12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254 |
- //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
- // and generates target-independent LLVM-IR.
- // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
- // of instructions in order to estimate the profitability of vectorization.
- //
- // The loop vectorizer combines consecutive loop iterations into a single
- // 'wide' iteration. After this transformation the index is incremented
- // by the SIMD vector width, and not by one.
- //
- // This pass has three parts:
- // 1. The main loop pass that drives the different parts.
- // 2. LoopVectorizationLegality - A unit that checks for the legality
- // of the vectorization.
- // 3. InnerLoopVectorizer - A unit that performs the actual
- // widening of instructions.
- // 4. LoopVectorizationCostModel - A unit that checks for the profitability
- // of vectorization. It decides on the optimal vector width, which
- // can be one, if vectorization is not profitable.
- //
- //===----------------------------------------------------------------------===//
- //
- // The reduction-variable vectorization is based on the paper:
- // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
- //
- // Variable uniformity checks are inspired by:
- // Karrenberg, R. and Hack, S. Whole Function Vectorization.
- //
- // Other ideas/concepts are from:
- // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
- //
- // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
- // Vectorizing Compilers.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/EquivalenceClasses.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/AssumptionTracker.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/VectorUtils.h"
- #include <algorithm>
- #include <map>
- #include <tuple>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- STATISTIC(LoopsVectorized, "Number of loops vectorized");
- STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
- static cl::opt<unsigned>
- VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
- cl::desc("Sets the SIMD width. Zero is autoselect."));
- static cl::opt<unsigned>
- VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("Sets the vectorization interleave count. "
- "Zero is autoselect."));
- static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
- /// We don't vectorize loops with a known constant trip count below this number.
- static cl::opt<unsigned>
- TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
- cl::Hidden,
- cl::desc("Don't vectorize loops with a constant "
- "trip count that is smaller than this "
- "value."));
- /// This enables versioning on the strides of symbolically striding memory
- /// accesses in code like the following.
- /// for (i = 0; i < N; ++i)
- /// A[i * Stride1] += B[i * Stride2] ...
- ///
- /// Will be roughly translated to
- /// if (Stride1 == 1 && Stride2 == 1) {
- /// for (i = 0; i < N; i+=4)
- /// A[i:i+3] += ...
- /// } else
- /// ...
- static cl::opt<bool> EnableMemAccessVersioning(
- "enable-mem-access-versioning", cl::init(true), cl::Hidden,
- cl::desc("Enable symblic stride memory access versioning"));
- /// We don't unroll loops with a known constant trip count below this number.
- static const unsigned TinyTripCountUnrollThreshold = 128;
- /// When performing memory disambiguation checks at runtime do not make more
- /// than this number of comparisons.
- static const unsigned RuntimeMemoryCheckThreshold = 8;
- /// Maximum simd width.
- static const unsigned MaxVectorWidth = 64;
- static cl::opt<unsigned> ForceTargetNumScalarRegs(
- "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of scalar registers."));
- static cl::opt<unsigned> ForceTargetNumVectorRegs(
- "force-target-num-vector-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of vector registers."));
- /// Maximum vectorization interleave count.
- static const unsigned MaxInterleaveFactor = 16;
- static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
- "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "scalar loops."));
- static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
- "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "vectorized loops."));
- static cl::opt<unsigned> ForceTargetInstructionCost(
- "force-target-instruction-cost", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's expected cost for "
- "an instruction to a single constant value. Mostly "
- "useful for getting consistent testing."));
- static cl::opt<unsigned> SmallLoopCost(
- "small-loop-cost", cl::init(20), cl::Hidden,
- cl::desc("The cost of a loop that is considered 'small' by the unroller."));
- static cl::opt<bool> LoopVectorizeWithBlockFrequency(
- "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to access PGO "
- "heuristics minimizing code growth in cold regions and being more "
- "aggressive in hot regions."));
- // Runtime unroll loops for load/store throughput.
- static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
- "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
- cl::desc("Enable runtime unrolling until load/store ports are saturated"));
- /// The number of stores in a loop that are allowed to need predication.
- static cl::opt<unsigned> NumberOfStoresToPredicate(
- "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
- cl::desc("Max number of stores to be predicated behind an if."));
- static cl::opt<bool> EnableIndVarRegisterHeur(
- "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
- cl::desc("Count the induction variable only once when unrolling"));
- static cl::opt<bool> EnableCondStoresVectorization(
- "enable-cond-stores-vec", cl::init(false), cl::Hidden,
- cl::desc("Enable if predication of stores during vectorization."));
- static cl::opt<unsigned> MaxNestedScalarReductionUF(
- "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
- cl::desc("The maximum unroll factor to use when unrolling a scalar "
- "reduction in a nested loop."));
- namespace {
- // Forward declarations.
- class LoopVectorizationLegality;
- class LoopVectorizationCostModel;
- class LoopVectorizeHints;
- /// Optimization analysis message produced during vectorization. Messages inform
- /// the user why vectorization did not occur.
- class Report {
- std::string Message;
- raw_string_ostream Out;
- Instruction *Instr;
- public:
- Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
- Out << "loop not vectorized: ";
- }
- template <typename A> Report &operator<<(const A &Value) {
- Out << Value;
- return *this;
- }
- Instruction *getInstr() { return Instr; }
- std::string &str() { return Out.str(); }
- operator Twine() { return Out.str(); }
- };
- /// InnerLoopVectorizer vectorizes loops which contain only one basic
- /// block to a specified vectorization factor (VF).
- /// This class performs the widening of scalars into vectors, or multiple
- /// scalars. This class also implements the following features:
- /// * It inserts an epilogue loop for handling loops that don't have iteration
- /// counts that are known to be a multiple of the vectorization factor.
- /// * It handles the code generation for reduction variables.
- /// * Scalarization (implementation using scalars) of un-vectorizable
- /// instructions.
- /// InnerLoopVectorizer does not perform any vectorization-legality
- /// checks, and relies on the caller to check for the different legality
- /// aspects. The InnerLoopVectorizer relies on the
- /// LoopVectorizationLegality class to provide information about the induction
- /// and reduction variables that were found to a given vectorization factor.
- class InnerLoopVectorizer {
- public:
- InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- const TargetLibraryInfo *TLI, unsigned VecWidth,
- unsigned UnrollFactor)
- : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
- VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
- Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
- Legal(nullptr) {}
- // Perform the actual loop widening (vectorization).
- void vectorize(LoopVectorizationLegality *L) {
- Legal = L;
- // Create a new empty loop. Unlink the old loop and connect the new one.
- createEmptyLoop();
- // Widen each instruction in the old loop to a new one in the new loop.
- // Use the Legality module to find the induction and reduction variables.
- vectorizeLoop();
- // Register the new loop and update the analysis passes.
- updateAnalysis();
- }
- virtual ~InnerLoopVectorizer() {}
- protected:
- /// A small list of PHINodes.
- typedef SmallVector<PHINode*, 4> PhiVector;
- /// When we unroll loops we have multiple vector values for each scalar.
- /// This data structure holds the unrolled and vectorized values that
- /// originated from one scalar instruction.
- typedef SmallVector<Value*, 2> VectorParts;
- // When we if-convert we need create edge masks. We have to cache values so
- // that we don't end up with exponential recursion/IR.
- typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
- VectorParts> EdgeMaskCache;
- /// \brief Add code that checks at runtime if the accessed arrays overlap.
- ///
- /// Returns a pair of instructions where the first element is the first
- /// instruction generated in possibly a sequence of instructions and the
- /// second value is the final comparator value or NULL if no check is needed.
- std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
- /// \brief Add checks for strides that where assumed to be 1.
- ///
- /// Returns the last check instruction and the first check instruction in the
- /// pair as (first, last).
- std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
- /// Create an empty loop, based on the loop ranges of the old loop.
- void createEmptyLoop();
- /// Copy and widen the instructions from the old loop.
- virtual void vectorizeLoop();
- /// \brief The Loop exit block may have single value PHI nodes where the
- /// incoming value is 'Undef'. While vectorizing we only handled real values
- /// that were defined inside the loop. Here we fix the 'undef case'.
- /// See PR14725.
- void fixLCSSAPHIs();
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- VectorParts createBlockInMask(BasicBlock *BB);
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
- /// A helper function to vectorize a single BB within the innermost loop.
- void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
- /// Vectorize a single PHINode in a block. This method handles the induction
- /// variable canonicalization. It supports both VF = 1 for unrolled loops and
- /// arbitrary length vectors.
- void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
- unsigned UF, unsigned VF, PhiVector *PV);
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
- /// This instruction is un-vectorizable. Implement it as a sequence
- /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
- /// scalarized instruction behind an if block predicated on the control
- /// dependence of the instruction.
- virtual void scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore=false);
- /// Vectorize Load and Store instructions,
- virtual void vectorizeMemoryInstruction(Instruction *Instr);
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- virtual Value *getBroadcastInstrs(Value *V);
- /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
- /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
- /// The sequence starts at StartIndex.
- virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
- /// When we go over instructions in the basic block we rely on previous
- /// values within the current basic block or on loop invariant values.
- /// When we widen (vectorize) values we place them in the map. If the values
- /// are not within the map, they have to be loop invariant, so we simply
- /// broadcast them into a vector.
- VectorParts &getVectorValue(Value *V);
- /// Generate a shuffle sequence that will reverse the vector Vec.
- virtual Value *reverseVector(Value *Vec);
- /// This is a helper class that holds the vectorizer state. It maps scalar
- /// instructions to vector instructions. When the code is 'unrolled' then
- /// then a single scalar value is mapped to multiple vector parts. The parts
- /// are stored in the VectorPart type.
- struct ValueMap {
- /// C'tor. UnrollFactor controls the number of vectors ('parts') that
- /// are mapped.
- ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
- /// \return True if 'Key' is saved in the Value Map.
- bool has(Value *Key) const { return MapStorage.count(Key); }
- /// Initializes a new entry in the map. Sets all of the vector parts to the
- /// save value in 'Val'.
- /// \return A reference to a vector with splat values.
- VectorParts &splat(Value *Key, Value *Val) {
- VectorParts &Entry = MapStorage[Key];
- Entry.assign(UF, Val);
- return Entry;
- }
- ///\return A reference to the value that is stored at 'Key'.
- VectorParts &get(Value *Key) {
- VectorParts &Entry = MapStorage[Key];
- if (Entry.empty())
- Entry.resize(UF);
- assert(Entry.size() == UF);
- return Entry;
- }
- private:
- /// The unroll factor. Each entry in the map stores this number of vector
- /// elements.
- unsigned UF;
- /// Map storage. We use std::map and not DenseMap because insertions to a
- /// dense map invalidates its iterators.
- std::map<Value *, VectorParts> MapStorage;
- };
- /// The original loop.
- Loop *OrigLoop;
- /// Scev analysis to use.
- ScalarEvolution *SE;
- /// Loop Info.
- LoopInfo *LI;
- /// Dominator Tree.
- DominatorTree *DT;
- /// Alias Analysis.
- AliasAnalysis *AA;
- /// Data Layout.
- const DataLayout *DL;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- unsigned VF;
- protected:
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
- /// The builder that we use
- IRBuilder<> Builder;
- // --- Vectorization state ---
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- ///The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- ///The vector loop body.
- SmallVector<BasicBlock *, 4> LoopVectorBody;
- ///The scalar loop body.
- BasicBlock *LoopScalarBody;
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
- /// The new Induction variable which was added to the new block.
- PHINode *Induction;
- /// The induction variable of the old basic block.
- PHINode *OldInduction;
- /// Holds the extended (to the widest induction type) start index.
- Value *ExtendedIdx;
- /// Maps scalars to widened vectors.
- ValueMap WidenMap;
- EdgeMaskCache MaskCache;
- LoopVectorizationLegality *Legal;
- };
- class InnerLoopUnroller : public InnerLoopVectorizer {
- public:
- InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
- InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
- private:
- void scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore = false) override;
- void vectorizeMemoryInstruction(Instruction *Instr) override;
- Value *getBroadcastInstrs(Value *V) override;
- Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
- Value *reverseVector(Value *Vec) override;
- };
- /// \brief Look for a meaningful debug location on the instruction or it's
- /// operands.
- static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
- if (!I)
- return I;
- DebugLoc Empty;
- if (I->getDebugLoc() != Empty)
- return I;
- for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
- if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
- if (OpInst->getDebugLoc() != Empty)
- return OpInst;
- }
- return I;
- }
- /// \brief Set the debug location in the builder using the debug location in the
- /// instruction.
- static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
- if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
- B.SetCurrentDebugLocation(Inst->getDebugLoc());
- else
- B.SetCurrentDebugLocation(DebugLoc());
- }
- #ifndef NDEBUG
- /// \return string containing a file name and a line # for the given loop.
- static std::string getDebugLocString(const Loop *L) {
- std::string Result;
- if (L) {
- raw_string_ostream OS(Result);
- const DebugLoc LoopDbgLoc = L->getStartLoc();
- if (!LoopDbgLoc.isUnknown())
- LoopDbgLoc.print(L->getHeader()->getContext(), OS);
- else
- // Just print the module name.
- OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
- OS.flush();
- }
- return Result;
- }
- #endif
- /// \brief Propagate known metadata from one instruction to another.
- static void propagateMetadata(Instruction *To, const Instruction *From) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- From->getAllMetadataOtherThanDebugLoc(Metadata);
- for (auto M : Metadata) {
- unsigned Kind = M.first;
- // These are safe to transfer (this is safe for TBAA, even when we
- // if-convert, because should that metadata have had a control dependency
- // on the condition, and thus actually aliased with some other
- // non-speculated memory access when the condition was false, this would be
- // caught by the runtime overlap checks).
- if (Kind != LLVMContext::MD_tbaa &&
- Kind != LLVMContext::MD_alias_scope &&
- Kind != LLVMContext::MD_noalias &&
- Kind != LLVMContext::MD_fpmath)
- continue;
- To->setMetadata(Kind, M.second);
- }
- }
- /// \brief Propagate known metadata from one instruction to a vector of others.
- static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
- for (Value *V : To)
- if (Instruction *I = dyn_cast<Instruction>(V))
- propagateMetadata(I, From);
- }
- /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
- /// to what vectorization factor.
- /// This class does not look at the profitability of vectorization, only the
- /// legality. This class has two main kinds of checks:
- /// * Memory checks - The code in canVectorizeMemory checks if vectorization
- /// will change the order of memory accesses in a way that will change the
- /// correctness of the program.
- /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
- /// checks for a number of different conditions, such as the availability of a
- /// single induction variable, that all types are supported and vectorize-able,
- /// etc. This code reflects the capabilities of InnerLoopVectorizer.
- /// This class is also used by InnerLoopVectorizer for identifying
- /// induction variable and the different reduction variables.
- class LoopVectorizationLegality {
- public:
- unsigned NumLoads;
- unsigned NumStores;
- unsigned NumPredStores;
- LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
- DominatorTree *DT, TargetLibraryInfo *TLI,
- AliasAnalysis *AA, Function *F)
- : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
- DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr),
- WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
- }
- /// This enum represents the kinds of reductions that we support.
- enum ReductionKind {
- RK_NoReduction, ///< Not a reduction.
- RK_IntegerAdd, ///< Sum of integers.
- RK_IntegerMult, ///< Product of integers.
- RK_IntegerOr, ///< Bitwise or logical OR of numbers.
- RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
- RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
- RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
- RK_FloatAdd, ///< Sum of floats.
- RK_FloatMult, ///< Product of floats.
- RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
- };
- /// This enum represents the kinds of inductions that we support.
- enum InductionKind {
- IK_NoInduction, ///< Not an induction variable.
- IK_IntInduction, ///< Integer induction variable. Step = 1.
- IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
- IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
- IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
- };
- // This enum represents the kind of minmax reduction.
- enum MinMaxReductionKind {
- MRK_Invalid,
- MRK_UIntMin,
- MRK_UIntMax,
- MRK_SIntMin,
- MRK_SIntMax,
- MRK_FloatMin,
- MRK_FloatMax
- };
- /// This struct holds information about reduction variables.
- struct ReductionDescriptor {
- ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
- Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
- MinMaxReductionKind MK)
- : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
- // The starting value of the reduction.
- // It does not have to be zero!
- TrackingVH<Value> StartValue;
- // The instruction who's value is used outside the loop.
- Instruction *LoopExitInstr;
- // The kind of the reduction.
- ReductionKind Kind;
- // If this a min/max reduction the kind of reduction.
- MinMaxReductionKind MinMaxKind;
- };
- /// This POD struct holds information about a potential reduction operation.
- struct ReductionInstDesc {
- ReductionInstDesc(bool IsRedux, Instruction *I) :
- IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
- ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
- IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
- // Is this instruction a reduction candidate.
- bool IsReduction;
- // The last instruction in a min/max pattern (select of the select(icmp())
- // pattern), or the current reduction instruction otherwise.
- Instruction *PatternLastInst;
- // If this is a min/max pattern the comparison predicate.
- MinMaxReductionKind MinMaxKind;
- };
- /// This struct holds information about the memory runtime legality
- /// check that a group of pointers do not overlap.
- struct RuntimePointerCheck {
- RuntimePointerCheck() : Need(false) {}
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- Starts.clear();
- Ends.clear();
- IsWritePtr.clear();
- DependencySetId.clear();
- AliasSetId.clear();
- }
- /// Insert a pointer and calculate the start and end SCEVs.
- void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
- unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Holds the pointers that we need to check.
- SmallVector<TrackingVH<Value>, 2> Pointers;
- /// Holds the pointer value at the beginning of the loop.
- SmallVector<const SCEV*, 2> Starts;
- /// Holds the pointer value at the end of the loop.
- SmallVector<const SCEV*, 2> Ends;
- /// Holds the information if this pointer is used for writing to memory.
- SmallVector<bool, 2> IsWritePtr;
- /// Holds the id of the set of pointers that could be dependent because of a
- /// shared underlying object.
- SmallVector<unsigned, 2> DependencySetId;
- /// Holds the id of the disjoint alias set to which this pointer belongs.
- SmallVector<unsigned, 2> AliasSetId;
- };
- /// A struct for saving information about induction variables.
- struct InductionInfo {
- InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
- InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
- /// Start value.
- TrackingVH<Value> StartValue;
- /// Induction kind.
- InductionKind IK;
- };
- /// ReductionList contains the reduction descriptors for all
- /// of the reductions that were found in the loop.
- typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
- /// InductionList saves induction variables and maps them to the
- /// induction descriptor.
- typedef MapVector<PHINode*, InductionInfo> InductionList;
- /// Returns true if it is legal to vectorize this loop.
- /// This does not mean that it is profitable to vectorize this
- /// loop, only that it is legal to do so.
- bool canVectorize();
- /// Returns the Induction variable.
- PHINode *getInduction() { return Induction; }
- /// Returns the reduction variables found in the loop.
- ReductionList *getReductionVars() { return &Reductions; }
- /// Returns the induction variables found in the loop.
- InductionList *getInductionVars() { return &Inductions; }
- /// Returns the widest induction type.
- Type *getWidestInductionType() { return WidestIndTy; }
- /// Returns True if V is an induction variable in this loop.
