BitcodeWriter.cpp 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/InlineAsm.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/Module.h"
  23. #include "llvm/IR/Operator.h"
  24. #include "llvm/IR/UseListOrder.h"
  25. #include "llvm/IR/ValueSymbolTable.h"
  26. #include "llvm/Support/CommandLine.h"
  27. #include "llvm/Support/ErrorHandling.h"
  28. #include "llvm/Support/MathExtras.h"
  29. #include "llvm/Support/Program.h"
  30. #include "llvm/Support/raw_ostream.h"
  31. #include <cctype>
  32. #include <map>
  33. using namespace llvm;
  34. /// These are manifest constants used by the bitcode writer. They do not need to
  35. /// be kept in sync with the reader, but need to be consistent within this file.
  36. enum {
  37. // VALUE_SYMTAB_BLOCK abbrev id's.
  38. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  39. VST_ENTRY_7_ABBREV,
  40. VST_ENTRY_6_ABBREV,
  41. VST_BBENTRY_6_ABBREV,
  42. // CONSTANTS_BLOCK abbrev id's.
  43. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  44. CONSTANTS_INTEGER_ABBREV,
  45. CONSTANTS_CE_CAST_Abbrev,
  46. CONSTANTS_NULL_Abbrev,
  47. // FUNCTION_BLOCK abbrev id's.
  48. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  49. FUNCTION_INST_BINOP_ABBREV,
  50. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  51. FUNCTION_INST_CAST_ABBREV,
  52. FUNCTION_INST_RET_VOID_ABBREV,
  53. FUNCTION_INST_RET_VAL_ABBREV,
  54. FUNCTION_INST_UNREACHABLE_ABBREV
  55. };
  56. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  57. switch (Opcode) {
  58. default: llvm_unreachable("Unknown cast instruction!");
  59. case Instruction::Trunc : return bitc::CAST_TRUNC;
  60. case Instruction::ZExt : return bitc::CAST_ZEXT;
  61. case Instruction::SExt : return bitc::CAST_SEXT;
  62. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  63. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  64. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  65. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  66. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  67. case Instruction::FPExt : return bitc::CAST_FPEXT;
  68. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  69. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  70. case Instruction::BitCast : return bitc::CAST_BITCAST;
  71. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  72. }
  73. }
  74. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  75. switch (Opcode) {
  76. default: llvm_unreachable("Unknown binary instruction!");
  77. case Instruction::Add:
  78. case Instruction::FAdd: return bitc::BINOP_ADD;
  79. case Instruction::Sub:
  80. case Instruction::FSub: return bitc::BINOP_SUB;
  81. case Instruction::Mul:
  82. case Instruction::FMul: return bitc::BINOP_MUL;
  83. case Instruction::UDiv: return bitc::BINOP_UDIV;
  84. case Instruction::FDiv:
  85. case Instruction::SDiv: return bitc::BINOP_SDIV;
  86. case Instruction::URem: return bitc::BINOP_UREM;
  87. case Instruction::FRem:
  88. case Instruction::SRem: return bitc::BINOP_SREM;
  89. case Instruction::Shl: return bitc::BINOP_SHL;
  90. case Instruction::LShr: return bitc::BINOP_LSHR;
  91. case Instruction::AShr: return bitc::BINOP_ASHR;
  92. case Instruction::And: return bitc::BINOP_AND;
  93. case Instruction::Or: return bitc::BINOP_OR;
  94. case Instruction::Xor: return bitc::BINOP_XOR;
  95. }
  96. }
  97. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  98. switch (Op) {
  99. default: llvm_unreachable("Unknown RMW operation!");
  100. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  101. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  102. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  103. case AtomicRMWInst::And: return bitc::RMW_AND;
  104. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  105. case AtomicRMWInst::Or: return bitc::RMW_OR;
  106. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  107. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  108. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  109. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  110. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  111. }
  112. }
  113. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  114. switch (Ordering) {
  115. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  116. case Unordered: return bitc::ORDERING_UNORDERED;
  117. case Monotonic: return bitc::ORDERING_MONOTONIC;
  118. case Acquire: return bitc::ORDERING_ACQUIRE;
  119. case Release: return bitc::ORDERING_RELEASE;
  120. case AcquireRelease: return bitc::ORDERING_ACQREL;
  121. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  122. }
  123. llvm_unreachable("Invalid ordering");
  124. }
  125. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  126. switch (SynchScope) {
  127. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  128. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  129. }
  130. llvm_unreachable("Invalid synch scope");
  131. }
  132. static void WriteStringRecord(unsigned Code, StringRef Str,
  133. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  134. SmallVector<unsigned, 64> Vals;
  135. // Code: [strchar x N]
  136. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  137. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  138. AbbrevToUse = 0;
  139. Vals.push_back(Str[i]);
  140. }
  141. // Emit the finished record.
