12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352 |
- //===-- Local.cpp - Functions to perform local transformations ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform various local transformations to the
- // program.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "local"
- STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
- //===----------------------------------------------------------------------===//
- // Local constant propagation.
- //
- /// ConstantFoldTerminator - If a terminator instruction is predicated on a
- /// constant value, convert it into an unconditional branch to the constant
- /// destination. This is a nontrivial operation because the successors of this
- /// basic block must have their PHI nodes updated.
- /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
- /// conditions and indirectbr addresses this might make dead if
- /// DeleteDeadConditions is true.
- bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
- const TargetLibraryInfo *TLI) {
- TerminatorInst *T = BB->getTerminator();
- IRBuilder<> Builder(T);
- // Branch - See if we are conditional jumping on constant
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- if (BI->isUnconditional()) return false; // Can't optimize uncond branch
- BasicBlock *Dest1 = BI->getSuccessor(0);
- BasicBlock *Dest2 = BI->getSuccessor(1);
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
- // Are we branching on constant?
- // YES. Change to unconditional branch...
- BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
- BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
- //cerr << "Function: " << T->getParent()->getParent()
- // << "\nRemoving branch from " << T->getParent()
- // << "\n\nTo: " << OldDest << endl;
- // Let the basic block know that we are letting go of it. Based on this,
- // it will adjust it's PHI nodes.
- OldDest->removePredecessor(BB);
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Destination);
- BI->eraseFromParent();
- return true;
- }
- if (Dest2 == Dest1) { // Conditional branch to same location?
- // This branch matches something like this:
- // br bool %cond, label %Dest, label %Dest
- // and changes it into: br label %Dest
- // Let the basic block know that we are letting go of one copy of it.
- assert(BI->getParent() && "Terminator not inserted in block!");
- Dest1->removePredecessor(BI->getParent());
- // Replace the conditional branch with an unconditional one.
- Builder.CreateBr(Dest1);
- Value *Cond = BI->getCondition();
- BI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- return false;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch into a
- // single branch instruction!
- ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *TheOnlyDest = SI->getDefaultDest();
- BasicBlock *DefaultDest = TheOnlyDest;
- // Figure out which case it goes to.
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- // Found case matching a constant operand?
- if (i.getCaseValue() == CI) {
- TheOnlyDest = i.getCaseSuccessor();
- break;
- }
- // Check to see if this branch is going to the same place as the default
- // dest. If so, eliminate it as an explicit compare.
- if (i.getCaseSuccessor() == DefaultDest) {
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- unsigned NCases = SI->getNumCases();
- // Fold the case metadata into the default if there will be any branches
- // left, unless the metadata doesn't match the switch.
- if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
- ++MD_i) {
- ConstantInt *CI =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
- assert(CI);
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // Merge weight of this case to the default weight.
- unsigned idx = i.getCaseIndex();
- Weights[0] += Weights[idx+1];
- // Remove weight for this case.
- std::swap(Weights[idx+1], Weights.back());
- Weights.pop_back();
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(Weights));
- }
- // Remove this entry.
- DefaultDest->removePredecessor(SI->getParent());
- SI->removeCase(i);
- --i; --e;
- continue;
- }
- // Otherwise, check to see if the switch only branches to one destination.
- // We do this by reseting "TheOnlyDest" to null when we find two non-equal
- // destinations.
- if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
- }
- if (CI && !TheOnlyDest) {
- // Branching on a constant, but not any of the cases, go to the default
- // successor.
- TheOnlyDest = SI->getDefaultDest();
- }
- // If we found a single destination that we can fold the switch into, do so
- // now.
- if (TheOnlyDest) {
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *BB = SI->getParent();
- // Remove entries from PHI nodes which we no longer branch to...
- for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
- // Found case matching a constant operand?
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == TheOnlyDest)
- TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
- else
- Succ->removePredecessor(BB);
- }
- // Delete the old switch.
- Value *Cond = SI->getCondition();
- SI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- if (SI->getNumCases() == 1) {
- // Otherwise, we can fold this switch into a conditional branch
- // instruction if it has only one non-default destination.