- bool isInductionVariable(const Value *V);
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- bool blockNeedsPredication(BasicBlock *BB);
- /// Check if this pointer is consecutive when vectorizing. This happens
- /// when the last index of the GEP is the induction variable, or that the
- /// pointer itself is an induction variable.
- /// This check allows us to vectorize A[idx] into a wide load/store.
- /// Returns:
- /// 0 - Stride is unknown or non-consecutive.
- /// 1 - Address is consecutive.
- /// -1 - Address is consecutive, and decreasing.
- int isConsecutivePtr(Value *Ptr);
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
- /// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
- /// Returns the information that we collected about runtime memory check.
- RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
- /// This function returns the identity element (or neutral element) for
- /// the operation K.
- static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
- unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
- bool hasStride(Value *V) { return StrideSet.count(V); }
- bool mustCheckStrides() { return !StrideSet.empty(); }
- SmallPtrSet<Value *, 8>::iterator strides_begin() {
- return StrideSet.begin();
- }
- SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
- private:
- /// Check if a single basic block loop is vectorizable.
- /// At this point we know that this is a loop with a constant trip count
- /// and we only need to check individual instructions.
- bool canVectorizeInstrs();
- /// When we vectorize loops we may change the order in which
- /// we read and write from memory. This method checks if it is
- /// legal to vectorize the code, considering only memory constrains.
- /// Returns true if the loop is vectorizable
- bool canVectorizeMemory();
- /// Return true if we can vectorize this loop using the IF-conversion
- /// transformation.
- bool canVectorizeWithIfConvert();
- /// Collect the variables that need to stay uniform after vectorization.
- void collectLoopUniforms();
- /// Return true if all of the instructions in the block can be speculatively
- /// executed. \p SafePtrs is a list of addresses that are known to be legal
- /// and we know that we can read from them without segfault.
- bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
- /// Returns True, if 'Phi' is the kind of reduction variable for type
- /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
- bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
- /// Returns a struct describing if the instruction 'I' can be a reduction
- /// variable of type 'Kind'. If the reduction is a min/max pattern of
- /// select(icmp()) this function advances the instruction pointer 'I' from the
- /// compare instruction to the select instruction and stores this pointer in
- /// 'PatternLastInst' member of the returned struct.
- ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
- ReductionInstDesc &Desc);
- /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
- /// pattern corresponding to a min(X, Y) or max(X, Y).
- static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
- ReductionInstDesc &Prev);
- /// Returns the induction kind of Phi. This function may return NoInduction
- /// if the PHI is not an induction variable.
- InductionKind isInductionVariable(PHINode *Phi);
- /// \brief Collect memory access with loop invariant strides.
- ///
- /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
- /// invariant.
- void collectStridedAcccess(Value *LoadOrStoreInst);
- /// Report an analysis message to assist the user in diagnosing loops that are
- /// not vectorized.
- void emitAnalysis(Report &Message) {
- DebugLoc DL = TheLoop->getStartLoc();
- if (Instruction *I = Message.getInstr())
- DL = I->getDebugLoc();
- emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
- *TheFunction, DL, Message.str());
- }
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// DataLayout analysis.
- const DataLayout *DL;
- /// Dominators.
- DominatorTree *DT;
- /// Target Library Info.
- TargetLibraryInfo *TLI;
- /// Alias analysis.
- AliasAnalysis *AA;
- /// Parent function
- Function *TheFunction;
- // --- vectorization state --- //
- /// Holds the integer induction variable. This is the counter of the
- /// loop.
- PHINode *Induction;
- /// Holds the reduction variables.
- ReductionList Reductions;
- /// Holds all of the induction variables that we found in the loop.
- /// Notice that inductions don't need to start at zero and that induction
- /// variables can be pointers.
- InductionList Inductions;
- /// Holds the widest induction type encountered.
- Type *WidestIndTy;
- /// Allowed outside users. This holds the reduction
- /// vars which can be accessed from outside the loop.
- SmallPtrSet<Value*, 4> AllowedExit;
- /// This set holds the variables which are known to be uniform after
- /// vectorization.
- SmallPtrSet<Instruction*, 4> Uniforms;
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime.
- RuntimePointerCheck PtrRtCheck;
- /// Can we assume the absence of NaNs.
- bool HasFunNoNaNAttr;
- unsigned MaxSafeDepDistBytes;
- ValueToValueMap Strides;
- SmallPtrSet<Value *, 8> StrideSet;
- };
- /// LoopVectorizationCostModel - estimates the expected speedups due to
- /// vectorization.
- /// In many cases vectorization is not profitable. This can happen because of
- /// a number of reasons. In this class we mainly attempt to predict the
- /// expected speedup/slowdowns due to the supported instruction set. We use the
- /// TargetTransformInfo to query the different backends for the cost of
- /// different operations.
- class LoopVectorizationCostModel {
- public:
- LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
- LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- AssumptionTracker *AT, const Function *F,
- const LoopVectorizeHints *Hints)
- : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
- TheFunction(F), Hints(Hints) {
- CodeMetrics::collectEphemeralValues(L, AT, EphValues);
- }
- /// Information about vectorization costs
- struct VectorizationFactor {
- unsigned Width; // Vector width with best cost
- unsigned Cost; // Cost of the loop with that width
- };
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every power of two up to VF. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- VectorizationFactor selectVectorizationFactor(bool OptForSize);
- /// \return The size (in bits) of the widest type in the code that
- /// needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- unsigned getWidestType();
- /// \return The most profitable unroll factor.
- /// If UserUF is non-zero then this method finds the best unroll-factor
- /// based on register pressure and other parameters.
- /// VF and LoopCost are the selected vectorization factor and the cost of the
- /// selected VF.
- unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
- /// \brief A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- unsigned LoopInvariantRegs;
- /// Holds the maximum number of concurrent live intervals in the loop.
- unsigned MaxLocalUsers;
- /// Holds the number of instructions in the loop.
- unsigned NumInstructions;
- };
- /// \return information about the register usage of the loop.
- RegisterUsage calculateRegisterUsage();
- private:
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- unsigned expectedCost(unsigned VF);
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- unsigned getInstructionCost(Instruction *I, unsigned VF);
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type* ToVectorTy(Type *Scalar, unsigned VF);
- /// Returns whether the instruction is a load or store and will be a emitted
- /// as a vector operation.
- bool isConsecutiveLoadOrStore(Instruction *I);
- /// Report an analysis message to assist the user in diagnosing loops that are
- /// not vectorized.
- void emitAnalysis(Report &Message) {
- DebugLoc DL = TheLoop->getStartLoc();
- if (Instruction *I = Message.getInstr())
- DL = I->getDebugLoc();
- emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
- *TheFunction, DL, Message.str());
- }
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// Loop Info analysis.
- LoopInfo *LI;
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const TargetTransformInfo &TTI;
- /// Target data layout information.
- const DataLayout *DL;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- const Function *TheFunction;
- // Loop Vectorize Hint.
- const LoopVectorizeHints *Hints;
- };
- /// Utility class for getting and setting loop vectorizer hints in the form
- /// of loop metadata.
- /// This class keeps a number of loop annotations locally (as member variables)
- /// and can, upon request, write them back as metadata on the loop. It will
- /// initially scan the loop for existing metadata, and will update the local
- /// values based on information in the loop.
- /// We cannot write all values to metadata, as the mere presence of some info,
- /// for example 'force', means a decision has been made. So, we need to be
- /// careful NOT to add them if the user hasn't specifically asked so.
- class LoopVectorizeHints {
- enum HintKind {
- HK_WIDTH,
- HK_UNROLL,
- HK_FORCE
- };
- /// Hint - associates name and validation with the hint value.
- struct Hint {
- const char * Name;
- unsigned Value; // This may have to change for non-numeric values.
- HintKind Kind;
- Hint(const char * Name, unsigned Value, HintKind Kind)
- : Name(Name), Value(Value), Kind(Kind) { }
- bool validate(unsigned Val) {
- switch (Kind) {
- case HK_WIDTH:
- return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
- case HK_UNROLL:
- return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
- case HK_FORCE:
- return (Val <= 1);
- }
- return false;
- }
- };
- /// Vectorization width.
- Hint Width;
- /// Vectorization interleave factor.
- Hint Interleave;
- /// Vectorization forced
- Hint Force;
- /// Return the loop metadata prefix.
- static StringRef Prefix() { return "llvm.loop."; }
- public:
- enum ForceKind {
- FK_Undefined = -1, ///< Not selected.
- FK_Disabled = 0, ///< Forcing disabled.
- FK_Enabled = 1, ///< Forcing enabled.
- };
- LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
- : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
- Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
- Force("vectorize.enable", FK_Undefined, HK_FORCE),
- TheLoop(L) {
- // Populate values with existing loop metadata.
- getHintsFromMetadata();
- // force-vector-interleave overrides DisableInterleaving.
- if (VectorizationInterleave.getNumOccurrences() > 0)
- Interleave.Value = VectorizationInterleave;
- DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
- << "LV: Interleaving disabled by the pass manager\n");
- }
- /// Mark the loop L as already vectorized by setting the width to 1.
- void setAlreadyVectorized() {
- Width.Value = Interleave.Value = 1;
- Hint Hints[] = {Width, Interleave};
- writeHintsToMetadata(Hints);
- }
- /// Dumps all the hint information.
- std::string emitRemark() const {
- Report R;
- if (Force.Value == LoopVectorizeHints::FK_Disabled)
- R << "vectorization is explicitly disabled";
- else {
- R << "use -Rpass-analysis=loop-vectorize for more info";
- if (Force.Value == LoopVectorizeHints::FK_Enabled) {
- R << " (Force=true";
- if (Width.Value != 0)
- R << ", Vector Width=" << Width.Value;
- if (Interleave.Value != 0)
- R << ", Interleave Count=" << Interleave.Value;
- R << ")";
- }
- }
- return R.str();
- }
- unsigned getWidth() const { return Width.Value; }
- unsigned getInterleave() const { return Interleave.Value; }
- enum ForceKind getForce() const { return (ForceKind)Force.Value; }
- private:
- /// Find hints specified in the loop metadata and update local values.
- void getHintsFromMetadata() {
- MDNode *LoopID = TheLoop->getLoopID();
- if (!LoopID)
- return;
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = nullptr;
- SmallVector<Metadata *, 4> Args;
- // The expected hint is either a MDString or a MDNode with the first
- // operand a MDString.
- if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
- if (!MD || MD->getNumOperands() == 0)
- continue;
- S = dyn_cast<MDString>(MD->getOperand(0));
- for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
- Args.push_back(MD->getOperand(i));
- } else {
- S = dyn_cast<MDString>(LoopID->getOperand(i));
- assert(Args.size() == 0 && "too many arguments for MDString");
- }
- if (!S)
- continue;
- // Check if the hint starts with the loop metadata prefix.
- StringRef Name = S->getString();
- if (Args.size() == 1)
- setHint(Name, Args[0]);
- }
- }
- /// Checks string hint with one operand and set value if valid.
- void setHint(StringRef Name, Metadata *Arg) {
- if (!Name.startswith(Prefix()))
- return;
- Name = Name.substr(Prefix().size(), StringRef::npos);
- const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
- if (!C) return;
- unsigned Val = C->getZExtValue();
- Hint *Hints[] = {&Width, &Interleave, &Force};
- for (auto H : Hints) {
- if (Name == H->Name) {
- if (H->validate(Val))
- H->Value = Val;
- else
- DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
- break;
- }
- }
- }
- /// Create a new hint from name / value pair.
- MDNode *createHintMetadata(StringRef Name, unsigned V) const {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- Metadata *MDs[] = {MDString::get(Context, Name),
- ConstantAsMetadata::get(
- ConstantInt::get(Type::getInt32Ty(Context), V))};
- return MDNode::get(Context, MDs);
- }
- /// Matches metadata with hint name.
- bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
- MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
- if (!Name)
- return false;
- for (auto H : HintTypes)
- if (Name->getString().endswith(H.Name))
- return true;
- return false;
- }
- /// Sets current hints into loop metadata, keeping other values intact.
- void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
- if (HintTypes.size() == 0)
- return;
- // Reserve the first element to LoopID (see below).
- SmallVector<Metadata *, 4> MDs(1);
- // If the loop already has metadata, then ignore the existing operands.
- MDNode *LoopID = TheLoop->getLoopID();
- if (LoopID) {
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
- // If node in update list, ignore old value.
- if (!matchesHintMetadataName(Node, HintTypes))
- MDs.push_back(Node);
- }
- }
- // Now, add the missing hints.
- for (auto H : HintTypes)
- MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
- // Replace current metadata node with new one.
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- TheLoop->setLoopID(NewLoopID);
- LoopID = NewLoopID;
- }
- /// The loop these hints belong to.
- const Loop *TheLoop;
- };
- static void emitMissedWarning(Function *F, Loop *L,
- const LoopVectorizeHints &LH) {
- emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
- L->getStartLoc(), LH.emitRemark());
- if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
- if (LH.getWidth() != 1)
- emitLoopVectorizeWarning(
- F->getContext(), *F, L->getStartLoc(),
- "failed explicitly specified loop vectorization");
- else if (LH.getInterleave() != 1)
- emitLoopInterleaveWarning(
- F->getContext(), *F, L->getStartLoc(),
- "failed explicitly specified loop interleaving");
- }
- }
- static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
- if (L.empty())
- return V.push_back(&L);
- for (Loop *InnerL : L)
- addInnerLoop(*InnerL, V);
- }
- /// The LoopVectorize Pass.
- struct LoopVectorize : public FunctionPass {
- /// Pass identification, replacement for typeid
- static char ID;
- explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
- : FunctionPass(ID),
- DisableUnrolling(NoUnrolling),
- AlwaysVectorize(AlwaysVectorize) {
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
- ScalarEvolution *SE;
- const DataLayout *DL;
- LoopInfo *LI;
- TargetTransformInfo *TTI;
- DominatorTree *DT;
- BlockFrequencyInfo *BFI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- AssumptionTracker *AT;
- bool DisableUnrolling;
- bool AlwaysVectorize;
- BlockFrequency ColdEntryFreq;
- bool runOnFunction(Function &F) override {
- SE = &getAnalysis<ScalarEvolution>();
- DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : nullptr;
- LI = &getAnalysis<LoopInfo>();
- TTI = &getAnalysis<TargetTransformInfo>();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- BFI = &getAnalysis<BlockFrequencyInfo>();
- TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
- AA = &getAnalysis<AliasAnalysis>();
- AT = &getAnalysis<AssumptionTracker>();
- // Compute some weights outside of the loop over the loops. Compute this
- // using a BranchProbability to re-use its scaling math.
- const BranchProbability ColdProb(1, 5); // 20%
- ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- if (!DL) {
- DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
- << ": Missing data layout\n");
- return false;
- }
- // Build up a worklist of inner-loops to vectorize. This is necessary as
- // the act of vectorizing or partially unrolling a loop creates new loops
- // and can invalidate iterators across the loops.
- SmallVector<Loop *, 8> Worklist;
- for (Loop *L : *LI)
- addInnerLoop(*L, Worklist);
- LoopsAnalyzed += Worklist.size();
- // Now walk the identified inner loops.
- bool Changed = false;
- while (!Worklist.empty())
- Changed |= processLoop(Worklist.pop_back_val());
- // Process each loop nest in the function.
- return Changed;
- }
- bool processLoop(Loop *L) {
- assert(L->empty() && "Only process inner loops.");
- #ifndef NDEBUG
- const std::string DebugLocStr = getDebugLocString(L);
- #endif /* NDEBUG */
- DEBUG(dbgs() << "\nLV: Checking a loop in \""
- << L->getHeader()->getParent()->getName() << "\" from "
- << DebugLocStr << "\n");
- LoopVectorizeHints Hints(L, DisableUnrolling);
- DEBUG(dbgs() << "LV: Loop hints:"
- << " force="
- << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
- ? "disabled"
- : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
- ? "enabled"
- : "?")) << " width=" << Hints.getWidth()
- << " unroll=" << Hints.getInterleave() << "\n");
- // Function containing loop
- Function *F = L->getHeader()->getParent();
- // Looking at the diagnostic output is the only way to determine if a loop
- // was vectorized (other than looking at the IR or machine code), so it
- // is important to generate an optimization remark for each loop. Most of
- // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
- // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
- // less verbose reporting vectorized loops and unvectorized loops that may
- // benefit from vectorization, respectively.
- if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
- DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
- emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
- L->getStartLoc(), Hints.emitRemark());
- return false;
- }
- if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
- DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
- emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
- L->getStartLoc(), Hints.emitRemark());
- return false;
- }
- if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
- DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
- emitOptimizationRemarkAnalysis(
- F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- "loop not vectorized: vector width and interleave count are "
- "explicitly set to 1");
- return false;
- }
- // Check the loop for a trip count threshold:
- // do not vectorize loops with a tiny trip count.
- const unsigned TC = SE->getSmallConstantTripCount(L);
- if (TC > 0u && TC < TinyTripCountVectorThreshold) {
- DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
- << "This loop is not worth vectorizing.");
- if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
- DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
- else {
- DEBUG(dbgs() << "\n");
- emitOptimizationRemarkAnalysis(
- F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- "vectorization is not beneficial and is not explicitly forced");
- return false;
- }
- }
- // Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F);
- if (!LVL.canVectorize()) {
- DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
- emitMissedWarning(F, L, Hints);
- return false;
- }
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F,
- &Hints);
- // Check the function attributes to find out if this function should be
- // optimized for size.
- bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- F->hasFnAttribute(Attribute::OptimizeForSize);
- // Compute the weighted frequency of this loop being executed and see if it
- // is less than 20% of the function entry baseline frequency. Note that we
- // always have a canonical loop here because we think we *can* vectoriez.
- // FIXME: This is hidden behind a flag due to pervasive problems with
- // exactly what block frequency models.
- if (LoopVectorizeWithBlockFrequency) {
- BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
- if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- LoopEntryFreq < ColdEntryFreq)
- OptForSize = true;
- }
- // Check the function attributes to see if implicit floats are allowed.a
- // FIXME: This check doesn't seem possibly correct -- what if the loop is
- // an integer loop and the vector instructions selected are purely integer
- // vector instructions?
- if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
- DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
- "attribute is used.\n");
- emitOptimizationRemarkAnalysis(
- F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- "loop not vectorized due to NoImplicitFloat attribute");
- emitMissedWarning(F, L, Hints);
- return false;
- }
- // Select the optimal vectorization factor.
- const LoopVectorizationCostModel::VectorizationFactor VF =
- CM.selectVectorizationFactor(OptForSize);
- // Select the unroll factor.
- const unsigned UF =
- CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
- DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
- << DebugLocStr << '\n');
- DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
- if (VF.Width == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
- if (UF == 1) {
- emitOptimizationRemarkAnalysis(
- F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- "not beneficial to vectorize and user disabled interleaving");
- return false;
- }
- DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
- // Report the unrolling decision.
- emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- Twine("unrolled with interleaving factor " +
- Twine(UF) +
- " (vectorization not beneficial)"));
- // We decided not to vectorize, but we may want to unroll.
- InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
- Unroller.vectorize(&LVL);
- } else {
- // If we decided that it is *legal* to vectorize the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
- LB.vectorize(&LVL);
- ++LoopsVectorized;
- // Report the vectorization decision.