  142. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  143. }
  144. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  145. switch (Kind) {
  146. case Attribute::Alignment:
  147. return bitc::ATTR_KIND_ALIGNMENT;
  148. case Attribute::AlwaysInline:
  149. return bitc::ATTR_KIND_ALWAYS_INLINE;
  150. case Attribute::Builtin:
  151. return bitc::ATTR_KIND_BUILTIN;
  152. case Attribute::ByVal:
  153. return bitc::ATTR_KIND_BY_VAL;
  154. case Attribute::InAlloca:
  155. return bitc::ATTR_KIND_IN_ALLOCA;
  156. case Attribute::Cold:
  157. return bitc::ATTR_KIND_COLD;
  158. case Attribute::InlineHint:
  159. return bitc::ATTR_KIND_INLINE_HINT;
  160. case Attribute::InReg:
  161. return bitc::ATTR_KIND_IN_REG;
  162. case Attribute::JumpTable:
  163. return bitc::ATTR_KIND_JUMP_TABLE;
  164. case Attribute::MinSize:
  165. return bitc::ATTR_KIND_MIN_SIZE;
  166. case Attribute::Naked:
  167. return bitc::ATTR_KIND_NAKED;
  168. case Attribute::Nest:
  169. return bitc::ATTR_KIND_NEST;
  170. case Attribute::NoAlias:
  171. return bitc::ATTR_KIND_NO_ALIAS;
  172. case Attribute::NoBuiltin:
  173. return bitc::ATTR_KIND_NO_BUILTIN;
  174. case Attribute::NoCapture:
  175. return bitc::ATTR_KIND_NO_CAPTURE;
  176. case Attribute::NoDuplicate:
  177. return bitc::ATTR_KIND_NO_DUPLICATE;
  178. case Attribute::NoImplicitFloat:
  179. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  180. case Attribute::NoInline:
  181. return bitc::ATTR_KIND_NO_INLINE;
  182. case Attribute::NonLazyBind:
  183. return bitc::ATTR_KIND_NON_LAZY_BIND;
  184. case Attribute::NonNull:
  185. return bitc::ATTR_KIND_NON_NULL;
  186. case Attribute::Dereferenceable:
  187. return bitc::ATTR_KIND_DEREFERENCEABLE;
  188. case Attribute::NoRedZone:
  189. return bitc::ATTR_KIND_NO_RED_ZONE;
  190. case Attribute::NoReturn:
  191. return bitc::ATTR_KIND_NO_RETURN;
  192. case Attribute::NoUnwind:
  193. return bitc::ATTR_KIND_NO_UNWIND;
  194. case Attribute::OptimizeForSize:
  195. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  196. case Attribute::OptimizeNone:
  197. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  198. case Attribute::ReadNone:
  199. return bitc::ATTR_KIND_READ_NONE;
  200. case Attribute::ReadOnly:
  201. return bitc::ATTR_KIND_READ_ONLY;
  202. case Attribute::Returned:
  203. return bitc::ATTR_KIND_RETURNED;
  204. case Attribute::ReturnsTwice:
  205. return bitc::ATTR_KIND_RETURNS_TWICE;
  206. case Attribute::SExt:
  207. return bitc::ATTR_KIND_S_EXT;
  208. case Attribute::StackAlignment:
  209. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  210. case Attribute::StackProtect:
  211. return bitc::ATTR_KIND_STACK_PROTECT;
  212. case Attribute::StackProtectReq:
  213. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  214. case Attribute::StackProtectStrong:
  215. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  216. case Attribute::StructRet:
  217. return bitc::ATTR_KIND_STRUCT_RET;
  218. case Attribute::SanitizeAddress:
  219. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  220. case Attribute::SanitizeThread:
  221. return bitc::ATTR_KIND_SANITIZE_THREAD;
  222. case Attribute::SanitizeMemory:
  223. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  224. case Attribute::UWTable:
  225. return bitc::ATTR_KIND_UW_TABLE;
  226. case Attribute::ZExt:
  227. return bitc::ATTR_KIND_Z_EXT;
  228. case Attribute::EndAttrKinds:
  229. llvm_unreachable("Can not encode end-attribute kinds marker.");
  230. case Attribute::None:
  231. llvm_unreachable("Can not encode none-attribute.");
  232. }
  233. llvm_unreachable("Trying to encode unknown attribute");
  234. }
  235. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  236. BitstreamWriter &Stream) {
  237. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  238. if (AttrGrps.empty()) return;
  239. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  240. SmallVector<uint64_t, 64> Record;
  241. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  242. AttributeSet AS = AttrGrps[i];
  243. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  244. AttributeSet A = AS.getSlotAttributes(i);
  245. Record.push_back(VE.getAttributeGroupID(A));
  246. Record.push_back(AS.getSlotIndex(i));
  247. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  248. I != E; ++I) {
  249. Attribute Attr = *I;
  250. if (Attr.isEnumAttribute()) {
  251. Record.push_back(0);
  252. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  253. } else if (Attr.isIntAttribute()) {
  254. Record.push_back(1);
  255. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  256. Record.push_back(Attr.getValueAsInt());
  257. } else {
  258. StringRef Kind = Attr.getKindAsString();
  259. StringRef Val = Attr.getValueAsString();
  260. Record.push_back(Val.empty() ? 3 : 4);
  261. Record.append(Kind.begin(), Kind.end());
  262. Record.push_back(0);
  263. if (!Val.empty()) {
  264. Record.append(Val.begin(), Val.end());
  265. Record.push_back(0);
  266. }
  267. }
  268. }
  269. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  270. Record.clear();
  271. }
  272. }
  273. Stream.ExitBlock();
  274. }
  275. static void WriteAttributeTable(const ValueEnumerator &VE,