- SwitchInst::CaseIt FirstCase = SI->case_begin();
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- FirstCase.getCaseValue(), "cond");
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
- if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef =
- mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
- assert(SICase && SIDef);
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(SICase->getValue().getZExtValue(),
- SIDef->getValue().getZExtValue()));
- }
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
- }
- return false;
- }
- if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
- // indirectbr blockaddress(@F, @BB) -> br label @BB
- if (BlockAddress *BA =
- dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
- BasicBlock *TheOnlyDest = BA->getBasicBlock();
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- if (IBI->getDestination(i) == TheOnlyDest)
- TheOnlyDest = nullptr;
- else
- IBI->getDestination(i)->removePredecessor(IBI->getParent());
- }
- Value *Address = IBI->getAddress();
- IBI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
- // If we didn't find our destination in the IBI successor list, then we
- // have undefined behavior. Replace the unconditional branch with an
- // 'unreachable' instruction.
- if (TheOnlyDest) {
- BB->getTerminator()->eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- }
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Local dead code elimination.
- //
- /// isInstructionTriviallyDead - Return true if the result produced by the
- /// instruction is not used, and the instruction has no side effects.
- ///
- bool llvm::isInstructionTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
- // We don't want the landingpad instruction removed by anything this general.
- if (isa<LandingPadInst>(I))
- return false;
- // We don't want debug info removed by anything this general, unless
- // debug info is empty.
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
- if (DDI->getAddress())
- return false;
- return true;
- }
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
- if (DVI->getValue())
- return false;
- return true;
- }
- if (!I->mayHaveSideEffects()) return true;
- // Special case intrinsics that "may have side effects" but can be deleted
- // when dead.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Safe to delete llvm.stacksave if dead.
- if (II->getIntrinsicID() == Intrinsic::stacksave)
- return true;
- // Lifetime intrinsics are dead when their right-hand is undef.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end)
- return isa<UndefValue>(II->getArgOperand(1));
- // Assumptions are dead if their condition is trivially true.
- if (II->getIntrinsicID() == Intrinsic::assume) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- return !Cond->isZero();
- return false;
- }
- }
- if (isAllocLikeFn(I, TLI)) return true;
- if (CallInst *CI = isFreeCall(I, TLI))
- if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
- return C->isNullValue() || isa<UndefValue>(C);
- return false;
- }
- /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
- /// trivially dead instruction, delete it. If that makes any of its operands
- /// trivially dead, delete them too, recursively. Return true if any
- /// instructions were deleted.
- bool
- llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
- const TargetLibraryInfo *TLI) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
- return false;
- SmallVector<Instruction*, 16> DeadInsts;
- DeadInsts.push_back(I);
- do {
- I = DeadInsts.pop_back_val();
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty()) continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- DeadInsts.push_back(OpI);
- }
- I->eraseFromParent();
- } while (!DeadInsts.empty());
- return true;
- }
- /// areAllUsesEqual - Check whether the uses of a value are all the same.
- /// This is similar to Instruction::hasOneUse() except this will also return
- /// true when there are no uses or multiple uses that all refer to the same
- /// value.
- static bool areAllUsesEqual(Instruction *I) {
- Value::user_iterator UI = I->user_begin();
- Value::user_iterator UE = I->user_end();
- if (UI == UE)
- return true;
- User *TheUse = *UI;
- for (++UI; UI != UE; ++UI) {
- if (*UI != TheUse)
- return false;
- }
- return true;
- }
- /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
- /// dead PHI node, due to being a def-use chain of single-use nodes that
- /// either forms a cycle or is terminated by a trivially dead instruction,
- /// delete it. If that makes any of its operands trivially dead, delete them
- /// too, recursively. Return true if a change was made.
- bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
- const TargetLibraryInfo *TLI) {
- SmallPtrSet<Instruction*, 4> Visited;
- for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
- I = cast<Instruction>(*I->user_begin())) {
- if (I->use_empty())
- return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- // If we find an instruction more than once, we're on a cycle that
- // won't prove fruitful.
- if (!Visited.insert(I).second) {
- // Break the cycle and delete the instruction and its operands.