- emitOptimizationRemark(
- F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
- Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
- ", unrolling interleave factor: " + Twine(UF) + ")");
- }
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionTracker>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<BlockFrequencyInfo>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfo>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<TargetTransformInfo>();
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<LoopInfo>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AliasAnalysis>();
- }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
- // LoopVectorizationCostModel.
- //===----------------------------------------------------------------------===//
- static Value *stripIntegerCast(Value *V) {
- if (CastInst *CI = dyn_cast<CastInst>(V))
- if (CI->getOperand(0)->getType()->isIntegerTy())
- return CI->getOperand(0);
- return V;
- }
- ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
- ///
- /// If \p OrigPtr is not null, use it to look up the stride value instead of
- /// \p Ptr.
- static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
- ValueToValueMap &PtrToStride,
- Value *Ptr, Value *OrigPtr = nullptr) {
- const SCEV *OrigSCEV = SE->getSCEV(Ptr);
- // If there is an entry in the map return the SCEV of the pointer with the
- // symbolic stride replaced by one.
- ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
- if (SI != PtrToStride.end()) {
- Value *StrideVal = SI->second;
- // Strip casts.
- StrideVal = stripIntegerCast(StrideVal);
- // Replace symbolic stride by one.
- Value *One = ConstantInt::get(StrideVal->getType(), 1);
- ValueToValueMap RewriteMap;
- RewriteMap[StrideVal] = One;
- const SCEV *ByOne =
- SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
- DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
- << "\n");
- return ByOne;
- }
- // Otherwise, just return the SCEV of the original pointer.
- return SE->getSCEV(Ptr);
- }
- void LoopVectorizationLegality::RuntimePointerCheck::insert(
- ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
- unsigned ASId, ValueToValueMap &Strides) {
- // Get the stride replaced scev.
- const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- assert(AR && "Invalid addrec expression");
- const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- Pointers.push_back(Ptr);
- Starts.push_back(AR->getStart());
- Ends.push_back(ScEnd);
- IsWritePtr.push_back(WritePtr);
- DependencySetId.push_back(DepSetId);
- AliasSetId.push_back(ASId);
- }
- Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // We need to place the broadcast of invariant variables outside the loop.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool NewInstr =
- (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
- Instr->getParent()) != LoopVectorBody.end());
- bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
- // Place the code for broadcasting invariant variables in the new preheader.
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (Invariant)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
- return Shuf;
- }
- Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
- bool Negate) {
- assert(Val->getType()->isVectorTy() && "Must be a vector");
- assert(Val->getType()->getScalarType()->isIntegerTy() &&
- "Elem must be an integer");
- // Create the types.
- Type *ITy = Val->getType()->getScalarType();
- VectorType *Ty = cast<VectorType>(Val->getType());
- int VLen = Ty->getNumElements();
- SmallVector<Constant*, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i) {
- int64_t Idx = Negate ? (-i) : i;
- Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
- }
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
- return Builder.CreateAdd(Val, Cv, "induction");
- }
- /// \brief Find the operand of the GEP that should be checked for consecutive
- /// stores. This ignores trailing indices that have no effect on the final
- /// pointer.
- static unsigned getGEPInductionOperand(const DataLayout *DL,
- const GetElementPtrInst *Gep) {
- unsigned LastOperand = Gep->getNumOperands() - 1;
- unsigned GEPAllocSize = DL->getTypeAllocSize(
- cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
- // Walk backwards and try to peel off zeros.
- while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
- // Find the type we're currently indexing into.
- gep_type_iterator GEPTI = gep_type_begin(Gep);
- std::advance(GEPTI, LastOperand - 1);
- // If it's a type with the same allocation size as the result of the GEP we
- // can peel off the zero index.
- if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
- break;
- --LastOperand;
- }
- return LastOperand;
- }
- int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
- assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
- // Make sure that the pointer does not point to structs.
- if (Ptr->getType()->getPointerElementType()->isAggregateType())
- return 0;
- // If this value is a pointer induction variable we know it is consecutive.
- PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
- if (Phi && Inductions.count(Phi)) {
- InductionInfo II = Inductions[Phi];
- if (IK_PtrInduction == II.IK)
- return 1;
- else if (IK_ReversePtrInduction == II.IK)
- return -1;
- }
- GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
- if (!Gep)
- return 0;
- unsigned NumOperands = Gep->getNumOperands();
- Value *GpPtr = Gep->getPointerOperand();
- // If this GEP value is a consecutive pointer induction variable and all of
- // the indices are constant then we know it is consecutive. We can
- Phi = dyn_cast<PHINode>(GpPtr);
- if (Phi && Inductions.count(Phi)) {
- // Make sure that the pointer does not point to structs.
- PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
- if (GepPtrType->getElementType()->isAggregateType())
- return 0;
- // Make sure that all of the index operands are loop invariant.
- for (unsigned i = 1; i < NumOperands; ++i)
- if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return 0;
- InductionInfo II = Inductions[Phi];
- if (IK_PtrInduction == II.IK)
- return 1;
- else if (IK_ReversePtrInduction == II.IK)
- return -1;
- }
- unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
- // Check that all of the gep indices are uniform except for our induction
- // operand.
- for (unsigned i = 0; i != NumOperands; ++i)
- if (i != InductionOperand &&
- !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return 0;
- // We can emit wide load/stores only if the last non-zero index is the
- // induction variable.
- const SCEV *Last = nullptr;
- if (!Strides.count(Gep))
- Last = SE->getSCEV(Gep->getOperand(InductionOperand));
- else {
- // Because of the multiplication by a stride we can have a s/zext cast.
- // We are going to replace this stride by 1 so the cast is safe to ignore.
- //
- // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
- // %0 = trunc i64 %indvars.iv to i32
- // %mul = mul i32 %0, %Stride1
- // %idxprom = zext i32 %mul to i64 << Safe cast.
- // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
- //
- Last = replaceSymbolicStrideSCEV(SE, Strides,
- Gep->getOperand(InductionOperand), Gep);
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
- Last =
- (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
- ? C->getOperand()
- : Last;
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // The memory is consecutive because the last index is consecutive
- // and all other indices are loop invariant.
- if (Step->isOne())
- return 1;
- if (Step->isAllOnesValue())
- return -1;
- }
- return 0;
- }
- bool LoopVectorizationLegality::isUniform(Value *V) {
- return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
- }
- InnerLoopVectorizer::VectorParts&
- InnerLoopVectorizer::getVectorValue(Value *V) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we have a stride that is replaced by one, do it here.
- if (Legal->hasStride(V))
- V = ConstantInt::get(V->getType(), 1);
- // If we have this scalar in the map, return it.
- if (WidenMap.has(V))
- return WidenMap.get(V);
- // If this scalar is unknown, assume that it is a constant or that it is
- // loop invariant. Broadcast V and save the value for future uses.
- Value *B = getBroadcastInstrs(V);
- return WidenMap.splat(V, B);
- }
- Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
- assert(Vec->getType()->isVectorTy() && "Invalid type");
- SmallVector<Constant*, 8> ShuffleMask;
- for (unsigned i = 0; i < VF; ++i)
- ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
- return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
- ConstantVector::get(ShuffleMask),
- "reverse");
- }
- void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(Instr);
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- assert((LI || SI) && "Invalid Load/Store instruction");
- Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
- Type *DataTy = VectorType::get(ScalarDataTy, VF);
- Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
- unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
- // An alignment of 0 means target abi alignment. We need to use the scalar's
- // target abi alignment in such a case.
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(ScalarDataTy);
- unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
- unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
- unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
- if (SI && Legal->blockNeedsPredication(SI->getParent()))
- return scalarizeInstruction(Instr, true);
- if (ScalarAllocatedSize != VectorElementSize)
- return scalarizeInstruction(Instr);
- // If the pointer is loop invariant or if it is non-consecutive,
- // scalarize the load.
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = ConsecutiveStride < 0;
- bool UniformLoad = LI && Legal->isUniform(Ptr);
- if (!ConsecutiveStride || UniformLoad)
- return scalarizeInstruction(Instr);
- Constant *Zero = Builder.getInt32(0);
- VectorParts &Entry = WidenMap.get(Instr);
- // Handle consecutive loads/stores.
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
- setDebugLocFromInst(Builder, Gep);
- Value *PtrOperand = Gep->getPointerOperand();
- Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
- FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(0, FirstBasePtr);
- Gep2->setName("gep.indvar.base");
- Ptr = Builder.Insert(Gep2);
- } else if (Gep) {
- setDebugLocFromInst(Builder, Gep);
- assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
- OrigLoop) && "Base ptr must be invariant");
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- for (unsigned i = 0; i < NumOperands; ++i) {
- Value *GepOperand = Gep->getOperand(i);
- Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
- // Update last index or loop invariant instruction anchored in loop.
- if (i == InductionOperand ||
- (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
- assert((i == InductionOperand ||
- SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
- "Must be last index or loop invariant");
- VectorParts &GEPParts = getVectorValue(GepOperand);
- Value *Index = GEPParts[0];
- Index = Builder.CreateExtractElement(Index, Zero);
- Gep2->setOperand(i, Index);
- Gep2->setName("gep.indvar.idx");
- }
- }
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- setDebugLocFromInst(Builder, Ptr);
- VectorParts &PtrVal = getVectorValue(Ptr);
- Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
- }
- // Handle Stores:
- if (SI) {
- assert(!Legal->isUniform(SI->getPointerOperand()) &&
- "We do not allow storing to uniform addresses");
- setDebugLocFromInst(Builder, SI);
- // We don't want to update the value in the map as it might be used in
- // another expression. So don't use a reference type for "StoredVal".
- VectorParts StoredVal = getVectorValue(SI->getValueOperand());
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If we store to reverse consecutive memory locations then we need
- // to reverse the order of elements in the stored value.
- StoredVal[Part] = reverseVector(StoredVal[Part]);
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
- }
- Value *VecPtr = Builder.CreateBitCast(PartPtr,
- DataTy->getPointerTo(AddressSpace));
- StoreInst *NewSI =
- Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
- propagateMetadata(NewSI, SI);
- }
- return;
- }
- // Handle loads.
- assert(LI && "Must have a load instruction");
- setDebugLocFromInst(Builder, LI);
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
- }
- Value *VecPtr = Builder.CreateBitCast(PartPtr,
- DataTy->getPointerTo(AddressSpace));
- LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
- propagateMetadata(NewLI, LI);
- Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
- }
- }
- void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<VectorParts, 4> Params;
- setDebugLocFromInst(Builder, Instr);
- // Find all of the vectorized parameters.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *SrcOp = Instr->getOperand(op);
- // If we are accessing the old induction variable, use the new one.
- if (SrcOp == OldInduction) {
- Params.push_back(getVectorValue(SrcOp));
- continue;
- }
- // Try using previously calculated values.
- Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
- // If the src is an instruction that appeared earlier in the basic block
- // then it should already be vectorized.
- if (SrcInst && OrigLoop->contains(SrcInst)) {
- assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
- // The parameter is a vector value from earlier.
- Params.push_back(WidenMap.get(SrcInst));
- } else {
- // The parameter is a scalar from outside the loop. Maybe even a constant.
- VectorParts Scalars;
- Scalars.append(UF, SrcOp);
- Params.push_back(Scalars);
- }
- }
- assert(Params.size() == Instr->getNumOperands() &&
- "Invalid number of operands");
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? nullptr :
- UndefValue::get(VectorType::get(Instr->getType(), VF));
- // Create a new entry in the WidenMap and initialize it to Undef or Null.
- VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
- Instruction *InsertPt = Builder.GetInsertPoint();
- BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = nullptr;
- VectorParts Cond;
- Loop *VectorLp = nullptr;
- if (IfPredicateStore) {
- assert(Instr->getParent()->getSinglePredecessor() &&
- "Only support single predecessor blocks");
- Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
- Instr->getParent());
- VectorLp = LI->getLoopFor(IfBlock);
- assert(VectorLp && "Must have a loop for this block");
- }
- // For each vector unroll 'part':
- for (unsigned Part = 0; Part < UF; ++Part) {
- // For each scalar that we create:
- for (unsigned Width = 0; Width < VF; ++Width) {
- // Start if-block.
- Value *Cmp = nullptr;
- if (IfPredicateStore) {
- Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
- Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
- CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
- LoopVectorBody.push_back(CondBlock);
- VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
- // Update Builder with newly created basic block.
- Builder.SetInsertPoint(InsertPt);
- }
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instructions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op][Part];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
- Cloned->setOperand(op, Op);
- }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
- Builder.getInt32(Width));
- // End if-block.
- if (IfPredicateStore) {
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- LoopVectorBody.push_back(NewIfBlock);
- VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
- Builder.SetInsertPoint(InsertPt);
- Instruction *OldBr = IfBlock->getTerminator();
- BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
- OldBr->eraseFromParent();
- IfBlock = NewIfBlock;
- }
- }
- }
- }
- static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
- Instruction *Loc) {
- if (FirstInst)
- return FirstInst;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == Loc->getParent() ? I : nullptr;
- return nullptr;
- }
- std::pair<Instruction *, Instruction *>
- InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
- Instruction *tnullptr = nullptr;
- if (!Legal->mustCheckStrides())
- return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
- IRBuilder<> ChkBuilder(Loc);
- // Emit checks.
- Value *Check = nullptr;
- Instruction *FirstInst = nullptr;
- for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
- SE = Legal->strides_end();
- SI != SE; ++SI) {
- Value *Ptr = stripIntegerCast(*SI);
- Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
- "stride.chk");
- // Store the first instruction we create.
- FirstInst = getFirstInst(FirstInst, C, Loc);
- if (Check)
- Check = ChkBuilder.CreateOr(Check, C);
- else
- Check = C;
- }
- // We have to do this trickery because the IRBuilder might fold the check to a
- // constant expression in which case there is no Instruction anchored in a
- // the block.
- LLVMContext &Ctx = Loc->getContext();
- Instruction *TheCheck =
- BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
- ChkBuilder.Insert(TheCheck, "stride.not.one");
- FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
- return std::make_pair(FirstInst, TheCheck);
- }
- std::pair<Instruction *, Instruction *>
- InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
- LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
- Legal->getRuntimePointerCheck();
- Instruction *tnullptr = nullptr;
- if (!PtrRtCheck->Need)
- return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
- unsigned NumPointers = PtrRtCheck->Pointers.size();
- SmallVector<TrackingVH<Value> , 2> Starts;
- SmallVector<TrackingVH<Value> , 2> Ends;
- LLVMContext &Ctx = Loc->getContext();
- SCEVExpander Exp(*SE, "induction");
- Instruction *FirstInst = nullptr;
- for (unsigned i = 0; i < NumPointers; ++i) {
- Value *Ptr = PtrRtCheck->Pointers[i];
- const SCEV *Sc = SE->getSCEV(Ptr);
- if (SE->isLoopInvariant(Sc, OrigLoop)) {
- DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
- *Ptr <<"\n");
- Starts.push_back(Ptr);
- Ends.push_back(Ptr);
- } else {
- DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
- unsigned AS = Ptr->getType()->getPointerAddressSpace();
- // Use this type for pointer arithmetic.
- Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
- Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
- Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
- Starts.push_back(Start);
- Ends.push_back(End);
- }
- }
- IRBuilder<> ChkBuilder(Loc);
- // Our instructions might fold to a constant.
- Value *MemoryRuntimeCheck = nullptr;
- for (unsigned i = 0; i < NumPointers; ++i) {
- for (unsigned j = i+1; j < NumPointers; ++j) {
- // No need to check if two readonly pointers intersect.
- if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
- continue;
- // Only need to check pointers between two different dependency sets.
- if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
- continue;
- // Only need to check pointers in the same alias set.
- if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
- continue;
- unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
- unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
- assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
- (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
- "Trying to bounds check pointers with different address spaces");
- Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
- Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
- Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
- Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
- Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
- Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
- Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
- FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
- Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
- FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
- Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
- FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
- if (MemoryRuntimeCheck) {
- IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
- "conflict.rdx");
- FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
- }
- MemoryRuntimeCheck = IsConflict;
- }
- }
- // We have to do this trickery because the IRBuilder might fold the check to a
- // constant expression in which case there is no Instruction anchored in a
- // the block.
- Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
- ConstantInt::getTrue(Ctx));
- ChkBuilder.Insert(Check, "memcheck.conflict");
- FirstInst = getFirstInst(FirstInst, Check, Loc);
- return std::make_pair(FirstInst, Check);
- }
- void InnerLoopVectorizer::createEmptyLoop() {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
- [ ] <-- Back-edge taken count overflow check.
- / |
- / v
- | [ ] <-- vector loop bypass (may consist of multiple blocks).
- | / |
- | / v
- || [ ] <-- vector pre header.
- || |
- || v
- || [ ] \
- || [ ]_| <-- vector loop.
- || |
- | \ v
- | >[ ] <--- middle-block.
- | / |
- | / v
- -|- >[ ] <--- new preheader.
- | |
- | v
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
- ...
- */
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
- BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- assert(BypassBlock && "Invalid loop structure");
- assert(ExitBlock && "Must have an exit block");
- // Some loops have a single integer induction variable, while other loops
- // don't. One example is c++ iterators that often have multiple pointer
- // induction variables. In the code below we also support a case where we
- // don't have a single induction variable.
- OldInduction = Legal->getInduction();
- Type *IdxTy = Legal->getWidestInductionType();
- // Find the loop boundaries.
- const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
- assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
- // The exit count might have the type of i64 while the phi is i32. This can
- // happen if we have an induction variable that is sign extended before the
- // compare. The only way that we get a backedge taken count is that the
- // induction variable was signed and as such will not overflow. In such a case
- // truncation is legal.
- if (ExitCount->getType()->getPrimitiveSizeInBits() >
- IdxTy->getPrimitiveSizeInBits())
- ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
- const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
- // Get the total trip count from the count by adding 1.
- ExitCount = SE->getAddExpr(BackedgeTakeCount,
- SE->getConstant(BackedgeTakeCount->getType(), 1));
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, "induction");
- // We need to test whether the backedge-taken count is uint##_max. Adding one
- // to it will cause overflow and an incorrect loop trip count in the vector
- // body. In case of overflow we want to directly jump to the scalar remainder
- // loop.
- Value *BackedgeCount =
- Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
- BypassBlock->getTerminator());
- if (BackedgeCount->getType()->isPointerTy())
- BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
- "backedge.ptrcnt.to.int",
- BypassBlock->getTerminator());
- Instruction *CheckBCOverflow =
- CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
- Constant::getAllOnesValue(BackedgeCount->getType()),
- "backedge.overflow", BypassBlock->getTerminator());
- // The loop index does not have to start at Zero. Find the original start
- // value from the induction PHI node. If we don't have an induction variable
- // then we know that it starts at zero.
- Builder.SetInsertPoint(BypassBlock->getTerminator());
- Value *StartIdx = ExtendedIdx = OldInduction ?
- Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
- IdxTy):
- ConstantInt::get(IdxTy, 0);
- // We need an instruction to anchor the overflow check on. StartIdx needs to
- // be defined before the overflow check branch. Because the scalar preheader
- // is going to merge the start index and so the overflow branch block needs to
- // contain a definition of the start index.
- Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
- StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
- BypassBlock->getTerminator());
- // Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- BypassBlock->getTerminator());
- LoopBypassBlocks.push_back(BypassBlock);
- // Split the single block loop into the two loop structure described above.