  276. BitstreamWriter &Stream) {
  277. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  278. if (Attrs.empty()) return;
  279. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  280. SmallVector<uint64_t, 64> Record;
  281. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  282. const AttributeSet &A = Attrs[i];
  283. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  284. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  285. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  286. Record.clear();
  287. }
  288. Stream.ExitBlock();
  289. }
  290. /// WriteTypeTable - Write out the type table for a module.
  291. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  292. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  293. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  294. SmallVector<uint64_t, 64> TypeVals;
  295. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  296. // Abbrev for TYPE_CODE_POINTER.
  297. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  298. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  299. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  300. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  301. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  302. // Abbrev for TYPE_CODE_FUNCTION.
  303. Abbv = new BitCodeAbbrev();
  304. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  305. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  306. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  307. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  308. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  309. // Abbrev for TYPE_CODE_STRUCT_ANON.
  310. Abbv = new BitCodeAbbrev();
  311. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  312. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  313. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  314. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  315. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  316. // Abbrev for TYPE_CODE_STRUCT_NAME.
  317. Abbv = new BitCodeAbbrev();
  318. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  319. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  320. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  321. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  322. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  323. Abbv = new BitCodeAbbrev();
  324. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  325. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  326. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  327. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  328. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  329. // Abbrev for TYPE_CODE_ARRAY.
  330. Abbv = new BitCodeAbbrev();
  331. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  332. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  333. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  334. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  335. // Emit an entry count so the reader can reserve space.
  336. TypeVals.push_back(TypeList.size());
  337. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  338. TypeVals.clear();
  339. // Loop over all of the types, emitting each in turn.
  340. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  341. Type *T = TypeList[i];
  342. int AbbrevToUse = 0;
  343. unsigned Code = 0;
  344. switch (T->getTypeID()) {
  345. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  346. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  347. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  348. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  349. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  350. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  351. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  352. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  353. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  354. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  355. case Type::IntegerTyID:
  356. // INTEGER: [width]
  357. Code = bitc::TYPE_CODE_INTEGER;
  358. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  359. break;
  360. case Type::PointerTyID: {
  361. PointerType *PTy = cast<PointerType>(T);
  362. // POINTER: [pointee type, address space]
  363. Code = bitc::TYPE_CODE_POINTER;
  364. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  365. unsigned AddressSpace = PTy->getAddressSpace();
  366. TypeVals.push_back(AddressSpace);
  367. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  368. break;
  369. }
  370. case Type::FunctionTyID: {
  371. FunctionType *FT = cast<FunctionType>(T);
  372. // FUNCTION: [isvararg, retty, paramty x N]
  373. Code = bitc::TYPE_CODE_FUNCTION;
  374. TypeVals.push_back(FT->isVarArg());
  375. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  376. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  377. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  378. AbbrevToUse = FunctionAbbrev;
  379. break;
  380. }
  381. case Type::StructTyID: {
  382. StructType *ST = cast<StructType>(T);
  383. // STRUCT: [ispacked, eltty x N]
  384. TypeVals.push_back(ST->isPacked());
  385. // Output all of the element types.
