123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080 |
- //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file promotes memory references to be register references. It promotes
- // alloca instructions which only have loads and stores as uses. An alloca is
- // transformed by using iterated dominator frontiers to place PHI nodes, then
- // traversing the function in depth-first order to rewrite loads and stores as
- // appropriate.
- //
- // The algorithm used here is based on:
- //
- // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
- // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
- // Programming Languages
- // POPL '95. ACM, New York, NY, 62-73.
- //
- // It has been modified to not explicitly use the DJ graph data structure and to
- // directly compute pruned SSA using per-variable liveness information.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- #include <queue>
- using namespace llvm;
- #define DEBUG_TYPE "mem2reg"
- STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
- STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
- STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
- STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
- bool llvm::isAllocaPromotable(const AllocaInst *AI) {
- // FIXME: If the memory unit is of pointer or integer type, we can permit
- // assignments to subsections of the memory unit.
- unsigned AS = AI->getType()->getAddressSpace();
- // Only allow direct and non-volatile loads and stores...
- for (const User *U : AI->users()) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- // Note that atomic loads can be transformed; atomic semantics do
- // not have any meaning for a local alloca.
- if (LI->isVolatile())
- return false;
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getOperand(0) == AI)
- return false; // Don't allow a store OF the AI, only INTO the AI.
- // Note that atomic stores can be transformed; atomic semantics do
- // not have any meaning for a local alloca.
- if (SI->isVolatile())
- return false;
- } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return false;
- } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
- if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
- return false;
- if (!onlyUsedByLifetimeMarkers(BCI))
- return false;
- } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
- return false;
- if (!GEPI->hasAllZeroIndices())
- return false;
- if (!onlyUsedByLifetimeMarkers(GEPI))
- return false;
- } else {
- return false;
- }
- }
- return true;
- }
- namespace {
- struct AllocaInfo {
- SmallVector<BasicBlock *, 32> DefiningBlocks;
- SmallVector<BasicBlock *, 32> UsingBlocks;
- StoreInst *OnlyStore;
- BasicBlock *OnlyBlock;
- bool OnlyUsedInOneBlock;
- Value *AllocaPointerVal;
- DbgDeclareInst *DbgDeclare;
- void clear() {
- DefiningBlocks.clear();
- UsingBlocks.clear();
- OnlyStore = nullptr;
- OnlyBlock = nullptr;
- OnlyUsedInOneBlock = true;
- AllocaPointerVal = nullptr;
- DbgDeclare = nullptr;
- }
- /// Scan the uses of the specified alloca, filling in the AllocaInfo used
- /// by the rest of the pass to reason about the uses of this alloca.
- void AnalyzeAlloca(AllocaInst *AI) {
- clear();
- // As we scan the uses of the alloca instruction, keep track of stores,
- // and decide whether all of the loads and stores to the alloca are within
- // the same basic block.
- for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- // Remember the basic blocks which define new values for the alloca
- DefiningBlocks.push_back(SI->getParent());
- AllocaPointerVal = SI->getOperand(0);
- OnlyStore = SI;
- } else {
- LoadInst *LI = cast<LoadInst>(User);
- // Otherwise it must be a load instruction, keep track of variable
- // reads.
- UsingBlocks.push_back(LI->getParent());
- AllocaPointerVal = LI;
- }
- if (OnlyUsedInOneBlock) {
- if (!OnlyBlock)
- OnlyBlock = User->getParent();
- else if (OnlyBlock != User->getParent())
- OnlyUsedInOneBlock = false;
- }
- }
- DbgDeclare = FindAllocaDbgDeclare(AI);
- }
- };
- // Data package used by RenamePass()
- class RenamePassData {
- public:
- typedef std::vector<Value *> ValVector;
- RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
- RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
- : BB(B), Pred(P), Values(V) {}
- BasicBlock *BB;
- BasicBlock *Pred;
- ValVector Values;
- void swap(RenamePassData &RHS) {
- std::swap(BB, RHS.BB);
- std::swap(Pred, RHS.Pred);
- Values.swap(RHS.Values);
- }
- };
- /// \brief This assigns and keeps a per-bb relative ordering of load/store
- /// instructions in the block that directly load or store an alloca.