- BasicBlock *VectorPH =
- BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
- BasicBlock *VecBody =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
- BasicBlock *MiddleBlock =
- VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
- BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
- // Create and register the new vector loop.
- Loop* Lp = new Loop();
- Loop *ParentLoop = OrigLoop->getParentLoop();
- // Insert the new loop into the loop nest and register the new basic blocks
- // before calling any utilities such as SCEV that require valid LoopInfo.
- if (ParentLoop) {
- ParentLoop->addChildLoop(Lp);
- ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
- ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
- ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
- } else {
- LI->addTopLevelLoop(Lp);
- }
- Lp->addBasicBlockToLoop(VecBody, LI->getBase());
- // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
- // inside the loop.
- Builder.SetInsertPoint(VecBody->getFirstNonPHI());
- // Generate the induction variable.
- setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
- Induction = Builder.CreatePHI(IdxTy, 2, "index");
- // The loop step is equal to the vectorization factor (num of SIMD elements)
- // times the unroll factor (num of SIMD instructions).
- Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- // This is the IR builder that we use to add all of the logic for bypassing
- // the new vector loop.
- IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
- setDebugLocFromInst(BypassBuilder,
- getDebugLocFromInstOrOperands(OldInduction));
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- if (Count->getType() != IdxTy) {
- // The exit count can be of pointer type. Convert it to the correct
- // integer type.
- if (ExitCount->getType()->isPointerTy())
- Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
- else
- Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
- }
- // Add the start index to the loop count to get the new end index.
- Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
- // Now we need to generate the expression for N - (N % VF), which is
- // the part that the vectorized body will execute.
- Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
- Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
- Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
- "end.idx.rnd.down");
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop.
- Value *Cmp =
- BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
- BasicBlock *LastBypassBlock = BypassBlock;
- // Generate code to check that the loops trip count that we computed by adding
- // one to the backedge-taken count will not overflow.
- {
- auto PastOverflowCheck =
- std::next(BasicBlock::iterator(OverflowCheckAnchor));
- BasicBlock *CheckBlock =
- LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
- LoopBypassBlocks.push_back(CheckBlock);
- Instruction *OldTerm = LastBypassBlock->getTerminator();
- BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
- OldTerm->eraseFromParent();
- LastBypassBlock = CheckBlock;
- }
- // Generate the code to check that the strides we assumed to be one are really
- // one. We want the new basic block to start at the first instruction in a
- // sequence of instructions that form a check.
- Instruction *StrideCheck;
- Instruction *FirstCheckInst;
- std::tie(FirstCheckInst, StrideCheck) =
- addStrideCheck(LastBypassBlock->getTerminator());
- if (StrideCheck) {
- // Create a new block containing the stride check.
- BasicBlock *CheckBlock =
- LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
- LoopBypassBlocks.push_back(CheckBlock);
- // Replace the branch into the memory check block with a conditional branch
- // for the "few elements case".
- Instruction *OldTerm = LastBypassBlock->getTerminator();
- BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
- OldTerm->eraseFromParent();
- Cmp = StrideCheck;
- LastBypassBlock = CheckBlock;
- }
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- Instruction *MemRuntimeCheck;
- std::tie(FirstCheckInst, MemRuntimeCheck) =
- addRuntimeCheck(LastBypassBlock->getTerminator());
- if (MemRuntimeCheck) {
- // Create a new block containing the memory check.
- BasicBlock *CheckBlock =
- LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
- LoopBypassBlocks.push_back(CheckBlock);
- // Replace the branch into the memory check block with a conditional branch
- // for the "few elements case".
- Instruction *OldTerm = LastBypassBlock->getTerminator();
- BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
- OldTerm->eraseFromParent();
- Cmp = MemRuntimeCheck;
- LastBypassBlock = CheckBlock;
- }
- LastBypassBlock->getTerminator()->eraseFromParent();
- BranchInst::Create(MiddleBlock, VectorPH, Cmp,
- LastBypassBlock);
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
- // This variable saves the new starting index for the scalar loop.
- PHINode *ResumeIndex = nullptr;
- LoopVectorizationLegality::InductionList::iterator I, E;
- LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
- // Set builder to point to last bypass block.
- BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
- for (I = List->begin(), E = List->end(); I != E; ++I) {
- PHINode *OrigPhi = I->first;
- LoopVectorizationLegality::InductionInfo II = I->second;
- Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
- PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
- MiddleBlock->getTerminator());
- // We might have extended the type of the induction variable but we need a
- // truncated version for the scalar loop.
- PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
- PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
- MiddleBlock->getTerminator()) : nullptr;
- // Create phi nodes to merge from the backedge-taken check block.
- PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
- ScalarPH->getTerminator());
- BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
- PHINode *BCTruncResumeVal = nullptr;
- if (OrigPhi == OldInduction) {
- BCTruncResumeVal =
- PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
- ScalarPH->getTerminator());
- BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
- }
- Value *EndValue = nullptr;
- switch (II.IK) {
- case LoopVectorizationLegality::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IK_IntInduction: {
- // Handle the integer induction counter.
- assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
- // We have the canonical induction variable.
- if (OrigPhi == OldInduction) {
- // Create a truncated version of the resume value for the scalar loop,
- // we might have promoted the type to a larger width.
- EndValue =
- BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
- TruncResumeVal->addIncoming(EndValue, VecBody);
- BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
- // We know what the end value is.
- EndValue = IdxEndRoundDown;
- // We also know which PHI node holds it.
- ResumeIndex = ResumeVal;
- break;
- }
- // Not the canonical induction variable - add the vector loop count to the
- // start value.
- Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
- II.StartValue->getType(),
- "cast.crd");
- EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
- break;
- }
- case LoopVectorizationLegality::IK_ReverseIntInduction: {
- // Convert the CountRoundDown variable to the PHI size.
- Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
- II.StartValue->getType(),
- "cast.crd");
- // Handle reverse integer induction counter.
- EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
- break;
- }
- case LoopVectorizationLegality::IK_PtrInduction: {
- // For pointer induction variables, calculate the offset using
- // the end index.
- EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
- "ptr.ind.end");
- break;
- }
- case LoopVectorizationLegality::IK_ReversePtrInduction: {
- // The value at the end of the loop for the reverse pointer is calculated
- // by creating a GEP with a negative index starting from the start value.
- Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
- Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
- "rev.ind.end");
- EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
- "rev.ptr.ind.end");
- break;
- }
- }// end of case
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
- if (OrigPhi == OldInduction)
- ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
- else
- ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
- }
- ResumeVal->addIncoming(EndValue, VecBody);
- // Fix the scalar body counter (PHI node).
- unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
- // The old induction's phi node in the scalar body needs the truncated
- // value.
- if (OrigPhi == OldInduction) {
- BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
- OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
- } else {
- BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
- OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
- }
- }
- // If we are generating a new induction variable then we also need to
- // generate the code that calculates the exit value. This value is not
- // simply the end of the counter because we may skip the vectorized body
- // in case of a runtime check.
- if (!OldInduction){
- assert(!ResumeIndex && "Unexpected resume value found");
- ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
- MiddleBlock->getTerminator());
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
- ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
- }
- // Make sure that we found the index where scalar loop needs to continue.
- assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
- "Invalid resume Index");
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop.
- // If (N - N%VF) == N, then we *don't* need to run the remainder.
- Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
- ResumeIndex, "cmp.n",
- MiddleBlock->getTerminator());
- BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
- // Remove the old terminator.
- MiddleBlock->getTerminator()->eraseFromParent();
- // Create i+1 and fill the PHINode.
- Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
- Induction->addIncoming(StartIdx, VectorPH);
- Induction->addIncoming(NextIdx, VecBody);
- // Create the compare.
- Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
- Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
- // Now we have two terminators. Remove the old one from the block.
- VecBody->getTerminator()->eraseFromParent();
- // Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
- // Save the state.
- LoopVectorPreHeader = VectorPH;
- LoopScalarPreHeader = ScalarPH;
- LoopMiddleBlock = MiddleBlock;
- LoopExitBlock = ExitBlock;
- LoopVectorBody.push_back(VecBody);
- LoopScalarBody = OldBasicBlock;
- LoopVectorizeHints Hints(Lp, true);
- Hints.setAlreadyVectorized();
- }
- /// This function returns the identity element (or neutral element) for
- /// the operation K.
- Constant*
- LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
- switch (K) {
- case RK_IntegerXor:
- case RK_IntegerAdd:
- case RK_IntegerOr:
- // Adding, Xoring, Oring zero to a number does not change it.
- return ConstantInt::get(Tp, 0);
- case RK_IntegerMult:
- // Multiplying a number by 1 does not change it.
- return ConstantInt::get(Tp, 1);
- case RK_IntegerAnd:
- // AND-ing a number with an all-1 value does not change it.
- return ConstantInt::get(Tp, -1, true);
- case RK_FloatMult:
- // Multiplying a number by 1 does not change it.
- return ConstantFP::get(Tp, 1.0L);
- case RK_FloatAdd:
- // Adding zero to a number does not change it.
- return ConstantFP::get(Tp, 0.0L);
- default:
- llvm_unreachable("Unknown reduction kind");
- }
- }
- /// This function translates the reduction kind to an LLVM binary operator.
- static unsigned
- getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
- switch (Kind) {
- case LoopVectorizationLegality::RK_IntegerAdd:
- return Instruction::Add;
- case LoopVectorizationLegality::RK_IntegerMult:
- return Instruction::Mul;
- case LoopVectorizationLegality::RK_IntegerOr:
- return Instruction::Or;
- case LoopVectorizationLegality::RK_IntegerAnd:
- return Instruction::And;
- case LoopVectorizationLegality::RK_IntegerXor:
- return Instruction::Xor;
- case LoopVectorizationLegality::RK_FloatMult:
- return Instruction::FMul;
- case LoopVectorizationLegality::RK_FloatAdd:
- return Instruction::FAdd;
- case LoopVectorizationLegality::RK_IntegerMinMax:
- return Instruction::ICmp;
- case LoopVectorizationLegality::RK_FloatMinMax:
- return Instruction::FCmp;
- default:
- llvm_unreachable("Unknown reduction operation");
- }
- }
- Value *createMinMaxOp(IRBuilder<> &Builder,
- LoopVectorizationLegality::MinMaxReductionKind RK,
- Value *Left,
- Value *Right) {
- CmpInst::Predicate P = CmpInst::ICMP_NE;
- switch (RK) {
- default:
- llvm_unreachable("Unknown min/max reduction kind");
- case LoopVectorizationLegality::MRK_UIntMin:
- P = CmpInst::ICMP_ULT;
- break;
- case LoopVectorizationLegality::MRK_UIntMax:
- P = CmpInst::ICMP_UGT;
- break;
- case LoopVectorizationLegality::MRK_SIntMin:
- P = CmpInst::ICMP_SLT;
- break;
- case LoopVectorizationLegality::MRK_SIntMax:
- P = CmpInst::ICMP_SGT;
- break;
- case LoopVectorizationLegality::MRK_FloatMin:
- P = CmpInst::FCMP_OLT;
- break;
- case LoopVectorizationLegality::MRK_FloatMax:
- P = CmpInst::FCMP_OGT;
- break;
- }
- Value *Cmp;
- if (RK == LoopVectorizationLegality::MRK_FloatMin ||
- RK == LoopVectorizationLegality::MRK_FloatMax)
- Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
- else
- Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
- Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
- return Select;
- }
- namespace {
- struct CSEDenseMapInfo {
- static bool canHandle(Instruction *I) {
- return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
- }
- static inline Instruction *getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline Instruction *getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(Instruction *I) {
- assert(canHandle(I) && "Unknown instruction!");
- return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
- I->value_op_end()));
- }
- static bool isEqual(Instruction *LHS, Instruction *RHS) {
- if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
- LHS == getTombstoneKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- }
- /// \brief Check whether this block is a predicated block.
- /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
- /// = ...; " blocks. We start with one vectorized basic block. For every
- /// conditional block we split this vectorized block. Therefore, every second
- /// block will be a predicated one.
- static bool isPredicatedBlock(unsigned BlockNum) {
- return BlockNum % 2;
- }
- ///\brief Perform cse of induction variable instructions.
- static void cse(SmallVector<BasicBlock *, 4> &BBs) {
- // Perform simple cse.
- SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
- for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
- BasicBlock *BB = BBs[i];
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *In = I++;
- if (!CSEDenseMapInfo::canHandle(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- if (Instruction *V = CSEMap.lookup(In)) {
- In->replaceAllUsesWith(V);
- In->eraseFromParent();
- continue;
- }
- // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
- // ...;" blocks for predicated stores. Every second block is a predicated
- // block.
- if (isPredicatedBlock(i))
- continue;
- CSEMap[In] = In;
- }
- }
- }
- /// \brief Adds a 'fast' flag to floating point operations.
- static Value *addFastMathFlag(Value *V) {
- if (isa<FPMathOperator>(V)){
- FastMathFlags Flags;
- Flags.setUnsafeAlgebra();
- cast<Instruction>(V)->setFastMathFlags(Flags);
- }
- return V;
- }
- void InnerLoopVectorizer::vectorizeLoop() {
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should be also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
- Constant *Zero = Builder.getInt32(0);
- // In order to support reduction variables we need to be able to vectorize
- // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
- // stages. First, we create a new vector PHI node with no incoming edges.
- // We use this value when we vectorize all of the instructions that use the
- // PHI. Next, after all of the instructions in the block are complete we
- // add the new incoming edges to the PHI. At this point all of the
- // instructions in the basic block are vectorized, so we can use them to
- // construct the PHI.
- PhiVector RdxPHIsToFix;
- // Scan the loop in a topological order to ensure that defs are vectorized
- // before users.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
- // Vectorize all of the blocks in the original loop.
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb)
- vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
- // At this point every instruction in the original loop is widened to
- // a vector form. We are almost done. Now, we need to fix the PHI nodes
- // that we vectorized. The PHI nodes are currently empty because we did
- // not want to introduce cycles. Notice that the remaining PHI nodes
- // that we need to fix are reduction variables.
- // Create the 'reduced' values for each of the induction vars.
- // The reduced values are the vector values that we scalarize and combine
- // after the loop is finished.
- for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
- it != e; ++it) {
- PHINode *RdxPhi = *it;
- assert(RdxPhi && "Unable to recover vectorized PHI");
- // Find the reduction variable descriptor.
- assert(Legal->getReductionVars()->count(RdxPhi) &&
- "Unable to find the reduction variable");
- LoopVectorizationLegality::ReductionDescriptor RdxDesc =
- (*Legal->getReductionVars())[RdxPhi];
- setDebugLocFromInst(Builder, RdxDesc.StartValue);
- // We need to generate a reduction vector from the incoming scalar.
- // To do so, we need to generate the 'identity' vector and override
- // one of the elements with the incoming scalar reduction. We need
- // to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
- // This is the vector-clone of the value that leaves the loop.
- VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
- Type *VecTy = VectorExit[0]->getType();
- // Find the reduction identity variable. Zero for addition, or, xor,
- // one for multiplication, -1 for And.
- Value *Identity;
- Value *VectorStart;
- if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
- RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
- // MinMax reduction have the start value as their identify.
- if (VF == 1) {
- VectorStart = Identity = RdxDesc.StartValue;
- } else {
- VectorStart = Identity = Builder.CreateVectorSplat(VF,
- RdxDesc.StartValue,
- "minmax.ident");
- }
- } else {
- // Handle other reduction kinds:
- Constant *Iden =
- LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
- VecTy->getScalarType());
- if (VF == 1) {
- Identity = Iden;
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart = RdxDesc.StartValue;
- } else {
- Identity = ConstantVector::getSplat(VF, Iden);
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart = Builder.CreateInsertElement(Identity,
- RdxDesc.StartValue, Zero);
- }
- }
- // Fix the vector-loop phi.
- // We created the induction variable so we know that the
- // preheader is the first entry.
- BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
- // Reductions do not have to start at zero. They can start with
- // any loop invariant values.
- VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
- VectorParts &Val = getVectorValue(LoopVal);
- for (unsigned part = 0; part < UF; ++part) {
- // Make sure to add the reduction stat value only to the
- // first unroll part.
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
- cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
- LoopVectorBody.back());
- }
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- VectorParts RdxParts;
- setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
- for (unsigned part = 0; part < UF; ++part) {
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
- NewPhi->addIncoming(RdxExitVal[part],
- LoopVectorBody.back());
- RdxParts.push_back(NewPhi);
- }
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = RdxParts[0];
- unsigned Op = getReductionBinOp(RdxDesc.Kind);
- setDebugLocFromInst(Builder, ReducedPartRdx);
- for (unsigned part = 1; part < UF; ++part) {
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- ReducedPartRdx = addFastMathFlag(
- Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
- ReducedPartRdx, "bin.rdx"));
- else
- ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
- ReducedPartRdx, RdxParts[part]);
- }
- if (VF > 1) {
- // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
- // and vector ops, reducing the set of values being computed by half each
- // round.
- assert(isPowerOf2_32(VF) &&
- "Reduction emission only supported for pow2 vectors!");
- Value *TmpVec = ReducedPartRdx;
- SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
- for (unsigned i = VF; i != 1; i >>= 1) {
- // Move the upper half of the vector to the lower half.
- for (unsigned j = 0; j != i/2; ++j)
- ShuffleMask[j] = Builder.getInt32(i/2 + j);
- // Fill the rest of the mask with undef.
- std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
- UndefValue::get(Builder.getInt32Ty()));
- Value *Shuf =
- Builder.CreateShuffleVector(TmpVec,
- UndefValue::get(TmpVec->getType()),
- ConstantVector::get(ShuffleMask),
- "rdx.shuf");
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- TmpVec = addFastMathFlag(Builder.CreateBinOp(
- (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
- else
- TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
- }
- // The result is in the first element of the vector.
- ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
- Builder.getInt32(0));
- }
- // Create a phi node that merges control-flow from the backedge-taken check
- // block and the middle block.
- PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
- LoopScalarPreHeader->getTerminator());
- BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
- BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the
- // PHI nodes in the exit blocks.
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) break;
- // All PHINodes need to have a single entry edge, or two if
- // we already fixed them.
- assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
- // We found our reduction value exit-PHI. Update it with the
- // incoming bypass edge.
- if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
- // Add an edge coming from the bypass.
- LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
- break;
- }
- }// end of the LCSSA phi scan.
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
- (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
- }// end of for each redux variable.
- fixLCSSAPHIs();
- // Remove redundant induction instructions.
- cse(LoopVectorBody);
- }
- void InnerLoopVectorizer::fixLCSSAPHIs() {
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) break;
- if (LCSSAPhi->getNumIncomingValues() == 1)
- LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
- LoopMiddleBlock);
- }
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
- assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
- "Invalid edge");
- // Look for cached value.
- std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
- EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
- if (ECEntryIt != MaskCache.end())
- return ECEntryIt->second;
- VectorParts SrcMask = createBlockInMask(Src);
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
- if (BI->isConditional()) {
- VectorParts EdgeMask = getVectorValue(BI->getCondition());
- if (BI->getSuccessor(0) != Dst)
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
- MaskCache[Edge] = EdgeMask;
- return EdgeMask;
- }
- MaskCache[Edge] = SrcMask;
- return SrcMask;
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
- // Loop incoming mask is all-one.