  386. for (StructType::element_iterator I = ST->element_begin(),
  387. E = ST->element_end(); I != E; ++I)
  388. TypeVals.push_back(VE.getTypeID(*I));
  389. if (ST->isLiteral()) {
  390. Code = bitc::TYPE_CODE_STRUCT_ANON;
  391. AbbrevToUse = StructAnonAbbrev;
  392. } else {
  393. if (ST->isOpaque()) {
  394. Code = bitc::TYPE_CODE_OPAQUE;
  395. } else {
  396. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  397. AbbrevToUse = StructNamedAbbrev;
  398. }
  399. // Emit the name if it is present.
  400. if (!ST->getName().empty())
  401. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  402. StructNameAbbrev, Stream);
  403. }
  404. break;
  405. }
  406. case Type::ArrayTyID: {
  407. ArrayType *AT = cast<ArrayType>(T);
  408. // ARRAY: [numelts, eltty]
  409. Code = bitc::TYPE_CODE_ARRAY;
  410. TypeVals.push_back(AT->getNumElements());
  411. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  412. AbbrevToUse = ArrayAbbrev;
  413. break;
  414. }
  415. case Type::VectorTyID: {
  416. VectorType *VT = cast<VectorType>(T);
  417. // VECTOR [numelts, eltty]
  418. Code = bitc::TYPE_CODE_VECTOR;
  419. TypeVals.push_back(VT->getNumElements());
  420. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  421. break;
  422. }
  423. }
  424. // Emit the finished record.
  425. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  426. TypeVals.clear();
  427. }
  428. Stream.ExitBlock();
  429. }
  430. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  431. switch (GV.getLinkage()) {
  432. case GlobalValue::ExternalLinkage: return 0;
  433. case GlobalValue::WeakAnyLinkage: return 1;
  434. case GlobalValue::AppendingLinkage: return 2;
  435. case GlobalValue::InternalLinkage: return 3;
  436. case GlobalValue::LinkOnceAnyLinkage: return 4;
  437. case GlobalValue::ExternalWeakLinkage: return 7;
  438. case GlobalValue::CommonLinkage: return 8;
  439. case GlobalValue::PrivateLinkage: return 9;
  440. case GlobalValue::WeakODRLinkage: return 10;
  441. case GlobalValue::LinkOnceODRLinkage: return 11;
  442. case GlobalValue::AvailableExternallyLinkage: return 12;
  443. }
  444. llvm_unreachable("Invalid linkage");
  445. }
  446. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  447. switch (GV.getVisibility()) {
  448. case GlobalValue::DefaultVisibility: return 0;
  449. case GlobalValue::HiddenVisibility: return 1;
  450. case GlobalValue::ProtectedVisibility: return 2;
  451. }
  452. llvm_unreachable("Invalid visibility");
  453. }
  454. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  455. switch (GV.getDLLStorageClass()) {
  456. case GlobalValue::DefaultStorageClass: return 0;
  457. case GlobalValue::DLLImportStorageClass: return 1;
  458. case GlobalValue::DLLExportStorageClass: return 2;
  459. }
  460. llvm_unreachable("Invalid DLL storage class");
  461. }
  462. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  463. switch (GV.getThreadLocalMode()) {
  464. case GlobalVariable::NotThreadLocal: return 0;
  465. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  466. case GlobalVariable::LocalDynamicTLSModel: return 2;
  467. case GlobalVariable::InitialExecTLSModel: return 3;
  468. case GlobalVariable::LocalExecTLSModel: return 4;
  469. }
  470. llvm_unreachable("Invalid TLS model");
  471. }
  472. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  473. switch (C.getSelectionKind()) {
  474. case Comdat::Any:
  475. return bitc::COMDAT_SELECTION_KIND_ANY;
  476. case Comdat::ExactMatch:
  477. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  478. case Comdat::Largest:
  479. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  480. case Comdat::NoDuplicates:
  481. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  482. case Comdat::SameSize:
  483. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  484. }
  485. llvm_unreachable("Invalid selection kind");
  486. }
  487. static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  488. SmallVector<uint8_t, 64> Vals;
  489. for (const Comdat *C : VE.getComdats()) {
  490. // COMDAT: [selection_kind, name]
  491. Vals.push_back(getEncodedComdatSelectionKind(*C));
  492. Vals.push_back(C->getName().size());
  493. for (char Chr : C->getName())
  494. Vals.push_back((unsigned char)Chr);
  495. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  496. Vals.clear();
  497. }
  498. }
  499. // Emit top-level description of module, including target triple, inline asm,
  500. // descriptors for global variables, and function prototype info.