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- return true;
- }
- }
- return false;
- }
- /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
- /// simplify any instructions in it and recursively delete dead instructions.
- ///
- /// This returns true if it changed the code, note that it can delete
- /// instructions in other blocks as well in this block.
- bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- #ifndef NDEBUG
- // In debug builds, ensure that the terminator of the block is never replaced
- // or deleted by these simplifications. The idea of simplification is that it
- // cannot introduce new instructions, and there is no way to replace the
- // terminator of a block without introducing a new instruction.
- AssertingVH<Instruction> TerminatorVH(--BB->end());
- #endif
- for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
- assert(!BI->isTerminator());
- Instruction *Inst = BI++;
- WeakVH BIHandle(BI);
- if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
- MadeChange = true;
- if (BIHandle != BI)
- BI = BB->begin();
- continue;
- }
- MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
- if (BIHandle != BI)
- BI = BB->begin();
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Control Flow Graph Restructuring.
- //
- /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
- /// method is called when we're about to delete Pred as a predecessor of BB. If
- /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
- ///
- /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
- /// nodes that collapse into identity values. For example, if we have:
- /// x = phi(1, 0, 0, 0)
- /// y = and x, z
- ///
- /// .. and delete the predecessor corresponding to the '1', this will attempt to
- /// recursively fold the and to 0.
- void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- DataLayout *TD) {
- // This only adjusts blocks with PHI nodes.
- if (!isa<PHINode>(BB->begin()))
- return;
- // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
- // them down. This will leave us with single entry phi nodes and other phis
- // that can be removed.
- BB->removePredecessor(Pred, true);
- WeakVH PhiIt = &BB->front();
- while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
- PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
- Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN, TD))
- continue;
- // If recursive simplification ended up deleting the next PHI node we would
- // iterate to, then our iterator is invalid, restart scanning from the top
- // of the block.
- if (PhiIt != OldPhiIt) PhiIt = &BB->front();
- }
- }
- /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
- /// predecessor is known to have one successor (DestBB!). Eliminate the edge
- /// between them, moving the instructions in the predecessor into DestBB and
- /// deleting the predecessor block.
- ///
- void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
- // If BB has single-entry PHI nodes, fold them.
- while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- Value *NewVal = PN->getIncomingValue(0);
- // Replace self referencing PHI with undef, it must be dead.
- if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NewVal);
- PN->eraseFromParent();
- }
- BasicBlock *PredBB = DestBB->getSinglePredecessor();
- assert(PredBB && "Block doesn't have a single predecessor!");
- // Zap anything that took the address of DestBB. Not doing this will give the
- // address an invalid value.
- if (DestBB->hasAddressTaken()) {
- BlockAddress *BA = BlockAddress::get(DestBB);
- Constant *Replacement =
- ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
- BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
- BA->getType()));
- BA->destroyConstant();
- }
- // Anything that branched to PredBB now branches to DestBB.
- PredBB->replaceAllUsesWith(DestBB);
- // Splice all the instructions from PredBB to DestBB.
- PredBB->getTerminator()->eraseFromParent();
- DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
- // If the PredBB is the entry block of the function, move DestBB up to
- // become the entry block after we erase PredBB.
- if (PredBB == &DestBB->getParent()->getEntryBlock())
- DestBB->moveAfter(PredBB);
- if (P) {
- if (DominatorTreeWrapperPass *DTWP =
- P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
- DominatorTree &DT = DTWP->getDomTree();
- BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock();
- DT.changeImmediateDominator(DestBB, PredBBIDom);
- DT.eraseNode(PredBB);
- }
- }
- // Nuke BB.
- PredBB->eraseFromParent();
- }
- /// CanMergeValues - Return true if we can choose one of these values to use
- /// in place of the other. Note that we will always choose the non-undef
- /// value to keep.
- static bool CanMergeValues(Value *First, Value *Second) {
- return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
- }
- /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
- /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
- ///
- /// Assumption: Succ is the single successor for BB.
