123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398 |
- //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements some loop unrolling utilities for loops with run-time
- // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
- // trip counts.
- //
- // The functions in this file are used to generate extra code when the
- // run-time trip count modulo the unroll factor is not 0. When this is the
- // case, we need to generate code to execute these 'left over' iterations.
- //
- // The current strategy generates an if-then-else sequence prior to the
- // unrolled loop to execute the 'left over' iterations. Other strategies
- // include generate a loop before or after the unrolled loop.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- STATISTIC(NumRuntimeUnrolled,
- "Number of loops unrolled with run-time trip counts");
- /// Connect the unrolling prolog code to the original loop.
- /// The unrolling prolog code contains code to execute the
- /// 'extra' iterations if the run-time trip count modulo the
- /// unroll count is non-zero.
- ///
- /// This function performs the following:
- /// - Create PHI nodes at prolog end block to combine values
- /// that exit the prolog code and jump around the prolog.
- /// - Add a PHI operand to a PHI node at the loop exit block
- /// for values that exit the prolog and go around the loop.
- /// - Branch around the original loop if the trip count is less
- /// than the unroll factor.
- ///
- static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
- BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
- BasicBlock *OrigPH, BasicBlock *NewPH,
- ValueToValueMapTy &VMap, Pass *P) {
- BasicBlock *Latch = L->getLoopLatch();
- assert(Latch && "Loop must have a latch");
- // Create a PHI node for each outgoing value from the original loop
- // (which means it is an outgoing value from the prolog code too).
- // The new PHI node is inserted in the prolog end basic block.
- // The new PHI name is added as an operand of a PHI node in either
- // the loop header or the loop exit block.
- for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
- SBI != SBE; ++SBI) {
- for (BasicBlock::iterator BBI = (*SBI)->begin();
- PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
- // Add a new PHI node to the prolog end block and add the
- // appropriate incoming values.
- PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
- PrologEnd->getTerminator());
- // Adding a value to the new PHI node from the original loop preheader.
- // This is the value that skips all the prolog code.
- if (L->contains(PN)) {
- NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
- } else {
- NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
- }
- Value *V = PN->getIncomingValueForBlock(Latch);
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (L->contains(I)) {
- V = VMap[I];
- }
- }
- // Adding a value to the new PHI node from the last prolog block
- // that was created.
- NewPN->addIncoming(V, LastPrologBB);
- // Update the existing PHI node operand with the value from the
- // new PHI node. How this is done depends on if the existing
- // PHI node is in the original loop block, or the exit block.
- if (L->contains(PN)) {
- PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
- } else {
- PN->addIncoming(NewPN, PrologEnd);
- }
- }
- }
- // Create a branch around the orignal loop, which is taken if the
- // trip count is less than the unroll factor.
- Instruction *InsertPt = PrologEnd->getTerminator();
- Instruction *BrLoopExit =
- new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
- ConstantInt::get(TripCount->getType(), Count));
- BasicBlock *Exit = L->getUniqueExitBlock();
- assert(Exit && "Loop must have a single exit block only");
- // Split the exit to maintain loop canonicalization guarantees
- SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
- if (!Exit->isLandingPad()) {
- SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
- } else {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
- P, NewBBs);
- }
- // Add the branch to the exit block (around the unrolled loop)
- BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
- InsertPt->eraseFromParent();
- }
- /// Create a clone of the blocks in a loop and connect them together.
- /// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
- /// loop will be created including all cloned blocks, and the iterator of it
- /// switches to count NewIter down to 0.
- ///
- static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
- BasicBlock *InsertTop, BasicBlock *InsertBot,
- std::vector<BasicBlock *> &NewBlocks,
- LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
- LoopInfo *LI) {
- BasicBlock *Preheader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- BasicBlock *Latch = L->getLoopLatch();
- Function *F = Header->getParent();
- LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
- Loop *NewLoop = 0;
- Loop *ParentLoop = L->getParentLoop();
- if (!UnrollProlog) {
- NewLoop = new Loop();
- if (ParentLoop)
- ParentLoop->addChildLoop(NewLoop);
- else
- LI->addTopLevelLoop(NewLoop);
- }
- // For each block in the original loop, create a new copy,
- // and update the value map with the newly created values.
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
- NewBlocks.push_back(NewBB);
- if (NewLoop)
- NewLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- else if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- VMap[*BB] = NewBB;
- if (Header == *BB) {
- // For the first block, add a CFG connection to this newly
- // created block.
- InsertTop->getTerminator()->setSuccessor(0, NewBB);
- }
- if (Latch == *BB) {
- // For the last block, if UnrollProlog is true, create a direct jump to
- // InsertBot. If not, create a loop back to cloned head.
- VMap.erase((*BB)->getTerminator());
- BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
- BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
- if (UnrollProlog) {
- LatchBR->eraseFromParent();
- BranchInst::Create(InsertBot, NewBB);
- } else {
- PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
- FirstLoopBB->getFirstNonPHI());
- IRBuilder<> Builder(LatchBR);
- Value *IdxSub =
- Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
- NewIdx->getName() + ".sub");
- Value *IdxCmp =
- Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
- BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
- NewIdx->addIncoming(NewIter, InsertTop);
- NewIdx->addIncoming(IdxSub, NewBB);
- LatchBR->eraseFromParent();
- }
- }
- }
- // Change the incoming values to the ones defined in the preheader or
- // cloned loop.