  501. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  502. BitstreamWriter &Stream) {
  503. // Emit various pieces of data attached to a module.
  504. if (!M->getTargetTriple().empty())
  505. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  506. 0/*TODO*/, Stream);
  507. const std::string &DL = M->getDataLayoutStr();
  508. if (!DL.empty())
  509. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  510. if (!M->getModuleInlineAsm().empty())
  511. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  512. 0/*TODO*/, Stream);
  513. // Emit information about sections and GC, computing how many there are. Also
  514. // compute the maximum alignment value.
  515. std::map<std::string, unsigned> SectionMap;
  516. std::map<std::string, unsigned> GCMap;
  517. unsigned MaxAlignment = 0;
  518. unsigned MaxGlobalType = 0;
  519. for (const GlobalValue &GV : M->globals()) {
  520. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  521. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
  522. if (GV.hasSection()) {
  523. // Give section names unique ID's.
  524. unsigned &Entry = SectionMap[GV.getSection()];
  525. if (!Entry) {
  526. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  527. 0/*TODO*/, Stream);
  528. Entry = SectionMap.size();
  529. }
  530. }
  531. }
  532. for (const Function &F : *M) {
  533. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  534. if (F.hasSection()) {
  535. // Give section names unique ID's.
  536. unsigned &Entry = SectionMap[F.getSection()];
  537. if (!Entry) {
  538. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  539. 0/*TODO*/, Stream);
  540. Entry = SectionMap.size();
  541. }
  542. }
  543. if (F.hasGC()) {
  544. // Same for GC names.
  545. unsigned &Entry = GCMap[F.getGC()];
  546. if (!Entry) {
  547. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
  548. 0/*TODO*/, Stream);
  549. Entry = GCMap.size();
  550. }
  551. }
  552. }
  553. // Emit abbrev for globals, now that we know # sections and max alignment.
  554. unsigned SimpleGVarAbbrev = 0;
  555. if (!M->global_empty()) {
  556. // Add an abbrev for common globals with no visibility or thread localness.
  557. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  558. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  559. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  560. Log2_32_Ceil(MaxGlobalType+1)));
  561. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  562. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  563. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
  564. if (MaxAlignment == 0) // Alignment.
  565. Abbv->Add(BitCodeAbbrevOp(0));
  566. else {
  567. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  568. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  569. Log2_32_Ceil(MaxEncAlignment+1)));
  570. }
  571. if (SectionMap.empty()) // Section.
  572. Abbv->Add(BitCodeAbbrevOp(0));
  573. else
  574. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  575. Log2_32_Ceil(SectionMap.size()+1)));
  576. // Don't bother emitting vis + thread local.
  577. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  578. }
  579. // Emit the global variable information.
  580. SmallVector<unsigned, 64> Vals;
  581. for (const GlobalVariable &GV : M->globals()) {
  582. unsigned AbbrevToUse = 0;
  583. // GLOBALVAR: [type, isconst, initid,
  584. // linkage, alignment, section, visibility, threadlocal,
  585. // unnamed_addr, externally_initialized, dllstorageclass]
  586. Vals.push_back(VE.getTypeID(GV.getType()));
  587. Vals.push_back(GV.isConstant());
  588. Vals.push_back(GV.isDeclaration() ? 0 :
  589. (VE.getValueID(GV.getInitializer()) + 1));
  590. Vals.push_back(getEncodedLinkage(GV));
  591. Vals.push_back(Log2_32(GV.getAlignment())+1);
  592. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  593. if (GV.isThreadLocal() ||
  594. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  595. GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
  596. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  597. GV.hasComdat()) {
  598. Vals.push_back(getEncodedVisibility(GV));
  599. Vals.push_back(getEncodedThreadLocalMode(GV));
  600. Vals.push_back(GV.hasUnnamedAddr());
  601. Vals.push_back(GV.isExternallyInitialized());
  602. Vals.push_back(getEncodedDLLStorageClass(GV));
  603. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  604. } else {
  605. AbbrevToUse = SimpleGVarAbbrev;
  606. }
  607. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  608. Vals.clear();
  609. }
  610. // Emit the function proto information.