- if (OrigLoop->getHeader() == BB) {
- Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
- return getVectorValue(C);
- }
- // This is the block mask. We OR all incoming edges, and with zero.
- Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
- VectorParts BlockMask = getVectorValue(Zero);
- // For each pred:
- for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
- VectorParts EM = createEdgeMask(*it, BB);
- for (unsigned part = 0; part < UF; ++part)
- BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
- }
- return BlockMask;
- }
- void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
- InnerLoopVectorizer::VectorParts &Entry,
- unsigned UF, unsigned VF, PhiVector *PV) {
- PHINode* P = cast<PHINode>(PN);
- // Handle reduction variables:
- if (Legal->getReductionVars()->count(P)) {
- for (unsigned part = 0; part < UF; ++part) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy = (VF == 1) ? PN->getType() :
- VectorType::get(PN->getType(), VF);
- Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody.back()-> getFirstInsertionPt());
- }
- PV->push_back(P);
- return;
- }
- setDebugLocFromInst(Builder, P);
- // Check for PHI nodes that are lowered to vector selects.
- if (P->getParent() != OrigLoop->getHeader()) {
- // We know that all PHIs in non-header blocks are converted into
- // selects, so we don't have to worry about the insertion order and we
- // can just use the builder.
- // At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- unsigned NumIncoming = P->getNumIncomingValues();
- // Generate a sequence of selects of the form:
- // SELECT(Mask3, In3,
- // SELECT(Mask2, In2,
- // ( ...)))
- for (unsigned In = 0; In < NumIncoming; In++) {
- VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
- P->getParent());
- VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
- for (unsigned part = 0; part < UF; ++part) {
- // We might have single edge PHIs (blocks) - use an identity
- // 'select' for the first PHI operand.
- if (In == 0)
- Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
- In0[part]);
- else
- // Select between the current value and the previous incoming edge
- // based on the incoming mask.
- Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
- Entry[part], "predphi");
- }
- }
- return;
- }
- // This PHINode must be an induction variable.
- // Make sure that we know about it.
- assert(Legal->getInductionVars()->count(P) &&
- "Not an induction variable");
- LoopVectorizationLegality::InductionInfo II =
- Legal->getInductionVars()->lookup(P);
- switch (II.IK) {
- case LoopVectorizationLegality::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IK_IntInduction: {
- assert(P->getType() == II.StartValue->getType() && "Types must match");
- Type *PhiTy = P->getType();
- Value *Broadcasted;
- if (P == OldInduction) {
- // Handle the canonical induction variable. We might have had to
- // extend the type.
- Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
- } else {
- // Handle other induction variables that are now based on the
- // canonical one.
- Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
- "normalized.idx");
- NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
- Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
- "offset.idx");
- }
- Broadcasted = getBroadcastInstrs(Broadcasted);
- // After broadcasting the induction variable we need to make the vector
- // consecutive by adding 0, 1, 2, etc.
- for (unsigned part = 0; part < UF; ++part)
- Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
- return;
- }
- case LoopVectorizationLegality::IK_ReverseIntInduction:
- case LoopVectorizationLegality::IK_PtrInduction:
- case LoopVectorizationLegality::IK_ReversePtrInduction:
- // Handle reverse integer and pointer inductions.
- Value *StartIdx = ExtendedIdx;
- // This is the normalized GEP that starts counting at zero.
- Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
- "normalized.idx");
- // Handle the reverse integer induction variable case.
- if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
- IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
- Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
- "resize.norm.idx");
- Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
- "reverse.idx");
- // This is a new value so do not hoist it out.
- Value *Broadcasted = getBroadcastInstrs(ReverseInd);
- // After broadcasting the induction variable we need to make the
- // vector consecutive by adding ... -3, -2, -1, 0.
- for (unsigned part = 0; part < UF; ++part)
- Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
- true);
- return;
- }
- // Handle the pointer induction variable case.
- assert(P->getType()->isPointerTy() && "Unexpected type.");
- // Is this a reverse induction ptr or a consecutive induction ptr.
- bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
- II.IK);
- // This is the vector of results. Notice that we don't generate
- // vector geps because scalar geps result in better code.
- for (unsigned part = 0; part < UF; ++part) {
- if (VF == 1) {
- int EltIndex = (part) * (Reverse ? -1 : 1);
- Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
- Value *GlobalIdx;
- if (Reverse)
- GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
- else
- GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
- Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
- "next.gep");
- Entry[part] = SclrGep;
- continue;
- }
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
- Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
- Value *GlobalIdx;
- if (!Reverse)
- GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
- else
- GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
- Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
- "next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
- }
- Entry[part] = VecVal;
- }
- return;
- }
- }
- void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- VectorParts &Entry = WidenMap.get(it);
- switch (it->getOpcode()) {
- case Instruction::Br:
- // Nothing to do for PHIs and BR, since we already took care of the
- // loop control flow instructions.
- continue;
- case Instruction::PHI:{
- // Vectorize PHINodes.
- widenPHIInstruction(it, Entry, UF, VF, PV);
- continue;
- }// End of PHI.
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen binops.
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
- setDebugLocFromInst(Builder, BinOp);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- // Use this vector value for all users of the original instruction.
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
- if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
- VecOp->copyIRFlags(BinOp);
- Entry[Part] = V;
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
- OrigLoop);
- setDebugLocFromInst(Builder, it);
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
- VectorParts &Cond = getVectorValue(it->getOperand(0));
- VectorParts &Op0 = getVectorValue(it->getOperand(1));
- VectorParts &Op1 = getVectorValue(it->getOperand(2));
- Value *ScalarCond = (VF == 1) ? Cond[0] :
- Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Entry[Part] = Builder.CreateSelect(
- InvariantCond ? ScalarCond : Cond[Part],
- Op0[Part],
- Op1[Part]);
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (it->getOpcode() == Instruction::FCmp);
- CmpInst *Cmp = dyn_cast<CmpInst>(it);
- setDebugLocFromInst(Builder, it);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *C = nullptr;
- if (FCmp)
- C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
- else
- C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
- Entry[Part] = C;
- }
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Store:
- case Instruction::Load:
- vectorizeMemoryInstruction(it);
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- CastInst *CI = dyn_cast<CastInst>(it);
- setDebugLocFromInst(Builder, it);
- /// Optimize the special case where the source is the induction
- /// variable. Notice that we can only optimize the 'trunc' case
- /// because: a. FP conversions lose precision, b. sext/zext may wrap,
- /// c. other casts depend on pointer size.
- if (CI->getOperand(0) == OldInduction &&
- it->getOpcode() == Instruction::Trunc) {
- Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
- CI->getType());
- Value *Broadcasted = getBroadcastInstrs(ScalarCast);
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
- propagateMetadata(Entry, it);
- break;
- }
- /// Vectorize casts.
- Type *DestTy = (VF == 1) ? CI->getType() :
- VectorType::get(CI->getType(), VF);
- VectorParts &A = getVectorValue(it->getOperand(0));
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
- propagateMetadata(Entry, it);
- break;
- }
- case Instruction::Call: {
- // Ignore dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(it))
- break;
- setDebugLocFromInst(Builder, it);
- Module *M = BB->getParent()->getParent();
- CallInst *CI = cast<CallInst>(it);
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- assert(ID && "Not an intrinsic call!");
- switch (ID) {
- case Intrinsic::assume:
- case Intrinsic::lifetime_end:
- case Intrinsic::lifetime_start:
- scalarizeInstruction(it);
- break;
- default:
- bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value *, 4> Args;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
- if (HasScalarOpd && i == 1) {
- Args.push_back(CI->getArgOperand(i));
- continue;
- }
- VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
- Args.push_back(Arg[Part]);
- }
- Type *Tys[] = {CI->getType()};
- if (VF > 1)
- Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
- Function *F = Intrinsic::getDeclaration(M, ID, Tys);
- Entry[Part] = Builder.CreateCall(F, Args);
- }
- propagateMetadata(Entry, it);
- break;
- }
- break;
- }
- default:
- // All other instructions are unsupported. Scalarize them.
- scalarizeInstruction(it);
- break;
- }// end of switch.
- }// end of for_each instr.
- }
- void InnerLoopVectorizer::updateAnalysis() {
- // Forget the original basic block.
- SE->forgetLoop(OrigLoop);
- // Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
- "Entry does not dominate exit.");
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
- DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
- // Due to if predication of stores we might create a sequence of "if(pred)
- // a[i] = ...; " blocks.
- for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
- if (i == 0)
- DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
- else if (isPredicatedBlock(i)) {
- DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
- } else {
- DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
- }
- }
- DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
- DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
- DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
- DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
- DEBUG(DT->verifyDomTree());
- }
- /// \brief Check whether it is safe to if-convert this phi node.
- ///
- /// Phi nodes with constant expressions that can trap are not safe to if
- /// convert.
- static bool canIfConvertPHINodes(BasicBlock *BB) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (!Phi)
- return true;
- for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
- if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
- if (C->canTrap())
- return false;
- }
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion) {
- emitAnalysis(Report() << "if-conversion is disabled");
- return false;
- }
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
- // A list of pointers that we can safely read and write to.
- SmallPtrSet<Value *, 8> SafePointes;
- // Collect safe addresses.
- for (Loop::block_iterator BI = TheLoop->block_begin(),
- BE = TheLoop->block_end(); BI != BE; ++BI) {
- BasicBlock *BB = *BI;
- if (blockNeedsPredication(BB))
- continue;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- SafePointes.insert(LI->getPointerOperand());
- else if (StoreInst *SI = dyn_cast<StoreInst>(I))
- SafePointes.insert(SI->getPointerOperand());
- }
- }
- // Collect the blocks that need predication.
- BasicBlock *Header = TheLoop->getHeader();
- for (Loop::block_iterator BI = TheLoop->block_begin(),
- BE = TheLoop->block_end(); BI != BE; ++BI) {
- BasicBlock *BB = *BI;
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator())) {
- emitAnalysis(Report(BB->getTerminator())
- << "loop contains a switch statement");
- return false;
- }
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointes)) {
- emitAnalysis(Report(BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- } else if (BB != Header && !canIfConvertPHINodes(BB)) {
- emitAnalysis(Report(BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- }
- // We can if-convert this loop.
- return true;
- }
- bool LoopVectorizationLegality::canVectorize() {
- // We must have a loop in canonical form. Loops with indirectbr in them cannot
- // be canonicalized.
- if (!TheLoop->getLoopPreheader()) {
- emitAnalysis(
- Report() << "loop control flow is not understood by vectorizer");
- return false;
- }
- // We can only vectorize innermost loops.
- if (TheLoop->getSubLoopsVector().size()) {
- emitAnalysis(Report() << "loop is not the innermost loop");
- return false;
- }
- // We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1) {
- emitAnalysis(
- Report() << "loop control flow is not understood by vectorizer");
- return false;
- }
- // We must have a single exiting block.
- if (!TheLoop->getExitingBlock()) {
- emitAnalysis(
- Report() << "loop control flow is not understood by vectorizer");
- return false;
- }
- // We only handle bottom-tested loops, i.e. loop in which the condition is
- // checked at the end of each iteration. With that we can assume that all
- // instructions in the loop are executed the same number of times.
- if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
- emitAnalysis(
- Report() << "loop control flow is not understood by vectorizer");
- return false;
- }
- // We need to have a loop header.
- DEBUG(dbgs() << "LV: Found a loop: " <<
- TheLoop->getHeader()->getName() << '\n');
- // Check if we can if-convert non-single-bb loops.
- unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- return false;
- }
- // ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
- if (ExitCount == SE->getCouldNotCompute()) {
- emitAnalysis(Report() << "could not determine number of loop iterations");
- DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
- return false;
- }
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- return false;
- }
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- return false;
- }
- // Collect all of the variables that remain uniform after vectorization.
- collectLoopUniforms();
- DEBUG(dbgs() << "LV: We can vectorize this loop" <<
- (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
- <<"!\n");
- // Okay! We can vectorize. At this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return true;
- }
- static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
- if (Ty->isPointerTy())
- return DL.getIntPtrType(Ty);
- // It is possible that char's or short's overflow when we ask for the loop's
- // trip count, work around this by changing the type size.
- if (Ty->getScalarSizeInBits() < 32)
- return Type::getInt32Ty(Ty->getContext());
- return Ty;
- }
- static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
- Ty0 = convertPointerToIntegerType(DL, Ty0);
- Ty1 = convertPointerToIntegerType(DL, Ty1);
- if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
- return Ty0;
- return Ty1;
- }
- /// \brief Check that the instruction has outside loop users and is not an
- /// identified reduction variable.
- static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSetImpl<Value *> &Reductions) {
- // Reduction instructions are allowed to have exit users. All other
- // instructions must not have external users.
- if (!Reductions.count(Inst))
- //Check that all of the users of the loop are inside the BB.
- for (User *U : Inst->users()) {
- Instruction *UI = cast<Instruction>(U);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(UI)) {
- DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
- return true;
- }
- }
- return false;
- }
- bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *PreHeader = TheLoop->getLoopPreheader();
- BasicBlock *Header = TheLoop->getHeader();
- // Look for the attribute signaling the absence of NaNs.
- Function &F = *Header->getParent();
- if (F.hasFnAttribute("no-nans-fp-math"))
- HasFunNoNaNAttr = F.getAttributes().getAttribute(
- AttributeSet::FunctionIndex,
- "no-nans-fp-math").getValueAsString() == "true";
- // For each block in the loop.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the instructions in the block and look for hazards.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- if (PHINode *Phi = dyn_cast<PHINode>(it)) {
- Type *PhiTy = Phi->getType();
- // Check that this PHI type is allowed.
- if (!PhiTy->isIntegerTy() &&
- !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy()) {
- emitAnalysis(Report(it)
- << "loop control flow is not understood by vectorizer");
- DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
- return false;
- }
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (*bb != Header) {
- // Check that this instruction has no outside users or is an
- // identified reduction value with an outside user.
- if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
- continue;
- emitAnalysis(Report(it) << "value could not be identified as "
- "an induction or reduction variable");
- return false;
- }
- // We only allow if-converted PHIs with more than two incoming values.
- if (Phi->getNumIncomingValues() != 2) {
- emitAnalysis(Report(it)
- << "control flow not understood by vectorizer");
- DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
- return false;
- }
- // This is the value coming from the preheader.
- Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
- // Check if this is an induction variable.
- InductionKind IK = isInductionVariable(Phi);
- if (IK_NoInduction != IK) {
- // Get the widest type.
- if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
- else
- WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
- // Int inductions are special because we only allow one IV.
- if (IK == IK_IntInduction) {
- // Use the phi node with the widest type as induction. Use the last
- // one if there are multiple (no good reason for doing this other
- // than it is expedient).
- if (!Induction || PhiTy == WidestIndTy)
- Induction = Phi;
- }
- DEBUG(dbgs() << "LV: Found an induction variable.\n");
- Inductions[Phi] = InductionInfo(StartValue, IK);
- // Until we explicitly handle the case of an induction variable with
- // an outside loop user we have to give up vectorizing this loop.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(Report(it) << "use of induction value outside of the "
- "loop is not handled by vectorizer");
- return false;
- }
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerAdd)) {
- DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerMult)) {
- DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerOr)) {
- DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerAnd)) {
- DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerXor)) {
- DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerMinMax)) {
- DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_FloatMult)) {
- DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_FloatAdd)) {
- DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_FloatMinMax)) {
- DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
- "\n");
- continue;
- }
- emitAnalysis(Report(it) << "value that could not be identified as "
- "reduction is used outside the loop");
- DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
- return false;
- }// end of PHI handling
- // We still don't handle functions. However, we can ignore dbg intrinsic
- // calls and we do handle certain intrinsic and libm functions.
- CallInst *CI = dyn_cast<CallInst>(it);
- if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
- emitAnalysis(Report(it) << "call instruction cannot be vectorized");
- DEBUG(dbgs() << "LV: Found a call site.\n");
- return false;
- }
- // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
- // second argument is the same (i.e. loop invariant)
- if (CI &&
- hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
- if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
- emitAnalysis(Report(it)
- << "intrinsic instruction cannot be vectorized");
- DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
- return false;
- }
- }
- // Check that the instruction return type is vectorizable.
- // Also, we can't vectorize extractelement instructions.
- if ((!VectorType::isValidElementType(it->getType()) &&
- !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
- emitAnalysis(Report(it)
- << "instruction return type cannot be vectorized");
- DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
- return false;
- }
- // Check that the stored type is vectorizable.
- if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T)) {
- emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
- return false;
- }
- if (EnableMemAccessVersioning)
- collectStridedAcccess(ST);
- }
- if (EnableMemAccessVersioning)
- if (LoadInst *LI = dyn_cast<LoadInst>(it))
- collectStridedAcccess(LI);
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(Report(it) << "value cannot be used outside the loop");
- return false;
- }
- } // next instr.
- }
- if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- if (Inductions.empty()) {
- emitAnalysis(Report()
- << "loop induction variable could not be identified");
- return false;
- }
- }
- return true;
- }
- ///\brief Remove GEPs whose indices but the last one are loop invariant and
- /// return the induction operand of the gep pointer.
- static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
- const DataLayout *DL, Loop *Lp) {
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP)
- return Ptr;
- unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
- // Check that all of the gep indices are uniform except for our induction
- // operand.
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
- if (i != InductionOperand &&
- !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
- return Ptr;
- return GEP->getOperand(InductionOperand);
- }
- ///\brief Look for a cast use of the passed value.
- static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
- Value *UniqueCast = nullptr;
- for (User *U : Ptr->users()) {
- CastInst *CI = dyn_cast<CastInst>(U);
- if (CI && CI->getType() == Ty) {
- if (!UniqueCast)
- UniqueCast = CI;
- else
- return nullptr;
- }
- }
- return UniqueCast;
- }
- ///\brief Get the stride of a pointer access in a loop.
- /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
- /// pointer to the Value, or null otherwise.
- static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
- const DataLayout *DL, Loop *Lp) {
- const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
- if (!PtrTy || PtrTy->isAggregateType())
- return nullptr;
- // Try to remove a gep instruction to make the pointer (actually index at this
- // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
- // pointer, otherwise, we are analyzing the index.
- Value *OrigPtr = Ptr;
- // The size of the pointer access.
- int64_t PtrAccessSize = 1;
- Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
- const SCEV *V = SE->getSCEV(Ptr);
- if (Ptr != OrigPtr)
- // Strip off casts.
- while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
- V = C->getOperand();
- const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
- if (!S)
- return nullptr;
- V = S->getStepRecurrence(*SE);
- if (!V)
- return nullptr;
- // Strip off the size of access multiplication if we are still analyzing the
- // pointer.
- if (OrigPtr == Ptr) {
- DL->getTypeAllocSize(PtrTy->getElementType());
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
- if (M->getOperand(0)->getSCEVType() != scConstant)
- return nullptr;
- const APInt &APStepVal =
- cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return nullptr;
- int64_t StepVal = APStepVal.getSExtValue();
- if (PtrAccessSize != StepVal)
- return nullptr;
- V = M->getOperand(1);
- }
- }
- // Strip off casts.
- Type *StripedOffRecurrenceCast = nullptr;
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
- StripedOffRecurrenceCast = C->getType();
- V = C->getOperand();
- }
- // Look for the loop invariant symbolic value.