- ///
- static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
- assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
- << Succ->getName() << "\n");
- // Shortcut, if there is only a single predecessor it must be BB and merging
- // is always safe
- if (Succ->getSinglePredecessor()) return true;
- // Make a list of the predecessors of BB
- SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
- // Look at all the phi nodes in Succ, to see if they present a conflict when
- // merging these blocks
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // If the incoming value from BB is again a PHINode in
- // BB which has the same incoming value for *PI as PN does, we can
- // merge the phi nodes and then the blocks can still be merged
- PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
- if (BBPN && BBPN->getParent() == BB) {
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
- PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
- << BBPN->getName() << " with regard to common predecessor "
- << IBB->getName() << "\n");
- return false;
- }
- }
- } else {
- Value* Val = PN->getIncomingValueForBlock(BB);
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- // See if the incoming value for the common predecessor is equal to the
- // one for BB, in which case this phi node will not prevent the merging
- // of the block.
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(Val, PN->getIncomingValue(PI))) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with regard to common "
- << "predecessor " << IBB->getName() << "\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- typedef SmallVector<BasicBlock *, 16> PredBlockVector;
- typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
- /// \brief Determines the value to use as the phi node input for a block.
- ///
- /// Select between \p OldVal any value that we know flows from \p BB
- /// to a particular phi on the basis of which one (if either) is not
- /// undef. Update IncomingValues based on the selected value.
- ///
- /// \param OldVal The value we are considering selecting.
- /// \param BB The block that the value flows in from.
- /// \param IncomingValues A map from block-to-value for other phi inputs
- /// that we have examined.
- ///
- /// \returns the selected value.
- static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
- IncomingValueMap &IncomingValues) {
- if (!isa<UndefValue>(OldVal)) {
- assert((!IncomingValues.count(BB) ||
- IncomingValues.find(BB)->second == OldVal) &&
- "Expected OldVal to match incoming value from BB!");
- IncomingValues.insert(std::make_pair(BB, OldVal));
- return OldVal;
- }
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It != IncomingValues.end()) return It->second;
- return OldVal;
- }
- /// \brief Create a map from block to value for the operands of a
- /// given phi.
- ///
- /// Create a map from block to value for each non-undef value flowing
- /// into \p PN.
- ///
- /// \param PN The phi we are collecting the map for.
- /// \param IncomingValues [out] The map from block to value for this phi.
- static void gatherIncomingValuesToPhi(PHINode *PN,
- IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V))
- IncomingValues.insert(std::make_pair(BB, V));
- }
- }
- /// \brief Replace the incoming undef values to a phi with the values
- /// from a block-to-value map.
- ///
- /// \param PN The phi we are replacing the undefs in.
- /// \param IncomingValues A map from block to value.
- static void replaceUndefValuesInPhi(PHINode *PN,
- const IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V)) continue;
- BasicBlock *BB = PN->getIncomingBlock(i);
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It == IncomingValues.end()) continue;
- PN->setIncomingValue(i, It->second);
- }
- }
- /// \brief Replace a value flowing from a block to a phi with
- /// potentially multiple instances of that value flowing from the
- /// block's predecessors to the phi.
- ///
- /// \param BB The block with the value flowing into the phi.
- /// \param BBPreds The predecessors of BB.
- /// \param PN The phi that we are updating.
- static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
- const PredBlockVector &BBPreds,
- PHINode *PN) {
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
- IncomingValueMap IncomingValues;
- // We are merging two blocks - BB, and the block containing PN - and
- // as a result we need to redirect edges from the predecessors of BB
- // to go to the block containing PN, and update PN
- // accordingly. Since we allow merging blocks in the case where the
- // predecessor and successor blocks both share some predecessors,
- // and where some of those common predecessors might have undef
- // values flowing into PN, we want to rewrite those values to be
- // consistent with the non-undef values.
- gatherIncomingValuesToPhi(PN, IncomingValues);
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
- Value *PredVal = OldValPN->getIncomingValue(i);
- Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- } else {
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
- // Update existing incoming values in PN for this
- // predecessor of BB.
- BasicBlock *PredBB = BBPreds[i];
- Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- }
- replaceUndefValuesInPhi(PN, IncomingValues);
- }
- /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
- /// unconditional branch, and contains no instructions other than PHI nodes,
- /// potential side-effect free intrinsics and the branch. If possible,
- /// eliminate BB by rewriting all the predecessors to branch to the successor
- /// block and return true. If we can't transform, return false.
- bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
- assert(BB != &BB->getParent()->getEntryBlock() &&
- "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
- // We can't eliminate infinite loops.
- BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
- if (BB == Succ) return false;
- // Check to see if merging these blocks would cause conflicts for any of the
- // phi nodes in BB or Succ. If not, we can safely merge.
- if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
- // Check for cases where Succ has multiple predecessors and a PHI node in BB
- // has uses which will not disappear when the PHI nodes are merged. It is
- // possible to handle such cases, but difficult: it requires checking whether
- // BB dominates Succ, which is non-trivial to calculate in the case where
- // Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't introduce any
- // conflicts; this isn't too difficult, but the previous code for doing this
- // was incorrect.
- //
- // Note that if this check finds a live use, BB dominates Succ, so BB is
- // something like a loop pre-header (or rarely, a part of an irreducible CFG);
- // folding the branch isn't profitable in that case anyway.
- if (!Succ->getSinglePredecessor()) {
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) {
- for (Use &U : BBI->uses()) {
- if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
- if (PN->getIncomingBlock(U) != BB)
- return false;
- } else {
- return false;
- }
- }
- ++BBI;
- }
- }
- DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
- if (isa<PHINode>(Succ->begin())) {
- // If there is more than one pred of succ, and there are PHI nodes in
- // the successor, then we need to add incoming edges for the PHI nodes
- //
- const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
- // Loop over all of the PHI nodes in the successor of BB.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
- }
- }
- if (Succ->getSinglePredecessor()) {
- // BB is the only predecessor of Succ, so Succ will end up with exactly
- // the same predecessors BB had.
- // Copy over any phi, debug or lifetime instruction.
- BB->getTerminator()->eraseFromParent();
- Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
- } else {
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
- assert(PN->use_empty() && "There shouldn't be any uses here!");
- PN->eraseFromParent();
- }
- }
- // Everything that jumped to BB now goes to Succ.
- BB->replaceAllUsesWith(Succ);
- if (!Succ->hasName()) Succ->takeName(BB);
- BB->eraseFromParent(); // Delete the old basic block.
- return true;
- }
- /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
- /// nodes in this block. This doesn't try to be clever about PHI nodes
- /// which differ only in the order of the incoming values, but instcombine
- /// orders them so it usually won't matter.
- ///
- bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
- bool Changed = false;
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- // Map from PHI hash values to PHI nodes. If multiple PHIs have
- // the same hash value, the element is the first PHI in the
- // linked list in CollisionMap.
- DenseMap<uintptr_t, PHINode *> HashMap;
- // Maintain linked lists of PHI nodes with common hash values.
- DenseMap<PHINode *, PHINode *> CollisionMap;
- // Examine each PHI.
- for (BasicBlock::iterator I = BB->begin();
- PHINode *PN = dyn_cast<PHINode>(I++); ) {
- // Compute a hash value on the operands. Instcombine will likely have sorted
- // them, which helps expose duplicates, but we have to check all the
- // operands to be safe in case instcombine hasn't run.
- uintptr_t Hash = 0;
- // This hash algorithm is quite weak as hash functions go, but it seems
- // to do a good enough job for this particular purpose, and is very quick.
- for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
- Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
- Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
- }
- for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
- I != E; ++I) {
- Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
- Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
- }
- // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
- Hash >>= 1;
- // If we've never seen this hash value before, it's a unique PHI.
- std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
- HashMap.insert(std::make_pair(Hash, PN));
- if (Pair.second) continue;
- // Otherwise it's either a duplicate or a hash collision.
- for (PHINode *OtherPN = Pair.first->second; ; ) {
- if (OtherPN->isIdenticalTo(PN)) {
- // A duplicate. Replace this PHI with its duplicate.
- PN->replaceAllUsesWith(OtherPN);
- PN->eraseFromParent();
- Changed = true;
- break;
- }
- // A non-duplicate hash collision.
- DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
- if (I == CollisionMap.end()) {
- // Set this PHI to be the head of the linked list of colliding PHIs.