  611. for (const Function &F : *M) {
  612. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  613. // section, visibility, gc, unnamed_addr, prologuedata,
  614. // dllstorageclass, comdat, prefixdata]
  615. Vals.push_back(VE.getTypeID(F.getType()));
  616. Vals.push_back(F.getCallingConv());
  617. Vals.push_back(F.isDeclaration());
  618. Vals.push_back(getEncodedLinkage(F));
  619. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  620. Vals.push_back(Log2_32(F.getAlignment())+1);
  621. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  622. Vals.push_back(getEncodedVisibility(F));
  623. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  624. Vals.push_back(F.hasUnnamedAddr());
  625. Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
  626. : 0);
  627. Vals.push_back(getEncodedDLLStorageClass(F));
  628. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  629. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  630. : 0);
  631. unsigned AbbrevToUse = 0;
  632. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  633. Vals.clear();
  634. }
  635. // Emit the alias information.
  636. for (const GlobalAlias &A : M->aliases()) {
  637. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  638. Vals.push_back(VE.getTypeID(A.getType()));
  639. Vals.push_back(VE.getValueID(A.getAliasee()));
  640. Vals.push_back(getEncodedLinkage(A));
  641. Vals.push_back(getEncodedVisibility(A));
  642. Vals.push_back(getEncodedDLLStorageClass(A));
  643. Vals.push_back(getEncodedThreadLocalMode(A));
  644. Vals.push_back(A.hasUnnamedAddr());
  645. unsigned AbbrevToUse = 0;
  646. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  647. Vals.clear();
  648. }
  649. }
  650. static uint64_t GetOptimizationFlags(const Value *V) {
  651. uint64_t Flags = 0;
  652. if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
  653. if (OBO->hasNoSignedWrap())
  654. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  655. if (OBO->hasNoUnsignedWrap())
  656. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  657. } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
  658. if (PEO->isExact())
  659. Flags |= 1 << bitc::PEO_EXACT;
  660. } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
  661. if (FPMO->hasUnsafeAlgebra())
  662. Flags |= FastMathFlags::UnsafeAlgebra;
  663. if (FPMO->hasNoNaNs())
  664. Flags |= FastMathFlags::NoNaNs;
  665. if (FPMO->hasNoInfs())
  666. Flags |= FastMathFlags::NoInfs;
  667. if (FPMO->hasNoSignedZeros())
  668. Flags |= FastMathFlags::NoSignedZeros;
  669. if (FPMO->hasAllowReciprocal())
  670. Flags |= FastMathFlags::AllowReciprocal;
  671. }
  672. return Flags;
  673. }
  674. static void WriteValueAsMetadataImpl(const ValueAsMetadata *MD,
  675. const ValueEnumerator &VE,
  676. BitstreamWriter &Stream,
  677. SmallVectorImpl<uint64_t> &Record,
  678. unsigned Code) {
  679. // Mimic an MDNode with a value as one operand.
