple predecessors and a PHI node in BB
- // has uses which will not disappear when the PHI nodes are merged. It is
- // possible to handle such cases, but difficult: it requires checking whether
- // BB dominates Succ, which is non-trivial to calculate in the case where
- // Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't introduce any
- // conflicts; this isn't too difficult, but the previous code for doing this
- // was incorrect.
- //
- // Note that if this check finds a live use, BB dominates Succ, so BB is
- // something like a loop pre-header (or rarely, a part of an irreducible CFG);
- // folding the branch isn't profitable in that case anyway.
- if (!Succ->getSinglePredecessor()) {
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) {
- for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
- UI != E; ++UI) {
- if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
- if (PN->getIncomingBlock(UI) != BB)
- return false;
- } else {
- return false;
- }
- }
- ++BBI;
- }
- }
- DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
- if (isa<PHINode>(Succ->begin())) {
- // If there is more than one pred of succ, and there are PHI nodes in
- // the successor, then we need to add incoming edges for the PHI nodes
- //
- const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
- // Loop over all of the PHI nodes in the successor of BB.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
- }
- }
- if (Succ->getSinglePredecessor()) {
- // BB is the only predecessor of Succ, so Succ will end up with exactly
- // the same predecessors BB had.
- // Copy over any phi, debug or lifetime instruction.
- BB->getTerminator()->eraseFromParent();
- Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
- } else {
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
- assert(PN->use_empty() && "There shouldn't be any uses here!");
- PN->eraseFromParent();
- }
- }
- // Everything that jumped to BB now goes to Succ.
- BB->replaceAllUsesWith(Succ);
- if (!Succ->hasName()) Succ->takeName(BB);
- BB->eraseFromParent(); // Delete the old basic block.
- return true;
- }
- /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
- /// nodes in this block. This doesn't try to be clever about PHI nodes
- /// which differ only in the order of the incoming values, but instcombine
- /// orders them so it usually won't matter.
- ///
- bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
- bool Changed = false;
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- // Map from PHI hash values to PHI nodes. If multiple PHIs have
- // the same hash value, the element is the first PHI in the
- // linked list in CollisionMap.
- DenseMap<uintptr_t, PHINode *> HashMap;
- // Maintain linked lists of PHI nodes with common hash values.
- DenseMap<PHINode *, PHINode *> CollisionMap;
- // Examine each PHI.
- for (BasicBlock::iterator I = BB->begin();
- PHINode *PN = dyn_cast<PHINode>(I++); ) {
- // Compute a hash value on the operands. Instcombine will likely have sorted
- // them, which helps expose duplicates, but we have to check all the
- // operands to be safe in case instcombine hasn't run.
- uintptr_t Hash = 0;
- // This hash algorithm is quite weak as hash functions go, but it seems
- // to do a good enough job for this particular purpose, and is very quick.
- for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
- Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
- Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
- }
- for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
- I != E; ++I) {
- Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
- Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
- }
- // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
- Hash >>= 1;
- // If we've never seen this hash value before, it's a unique PHI.
- std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
- HashMap.insert(std::make_pair(Hash, PN));
- if (Pair.second) continue;
- // Otherwise it's either a duplicate or a hash collision.
- for (PHINode *OtherPN = Pair.first->second; ; ) {
- if (OtherPN->isIdenticalTo(PN)) {
- // A duplicate. Replace this PHI with its duplicate.
- PN->replaceAllUsesWith(OtherPN);
- PN->eraseFromParent();
- Changed = true;
- break;
- }
- // A non-duplicate hash collision.
- DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
- if (I == CollisionMap.end()) {
- // Set this PHI to be the head of the linked list of colliding PHIs.
- PHINode *Old = Pair.first->second;
- Pair.first->second = PN;
- CollisionMap[PN] = Old;
- break;
- }
- // Proceed to the next PHI in the list.
- OtherPN = I->second;
- }
- }
- return Changed;
- }
- /// enforceKnownAlignment - If the specified pointer points to an object that
- /// we control, modify the object's alignment to PrefAlign. This isn't
- /// often possible though. If alignment is important, a more reliable approach
- /// is to simply align all global variables and allocation instructions to
- /// their preferred alignment from the beginning.
- ///
- static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign, const DataLayout *TD) {
- V = V->stripPointerCasts();
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // If the preferred alignment is greater than the natural stack alignment
- // then don't round up. This avoids dynamic stack realignment.
- if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
- return Align;
- // If there is a requested alignment and if this is an alloca, round up.
- if (AI->getAlignment() >= PrefAlign)
- return AI->getAlignment();
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global.