- ///
- /// This functionality is important because it avoids scanning large basic
- /// blocks multiple times when promoting many allocas in the same block.
- class LargeBlockInfo {
- /// \brief For each instruction that we track, keep the index of the
- /// instruction.
- ///
- /// The index starts out as the number of the instruction from the start of
- /// the block.
- DenseMap<const Instruction *, unsigned> InstNumbers;
- public:
- /// This code only looks at accesses to allocas.
- static bool isInterestingInstruction(const Instruction *I) {
- return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
- (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
- }
- /// Get or calculate the index of the specified instruction.
- unsigned getInstructionIndex(const Instruction *I) {
- assert(isInterestingInstruction(I) &&
- "Not a load/store to/from an alloca?");
- // If we already have this instruction number, return it.
- DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
- if (It != InstNumbers.end())
- return It->second;
- // Scan the whole block to get the instruction. This accumulates
- // information for every interesting instruction in the block, in order to
- // avoid gratuitus rescans.
- const BasicBlock *BB = I->getParent();
- unsigned InstNo = 0;
- for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
- ++BBI)
- if (isInterestingInstruction(BBI))
- InstNumbers[BBI] = InstNo++;
- It = InstNumbers.find(I);
- assert(It != InstNumbers.end() && "Didn't insert instruction?");
- return It->second;
- }
- void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
- void clear() { InstNumbers.clear(); }
- };
- struct PromoteMem2Reg {
- /// The alloca instructions being promoted.
- std::vector<AllocaInst *> Allocas;
- DominatorTree &DT;
- DIBuilder DIB;
- /// An AliasSetTracker object to update. If null, don't update it.
- AliasSetTracker *AST;
- /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
- AssumptionTracker *AT;
- /// Reverse mapping of Allocas.
- DenseMap<AllocaInst *, unsigned> AllocaLookup;
- /// \brief The PhiNodes we're adding.
- ///
- /// That map is used to simplify some Phi nodes as we iterate over it, so
- /// it should have deterministic iterators. We could use a MapVector, but
- /// since we already maintain a map from BasicBlock* to a stable numbering
- /// (BBNumbers), the DenseMap is more efficient (also supports removal).
- DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
- /// For each PHI node, keep track of which entry in Allocas it corresponds
- /// to.
- DenseMap<PHINode *, unsigned> PhiToAllocaMap;
- /// If we are updating an AliasSetTracker, then for each alloca that is of
- /// pointer type, we keep track of what to copyValue to the inserted PHI
- /// nodes here.
- std::vector<Value *> PointerAllocaValues;
- /// For each alloca, we keep track of the dbg.declare intrinsic that
- /// describes it, if any, so that we can convert it to a dbg.value
- /// intrinsic if the alloca gets promoted.
- SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
- /// The set of basic blocks the renamer has already visited.
- ///
- SmallPtrSet<BasicBlock *, 16> Visited;
- /// Contains a stable numbering of basic blocks to avoid non-determinstic
- /// behavior.
- DenseMap<BasicBlock *, unsigned> BBNumbers;
- /// Maps DomTreeNodes to their level in the dominator tree.
- DenseMap<DomTreeNode *, unsigned> DomLevels;
- /// Lazily compute the number of predecessors a block has.
- DenseMap<const BasicBlock *, unsigned> BBNumPreds;
- public:
- PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AliasSetTracker *AST, AssumptionTracker *AT)
- : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
- DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
- AST(AST), AT(AT) {}
- void run();
- private:
- void RemoveFromAllocasList(unsigned &AllocaIdx) {
- Allocas[AllocaIdx] = Allocas.back();
- Allocas.pop_back();
- --AllocaIdx;
- }
- unsigned getNumPreds(const BasicBlock *BB) {
- unsigned &NP = BBNumPreds[BB];
- if (NP == 0)
- NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
- return NP - 1;
- }
- void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info);
- void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
- SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
- void RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncVals,
- std::vector<RenamePassData> &Worklist);
- bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
- };
- } // end of anonymous namespace
- static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
- // Knowing that this alloca is promotable, we know that it's safe to kill all
- // instructions except for load and store.