- const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
- if (!U)
- return nullptr;
- Value *Stride = U->getValue();
- if (!Lp->isLoopInvariant(Stride))
- return nullptr;
- // If we have stripped off the recurrence cast we have to make sure that we
- // return the value that is used in this loop so that we can replace it later.
- if (StripedOffRecurrenceCast)
- Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
- return Stride;
- }
- void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
- Value *Ptr = nullptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
- Ptr = LI->getPointerOperand();
- else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
- Ptr = SI->getPointerOperand();
- else
- return;
- Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
- if (!Stride)
- return;
- DEBUG(dbgs() << "LV: Found a strided access that we can version");
- DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
- Strides[Ptr] = Stride;
- StrideSet.insert(Stride);
- }
- void LoopVectorizationLegality::collectLoopUniforms() {
- // We now know that the loop is vectorizable!
- // Collect variables that will remain uniform after vectorization.
- std::vector<Value*> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
- // Start with the conditional branch and walk up the block.
- Worklist.push_back(Latch->getTerminator()->getOperand(0));
- // Also add all consecutive pointer values; these values will be uniform
- // after vectorization (and subsequent cleanup) and, until revectorization is
- // supported, all dependencies must also be uniform.
- for (Loop::block_iterator B = TheLoop->block_begin(),
- BE = TheLoop->block_end(); B != BE; ++B)
- for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
- I != IE; ++I)
- if (I->getType()->isPointerTy() && isConsecutivePtr(I))
- Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
- while (Worklist.size()) {
- Instruction *I = dyn_cast<Instruction>(Worklist.back());
- Worklist.pop_back();
- // Look at instructions inside this loop.
- // Stop when reaching PHI nodes.
- // TODO: we need to follow values all over the loop, not only in this block.
- if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
- continue;
- // This is a known uniform.
- Uniforms.insert(I);
- // Insert all operands.
- Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
- }
- }
- namespace {
- /// \brief Analyses memory accesses in a loop.
- ///
- /// Checks whether run time pointer checks are needed and builds sets for data
- /// dependence checking.
- class AccessAnalysis {
- public:
- /// \brief Read or write access location.
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
- /// \brief Set of potential dependent memory accesses.
- typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
- AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
- DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
- /// \brief Register a load and whether it is only read from.
- void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
- Accesses.insert(MemAccessInfo(Ptr, false));
- if (IsReadOnly)
- ReadOnlyPtr.insert(Ptr);
- }
- /// \brief Register a store.
- void addStore(AliasAnalysis::Location &Loc) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
- Accesses.insert(MemAccessInfo(Ptr, true));
- }
- /// \brief Check whether we can check the pointers at runtime for
- /// non-intersection.
- bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
- unsigned &NumComparisons, ScalarEvolution *SE,
- Loop *TheLoop, ValueToValueMap &Strides,
- bool ShouldCheckStride = false);
- /// \brief Goes over all memory accesses, checks whether a RT check is needed
- /// and builds sets of dependent accesses.
- void buildDependenceSets() {
- processMemAccesses();
- }
- bool isRTCheckNeeded() { return IsRTCheckNeeded; }
- bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
- void resetDepChecks() { CheckDeps.clear(); }
- MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
- private:
- typedef SetVector<MemAccessInfo> PtrAccessSet;
- /// \brief Go over all memory access and check whether runtime pointer checks
- /// are needed /// and build sets of dependency check candidates.
- void processMemAccesses();
- /// Set of all accesses.
- PtrAccessSet Accesses;
- /// Set of accesses that need a further dependence check.
- MemAccessInfoSet CheckDeps;
- /// Set of pointers that are read only.
- SmallPtrSet<Value*, 16> ReadOnlyPtr;
- const DataLayout *DL;
- /// An alias set tracker to partition the access set by underlying object and
- //intrinsic property (such as TBAA metadata).
- AliasSetTracker AST;
- /// Sets of potentially dependent accesses - members of one set share an
- /// underlying pointer. The set "CheckDeps" identfies which sets really need a
- /// dependence check.
- DepCandidates &DepCands;
- bool IsRTCheckNeeded;
- };
- } // end anonymous namespace
- /// \brief Check whether a pointer can participate in a runtime bounds check.
- static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
- Value *Ptr) {
- const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (!AR)
- return false;
- return AR->isAffine();
- }
- /// \brief Check the stride of the pointer and ensure that it does not wrap in
- /// the address space.
- static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
- const Loop *Lp, ValueToValueMap &StridesMap);
- bool AccessAnalysis::canCheckPtrAtRT(
- LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
- unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
- ValueToValueMap &StridesMap, bool ShouldCheckStride) {
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- bool CanDoRT = true;
- bool IsDepCheckNeeded = isDependencyCheckNeeded();
- NumComparisons = 0;
- // We assign a consecutive id to access from different alias sets.
- // Accesses between different groups doesn't need to be checked.
- unsigned ASId = 1;
- for (auto &AS : AST) {
- unsigned NumReadPtrChecks = 0;
- unsigned NumWritePtrChecks = 0;
- // We assign consecutive id to access from different dependence sets.
- // Accesses within the same set don't need a runtime check.
- unsigned RunningDepId = 1;
- DenseMap<Value *, unsigned> DepSetId;
- for (auto A : AS) {
- Value *Ptr = A.getValue();
- bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
- MemAccessInfo Access(Ptr, IsWrite);
- if (IsWrite)
- ++NumWritePtrChecks;
- else
- ++NumReadPtrChecks;
- if (hasComputableBounds(SE, StridesMap, Ptr) &&
- // When we run after a failing dependency check we have to make sure we
- // don't have wrapping pointers.
- (!ShouldCheckStride ||
- isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
- // The id of the dependence set.
- unsigned DepId;
- if (IsDepCheckNeeded) {
- Value *Leader = DepCands.getLeaderValue(Access).getPointer();
- unsigned &LeaderId = DepSetId[Leader];
- if (!LeaderId)
- LeaderId = RunningDepId++;
- DepId = LeaderId;
- } else
- // Each access has its own dependence set.
- DepId = RunningDepId++;
- RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
- } else {
- CanDoRT = false;
- }
- }
- if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
- NumComparisons += 0; // Only one dependence set.
- else {
- NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
- NumWritePtrChecks - 1));
- }
- ++ASId;
- }
- // If the pointers that we would use for the bounds comparison have different
- // address spaces, assume the values aren't directly comparable, so we can't
- // use them for the runtime check. We also have to assume they could
- // overlap. In the future there should be metadata for whether address spaces
- // are disjoint.
- unsigned NumPointers = RtCheck.Pointers.size();
- for (unsigned i = 0; i < NumPointers; ++i) {
- for (unsigned j = i + 1; j < NumPointers; ++j) {
- // Only need to check pointers between two different dependency sets.
- if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
- continue;
- // Only need to check pointers in the same alias set.
- if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
- continue;
- Value *PtrI = RtCheck.Pointers[i];
- Value *PtrJ = RtCheck.Pointers[j];
- unsigned ASi = PtrI->getType()->getPointerAddressSpace();
- unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
- if (ASi != ASj) {
- DEBUG(dbgs() << "LV: Runtime check would require comparison between"
- " different address spaces\n");
- return false;
- }
- }
- }
- return CanDoRT;
- }
- void AccessAnalysis::processMemAccesses() {
- // We process the set twice: first we process read-write pointers, last we
- // process read-only pointers. This allows us to skip dependence tests for
- // read-only pointers.
- DEBUG(dbgs() << "LV: Processing memory accesses...\n");
- DEBUG(dbgs() << " AST: "; AST.dump());
- DEBUG(dbgs() << "LV: Accesses:\n");
- DEBUG({
- for (auto A : Accesses)
- dbgs() << "\t" << *A.getPointer() << " (" <<
- (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
- "read-only" : "read")) << ")\n";
- });
- // The AliasSetTracker has nicely partitioned our pointers by metadata
- // compatibility and potential for underlying-object overlap. As a result, we
- // only need to check for potential pointer dependencies within each alias
- // set.
- for (auto &AS : AST) {
- // Note that both the alias-set tracker and the alias sets themselves used
- // linked lists internally and so the iteration order here is deterministic
- // (matching the original instruction order within each set).
- bool SetHasWrite = false;
- // Map of pointers to last access encountered.
- typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
- UnderlyingObjToAccessMap ObjToLastAccess;
- // Set of access to check after all writes have been processed.
- PtrAccessSet DeferredAccesses;
- // Iterate over each alias set twice, once to process read/write pointers,
- // and then to process read-only pointers.
- for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
- bool UseDeferred = SetIteration > 0;
- PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
- for (auto A : AS) {
- Value *Ptr = A.getValue();
- bool IsWrite = S.count(MemAccessInfo(Ptr, true));
- // If we're using the deferred access set, then it contains only reads.
- bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
- if (UseDeferred && !IsReadOnlyPtr)
- continue;
- // Otherwise, the pointer must be in the PtrAccessSet, either as a read
- // or a write.
- assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
- S.count(MemAccessInfo(Ptr, false))) &&
- "Alias-set pointer not in the access set?");
- MemAccessInfo Access(Ptr, IsWrite);
- DepCands.insert(Access);
- // Memorize read-only pointers for later processing and skip them in the
- // first round (they need to be checked after we have seen all write
- // pointers). Note: we also mark pointer that are not consecutive as
- // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need
- // the second check for "!IsWrite".
- if (!UseDeferred && IsReadOnlyPtr) {
- DeferredAccesses.insert(Access);
- continue;
- }
- // If this is a write - check other reads and writes for conflicts. If
- // this is a read only check other writes for conflicts (but only if
- // there is no other write to the ptr - this is an optimization to
- // catch "a[i] = a[i] + " without having to do a dependence check).
- if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
- CheckDeps.insert(Access);
- IsRTCheckNeeded = true;
- }
- if (IsWrite)
- SetHasWrite = true;
- // Create sets of pointers connected by a shared alias set and
- // underlying object.
- typedef SmallVector<Value *, 16> ValueVector;
- ValueVector TempObjects;
- GetUnderlyingObjects(Ptr, TempObjects, DL);
- for (Value *UnderlyingObj : TempObjects) {
- UnderlyingObjToAccessMap::iterator Prev =
- ObjToLastAccess.find(UnderlyingObj);
- if (Prev != ObjToLastAccess.end())
- DepCands.unionSets(Access, Prev->second);
- ObjToLastAccess[UnderlyingObj] = Access;
- }
- }
- }
- }
- }
- namespace {
- /// \brief Checks memory dependences among accesses to the same underlying
- /// object to determine whether there vectorization is legal or not (and at
- /// which vectorization factor).
- ///
- /// This class works under the assumption that we already checked that memory
- /// locations with different underlying pointers are "must-not alias".
- /// We use the ScalarEvolution framework to symbolically evalutate access
- /// functions pairs. Since we currently don't restructure the loop we can rely
- /// on the program order of memory accesses to determine their safety.
- /// At the moment we will only deem accesses as safe for:
- /// * A negative constant distance assuming program order.
- ///
- /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
- /// a[i] = tmp; y = a[i];
- ///
- /// The latter case is safe because later checks guarantuee that there can't
- /// be a cycle through a phi node (that is, we check that "x" and "y" is not
- /// the same variable: a header phi can only be an induction or a reduction, a
- /// reduction can't have a memory sink, an induction can't have a memory
- /// source). This is important and must not be violated (or we have to
- /// resort to checking for cycles through memory).
- ///
- /// * A positive constant distance assuming program order that is bigger
- /// than the biggest memory access.
- ///
- /// tmp = a[i] OR b[i] = x
- /// a[i+2] = tmp y = b[i+2];
- ///
- /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
- ///
- /// * Zero distances and all accesses have the same size.
- ///
- class MemoryDepChecker {
- public:
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
- MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
- : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
- ShouldRetryWithRuntimeCheck(false) {}
- /// \brief Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(StoreInst *SI) {
- Value *Ptr = SI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
- InstMap.push_back(SI);
- ++AccessIdx;
- }
- /// \brief Register the location (instructions are given increasing numbers)
- /// of a write access.
- void addAccess(LoadInst *LI) {
- Value *Ptr = LI->getPointerOperand();
- Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
- InstMap.push_back(LI);
- ++AccessIdx;
- }
- /// \brief Check whether the dependencies between the accesses are safe.
- ///
- /// Only checks sets with elements in \p CheckDeps.
- bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
- MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
- /// \brief The maximum number of bytes of a vector register we can vectorize
- /// the accesses safely with.
- unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
- /// \brief In same cases when the dependency check fails we can still
- /// vectorize the loop with a dynamic array access check.
- bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
- private:
- ScalarEvolution *SE;
- const DataLayout *DL;
- const Loop *InnermostLoop;
- /// \brief Maps access locations (ptr, read/write) to program order.
- DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
- /// \brief Memory access instructions in program order.
- SmallVector<Instruction *, 16> InstMap;
- /// \brief The program order index to be used for the next instruction.
- unsigned AccessIdx;
- // We can access this many bytes in parallel safely.
- unsigned MaxSafeDepDistBytes;
- /// \brief If we see a non-constant dependence distance we can still try to
- /// vectorize this loop with runtime checks.
- bool ShouldRetryWithRuntimeCheck;
- /// \brief Check whether there is a plausible dependence between the two
- /// accesses.
- ///
- /// Access \p A must happen before \p B in program order. The two indices
- /// identify the index into the program order map.
- ///
- /// This function checks whether there is a plausible dependence (or the
- /// absence of such can't be proved) between the two accesses. If there is a
- /// plausible dependence but the dependence distance is bigger than one
- /// element access it records this distance in \p MaxSafeDepDistBytes (if this
- /// distance is smaller than any other distance encountered so far).
- /// Otherwise, this function returns true signaling a possible dependence.
- bool isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- ValueToValueMap &Strides);
- /// \brief Check whether the data dependence could prevent store-load
- /// forwarding.
- bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
- };
- } // end anonymous namespace
- static bool isInBoundsGep(Value *Ptr) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
- return GEP->isInBounds();
- return false;
- }
- /// \brief Check whether the access through \p Ptr has a constant stride.
- static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
- const Loop *Lp, ValueToValueMap &StridesMap) {
- const Type *Ty = Ptr->getType();
- assert(Ty->isPointerTy() && "Unexpected non-ptr");
- // Make sure that the pointer does not point to aggregate types.
- const PointerType *PtrTy = cast<PointerType>(Ty);
- if (PtrTy->getElementType()->isAggregateType()) {
- DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
- "\n");
- return 0;
- }
- const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (!AR) {
- DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
- << *Ptr << " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- // The accesss function must stride over the innermost loop.
- if (Lp != AR->getLoop()) {
- DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
- *Ptr << " SCEV: " << *PtrScev << "\n");
- }
- // The address calculation must not wrap. Otherwise, a dependence could be
- // inverted.
- // An inbounds getelementptr that is a AddRec with a unit stride
- // cannot wrap per definition. The unit stride requirement is checked later.
- // An getelementptr without an inbounds attribute and unit stride would have
- // to access the pointer value "0" which is undefined behavior in address
- // space 0, therefore we can also vectorize this case.
- bool IsInBoundsGEP = isInBoundsGep(Ptr);
- bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
- bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
- if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
- DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
- << *Ptr << " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- // Check the step is constant.
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Calculate the pointer stride and check if it is consecutive.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C) {
- DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
- " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
- const APInt &APStepVal = C->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return 0;
- int64_t StepVal = APStepVal.getSExtValue();
- // Strided access.
- int64_t Stride = StepVal / Size;
- int64_t Rem = StepVal % Size;
- if (Rem)
- return 0;
- // If the SCEV could wrap but we have an inbounds gep with a unit stride we
- // know we can't "wrap around the address space". In case of address space
- // zero we know that this won't happen without triggering undefined behavior.
- if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
- Stride != 1 && Stride != -1)
- return 0;
- return Stride;
- }
- bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
- unsigned TypeByteSize) {
- // If loads occur at a distance that is not a multiple of a feasible vector
- // factor store-load forwarding does not take place.
- // Positive dependences might cause troubles because vectorizing them might
- // prevent store-load forwarding making vectorized code run a lot slower.
- // a[i] = a[i-3] ^ a[i-8];
- // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
- // hence on your typical architecture store-load forwarding does not take
- // place. Vectorizing in such cases does not make sense.
- // Store-load forwarding distance.
- const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
- // Maximum vector factor.
- unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
- if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
- MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
- for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
- vf *= 2) {
- if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (vf >>=1);
- break;
- }
- }
- if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
- DEBUG(dbgs() << "LV: Distance " << Distance <<
- " that could cause a store-load forwarding conflict\n");
- return true;
- }
- if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
- MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
- MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
- return false;
- }
- bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- ValueToValueMap &Strides) {
- assert (AIdx < BIdx && "Must pass arguments in program order");
- Value *APtr = A.getPointer();
- Value *BPtr = B.getPointer();
- bool AIsWrite = A.getInt();
- bool BIsWrite = B.getInt();
- // Two reads are independent.
- if (!AIsWrite && !BIsWrite)
- return false;
- // We cannot check pointers in different address spaces.
- if (APtr->getType()->getPointerAddressSpace() !=
- BPtr->getType()->getPointerAddressSpace())
- return true;
- const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
- const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
- int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
- int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
- const SCEV *Src = AScev;
- const SCEV *Sink = BScev;
- // If the induction step is negative we have to invert source and sink of the
- // dependence.
- if (StrideAPtr < 0) {
- //Src = BScev;
- //Sink = AScev;
- std::swap(APtr, BPtr);
- std::swap(Src, Sink);
- std::swap(AIsWrite, BIsWrite);
- std::swap(AIdx, BIdx);
- std::swap(StrideAPtr, StrideBPtr);
- }
- const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
- DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
- << "(Induction step: " << StrideAPtr << ")\n");
- DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
- << *InstMap[BIdx] << ": " << *Dist << "\n");
- // Need consecutive accesses. We don't want to vectorize
- // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
- // the address space.
- if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
- DEBUG(dbgs() << "Non-consecutive pointer access\n");
- return true;
- }
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
- if (!C) {
- DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
- ShouldRetryWithRuntimeCheck = true;
- return true;
- }
- Type *ATy = APtr->getType()->getPointerElementType();
- Type *BTy = BPtr->getType()->getPointerElementType();
- unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
- // Negative distances are not plausible dependencies.
- const APInt &Val = C->getValue()->getValue();
- if (Val.isNegative()) {
- bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
- if (IsTrueDataDependence &&
- (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
- ATy != BTy))
- return true;
- DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
- return false;
- }
- // Write to the same location with the same size.
- // Could be improved to assert type sizes are the same (i32 == float, etc).
- if (Val == 0) {
- if (ATy == BTy)
- return false;
- DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
- return true;
- }
- assert(Val.isStrictlyPositive() && "Expect a positive value");
- // Positive distance bigger than max vectorization factor.
- if (ATy != BTy) {
- DEBUG(dbgs() <<
- "LV: ReadWrite-Write positive dependency with different types\n");
- return false;
- }
- unsigned Distance = (unsigned) Val.getZExtValue();
- // Bail out early if passed-in parameters make vectorization not feasible.
- unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
- unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1;
- // The distance must be bigger than the size needed for a vectorized version
- // of the operation and the size of the vectorized operation must not be
- // bigger than the currrent maximum size.
- if (Distance < 2*TypeByteSize ||
- 2*TypeByteSize > MaxSafeDepDistBytes ||
- Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
- DEBUG(dbgs() << "LV: Failure because of Positive distance "
- << Val.getSExtValue() << '\n');
- return true;
- }
- MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
- Distance : MaxSafeDepDistBytes;
- bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
- if (IsTrueDataDependence &&
- couldPreventStoreLoadForward(Distance, TypeByteSize))
- return true;
- DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
- " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
- return false;
- }
- bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
- MemAccessInfoSet &CheckDeps,
- ValueToValueMap &Strides) {
- MaxSafeDepDistBytes = -1U;
- while (!CheckDeps.empty()) {
- MemAccessInfo CurAccess = *CheckDeps.begin();
- // Get the relevant memory access set.
- EquivalenceClasses<MemAccessInfo>::iterator I =
- AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
- // Check accesses within this set.
- EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
- AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
- // Check every access pair.
- while (AI != AE) {
- CheckDeps.erase(*AI);
- EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
- while (OI != AE) {
- // Check every accessing instruction pair in program order.
- for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
- I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
- for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
- I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
- if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
- return false;
- if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
- return false;
- }
- ++OI;
- }
- AI++;
- }
- }
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeMemory() {
- typedef SmallVector<Value*, 16> ValueVector;
- typedef SmallPtrSet<Value*, 16> ValueSet;
- // Holds the Load and Store *instructions*.
- ValueVector Loads;
- ValueVector Stores;
- // Holds all the different accesses in the loop.
- unsigned NumReads = 0;
- unsigned NumReadWrites = 0;
- PtrRtCheck.Pointers.clear();
- PtrRtCheck.Need = false;
- const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
- MemoryDepChecker DepChecker(SE, DL, TheLoop);
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the BB and collect legal loads and stores.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- // If this is a load, save it. If this instruction can read from memory
- // but is not a load, then we quit. Notice that we don't handle function
- // calls that read or write.
- if (it->mayReadFromMemory()) {
- // Many math library functions read the rounding mode. We will only
- // vectorize a loop if it contains known function calls that don't set
- // the flag. Therefore, it is safe to ignore this read from memory.
- CallInst *Call = dyn_cast<CallInst>(it);
- if (Call && getIntrinsicIDForCall(Call, TLI))
- continue;
- LoadInst *Ld = dyn_cast<LoadInst>(it);
- if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
- emitAnalysis(Report(Ld)
- << "read with atomic ordering or volatile read");
- DEBUG(dbgs() << "LV: Found a non-simple load.\n");
- return false;
- }
- NumLoads++;
- Loads.push_back(Ld);
- DepChecker.addAccess(Ld);
- continue;
- }
- // Save 'store' instructions. Abort if other instructions write to memory.
- if (it->mayWriteToMemory()) {
- StoreInst *St = dyn_cast<StoreInst>(it);
- if (!St) {
- emitAnalysis(Report(it) << "instruction cannot be vectorized");
- return false;
- }
- if (!St->isSimple() && !IsAnnotatedParallel) {
- emitAnalysis(Report(St)
- << "write with atomic ordering or volatile write");
- DEBUG(dbgs() << "LV: Found a non-simple store.\n");
- return false;
- }
- NumStores++;
- Stores.push_back(St);
- DepChecker.addAccess(St);
- }
- } // Next instr.
- } // Next block.
- // Now we have two lists that hold the loads and the stores.
- // Next, we find the pointers that they use.
- // Check if we see any stores. If there are no stores, then we don't
- // care if the pointers are *restrict*.
- if (!Stores.size()) {
- DEBUG(dbgs() << "LV: Found a read-only loop!\n");
- return true;
- }
- AccessAnalysis::DepCandidates DependentAccesses;
- AccessAnalysis Accesses(DL, AA, DependentAccesses);
- // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
- // multiple times on the same object. If the ptr is accessed twice, once
- // for read and once for write, it will only appear once (on the write
- // list). This is okay, since we are going to check for conflicts between
- // writes and between reads and writes, but not between reads and reads.
- ValueSet Seen;
- ValueVector::iterator I, IE;
- for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = cast<StoreInst>(*I);
- Value* Ptr = ST->getPointerOperand();
- if (isUniform(Ptr)) {
- emitAnalysis(
- Report(ST)
- << "write to a loop invariant address could not be vectorized");
- DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
- return false;
- }
- // If we did *not* see this pointer before, insert it to the read-write
- // list. At this phase it is only a 'write' list.
- if (Seen.insert(Ptr).second) {
- ++NumReadWrites;
- AliasAnalysis::Location Loc = AA->getLocation(ST);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(ST->getParent()))
- Loc.AATags.TBAA = nullptr;
- Accesses.addStore(Loc);
- }
- }
- if (IsAnnotatedParallel) {
- DEBUG(dbgs()
- << "LV: A loop annotated parallel, ignore memory dependency "
- << "checks.\n");
- return true;
- }
- for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = cast<LoadInst>(*I);
- Value* Ptr = LD->getPointerOperand();
- // If we did *not* see this pointer before, insert it to the
- // read list. If we *did* see it before, then it is already in
- // the read-write list. This allows us to vectorize expressions
- // such as A[i] += x; Because the address of A[i] is a read-write
- // pointer. This only works if the index of A[i] is consecutive.
- // If the address of i is unknown (for example A[B[i]]) then we may
- // read a few words, modify, and write a few words, and some of the
- // words may be written to the same address.
- bool IsReadOnlyPtr = false;
- if (Seen.insert(Ptr).second ||
- !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
- ++NumReads;
- IsReadOnlyPtr = true;
- }
- AliasAnalysis::Location Loc = AA->getLocation(LD);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(LD->getParent()))
- Loc.AATags.TBAA = nullptr;
- Accesses.addLoad(Loc, IsReadOnlyPtr);
- }
- // If we write (or read-write) to a single destination and there are no
- // other reads in this loop then is it safe to vectorize.
- if (NumReadWrites == 1 && NumReads == 0) {
- DEBUG(dbgs() << "LV: Found a write-only loop!\n");
- return true;
- }
- // Build dependence sets and check whether we need a runtime pointer bounds
- // check.
- Accesses.buildDependenceSets();
- bool NeedRTCheck = Accesses.isRTCheckNeeded();
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- unsigned NumComparisons = 0;
- bool CanDoRT = false;
- if (NeedRTCheck)
- CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
- Strides);
- DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
- " pointer comparisons.\n");
- // If we only have one set of dependences to check pointers among we don't
- // need a runtime check.
- if (NumComparisons == 0 && NeedRTCheck)
- NeedRTCheck = false;
- // Check that we did not collect too many pointers or found an unsizeable
- // pointer.
- if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
- PtrRtCheck.reset();
- CanDoRT = false;
- }
- if (CanDoRT) {
- DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
- }
- if (NeedRTCheck && !CanDoRT) {
- emitAnalysis(Report() << "cannot identify array bounds");
- DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
- "the array bounds.\n");
- PtrRtCheck.reset();
- return false;
- }
- PtrRtCheck.Need = NeedRTCheck;
- bool CanVecMem = true;
- if (Accesses.isDependencyCheckNeeded()) {
- DEBUG(dbgs() << "LV: Checking memory dependencies\n");
- CanVecMem = DepChecker.areDepsSafe(
- DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
- MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
- if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
- DEBUG(dbgs() << "LV: Retrying with memory checks\n");
- NeedRTCheck = true;
- // Clear the dependency checks. We assume they are not needed.
- Accesses.resetDepChecks();
- PtrRtCheck.reset();
- PtrRtCheck.Need = true;
- CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
- TheLoop, Strides, true);
- // Check that we did not collect too many pointers or found an unsizeable
- // pointer.
- if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
- if (!CanDoRT && NumComparisons > 0)
- emitAnalysis(Report()
- << "cannot check memory dependencies at runtime");
- else
- emitAnalysis(Report()
- << NumComparisons << " exceeds limit of "
- << RuntimeMemoryCheckThreshold
- << " dependent memory operations checked at runtime");
- DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
- PtrRtCheck.reset();
- return false;
- }
- CanVecMem = true;
- }
- }
- if (!CanVecMem)
- emitAnalysis(Report() << "unsafe dependent memory operations in loop");
- DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
- " need a runtime memory check.\n");
- return CanVecMem;
- }
- static bool hasMultipleUsesOf(Instruction *I,
- SmallPtrSetImpl<Instruction *> &Insts) {
- unsigned NumUses = 0;
- for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
- if (Insts.count(dyn_cast<Instruction>(*Use)))
- ++NumUses;
- if (NumUses > 1)
- return true;
- }
- return false;
- }
- static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
- for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
- if (!Set.count(dyn_cast<Instruction>(*Use)))
- return false;
- return true;
- }
- bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
- ReductionKind Kind) {
- if (Phi->getNumIncomingValues() != 2)
- return false;
- // Reduction variables are only found in the loop header block.
- if (Phi->getParent() != TheLoop->getHeader())
- return false;
- // Obtain the reduction start value from the value that comes from the loop
- // preheader.
- Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
- // ExitInstruction is the single value which is used outside the loop.
- // We only allow for a single reduction value to be used outside the loop.
- // This includes users of the reduction, variables (which form a cycle
- // which ends in the phi node).
- Instruction *ExitInstruction = nullptr;
- // Indicates that we found a reduction operation in our scan.
- bool FoundReduxOp = false;
- // We start with the PHI node and scan for all of the users of this
- // instruction. All users must be instructions that can be used as reduction
- // variables (such as ADD). We must have a single out-of-block user. The cycle
- // must include the original PHI.
- bool FoundStartPHI = false;
- // To recognize min/max patterns formed by a icmp select sequence, we store
- // the number of instruction we saw from the recognized min/max pattern,
- // to make sure we only see exactly the two instructions.
- unsigned NumCmpSelectPatternInst = 0;
- ReductionInstDesc ReduxDesc(false, nullptr);
- SmallPtrSet<Instruction *, 8> VisitedInsts;
- SmallVector<Instruction *, 8> Worklist;
- Worklist.push_back(Phi);
- VisitedInsts.insert(Phi);
- // A value in the reduction can be used:
- // - By the reduction:
- // - Reduction operation:
- // - One use of reduction value (safe).
- // - Multiple use of reduction value (not safe).
- // - PHI:
- // - All uses of the PHI must be the reduction (safe).
- // - Otherwise, not safe.
- // - By one instruction outside of the loop (safe).
- // - By further instructions outside of the loop (not safe).
- // - By an instruction that is not part of the reduction (not safe).
- // This is either:
- // * An instruction type other than PHI or the reduction operation.
- // * A PHI in the header other than the initial PHI.
- while (!Worklist.empty()) {
- Instruction *Cur = Worklist.back();
- Worklist.pop_back();
- // No Users.
- // If the instruction has no users then this is a broken chain and can't be
- // a reduction variable.
- if (Cur->use_empty())
- return false;
- bool IsAPhi = isa<PHINode>(Cur);
- // A header PHI use other than the original PHI.
- if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
- return false;
- // Reductions of instructions such as Div, and Sub is only possible if the
- // LHS is the reduction variable.
- if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
- !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
- !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
- return false;
- // Any reduction instruction must be of one of the allowed kinds.
- ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
- if (!ReduxDesc.IsReduction)
- return false;
- // A reduction operation must only have one use of the reduction value.
- if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
- hasMultipleUsesOf(Cur, VisitedInsts))
- return false;
- // All inputs to a PHI node must be a reduction value.
- if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
- return false;
- if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
- isa<SelectInst>(Cur)))
- ++NumCmpSelectPatternInst;
- if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
- isa<SelectInst>(Cur)))
- ++NumCmpSelectPatternInst;
- // Check whether we found a reduction operator.
- FoundReduxOp |= !IsAPhi;
- // Process users of current instruction. Push non-PHI nodes after PHI nodes
- // onto the stack. This way we are going to have seen all inputs to PHI
- // nodes once we get to them.
- SmallVector<Instruction *, 8> NonPHIs;
- SmallVector<Instruction *, 8> PHIs;
- for (User *U : Cur->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Check if we found the exit user.
- BasicBlock *Parent = UI->getParent();
- if (!TheLoop->contains(Parent)) {
- // Exit if you find multiple outside users or if the header phi node is
- // being used. In this case the user uses the value of the previous
- // iteration, in which case we would loose "VF-1" iterations of the
- // reduction operation if we vectorize.
- if (ExitInstruction != nullptr || Cur == Phi)
- return false;
- // The instruction used by an outside user must be the last instruction
- // before we feed back to the reduction phi. Otherwise, we loose VF-1
- // operations on the value.
- if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
- return false;
- ExitInstruction = Cur;
- continue;
- }
- // Process instructions only once (termination). Each reduction cycle
- // value must only be used once, except by phi nodes and min/max
- // reductions which are represented as a cmp followed by a select.
- ReductionInstDesc IgnoredVal(false, nullptr);
- if (VisitedInsts.insert(UI).second) {
- if (isa<PHINode>(UI))
- PHIs.push_back(UI);
- else
- NonPHIs.push_back(UI);
- } else if (!isa<PHINode>(UI) &&
- ((!isa<FCmpInst>(UI) &&
- !isa<ICmpInst>(UI) &&
- !isa<SelectInst>(UI)) ||
- !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
- return false;
- // Remember that we completed the cycle.
- if (UI == Phi)
- FoundStartPHI = true;
- }
- Worklist.append(PHIs.begin(), PHIs.end());
- Worklist.append(NonPHIs.begin(), NonPHIs.end());
- }
- // This means we have seen one but not the other instruction of the
- // pattern or more than just a select and cmp.
- if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
- NumCmpSelectPatternInst != 2)
- return false;
- if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
- return false;
- // We found a reduction var if we have reached the original phi node and we
- // only have a single instruction with out-of-loop users.
- // This instruction is allowed to have out-of-loop users.
- AllowedExit.insert(ExitInstruction);
- // Save the description of this reduction variable.
- ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
- ReduxDesc.MinMaxKind);
- Reductions[Phi] = RD;
- // We've ended the cycle. This is a reduction variable if we have an
- // outside user and it has a binary op.
- return true;
- }
- /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
- /// pattern corresponding to a min(X, Y) or max(X, Y).
- LoopVectorizationLegality::ReductionInstDesc
- LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
- ReductionInstDesc &Prev) {
- assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
- "Expect a select instruction");
- Instruction *Cmp = nullptr;
- SelectInst *Select = nullptr;
- // We must handle the select(cmp()) as a single instruction. Advance to the
- // select.
- if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
- if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
- return ReductionInstDesc(false, I);
- return ReductionInstDesc(Select, Prev.MinMaxKind);
- }
- // Only handle single use cases for now.
- if (!(Select = dyn_cast<SelectInst>(I)))
- return ReductionInstDesc(false, I);
- if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
- !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
- return ReductionInstDesc(false, I);
- if (!Cmp->hasOneUse())
- return ReductionInstDesc(false, I);
- Value *CmpLeft;
- Value *CmpRight;
- // Look for a min/max pattern.
- if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_UIntMin);
- else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_UIntMax);
- else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_SIntMax);
- else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_SIntMin);
- else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_FloatMin);
- else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_FloatMax);
- else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_FloatMin);
- else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, MRK_FloatMax);
- return ReductionInstDesc(false, I);
- }
- LoopVectorizationLegality::ReductionInstDesc
- LoopVectorizationLegality::isReductionInstr(Instruction *I,
- ReductionKind Kind,
- ReductionInstDesc &Prev) {
- bool FP = I->getType()->isFloatingPointTy();
- bool FastMath = FP && I->hasUnsafeAlgebra();
- switch (I->getOpcode()) {
- default:
- return ReductionInstDesc(false, I);
- case Instruction::PHI:
- if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
- Kind != RK_FloatMinMax))
- return ReductionInstDesc(false, I);
- return ReductionInstDesc(I, Prev.MinMaxKind);
- case Instruction::Sub:
- case Instruction::Add:
- return ReductionInstDesc(Kind == RK_IntegerAdd, I);
- case Instruction::Mul:
- return ReductionInstDesc(Kind == RK_IntegerMult, I);
- case Instruction::And:
- return ReductionInstDesc(Kind == RK_IntegerAnd, I);
- case Instruction::Or:
- return ReductionInstDesc(Kind == RK_IntegerOr, I);
- case Instruction::Xor:
- return ReductionInstDesc(Kind == RK_IntegerXor, I);
- case Instruction::FMul:
- return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
- case Instruction::FSub:
- case Instruction::FAdd:
- return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select:
- if (Kind != RK_IntegerMinMax &&
- (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
- return ReductionInstDesc(false, I);
- return isMinMaxSelectCmpPattern(I, Prev);
- }
- }
- LoopVectorizationLegality::InductionKind
- LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
- Type *PhiTy = Phi->getType();
- // We only handle integer and pointer inductions variables.
- if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
- return IK_NoInduction;
- // Check that the PHI is consecutive.
- const SCEV *PhiScev = SE->getSCEV(Phi);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
- if (!AR) {
- DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return IK_NoInduction;
- }
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Integer inductions need to have a stride of one.
- if (PhiTy->isIntegerTy()) {
- if (Step->isOne())
- return IK_IntInduction;
- if (Step->isAllOnesValue())
- return IK_ReverseIntInduction;
- return IK_NoInduction;
- }
- // Calculate the pointer stride and check if it is consecutive.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C)
- return IK_NoInduction;
- assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
- Type *PointerElementType = PhiTy->getPointerElementType();
- // The pointer stride cannot be determined if the pointer element type is not
- // sized.
- if (!PointerElementType->isSized())
- return IK_NoInduction;
- uint64_t Size = DL->getTypeAllocSize(PointerElementType);
- if (C->getValue()->equalsInt(Size))
- return IK_PtrInduction;
- else if (C->getValue()->equalsInt(0 - Size))
- return IK_ReversePtrInduction;
- return IK_NoInduction;
- }
- bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
- Value *In0 = const_cast<Value*>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
- return Inductions.count(PN);
- }
- bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- assert(TheLoop->contains(BB) && "Unknown block used");
- // Blocks that do not dominate the latch need predication.
- BasicBlock* Latch = TheLoop->getLoopLatch();
- return !DT->dominates(BB, Latch);
- }
- bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
- SmallPtrSetImpl<Value *> &SafePtrs) {
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // We might be able to hoist the load.
- if (it->mayReadFromMemory()) {
- LoadInst *LI = dyn_cast<LoadInst>(it);
- if (!LI || !SafePtrs.count(LI->getPointerOperand()))
- return false;
- }
- // We don't predicate stores at the moment.
- if (it->mayWriteToMemory()) {
- StoreInst *SI = dyn_cast<StoreInst>(it);
- // We only support predication of stores in basic blocks with one
- // predecessor.
- if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
- !SafePtrs.count(SI->getPointerOperand()) ||
- !SI->getParent()->getSinglePredecessor())
- return false;
- }
- if (it->mayThrow())
- return false;
- // Check that we don't have a constant expression that can trap as operand.
- for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
- OI != OE; ++OI) {
- if (Constant *C = dyn_cast<Constant>(*OI))
- if (C->canTrap())
- return false;
- }
- // The instructions below can trap.