- if (GV->isDeclaration()) return Align;
- // If the memory we set aside for the global may not be the memory used by
- // the final program then it is impossible for us to reliably enforce the
- // preferred alignment.
- if (GV->isWeakForLinker()) return Align;
- if (GV->getAlignment() >= PrefAlign)
- return GV->getAlignment();
- // We can only increase the alignment of the global if it has no alignment
- // specified or if it is not assigned a section. If it is assigned a
- // section, the global could be densely packed with other objects in the
- // section, increasing the alignment could cause padding issues.
- if (!GV->hasSection() || GV->getAlignment() == 0)
- GV->setAlignment(PrefAlign);
- return GV->getAlignment();
- }
- return Align;
- }
- /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
- /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
- /// and it is more than the alignment of the ultimate object, see if we can
- /// increase the alignment of the ultimate object, making this check succeed.
- unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *DL) {
- assert(V->getType()->isPointerTy() &&
- "getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, DL);
- unsigned TrailZ = KnownZero.countTrailingOnes();
- // Avoid trouble with ridiculously large TrailZ values, such as
- // those computed from a null pointer.
- TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
- // LLVM doesn't support alignments larger than this currently.
- Align = std::min(Align, +Value::MaximumAlignment);
- if (PrefAlign > Align)
- Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
- // We don't need to make any adjustment.
- return Align;
- }
- ///===---------------------------------------------------------------------===//
- /// Dbg Intrinsic utilities
- ///
- /// See if there is a dbg.value intrinsic for DIVar before I.
- static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- llvm::BasicBlock::InstListType::iterator PrevI(I);
- if (PrevI != I->getParent()->getInstList().begin()) {
- --PrevI;
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
- if (DVI->getValue() == I->getOperand(0) &&
- DVI->getOffset() == 0 &&
- DVI->getVariable() == DIVar)
- return true;
- }
- return false;
- }
- /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- StoreInst *SI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- if (LdStHasDebugValue(DIVar, SI))
- return true;
- Instruction *DbgVal = NULL;
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- Argument *ExtendedArg = NULL;
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
- if (ExtendedArg)
- DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
- else
- DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
- // Propagate any debug metadata from the store onto the dbg.value.
- DebugLoc SIDL = SI->getDebugLoc();
- if (!SIDL.isUnknown())
- DbgVal->setDebugLoc(SIDL);
- // Otherwise propagate debug metadata from dbg.declare.
- else
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- return true;
- }
- /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- LoadInst *LI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- if (LdStHasDebugValue(DIVar, LI))
- return true;
- Instruction *DbgVal =
- Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
- DIVar, LI);
- // Propagate any debug metadata from the store onto the dbg.value.
- DebugLoc LIDL = LI->getDebugLoc();
- if (!LIDL.isUnknown())
- DbgVal->setDebugLoc(LIDL);
- // Otherwise propagate debug metadata from dbg.declare.
- else
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- return true;
- }
- /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
- /// of llvm.dbg.value intrinsics.
- bool llvm::LowerDbgDeclare(Function &F) {
- DIBuilder DIB(*F.getParent());
- SmallVector<DbgDeclareInst *, 4> Dbgs;
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
- Dbgs.push_back(DDI);
- }
- if (Dbgs.empty())
- return false;
- for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
- E = Dbgs.end(); I != E; ++I) {
- DbgDeclareInst *DDI = *I;
- if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
- // We only remove the dbg.declare intrinsic if all uses are
- // converted to dbg.value intrinsics.
- bool RemoveDDI = true;
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
- UI != E; ++UI)
- if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- else
- RemoveDDI = false;
- if (RemoveDDI)
- DDI->eraseFromParent();
- }
- }
- return true;
- }
- /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
- /// alloca 'V', if any.
- DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
- if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
- for (Value::use_iterator UI = DebugNode->use_begin(),
- E = DebugNode->use_end(); UI != E; ++UI)
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
- return DDI;
- return 0;
- }
- bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder) {
- DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
- if (!DDI)
- return false;
- DIVariable DIVar(DDI->getVariable());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- // Create a copy of the original DIDescriptor for user variable, appending
- // "deref" operation to a list of address elements, as new llvm.dbg.declare
- // will take a value storing address of the memory for variable, not
- // alloca itself.
- Type *Int64Ty = Type::getInt64Ty(AI->getContext());
- SmallVector<Value*, 4> NewDIVarAddress;
- if (DIVar.hasComplexAddress()) {
- for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
- NewDIVarAddress.push_back(
- ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
- }
- }
- NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
- DIVariable NewDIVar = Builder.createComplexVariable(
- DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
- DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
- NewDIVarAddress, DIVar.getArgNumber());
- // Insert llvm.dbg.declare in the same basic block as the original alloca,
- // and remove old llvm.dbg.declare.