- for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
- Instruction *I = cast<Instruction>(*UI);
- ++UI;
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- continue;
- if (!I->getType()->isVoidTy()) {
- // The only users of this bitcast/GEP instruction are lifetime intrinsics.
- // Follow the use/def chain to erase them now instead of leaving it for
- // dead code elimination later.
- for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
- Instruction *Inst = cast<Instruction>(*UUI);
- ++UUI;
- Inst->eraseFromParent();
- }
- }
- I->eraseFromParent();
- }
- }
- /// \brief Rewrite as many loads as possible given a single store.
- ///
- /// When there is only a single store, we can use the domtree to trivially
- /// replace all of the dominated loads with the stored value. Do so, and return
- /// true if this has successfully promoted the alloca entirely. If this returns
- /// false there were some loads which were not dominated by the single store
- /// and thus must be phi-ed with undef. We fall back to the standard alloca
- /// promotion algorithm in that case.
- static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
- LargeBlockInfo &LBI,
- DominatorTree &DT,
- AliasSetTracker *AST) {
- StoreInst *OnlyStore = Info.OnlyStore;
- bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
- BasicBlock *StoreBB = OnlyStore->getParent();
- int StoreIndex = -1;
- // Clear out UsingBlocks. We will reconstruct it here if needed.
- Info.UsingBlocks.clear();
- for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
- Instruction *UserInst = cast<Instruction>(*UI++);
- if (!isa<LoadInst>(UserInst)) {
- assert(UserInst == OnlyStore && "Should only have load/stores");
- continue;
- }
- LoadInst *LI = cast<LoadInst>(UserInst);
- // Okay, if we have a load from the alloca, we want to replace it with the
- // only value stored to the alloca. We can do this if the value is
- // dominated by the store. If not, we use the rest of the mem2reg machinery
- // to insert the phi nodes as needed.
- if (!StoringGlobalVal) { // Non-instructions are always dominated.
- if (LI->getParent() == StoreBB) {
- // If we have a use that is in the same block as the store, compare the
- // indices of the two instructions to see which one came first. If the
- // load came before the store, we can't handle it.
- if (StoreIndex == -1)
- StoreIndex = LBI.getInstructionIndex(OnlyStore);
- if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
- // Can't handle this load, bail out.
- Info.UsingBlocks.push_back(StoreBB);
- continue;
- }
- } else if (LI->getParent() != StoreBB &&
- !DT.dominates(StoreBB, LI->getParent())) {
- // If the load and store are in different blocks, use BB dominance to
- // check their relationships. If the store doesn't dom the use, bail
- // out.
- Info.UsingBlocks.push_back(LI->getParent());
- continue;
- }
- }
- // Otherwise, we *can* safely rewrite this load.
- Value *ReplVal = OnlyStore->getOperand(0);
- // If the replacement value is the load, this must occur in unreachable
- // code.
- if (ReplVal == LI)
- ReplVal = UndefValue::get(LI->getType());
- LI->replaceAllUsesWith(ReplVal);
- if (AST && LI->getType()->isPointerTy())
- AST->deleteValue(LI);
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- // Finally, after the scan, check to see if the store is all that is left.
- if (!Info.UsingBlocks.empty())
- return false; // If not, we'll have to fall back for the remainder.
- // Record debuginfo for the store and remove the declaration's
- // debuginfo.
- if (DbgDeclareInst *DDI = Info.DbgDeclare) {
- DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
- /*AllowUnresolved*/ false);
- ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
- DDI->eraseFromParent();
- LBI.deleteValue(DDI);
- }
- // Remove the (now dead) store and alloca.