  680. Value *V = MD->getValue();
  681. Record.push_back(VE.getTypeID(V->getType()));
  682. Record.push_back(VE.getValueID(V));
  683. Stream.EmitRecord(Code, Record, 0);
  684. Record.clear();
  685. }
  686. static void WriteLocalAsMetadata(const LocalAsMetadata *MD,
  687. const ValueEnumerator &VE,
  688. BitstreamWriter &Stream,
  689. SmallVectorImpl<uint64_t> &Record) {
  690. WriteValueAsMetadataImpl(MD, VE, Stream, Record, bitc::METADATA_FN_NODE);
  691. }
  692. static void WriteConstantAsMetadata(const ConstantAsMetadata *MD,
  693. const ValueEnumerator &VE,
  694. BitstreamWriter &Stream,
  695. SmallVectorImpl<uint64_t> &Record) {
  696. WriteValueAsMetadataImpl(MD, VE, Stream, Record, bitc::METADATA_NODE);
  697. }
  698. static void WriteMDNode(const MDNode *N,
  699. const ValueEnumerator &VE,
  700. BitstreamWriter &Stream,
  701. SmallVectorImpl<uint64_t> &Record) {
  702. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  703. Metadata *MD = N->getOperand(i);
  704. if (!MD) {
  705. Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
  706. Record.push_back(0);
  707. continue;
  708. }
  709. if (auto *V = dyn_cast<ConstantAsMetadata>(MD)) {
  710. Record.push_back(VE.getTypeID(V->getValue()->getType()));
  711. Record.push_back(VE.getValueID(V->getValue()));
  712. continue;
  713. }
  714. assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata");
  715. Record.push_back(VE.getTypeID(Type::getMetadataTy(N->getContext())));
  716. Record.push_back(VE.getMetadataID(MD));
  717. }
  718. Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
  719. Record.clear();
  720. }
  721. static void WriteModuleMetadata(const Module *M,
  722. const ValueEnumerator &VE,
  723. BitstreamWriter &Stream) {
  724. const auto &MDs = VE.getMDs();
  725. bool StartedMetadataBlock = false;
  726. unsigned MDSAbbrev = 0;
  727. SmallVector<uint64_t, 64> Record;
  728. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  729. if (const MDNode *N = dyn_cast<MDNode>(MDs[i])) {
  730. if (!StartedMetadataBlock) {
  731. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  732. StartedMetadataBlock = true;
  733. }
  734. WriteMDNode(N, VE, Stream, Record);
  735. } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MDs[i])) {
  736. if (!StartedMetadataBlock) {
  737. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  738. StartedMetadataBlock = true;
  739. }
  740. WriteConstantAsMetadata(MDC, VE, Stream, Record);
  741. } else if (const MDString *MDS = dyn_cast<MDString>(MDs[i])) {
  742. if (!StartedMetadataBlock) {
  743. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  744. // Abbrev for METADATA_STRING.
  745. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  746. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  747. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  748. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  749. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  750. StartedMetadataBlock = true;
  751. }
  752. // Code: [strchar x N]
  753. Record.append(MDS->begin(), MDS->end());
  754. // Emit the finished record.
  755. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  756. Record.clear();
  757. }
  758. }
  759. // Write named metadata.
  760. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
  761. E = M->named_metadata_end(); I != E; ++I) {
  762. const NamedMDNode *NMD = I;
  763. if (!StartedMetadataBlock) {
  764. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  765. StartedMetadataBlock = true;
  766. }
  767. // Write name.
  768. StringRef Str = NMD->getName();
  769. for (unsigned i = 0, e = Str.size(); i != e; ++i)
  770. Record.push_back(Str[i]);
  771. Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
  772. Record.clear();
  773. // Write named metadata operands.
  774. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
  775. Record.push_back(VE.getMetadataID(NMD->getOperand(i)));
  776. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  777. Record.clear();
  778. }
  779. if (StartedMetadataBlock)
  780. Stream.ExitBlock();
  781. }
  782. static void WriteFunctionLocalMetadata(const Function &F,
  783. const ValueEnumerator &VE,
  784. BitstreamWriter &Stream) {
  785. bool StartedMetadataBlock = false;
  786. SmallVector<uint64_t, 64> Record;
  787. const SmallVectorImpl<const LocalAsMetadata *> &MDs =
  788. VE.getFunctionLocalMDs();
  789. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  790. assert(MDs[i] && "Expected valid function-local metadata");
  791. if (!StartedMetadataBlock) {
  792. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  793. StartedMetadataBlock = true;
  794. }
  795. WriteLocalAsMetadata(MDs[i], VE, Stream, Record);
  796. }
  797. if (StartedMetadataBlock)
  798. Stream.ExitBlock();
  799. }
  800. static void WriteMetadataAttachment(const Function &F,
  801. const ValueEnumerator &VE,
  802. BitstreamWriter &Stream) {
  803. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  804. SmallVector<uint64_t, 64> Record;
  805. // Write metadata attachments
  806. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  807. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  808. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  809. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  810. I != E; ++I) {
  811. MDs.clear();
  812. I->getAllMetadataOtherThanDebugLoc(MDs);
  813. // If no metadata, ignore instruction.