- switch (it->getOpcode()) {
- default: continue;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- return false;
- }
- }
- return true;
- }
- LoopVectorizationCostModel::VectorizationFactor
- LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
- // Width 1 means no vectorize
- VectorizationFactor Factor = { 1U, 0U };
- if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
- emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os");
- DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
- return Factor;
- }
- if (!EnableCondStoresVectorization && Legal->NumPredStores) {
- emitAnalysis(Report() << "store that is conditionally executed prevents vectorization");
- DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
- return Factor;
- }
- // Find the trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop);
- DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
- unsigned WidestType = getWidestType();
- unsigned WidestRegister = TTI.getRegisterBitWidth(true);
- unsigned MaxSafeDepDist = -1U;
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
- WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
- WidestRegister : MaxSafeDepDist);
- unsigned MaxVectorSize = WidestRegister / WidestType;
- DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
- DEBUG(dbgs() << "LV: The Widest register is: "
- << WidestRegister << " bits.\n");
- if (MaxVectorSize == 0) {
- DEBUG(dbgs() << "LV: The target has no vector registers.\n");
- MaxVectorSize = 1;
- }
- assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
- " into one vector!");
- unsigned VF = MaxVectorSize;
- // If we optimize the program for size, avoid creating the tail loop.
- if (OptForSize) {
- // If we are unable to calculate the trip count then don't try to vectorize.
- if (TC < 2) {
- emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow");
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return Factor;
- }
- // Find the maximum SIMD width that can fit within the trip count.
- VF = TC % MaxVectorSize;
- if (VF == 0)
- VF = MaxVectorSize;
- // If the trip count that we found modulo the vectorization factor is not
- // zero then we require a tail.
- if (VF < 2) {
- emitAnalysis(Report() << "cannot optimize for size and vectorize at the "
- "same time. Enable vectorization of this loop "
- "with '#pragma clang loop vectorize(enable)' "
- "when compiling with -Os");
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return Factor;
- }
- }
- int UserVF = Hints->getWidth();
- if (UserVF != 0) {
- assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
- DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
- Factor.Width = UserVF;
- return Factor;
- }
- float Cost = expectedCost(1);
- #ifndef NDEBUG
- const float ScalarCost = Cost;
- #endif /* NDEBUG */
- unsigned Width = 1;
- DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
- bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
- // Ignore scalar width, because the user explicitly wants vectorization.
- if (ForceVectorization && VF > 1) {
- Width = 2;
- Cost = expectedCost(Width) / (float)Width;
- }
- for (unsigned i=2; i <= VF; i*=2) {
- // Notice that the vector loop needs to be executed less times, so
- // we need to divide the cost of the vector loops by the width of
- // the vector elements.
- float VectorCost = expectedCost(i) / (float)i;
- DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
- (int)VectorCost << ".\n");
- if (VectorCost < Cost) {
- Cost = VectorCost;
- Width = i;
- }
- }
- DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
- << "LV: Vectorization seems to be not beneficial, "
- << "but was forced by a user.\n");
- DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
- Factor.Width = Width;
- Factor.Cost = Width * Cost;
- return Factor;
- }
- unsigned LoopVectorizationCostModel::getWidestType() {
- unsigned MaxWidth = 8;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- BasicBlock *BB = *bb;
- // For each instruction in the loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- Type *T = it->getType();
- // Ignore ephemeral values.
- if (EphValues.count(it))
- continue;
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
- continue;
- // Examine PHI nodes that are reduction variables.
- if (PHINode *PN = dyn_cast<PHINode>(it))
- if (!Legal->getReductionVars()->count(PN))
- continue;
- // Examine the stored values.
- if (StoreInst *ST = dyn_cast<StoreInst>(it))
- T = ST->getValueOperand()->getType();
- // Ignore loaded pointer types and stored pointer types that are not
- // consecutive. However, we do want to take consecutive stores/loads of
- // pointer vectors into account.
- if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
- continue;
- MaxWidth = std::max(MaxWidth,
- (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
- }
- }
- return MaxWidth;
- }
- unsigned
- LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
- unsigned VF,
- unsigned LoopCost) {
- // -- The unroll heuristics --
- // We unroll the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example, frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the unroll factor:
- // 1. If the code has reductions, then we unroll in order to break the cross
- // iteration dependency.
- // 2. If the loop is really small, then we unroll in order to reduce the loop
- // overhead.
- // 3. We don't unroll if we think that we will spill registers to memory due
- // to the increased register pressure.
- // Use the user preference, unless 'auto' is selected.
- int UserUF = Hints->getInterleave();
- if (UserUF != 0)
- return UserUF;
- // When we optimize for size, we don't unroll.
- if (OptForSize)
- return 1;
- // We used the distance for the unroll factor.
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- return 1;
- // Do not unroll loops with a relatively small trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop);
- if (TC > 1 && TC < TinyTripCountUnrollThreshold)
- return 1;
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
- DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
- " registers\n");
- if (VF == 1) {
- if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumScalarRegs;
- } else {
- if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumVectorRegs;
- }
- LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
- R.NumInstructions = std::max(R.NumInstructions, 1U);
- // We calculate the unroll factor using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the unrolled instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills. All of this is rounded down if necessary to be
- // a power of two. We want power of two unroll factors to simplify any
- // addressing operations or alignment considerations.
- unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
- R.MaxLocalUsers);
- // Don't count the induction variable as unrolled.
- if (EnableIndVarRegisterHeur)
- UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
- std::max(1U, (R.MaxLocalUsers - 1)));
- // Clamp the unroll factor ranges to reasonable factors.
- unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
- // Check if the user has overridden the unroll max.
- if (VF == 1) {
- if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
- } else {
- if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
- }
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0)
- LoopCost = expectedCost(VF);
- // Clamp the calculated UF to be between the 1 and the max unroll factor
- // that the target allows.
- if (UF > MaxInterleaveSize)
- UF = MaxInterleaveSize;
- else if (UF < 1)
- UF = 1;
- // Unroll if we vectorized this loop and there is a reduction that could
- // benefit from unrolling.
- if (VF > 1 && Legal->getReductionVars()->size()) {
- DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
- return UF;
- }
- // Note that if we've already vectorized the loop we will have done the
- // runtime check and so unrolling won't require further checks.
- bool UnrollingRequiresRuntimePointerCheck =
- (VF == 1 && Legal->getRuntimePointerCheck()->Need);
- // We want to unroll small loops in order to reduce the loop overhead and
- // potentially expose ILP opportunities.
- DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
- if (!UnrollingRequiresRuntimePointerCheck &&
- LoopCost < SmallLoopCost) {
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and unroll until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
- // Unroll until store/load ports (estimated by max unroll factor) are
- // saturated.
- unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
- unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
- // If we have a scalar reduction (vector reductions are already dealt with
- // by this point), we can increase the critical path length if the loop
- // we're unrolling is inside another loop. Limit, by default to 2, so the
- // critical path only gets increased by one reduction operation.
- if (Legal->getReductionVars()->size() &&
- TheLoop->getLoopDepth() > 1) {
- unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
- SmallUF = std::min(SmallUF, F);
- StoresUF = std::min(StoresUF, F);
- LoadsUF = std::min(LoadsUF, F);
- }
- if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
- DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
- return std::max(StoresUF, LoadsUF);
- }
- DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
- return SmallUF;
- }
- DEBUG(dbgs() << "LV: Not Unrolling.\n");
- return 1;
- }
- LoopVectorizationCostModel::RegisterUsage
- LoopVectorizationCostModel::calculateRegisterUsage() {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- RegisterUsage R;
- R.NumInstructions = 0;
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- typedef DenseMap<Instruction*, unsigned> IntervalMap;
- // Maps instruction to its index.
- DenseMap<unsigned, Instruction*> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallSet<Instruction*, 8> Ends;
- // Saves the list of values that are used in the loop but are
- // defined outside the loop, such as arguments and constants.
- SmallPtrSet<Value*, 8> LoopInvariants;
- unsigned Index = 0;
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb) {
- R.NumInstructions += (*bb)->size();
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- Instruction *I = it;
- IdxToInstr[Index++] = I;
- // Save the end location of each USE.
- for (unsigned i = 0; i < I->getNumOperands(); ++i) {
- Value *U = I->getOperand(i);
- Instruction *Instr = dyn_cast<Instruction>(U);
- // Ignore non-instruction values such as arguments, constants, etc.
- if (!Instr) continue;
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
- // Overwrite previous end points.
- EndPoint[Instr] = Index;
- Ends.insert(Instr);
- }
- }
- }
- // Saves the list of intervals that end with the index in 'key'.
- typedef SmallVector<Instruction*, 2> InstrList;
- DenseMap<unsigned, InstrList> TransposeEnds;
- // Transpose the EndPoints to a list of values that end at each index.
- for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
- it != e; ++it)
- TransposeEnds[it->second].push_back(it->first);
- SmallSet<Instruction*, 8> OpenIntervals;
- unsigned MaxUsage = 0;
- DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
- for (unsigned int i = 0; i < Index; ++i) {
- Instruction *I = IdxToInstr[i];
- // Ignore instructions that are never used within the loop.
- if (!Ends.count(I)) continue;
- // Ignore ephemeral values.
- if (EphValues.count(I))
- continue;
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (unsigned int j=0, e = List.size(); j < e; ++j)
- OpenIntervals.erase(List[j]);
- // Count the number of live interals.
- MaxUsage = std::max(MaxUsage, OpenIntervals.size());
- DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
- OpenIntervals.size() << '\n');
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
- unsigned Invariant = LoopInvariants.size();
- DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
- DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
- DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
- R.LoopInvariantRegs = Invariant;
- R.MaxLocalUsers = MaxUsage;
- return R;
- }
- unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
- unsigned Cost = 0;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- unsigned BlockCost = 0;
- BasicBlock *BB = *bb;
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // Skip dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Ignore ephemeral values.
- if (EphValues.count(it))
- continue;
- unsigned C = getInstructionCost(it, VF);
- // Check if we should override the cost.
- if (ForceTargetInstructionCost.getNumOccurrences() > 0)
- C = ForceTargetInstructionCost;
- BlockCost += C;
- DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
- VF << " For instruction: " << *it << '\n');
- }
- // We assume that if-converted blocks have a 50% chance of being executed.
- // When the code is scalar then some of the blocks are avoided due to CF.
- // When the code is vectorized we execute all code paths.
- if (VF == 1 && Legal->blockNeedsPredication(*bb))
- BlockCost /= 2;
- Cost += BlockCost;
- }
- return Cost;
- }
- /// \brief Check whether the address computation for a non-consecutive memory
- /// access looks like an unlikely candidate for being merged into the indexing
- /// mode.
- ///
- /// We look for a GEP which has one index that is an induction variable and all
- /// other indices are loop invariant. If the stride of this access is also
- /// within a small bound we decide that this address computation can likely be
- /// merged into the addressing mode.
- /// In all other cases, we identify the address computation as complex.
- static bool isLikelyComplexAddressComputation(Value *Ptr,
- LoopVectorizationLegality *Legal,
- ScalarEvolution *SE,
- const Loop *TheLoop) {
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep)
- return true;
- // We are looking for a gep with all loop invariant indices except for one
- // which should be an induction variable.
- unsigned NumOperands = Gep->getNumOperands();
- for (unsigned i = 1; i < NumOperands; ++i) {
- Value *Opd = Gep->getOperand(i);
- if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
- !Legal->isInductionVariable(Opd))
- return true;
- }
- // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
- // can likely be merged into the address computation.
- unsigned MaxMergeDistance = 64;
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
- if (!AddRec)
- return true;
- // Check the step is constant.
- const SCEV *Step = AddRec->getStepRecurrence(*SE);
- // Calculate the pointer stride and check if it is consecutive.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C)
- return true;
- const APInt &APStepVal = C->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return true;
- int64_t StepVal = APStepVal.getSExtValue();
- return StepVal > MaxMergeDistance;
- }
- static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
- if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
- return true;
- return false;
- }
- unsigned
- LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (Legal->isUniformAfterVectorization(I))
- VF = 1;
- Type *RetTy = I->getType();
- Type *VectorTy = ToVectorTy(RetTy, VF);
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because the cost of GEPs in
- // vectorized code depends on whether the corresponding memory instruction
- // is scalarized or not. Therefore, we handle GEPs with the memory
- // instruction cost.
- return 0;
- case Instruction::Br: {
- return TTI.getCFInstrCost(I->getOpcode());
- }
- case Instruction::PHI:
- //TODO: IF-converted IFs become selects.
- return 0;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Since we will replace the stride by 1 the multiplication should go away.
- if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
- return 0;
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_None;
- Value *Op2 = I->getOperand(1);
- // Check for a splat of a constant or for a non uniform vector of constants.
- if (isa<ConstantInt>(Op2)) {
- ConstantInt *CInt = cast<ConstantInt>(Op2);
- if (CInt && CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- Op2VK = TargetTransformInfo::OK_UniformConstantValue;
- } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
- if (SplatValue) {
- ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
- if (CInt && CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- Op2VK = TargetTransformInfo::OK_UniformConstantValue;
- }
- }
- return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
- Op1VP, Op2VP);
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (!ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
- }
- case Instruction::Store:
- case Instruction::Load: {
- StoreInst *SI = dyn_cast<StoreInst>(I);
- LoadInst *LI = dyn_cast<LoadInst>(I);
- Type *ValTy = (SI ? SI->getValueOperand()->getType() :
- LI->getType());
- VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
- unsigned AS = SI ? SI->getPointerAddressSpace() :
- LI->getPointerAddressSpace();
- Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
- // We add the cost of address computation here instead of with the gep
- // instruction because only here we know whether the operation is
- // scalarized.
- if (VF == 1)
- return TTI.getAddressComputationCost(VectorTy) +
- TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- // Scalarized loads/stores.
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = ConsecutiveStride < 0;
- unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
- unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
- if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
- bool IsComplexComputation =
- isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
- unsigned Cost = 0;
- // The cost of extracting from the value vector and pointer vector.
- Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
- for (unsigned i = 0; i < VF; ++i) {
- // The cost of extracting the pointer operand.
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
- // In case of STORE, the cost of ExtractElement from the vector.
- // In case of LOAD, the cost of InsertElement into the returned
- // vector.
- Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
- Instruction::InsertElement,
- VectorTy, i);
- }
- // The cost of the scalar loads/stores.
- Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
- Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
- Alignment, AS);
- return Cost;
- }
- // Wide load/stores.
- unsigned Cost = TTI.getAddressComputationCost(VectorTy);
- Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
- VectorTy, 0);
- return Cost;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- // We optimize the truncation of induction variable.
- // The cost of these is the same as the scalar operation.
- if (I->getOpcode() == Instruction::Trunc &&
- Legal->isInductionVariable(I->getOperand(0)))
- return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
- I->getOperand(0)->getType());
- Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(I);
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- assert(ID && "Not an intrinsic call!");
- Type *RetTy = ToVectorTy(CI->getType(), VF);
- SmallVector<Type*, 4> Tys;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
- Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
- return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
- }
- default: {
- // We are scalarizing the instruction. Return the cost of the scalar
- // instruction, plus the cost of insert and extract into vector
- // elements, times the vector width.
- unsigned Cost = 0;
- if (!RetTy->isVoidTy() && VF != 1) {
- unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
- VectorTy);
- unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
- VectorTy);
- // The cost of inserting the results plus extracting each one of the
- // operands.
- Cost += VF * (InsCost + ExtCost * I->getNumOperands());
- }
- // The cost of executing VF copies of the scalar instruction. This opcode
- // is unknown. Assume that it is the same as 'mul'.
- Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
- return Cost;
- }
- }// end of switch.
- }
- Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
- if (Scalar->isVoidTy() || VF == 1)
- return Scalar;
- return VectorType::get(Scalar, VF);
- }
- char LoopVectorize::ID = 0;
- static const char lv_name[] = "Loop Vectorization";
- INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
- INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
- INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_DEPENDENCY(LoopInfo)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
- return new LoopVectorize(NoUnrolling, AlwaysVectorize);
- }
- }
- bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
- // Check for a store.
- if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
- return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
- // Check for a load.
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
- return false;
- }
- void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
- bool IfPredicateStore) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<VectorParts, 4> Params;
- setDebugLocFromInst(Builder, Instr);
- // Find all of the vectorized parameters.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *SrcOp = Instr->getOperand(op);
- // If we are accessing the old induction variable, use the new one.
- if (SrcOp == OldInduction) {
- Params.push_back(getVectorValue(SrcOp));
- continue;
- }
- // Try using previously calculated values.
- Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
- // If the src is an instruction that appeared earlier in the basic block
- // then it should already be vectorized.
- if (SrcInst && OrigLoop->contains(SrcInst)) {
- assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
- // The parameter is a vector value from earlier.
- Params.push_back(WidenMap.get(SrcInst));
- } else {
- // The parameter is a scalar from outside the loop. Maybe even a constant.
- VectorParts Scalars;
- Scalars.append(UF, SrcOp);
- Params.push_back(Scalars);
- }
- }
- assert(Params.size() == Instr->getNumOperands() &&
- "Invalid number of operands");
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? nullptr :
- UndefValue::get(Instr->getType());
- // Create a new entry in the WidenMap and initialize it to Undef or Null.
- VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
- Instruction *InsertPt = Builder.GetInsertPoint();
- BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = nullptr;
- VectorParts Cond;
- Loop *VectorLp = nullptr;
- if (IfPredicateStore) {
- assert(Instr->getParent()->getSinglePredecessor() &&
- "Only support single predecessor blocks");
- Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
- Instr->getParent());
- VectorLp = LI->getLoopFor(IfBlock);
- assert(VectorLp && "Must have a loop for this block");
- }
- // For each vector unroll 'part':
- for (unsigned Part = 0; Part < UF; ++Part) {
- // For each scalar that we create:
- // Start an "if (pred) a[i] = ..." block.
- Value *Cmp = nullptr;
- if (IfPredicateStore) {
- if (Cond[Part]->getType()->isVectorTy())
- Cond[Part] =
- Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
- Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
- ConstantInt::get(Cond[Part]->getType(), 1));
- CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
- LoopVectorBody.push_back(CondBlock);
- VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
- // Update Builder with newly created basic block.
- Builder.SetInsertPoint(InsertPt);
- }
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instructions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op][Part];
- Cloned->setOperand(op, Op);
- }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults[Part] = Cloned;
- // End if-block.
- if (IfPredicateStore) {
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- LoopVectorBody.push_back(NewIfBlock);
- VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
- Builder.SetInsertPoint(InsertPt);
- Instruction *OldBr = IfBlock->getTerminator();
- BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
- OldBr->eraseFromParent();
- IfBlock = NewIfBlock;
- }
- }
- }
- void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
- return scalarizeInstruction(Instr, IfPredicateStore);
- }
- Value *InnerLoopUnroller::reverseVector(Value *Vec) {
- return Vec;
- }
- Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
- return V;
- }
- Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
- bool Negate) {
- // When unrolling and the VF is 1, we only need to add a simple scalar.
- Type *ITy = Val->getType();
- assert(!ITy->isVectorTy() && "Val must be a scalar");
- Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
- return Builder.CreateAdd(Val, C, "induction");
- }
|