- Info.OnlyStore->eraseFromParent();
- LBI.deleteValue(Info.OnlyStore);
- if (AST)
- AST->deleteValue(AI);
- AI->eraseFromParent();
- LBI.deleteValue(AI);
- return true;
- }
- /// Many allocas are only used within a single basic block. If this is the
- /// case, avoid traversing the CFG and inserting a lot of potentially useless
- /// PHI nodes by just performing a single linear pass over the basic block
- /// using the Alloca.
- ///
- /// If we cannot promote this alloca (because it is read before it is written),
- /// return true. This is necessary in cases where, due to control flow, the
- /// alloca is potentially undefined on some control flow paths. e.g. code like
- /// this is potentially correct:
- ///
- /// for (...) { if (c) { A = undef; undef = B; } }
- ///
- /// ... so long as A is not used before undef is set.
- static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
- LargeBlockInfo &LBI,
- AliasSetTracker *AST) {
- // The trickiest case to handle is when we have large blocks. Because of this,
- // this code is optimized assuming that large blocks happen. This does not
- // significantly pessimize the small block case. This uses LargeBlockInfo to
- // make it efficient to get the index of various operations in the block.
- // Walk the use-def list of the alloca, getting the locations of all stores.
- typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
- StoresByIndexTy StoresByIndex;
- for (User *U : AI->users())
- if (StoreInst *SI = dyn_cast<StoreInst>(U))
- StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
- // Sort the stores by their index, making it efficient to do a lookup with a
- // binary search.
- std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
- // Walk all of the loads from this alloca, replacing them with the nearest
- // store above them, if any.
- for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
- LoadInst *LI = dyn_cast<LoadInst>(*UI++);
- if (!LI)
- continue;
- unsigned LoadIdx = LBI.getInstructionIndex(LI);
- // Find the nearest store that has a lower index than this load.
- StoresByIndexTy::iterator I =
- std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
- std::make_pair(LoadIdx,
- static_cast<StoreInst *>(nullptr)),
- less_first());
- if (I == StoresByIndex.begin())
- // If there is no store before this load, the load takes the undef value.
- LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
- else
- // Otherwise, there was a store before this load, the load takes its value.
- LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
- if (AST && LI->getType()->isPointerTy())
- AST->deleteValue(LI);
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- // Remove the (now dead) stores and alloca.
- while (!AI->use_empty()) {
- StoreInst *SI = cast<StoreInst>(AI->user_back());
- // Record debuginfo for the store before removing it.
- if (DbgDeclareInst *DDI = Info.DbgDeclare) {
- DIBuilder DIB(*AI->getParent()->getParent()->getParent(),
- /*AllowUnresolved*/ false);
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- }
- SI->eraseFromParent();
- LBI.deleteValue(SI);
- }
- if (AST)
- AST->deleteValue(AI);
- AI->eraseFromParent();
- LBI.deleteValue(AI);
- // The alloca's debuginfo can be removed as well.
- if (DbgDeclareInst *DDI = Info.DbgDeclare) {
- DDI->eraseFromParent();
- LBI.deleteValue(DDI);
- }
- ++NumLocalPromoted;
- }
- void PromoteMem2Reg::run() {
- Function &F = *DT.getRoot()->getParent();
- if (AST)
- PointerAllocaValues.resize(Allocas.size());
- AllocaDbgDeclares.resize(Allocas.size());
- AllocaInfo Info;
- LargeBlockInfo LBI;
- for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
- AllocaInst *AI = Allocas[AllocaNum];
- assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
- assert(AI->getParent()->getParent() == &F &&
- "All allocas should be in the same function, which is same as DF!");
- removeLifetimeIntrinsicUsers(AI);
- if (AI->use_empty()) {
- // If there are no uses of the alloca, just delete it now.