- PHINode *Old = Pair.first->second;
- Pair.first->second = PN;
- CollisionMap[PN] = Old;
- break;
- }
- // Proceed to the next PHI in the list.
- OtherPN = I->second;
- }
- }
- return Changed;
- }
- /// enforceKnownAlignment - If the specified pointer points to an object that
- /// we control, modify the object's alignment to PrefAlign. This isn't
- /// often possible though. If alignment is important, a more reliable approach
- /// is to simply align all global variables and allocation instructions to
- /// their preferred alignment from the beginning.
- ///
- static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign, const DataLayout *TD) {
- V = V->stripPointerCasts();
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // If the preferred alignment is greater than the natural stack alignment
- // then don't round up. This avoids dynamic stack realignment.
- if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
- return Align;
- // If there is a requested alignment and if this is an alloca, round up.
- if (AI->getAlignment() >= PrefAlign)
- return AI->getAlignment();
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global.
- if (GO->isDeclaration())
- return Align;
- // If the memory we set aside for the global may not be the memory used by
- // the final program then it is impossible for us to reliably enforce the
- // preferred alignment.
- if (GO->isWeakForLinker())
- return Align;
- if (GO->getAlignment() >= PrefAlign)
- return GO->getAlignment();
- // We can only increase the alignment of the global if it has no alignment
- // specified or if it is not assigned a section. If it is assigned a
- // section, the global could be densely packed with other objects in the
- // section, increasing the alignment could cause padding issues.
- if (!GO->hasSection() || GO->getAlignment() == 0)
- GO->setAlignment(PrefAlign);
- return GO->getAlignment();
- }
- return Align;
- }
- /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
- /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
- /// and it is more than the alignment of the ultimate object, see if we can
- /// increase the alignment of the ultimate object, making this check succeed.
- unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *DL,
- AssumptionTracker *AT,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- assert(V->getType()->isPointerTy() &&
- "getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, 0, AT, CxtI, DT);
- unsigned TrailZ = KnownZero.countTrailingOnes();
- // Avoid trouble with ridiculously large TrailZ values, such as
- // those computed from a null pointer.
- TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
- // LLVM doesn't support alignments larger than this currently.
- Align = std::min(Align, +Value::MaximumAlignment);
- if (PrefAlign > Align)
- Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
- // We don't need to make any adjustment.
- return Align;
- }
- ///===---------------------------------------------------------------------===//
- /// Dbg Intrinsic utilities
- ///
- /// See if there is a dbg.value intrinsic for DIVar before I.
- static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
- // Since we can't guarantee that the original dbg.declare instrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- llvm::BasicBlock::InstListType::iterator PrevI(I);
- if (PrevI != I->getParent()->getInstList().begin()) {
- --PrevI;
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
- if (DVI->getValue() == I->getOperand(0) &&
- DVI->getOffset() == 0 &&
- DVI->getVariable() == DIVar)
- return true;
- }
- return false;
- }
- /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- StoreInst *SI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- if (LdStHasDebugValue(DIVar, SI))
- return true;
- Instruction *DbgVal = nullptr;
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- Argument *ExtendedArg = nullptr;
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
- if (ExtendedArg)
- DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI);
- else
- DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar,
- DIExpr, SI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- return true;
- }
- /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
- /// that has an associated llvm.dbg.decl intrinsic.
- bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
- LoadInst *LI, DIBuilder &Builder) {
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- if (LdStHasDebugValue(DIVar, LI))
- return true;
- Instruction *DbgVal =
- Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- return true;
- }
- /// Determine whether this alloca is either a VLA or an array.
- static bool isArray(AllocaInst *AI) {
- return AI->isArrayAllocation() ||
- AI->getType()->getElementType()->isArrayTy();
- }
- /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
- /// of llvm.dbg.value intrinsics.
- bool llvm::LowerDbgDeclare(Function &F) {
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- SmallVector<DbgDeclareInst *, 4> Dbgs;
- for (auto &FI : F)
- for (BasicBlock::iterator BI : FI)
- if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
- Dbgs.push_back(DDI);
- if (Dbgs.empty())
- return false;
- for (auto &I : Dbgs) {
- DbgDeclareInst *DDI = I;
- AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
- // If this is an alloca for a scalar variable, insert a dbg.value
- // at each load and store to the alloca and erase the dbg.declare.