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *NewPHI = cast<PHINode>(VMap[I]);
- if (UnrollProlog) {
- VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
- cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
- } else {
- unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
- NewPHI->setIncomingBlock(idx, InsertTop);
- BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
- idx = NewPHI->getBasicBlockIndex(Latch);
- Value *InVal = NewPHI->getIncomingValue(idx);
- NewPHI->setIncomingBlock(idx, NewLatch);
- if (VMap[InVal])
- NewPHI->setIncomingValue(idx, VMap[InVal]);
- }
- }
- if (NewLoop) {
- // Add unroll disable metadata to disable future unrolling for this loop.
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- MDNode *LoopID = NewLoop->getLoopID();
- if (LoopID) {
- // First remove any existing loop unrolling metadata.
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- bool IsUnrollMetadata = false;
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
- }
- if (!IsUnrollMetadata)
- MDs.push_back(LoopID->getOperand(i));
- }
- }
- LLVMContext &Context = NewLoop->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- NewLoop->setLoopID(NewLoopID);
- }
- }
- /// Insert code in the prolog code when unrolling a loop with a
- /// run-time trip-count.
- ///
- /// This method assumes that the loop unroll factor is total number
- /// of loop bodes in the loop after unrolling. (Some folks refer
- /// to the unroll factor as the number of *extra* copies added).
- /// We assume also that the loop unroll factor is a power-of-two. So, after
- /// unrolling the loop, the number of loop bodies executed is 2,
- /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
- /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
- /// the switch instruction is generated.
- ///
- /// extraiters = tripcount % loopfactor
- /// if (extraiters == 0) jump Loop:
- /// else jump Prol
- /// Prol: LoopBody;
- /// extraiters -= 1 // Omitted if unroll factor is 2.
- /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
- /// if (tripcount < loopfactor) jump End
- /// Loop:
- /// ...
- /// End:
- ///
- bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
- LPPassManager *LPM) {
- // for now, only unroll loops that contain a single exit
- if (!L->getExitingBlock())
- return false;
- // Make sure the loop is in canonical form, and there is a single
- // exit block only.
- if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
- return false;
- // Use Scalar Evolution to compute the trip count. This allows more
- // loops to be unrolled than relying on induction var simplification
- if (!LPM)
- return false;
- ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
- if (!SE)
- return false;
- // Only unroll loops with a computable trip count and the trip count needs
- // to be an int value (allowing a pointer type is a TODO item)
- const SCEV *BECount = SE->getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
- return false;
- // If BECount is INT_MAX, we can't compute trip-count without overflow.
- if (BECount->isAllOnesValue())
- return false;
- // Add 1 since the backedge count doesn't include the first loop iteration
- const SCEV *TripCountSC =
- SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
- if (isa<SCEVCouldNotCompute>(TripCountSC))
- return false;
- // We only handle cases when the unroll factor is a power of 2.
- // Count is the loop unroll factor, the number of extra copies added + 1.
- if ((Count & (Count-1)) != 0)
- return false;
- // If this loop is nested, then the loop unroller changes the code in
- // parent loop, so the Scalar Evolution pass needs to be run again
- if (Loop *ParentLoop = L->getParentLoop())
- SE->forgetLoop(ParentLoop);
- BasicBlock *PH = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- BasicBlock *Latch = L->getLoopLatch();
- // It helps to splits the original preheader twice, one for the end of the
- // prolog code and one for a new loop preheader
- BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
- BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
- BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
- // Compute the number of extra iterations required, which is:
- // extra iterations = run-time trip count % (loop unroll factor + 1)
- SCEVExpander Expander(*SE, "loop-unroll");
- Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
- PreHeaderBR);
- IRBuilder<> B(PreHeaderBR);
- Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
- // Check if for no extra iterations, then jump to cloned/unrolled loop.
- // We have to check that the trip count computation didn't overflow when
- // adding one to the backedge taken count.
- Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
- Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
- Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
- // Branch to either the extra iterations or the cloned/unrolled loop
- // We will fix up the true branch label when adding loop body copies
- BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
- assert(PreHeaderBR->isUnconditional() &&
- PreHeaderBR->getSuccessor(0) == PEnd &&
- "CFG edges in Preheader are not correct");
- PreHeaderBR->eraseFromParent();
- Function *F = Header->getParent();
- // Get an ordered list of blocks in the loop to help with the ordering of the
- // cloned blocks in the prolog code
- LoopBlocksDFS LoopBlocks(L);
- LoopBlocks.perform(LI);
- //
- // For each extra loop iteration, create a copy of the loop's basic blocks
- // and generate a condition that branches to the copy depending on the
- // number of 'left over' iterations.
- //
- std::vector<BasicBlock *> NewBlocks;
- ValueToValueMapTy VMap;
- // If unroll count is 2 and we can't overflow in tripcount computation (which
- // is BECount + 1), then we don't need a loop for prologue, and we can unroll
- // it. We can be sure that we don't overflow only if tripcount is a constant.
- bool UnrollPrologue = (Count == 2 && isa<ConstantInt>(TripCount));
- // Clone all the basic blocks in the loop. If Count is 2, we don't clone
- // the loop, otherwise we create a cloned loop to execute the extra
- // iterations. This function adds the appropriate CFG connections.
- CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
- VMap, LI);
- // Insert the cloned blocks into function just before the original loop
- F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
- F->end());
- // Rewrite the cloned instruction operands to use the values
- // created when the clone is created.
- for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
- for (BasicBlock::iterator I = NewBlocks[i]->begin(),
- E = NewBlocks[i]->end();
- I != E; ++I) {
- RemapInstruction(I, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- }
- }
- // Connect the prolog code to the original loop and update the
- // PHI functions.
- BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
- ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
- LPM->getAsPass());
- NumRuntimeUnrolled++;
- return true;
- }
|