- if (AST)
- AST->deleteValue(AI);
- AI->eraseFromParent();
- // Remove the alloca from the Allocas list, since it has been processed
- RemoveFromAllocasList(AllocaNum);
- ++NumDeadAlloca;
- continue;
- }
- // Calculate the set of read and write-locations for each alloca. This is
- // analogous to finding the 'uses' and 'definitions' of each variable.
- Info.AnalyzeAlloca(AI);
- // If there is only a single store to this value, replace any loads of
- // it that are directly dominated by the definition with the value stored.
- if (Info.DefiningBlocks.size() == 1) {
- if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
- ++NumSingleStore;
- continue;
- }
- }
- // If the alloca is only read and written in one basic block, just perform a
- // linear sweep over the block to eliminate it.
- if (Info.OnlyUsedInOneBlock) {
- promoteSingleBlockAlloca(AI, Info, LBI, AST);
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
- continue;
- }
- // If we haven't computed dominator tree levels, do so now.
- if (DomLevels.empty()) {
- SmallVector<DomTreeNode *, 32> Worklist;
- DomTreeNode *Root = DT.getRootNode();
- DomLevels[Root] = 0;
- Worklist.push_back(Root);
- while (!Worklist.empty()) {
- DomTreeNode *Node = Worklist.pop_back_val();
- unsigned ChildLevel = DomLevels[Node] + 1;
- for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
- CI != CE; ++CI) {
- DomLevels[*CI] = ChildLevel;
- Worklist.push_back(*CI);
- }
- }
- }
- // If we haven't computed a numbering for the BB's in the function, do so
- // now.
- if (BBNumbers.empty()) {
- unsigned ID = 0;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
- BBNumbers[I] = ID++;
- }
- // If we have an AST to keep updated, remember some pointer value that is
- // stored into the alloca.
- if (AST)
- PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
- // Remember the dbg.declare intrinsic describing this alloca, if any.
- if (Info.DbgDeclare)
- AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
- // Keep the reverse mapping of the 'Allocas' array for the rename pass.
- AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
- // At this point, we're committed to promoting the alloca using IDF's, and
- // the standard SSA construction algorithm. Determine which blocks need PHI
- // nodes and see if we can optimize out some work by avoiding insertion of
- // dead phi nodes.
- DetermineInsertionPoint(AI, AllocaNum, Info);
- }
- if (Allocas.empty())
- return; // All of the allocas must have been trivial!
- LBI.clear();
- // Set the incoming values for the basic block to be null values for all of
- // the alloca's. We do this in case there is a load of a value that has not
- // been stored yet. In this case, it will get this null value.
- //
- RenamePassData::ValVector Values(Allocas.size());
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
- Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
- // Walks all basic blocks in the function performing the SSA rename algorithm
- // and inserting the phi nodes we marked as necessary
- //
- std::vector<RenamePassData> RenamePassWorkList;
- RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
- do {
- RenamePassData RPD;
- RPD.swap(RenamePassWorkList.back());
- RenamePassWorkList.pop_back();
- // RenamePass may add new worklist entries.
- RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
- } while (!RenamePassWorkList.empty());
- // The renamer uses the Visited set to avoid infinite loops. Clear it now.
- Visited.clear();
- // Remove the allocas themselves from the function.
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
- Instruction *A = Allocas[i];
- // If there are any uses of the alloca instructions left, they must be in
- // unreachable basic blocks that were not processed by walking the dominator
- // tree. Just delete the users now.
- if (!A->use_empty())
- A->replaceAllUsesWith(UndefValue::get(A->getType()));
- if (AST)
- AST->deleteValue(A);
- A->eraseFromParent();
- }
- // Remove alloca's dbg.declare instrinsics from the function.
- for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
- if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
- DDI->eraseFromParent();
- // Loop over all of the PHI nodes and see if there are any that we can get
- // rid of because they merge all of the same incoming values. This can
- // happen due to undef values coming into the PHI nodes. This process is
- // iterative, because eliminating one PHI node can cause others to be removed.