- // The dbg.values allow tracking a variable even if it is not
- // stored on the stack, while the dbg.declare can only describe
- // the stack slot (and at a lexical-scope granularity). Later
- // passes will attempt to elide the stack slot.
- if (AI && !isArray(AI)) {
- for (User *U : AI->users())
- if (StoreInst *SI = dyn_cast<StoreInst>(U))
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- else if (LoadInst *LI = dyn_cast<LoadInst>(U))
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // This is a call by-value or some other instruction that
- // takes a pointer to the variable. Insert a *value*
- // intrinsic that describes the alloca.
- auto DbgVal = DIB.insertDbgValueIntrinsic(
- AI, 0, DIVariable(DDI->getVariable()),
- DIExpression(DDI->getExpression()), CI);
- DbgVal->setDebugLoc(DDI->getDebugLoc());
- }
- DDI->eraseFromParent();
- }
- }
- return true;
- }
- /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
- /// alloca 'V', if any.
- DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
- if (auto *L = LocalAsMetadata::getIfExists(V))
- if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
- for (User *U : MDV->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- return DDI;
- return nullptr;
- }
- bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder) {
- DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
- if (!DDI)
- return false;
- DIVariable DIVar(DDI->getVariable());
- DIExpression DIExpr(DDI->getExpression());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!DIVar)
- return false;
- // Create a copy of the original DIDescriptor for user variable, prepending
- // "deref" operation to a list of address elements, as new llvm.dbg.declare
- // will take a value storing address of the memory for variable, not
- // alloca itself.
- SmallVector<int64_t, 4> NewDIExpr;
- if (DIExpr) {
- for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i) {
- NewDIExpr.push_back(DIExpr.getElement(i));
- }
- }
- NewDIExpr.insert(NewDIExpr.begin(), dwarf::DW_OP_deref);
- // Insert llvm.dbg.declare in the same basic block as the original alloca,
- // and remove old llvm.dbg.declare.
- BasicBlock *BB = AI->getParent();
- Builder.insertDeclare(NewAllocaAddress, DIVar,
- Builder.createExpression(NewDIExpr), BB);
- DDI->eraseFromParent();
- return true;
- }
- /// changeToUnreachable - Insert an unreachable instruction before the specified
- /// instruction, making it and the rest of the code in the block dead.
- static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
- BasicBlock *BB = I->getParent();
- // Loop over all of the successors, removing BB's entry from any PHI
- // nodes.
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- (*SI)->removePredecessor(BB);
- // Insert a call to llvm.trap right before this. This turns the undefined
- // behavior into a hard fail instead of falling through into random code.
- if (UseLLVMTrap) {
- Function *TrapFn =
- Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
- CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
- CallTrap->setDebugLoc(I->getDebugLoc());
- }
- new UnreachableInst(I->getContext(), I);
- // All instructions after this are dead.
- BasicBlock::iterator BBI = I, BBE = BB->end();
- while (BBI != BBE) {
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
- BB->getInstList().erase(BBI++);
- }
- }
- /// changeToCall - Convert the specified invoke into a normal call.
- static void changeToCall(InvokeInst *II) {
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
- CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
- NewCall->takeName(II);
- NewCall->setCallingConv(II->getCallingConv());
- NewCall->setAttributes(II->getAttributes());
- NewCall->setDebugLoc(II->getDebugLoc());
- II->replaceAllUsesWith(NewCall);
- // Follow the call by a branch to the normal destination.
- BranchInst::Create(II->getNormalDest(), II);
- // Update PHI nodes in the unwind destination
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- }
- static bool markAliveBlocks(BasicBlock *BB,
- SmallPtrSetImpl<BasicBlock*> &Reachable) {
- SmallVector<BasicBlock*, 128> Worklist;
- Worklist.push_back(BB);
- Reachable.insert(BB);
- bool Changed = false;
- do {
- BB = Worklist.pop_back_val();
- // Do a quick scan of the basic block, turning any obviously unreachable
- // instructions into LLVM unreachable insts. The instruction combining pass
- // canonicalizes unreachable insts into stores to null or undef.