- BasicBlock *BB = AI->getParent();
- Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
- DDI->eraseFromParent();
- return true;
- }
- /// changeToUnreachable - Insert an unreachable instruction before the specified
- /// instruction, making it and the rest of the code in the block dead.
- static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
- BasicBlock *BB = I->getParent();
- // Loop over all of the successors, removing BB's entry from any PHI
- // nodes.
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- (*SI)->removePredecessor(BB);
- // Insert a call to llvm.trap right before this. This turns the undefined
- // behavior into a hard fail instead of falling through into random code.
- if (UseLLVMTrap) {
- Function *TrapFn =
- Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
- CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
- CallTrap->setDebugLoc(I->getDebugLoc());
- }
- new UnreachableInst(I->getContext(), I);
- // All instructions after this are dead.
- BasicBlock::iterator BBI = I, BBE = BB->end();
- while (BBI != BBE) {
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
- BB->getInstList().erase(BBI++);
- }
- }
- /// changeToCall - Convert the specified invoke into a normal call.
- static void changeToCall(InvokeInst *II) {
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
- CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
- NewCall->takeName(II);
- NewCall->setCallingConv(II->getCallingConv());
- NewCall->setAttributes(II->getAttributes());
- NewCall->setDebugLoc(II->getDebugLoc());
- II->replaceAllUsesWith(NewCall);
- // Follow the call by a branch to the normal destination.
- BranchInst::Create(II->getNormalDest(), II);
- // Update PHI nodes in the unwind destination
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- }
- static bool markAliveBlocks(BasicBlock *BB,
- SmallPtrSet<BasicBlock*, 128> &Reachable) {
- SmallVector<BasicBlock*, 128> Worklist;
- Worklist.push_back(BB);
- Reachable.insert(BB);
- bool Changed = false;
- do {
- BB = Worklist.pop_back_val();
- // Do a quick scan of the basic block, turning any obviously unreachable
- // instructions into LLVM unreachable insts. The instruction combining pass
- // canonicalizes unreachable insts into stores to null or undef.
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
- if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
- if (CI->doesNotReturn()) {
- // If we found a call to a no-return function, insert an unreachable
- // instruction after it. Make sure there isn't *already* one there
- // though.
- ++BBI;
- if (!isa<UnreachableInst>(BBI)) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(BBI, false);
- Changed = true;
- }
- break;
- }
- }
- // Store to undef and store to null are undefined and used to signal that
- // they should be changed to unreachable by passes that can't modify the
- // CFG.
- if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
- // Don't touch volatile stores.
- if (SI->isVolatile()) continue;
- Value *Ptr = SI->getOperand(1);
- if (isa<UndefValue>(Ptr) ||
- (isa<ConstantPointerNull>(Ptr) &&
- SI->getPointerAddressSpace() == 0)) {
- changeToUnreachable(SI, true);
- Changed = true;
- break;
- }
- }
- }
- // Turn invokes that call 'nounwind' functions into ordinary calls.
- if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
- Value *Callee = II->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(II, true);
- Changed = true;
- } else if (II->doesNotThrow()) {
- if (II->use_empty() && II->onlyReadsMemory()) {
- // jump to the normal destination branch.
- BranchInst::Create(II->getNormalDest(), II);
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- } else
- changeToCall(II);
- Changed = true;
- }
- }
- Changed |= ConstantFoldTerminator(BB, true);
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- if (Reachable.insert(*SI))
- Worklist.push_back(*SI);
- } while (!Worklist.empty());
- return Changed;
- }
- /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
- /// if they are in a dead cycle. Return true if a change was made, false
- /// otherwise.
- bool llvm::removeUnreachableBlocks(Function &F) {
- SmallPtrSet<BasicBlock*, 128> Reachable;
- bool Changed = markAliveBlocks(F.begin(), Reachable);
- // If there are unreachable blocks in the CFG...
- if (Reachable.size() == F.size())
- return Changed;
- assert(Reachable.size() < F.size());
- NumRemoved += F.size()-Reachable.size();
- // Loop over all of the basic blocks that are not reachable, dropping all of
- // their internal references...
- for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
- if (Reachable.count(BB))
- continue;
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- if (Reachable.count(*SI))
- (*SI)->removePredecessor(BB);
- BB->dropAllReferences();
- }
- for (Function::iterator I = ++F.begin(); I != F.end();)
- if (!Reachable.count(I))
- I = F.getBasicBlockList().erase(I);
- else
- ++I;
- return true;
- }
|