- bool EliminatedAPHI = true;
- while (EliminatedAPHI) {
- EliminatedAPHI = false;
- // Iterating over NewPhiNodes is deterministic, so it is safe to try to
- // simplify and RAUW them as we go. If it was not, we could add uses to
- // the values we replace with in a non-deterministic order, thus creating
- // non-deterministic def->use chains.
- for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
- I = NewPhiNodes.begin(),
- E = NewPhiNodes.end();
- I != E;) {
- PHINode *PN = I->second;
- // If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AT)) {
- if (AST && PN->getType()->isPointerTy())
- AST->deleteValue(PN);
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- NewPhiNodes.erase(I++);
- EliminatedAPHI = true;
- continue;
- }
- ++I;
- }
- }
- // At this point, the renamer has added entries to PHI nodes for all reachable
- // code. Unfortunately, there may be unreachable blocks which the renamer
- // hasn't traversed. If this is the case, the PHI nodes may not
- // have incoming values for all predecessors. Loop over all PHI nodes we have
- // created, inserting undef values if they are missing any incoming values.
- //
- for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
- I = NewPhiNodes.begin(),
- E = NewPhiNodes.end();
- I != E; ++I) {
- // We want to do this once per basic block. As such, only process a block
- // when we find the PHI that is the first entry in the block.
- PHINode *SomePHI = I->second;
- BasicBlock *BB = SomePHI->getParent();
- if (&BB->front() != SomePHI)
- continue;
- // Only do work here if there the PHI nodes are missing incoming values. We
- // know that all PHI nodes that were inserted in a block will have the same
- // number of incoming values, so we can just check any of them.
- if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
- continue;
- // Get the preds for BB.
- SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
- // Ok, now we know that all of the PHI nodes are missing entries for some
- // basic blocks. Start by sorting the incoming predecessors for efficient
- // access.
- std::sort(Preds.begin(), Preds.end());
- // Now we loop through all BB's which have entries in SomePHI and remove
- // them from the Preds list.
- for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
- // Do a log(n) search of the Preds list for the entry we want.
- SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
- Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
- assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
- "PHI node has entry for a block which is not a predecessor!");
- // Remove the entry
- Preds.erase(EntIt);
- }
- // At this point, the blocks left in the preds list must have dummy
- // entries inserted into every PHI nodes for the block. Update all the phi
- // nodes in this block that we are inserting (there could be phis before
- // mem2reg runs).
- unsigned NumBadPreds = SomePHI->getNumIncomingValues();
- BasicBlock::iterator BBI = BB->begin();
- while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
- SomePHI->getNumIncomingValues() == NumBadPreds) {
- Value *UndefVal = UndefValue::get(SomePHI->getType());
- for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
- SomePHI->addIncoming(UndefVal, Preds[pred]);
- }
- }
- NewPhiNodes.clear();
- }
- /// \brief Determine which blocks the value is live in.
- ///
- /// These are blocks which lead to uses. Knowing this allows us to avoid
- /// inserting PHI nodes into blocks which don't lead to uses (thus, the
- /// inserted phi nodes would be dead).
- void PromoteMem2Reg::ComputeLiveInBlocks(
- AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
- SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
- // To determine liveness, we must iterate through the predecessors of blocks
- // where the def is live. Blocks are added to the worklist if we need to
- // check their predecessors. Start with all the using blocks.
- SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
- Info.UsingBlocks.end());
- // If any of the using blocks is also a definition block, check to see if the
- // definition occurs before or after the use. If it happens before the use,
- // the value isn't really live-in.
- for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
- BasicBlock *BB = LiveInBlockWorklist[i];
- if (!DefBlocks.count(BB))
- continue;
- // Okay, this is a block that both uses and defines the value. If the first
- // reference to the alloca is a def (store), then we know it isn't live-in.
- for (BasicBlock::iterator I = BB->begin();; ++I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getOperand(1) != AI)
- continue;
- // We found a store to the alloca before a load. The alloca is not
- // actually live-in here.
- LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
- LiveInBlockWorklist.pop_back();
- --i, --e;
- break;
- }
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (LI->getOperand(0) != AI)
- continue;
- // Okay, we found a load before a store to the alloca. It is actually
- // live into this block.
- break;
- }
- }
- }
- // Now that we have a set of blocks where the phi is live-in, recursively add
- // their predecessors until we find the full region the value is live.
- while (!LiveInBlockWorklist.empty()) {
- BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
- // The block really is live in here, insert it into the set. If already in
- // the set, then it has already been processed.
- if (!LiveInBlocks.insert(BB).second)
- continue;
- // Since the value is live into BB, it is either defined in a predecessor or
- // live into it to. Add the preds to the worklist unless they are a
- // defining block.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *P = *PI;
- // The value is not live into a predecessor if it defines the value.
- if (DefBlocks.count(P))
- continue;
- // Otherwise it is, add to the worklist.
- LiveInBlockWorklist.push_back(P);
- }
- }
- }
- /// At this point, we're committed to promoting the alloca using IDF's, and the
- /// standard SSA construction algorithm. Determine which blocks need phi nodes
- /// and see if we can optimize out some work by avoiding insertion of dead phi
- /// nodes.
- void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
- AllocaInfo &Info) {
- // Unique the set of defining blocks for efficient lookup.
- SmallPtrSet<BasicBlock *, 32> DefBlocks;
- DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
- // Determine which blocks the value is live in. These are blocks which lead
- // to uses.
- SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
- ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
- // Use a priority queue keyed on dominator tree level so that inserted nodes
- // are handled from the bottom of the dominator tree upwards.
- typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
- typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
- less_second> IDFPriorityQueue;
- IDFPriorityQueue PQ;
- for (BasicBlock *BB : DefBlocks) {
- if (DomTreeNode *Node = DT.getNode(BB))
- PQ.push(std::make_pair(Node, DomLevels[Node]));
- }
- SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
- SmallPtrSet<DomTreeNode *, 32> Visited;
- SmallVector<DomTreeNode *, 32> Worklist;
- while (!PQ.empty()) {
- DomTreeNodePair RootPair = PQ.top();
- PQ.pop();
- DomTreeNode *Root = RootPair.first;
- unsigned RootLevel = RootPair.second;
- // Walk all dominator tree children of Root, inspecting their CFG edges with
- // targets elsewhere on the dominator tree. Only targets whose level is at
- // most Root's level are added to the iterated dominance frontier of the
- // definition set.
- Worklist.clear();
- Worklist.push_back(Root);
- while (!Worklist.empty()) {
- DomTreeNode *Node = Worklist.pop_back_val();
- BasicBlock *BB = Node->getBlock();
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
- ++SI) {
- DomTreeNode *SuccNode = DT.getNode(*SI);
- // Quickly skip all CFG edges that are also dominator tree edges instead
- // of catching them below.
- if (SuccNode->getIDom() == Node)
- continue;
- unsigned SuccLevel = DomLevels[SuccNode];
- if (SuccLevel > RootLevel)
- continue;
- if (!Visited.insert(SuccNode).second)
- continue;
- BasicBlock *SuccBB = SuccNode->getBlock();
- if (!LiveInBlocks.count(SuccBB))
- continue;
- DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
- if (!DefBlocks.count(SuccBB))
- PQ.push(std::make_pair(SuccNode, SuccLevel));
- }
- for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
- ++CI) {
- if (!Visited.count(*CI))
- Worklist.push_back(*CI);
- }
- }
- }
- if (DFBlocks.size() > 1)
- std::sort(DFBlocks.begin(), DFBlocks.end());
- unsigned CurrentVersion = 0;
- for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
- QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
- }
- /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
- ///
- /// Returns true if there wasn't already a phi-node for that variable
- bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
- unsigned &Version) {
- // Look up the basic-block in question.
- PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
- // If the BB already has a phi node added for the i'th alloca then we're done!
- if (PN)
- return false;
- // Create a PhiNode using the dereferenced type... and add the phi-node to the
- // BasicBlock.
- PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
- Allocas[AllocaNo]->getName() + "." + Twine(Version++),
- BB->begin());
- ++NumPHIInsert;
- PhiToAllocaMap[PN] = AllocaNo;
- if (AST && PN->getType()->isPointerTy())
- AST->copyValue(PointerAllocaValues[AllocaNo], PN);
- return true;
- }
- /// \brief Recursively traverse the CFG of the function, renaming loads and
- /// stores to the allocas which we are promoting.
- ///
- /// IncomingVals indicates what value each Alloca contains on exit from the
- /// predecessor block Pred.
- void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncomingVals,
- std::vector<RenamePassData> &Worklist) {
- NextIteration:
- // If we are inserting any phi nodes into this BB, they will already be in the
- // block.
- if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
- // If we have PHI nodes to update, compute the number of edges from Pred to
- // BB.
- if (PhiToAllocaMap.count(APN)) {
- // We want to be able to distinguish between PHI nodes being inserted by
- // this invocation of mem2reg from those phi nodes that already existed in
- // the IR before mem2reg was run. We determine that APN is being inserted
- // because it is missing incoming edges. All other PHI nodes being
- // inserted by this pass of mem2reg will have the same number of incoming
- // operands so far. Remember this count.
- unsigned NewPHINumOperands = APN->getNumOperands();
- unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
- assert(NumEdges && "Must be at least one edge from Pred to BB!");
- // Add entries for all the phis.
- BasicBlock::iterator PNI = BB->begin();
- do {
- unsigned AllocaNo = PhiToAllocaMap[APN];
- // Add N incoming values to the PHI node.
- for (unsigned i = 0; i != NumEdges; ++i)
- APN->addIncoming(IncomingVals[AllocaNo], Pred);
- // The currently active variable for this block is now the PHI.
- IncomingVals[AllocaNo] = APN;
- // Get the next phi node.
- ++PNI;
- APN = dyn_cast<PHINode>(PNI);
- if (!APN)
- break;
- // Verify that it is missing entries. If not, it is not being inserted
- // by this mem2reg invocation so we want to ignore it.
- } while (APN->getNumOperands() == NewPHINumOperands);
- }
- }
- // Don't revisit blocks.
- if (!Visited.insert(BB).second)
- return;
- for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
- Instruction *I = II++; // get the instruction, increment iterator
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
- if (!Src)
- continue;
- DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
- if (AI == AllocaLookup.end())
- continue;
- Value *V = IncomingVals[AI->second];
- // Anything using the load now uses the current value.
- LI->replaceAllUsesWith(V);
- if (AST && LI->getType()->isPointerTy())
- AST->deleteValue(LI);
- BB->getInstList().erase(LI);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Delete this instruction and mark the name as the current holder of the
- // value
- AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
- if (!Dest)
- continue;
- DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
- if (ai == AllocaLookup.end())
- continue;
- // what value were we writing?
- IncomingVals[ai->second] = SI->getOperand(0);
- // Record debuginfo for the store before removing it.
- if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- BB->getInstList().erase(SI);
- }
- }
- // 'Recurse' to our successors.
- succ_iterator I = succ_begin(BB), E = succ_end(BB);
- if (I == E)
- return;
- // Keep track of the successors so we don't visit the same successor twice
- SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
- // Handle the first successor without using the worklist.
- VisitedSuccs.insert(*I);
- Pred = BB;
- BB = *I;
- ++I;
- for (; I != E; ++I)
- if (VisitedSuccs.insert(*I).second)
- Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
- goto NextIteration;
- }
- void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AliasSetTracker *AST, AssumptionTracker *AT) {
- // If there is nothing to do, bail out...
- if (Allocas.empty())
- return;
- PromoteMem2Reg(Allocas, DT, AST, AT).run();
- }
|