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
- // Assumptions that are known to be false are equivalent to unreachable.
- // Also, if the condition is undefined, then we make the choice most
- // beneficial to the optimizer, and choose that to also be unreachable.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
- if (II->getIntrinsicID() == Intrinsic::assume) {
- bool MakeUnreachable = false;
- if (isa<UndefValue>(II->getArgOperand(0)))
- MakeUnreachable = true;
- else if (ConstantInt *Cond =
- dyn_cast<ConstantInt>(II->getArgOperand(0)))
- MakeUnreachable = Cond->isZero();
- if (MakeUnreachable) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(BBI, false);
- Changed = true;
- break;
- }
- }
- if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
- if (CI->doesNotReturn()) {
- // If we found a call to a no-return function, insert an unreachable
- // instruction after it. Make sure there isn't *already* one there
- // though.
- ++BBI;
- if (!isa<UnreachableInst>(BBI)) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(BBI, false);
- Changed = true;
- }
- break;
- }
- }
- // Store to undef and store to null are undefined and used to signal that
- // they should be changed to unreachable by passes that can't modify the
- // CFG.
- if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
- // Don't touch volatile stores.
- if (SI->isVolatile()) continue;
- Value *Ptr = SI->getOperand(1);
- if (isa<UndefValue>(Ptr) ||
- (isa<ConstantPointerNull>(Ptr) &&
- SI->getPointerAddressSpace() == 0)) {
- changeToUnreachable(SI, true);
- Changed = true;
- break;
- }
- }
- }
- // Turn invokes that call 'nounwind' functions into ordinary calls.
- if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
- Value *Callee = II->getCalledValue();
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- changeToUnreachable(II, true);
- Changed = true;
- } else if (II->doesNotThrow()) {
- if (II->use_empty() && II->onlyReadsMemory()) {
- // jump to the normal destination branch.
- BranchInst::Create(II->getNormalDest(), II);
- II->getUnwindDest()->removePredecessor(II->getParent());
- II->eraseFromParent();
- } else
- changeToCall(II);
- Changed = true;
- }
- }
- Changed |= ConstantFoldTerminator(BB, true);
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- if (Reachable.insert(*SI).second)
- Worklist.push_back(*SI);
- } while (!Worklist.empty());
- return Changed;
- }
- /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
- /// if they are in a dead cycle. Return true if a change was made, false
- /// otherwise.
- bool llvm::removeUnreachableBlocks(Function &F) {
- SmallPtrSet<BasicBlock*, 128> Reachable;
- bool Changed = markAliveBlocks(F.begin(), Reachable);
- // If there are unreachable blocks in the CFG...
- if (Reachable.size() == F.size())
- return Changed;
- assert(Reachable.size() < F.size());
- NumRemoved += F.size()-Reachable.size();
- // Loop over all of the basic blocks that are not reachable, dropping all of
- // their internal references...
- for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
- if (Reachable.count(BB))
- continue;
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
- if (Reachable.count(*SI))
- (*SI)->removePredecessor(BB);
- BB->dropAllReferences();
- }
- for (Function::iterator I = ++F.begin(); I != F.end();)
- if (!Reachable.count(I))
- I = F.getBasicBlockList().erase(I);
- else
- ++I;
- return true;
- }
- void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- K->dropUnknownMetadata(KnownIDs);
- K->getAllMetadataOtherThanDebugLoc(Metadata);
- for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
- unsigned Kind = Metadata[i].first;
- MDNode *JMD = J->getMetadata(Kind);
- MDNode *KMD = Metadata[i].second;
- switch (Kind) {
- default:
- K->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_dbg:
- llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
- case LLVMContext::MD_tbaa:
- K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
- break;
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
- break;
- case LLVMContext::MD_range:
- K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
- break;
- case LLVMContext::MD_fpmath:
- K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
- break;
- case LLVMContext::MD_invariant_load:
- // Only set the !invariant.load if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_nonnull:
- // Only set the !nonnull if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- }
- }
- }
|