  814. if (MDs.empty()) continue;
  815. Record.push_back(VE.getInstructionID(I));
  816. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  817. Record.push_back(MDs[i].first);
  818. Record.push_back(VE.getMetadataID(MDs[i].second));
  819. }
  820. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  821. Record.clear();
  822. }
  823. Stream.ExitBlock();
  824. }
  825. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  826. SmallVector<uint64_t, 64> Record;
  827. // Write metadata kinds
  828. // METADATA_KIND - [n x [id, name]]
  829. SmallVector<StringRef, 8> Names;
  830. M->getMDKindNames(Names);
  831. if (Names.empty()) return;
  832. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  833. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  834. Record.push_back(MDKindID);
  835. StringRef KName = Names[MDKindID];
  836. Record.append(KName.begin(), KName.end());
  837. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  838. Record.clear();
  839. }
  840. Stream.ExitBlock();
  841. }
  842. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  843. if ((int64_t)V >= 0)
  844. Vals.push_back(V << 1);
  845. else
  846. Vals.push_back((-V << 1) | 1);
  847. }
  848. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  849. const ValueEnumerator &VE,
  850. BitstreamWriter &Stream, bool isGlobal) {
  851. if (FirstVal == LastVal) return;
  852. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  853. unsigned AggregateAbbrev = 0;
  854. unsigned String8Abbrev = 0;
  855. unsigned CString7Abbrev = 0;
  856. unsigned CString6Abbrev = 0;
  857. // If this is a constant pool for the module, emit module-specific abbrevs.
  858. if (isGlobal) {
  859. // Abbrev for CST_CODE_AGGREGATE.
  860. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  861. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  862. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  863. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  864. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  865. // Abbrev for CST_CODE_STRING.
  866. Abbv = new BitCodeAbbrev();
  867. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  868. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  869. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  870. String8Abbrev = Stream.EmitAbbrev(Abbv);
  871. // Abbrev for CST_CODE_CSTRING.
  872. Abbv = new BitCodeAbbrev();
  873. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  874. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  875. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  876. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  877. // Abbrev for CST_CODE_CSTRING.
  878. Abbv = new BitCodeAbbrev();
  879. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  880. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  881. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  882. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  883. }
  884. SmallVector<uint64_t, 64> Record;
  885. const ValueEnumerator::ValueList &Vals = VE.getValues();
  886. Type *LastTy = nullptr;
  887. for (unsigned i = FirstVal; i != LastVal; ++i) {
  888. const Value *V = Vals[i].first;
  889. // If we need to switch types, do so now.
  890. if (V->getType() != LastTy) {
  891. LastTy = V->getType();
  892. Record.push_back(VE.getTypeID(LastTy));
  893. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  894. CONSTANTS_SETTYPE_ABBREV);
  895. Record.clear();
  896. }
  897. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  898. Record.push_back(unsigned(IA->hasSideEffects()) |
  899. unsigned(IA->isAlignStack()) << 1 |
  900. unsigned(IA->getDialect()&1) << 2);
  901. // Add the asm string.
  902. const std::string &AsmStr = IA->getAsmString();
  903. Record.push_back(AsmStr.size());
  904. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  905. Record.push_back(AsmStr[i]);
  906. // Add the constraint string.
  907. const std::string &ConstraintStr = IA->getConstraintString();
  908. Record.push_back(ConstraintStr.size());
  909. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  910. Record.push_back(ConstraintStr[i]);
  911. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  912. Record.clear();
  913. continue;
  914. }
  915. const Constant *C = cast<Constant>(V);
  916. unsigned Code = -1U;
  917. unsigned AbbrevToUse = 0;
  918. if (C->isNullValue()) {
  919. Code = bitc::CST_CODE_NULL;
  920. } else if (isa<UndefValue>(C)) {
  921. Code = bitc::CST_CODE_UNDEF;
  922. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  923. if (IV->getBitWidth() <= 64) {
  924. uint64_t V = IV->getSExtValue();
  925. emitSignedInt64(Record, V);
  926. Code = bitc::CST_CODE_INTEGER;
  927. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  928. } else { // Wide integers, > 64 bits in size.
  929. // We have an arbitrary precision integer value to write whose
  930. // bit width is > 64. However, in canonical unsigned integer
  931. // format it is likely that the high bits are going to be zero.
  932. // So, we only write the number of active words.
  933. unsigned NWords = IV->getValue().getActiveWords();
  934. const uint64_t *RawWords = IV->getValue().getRawData();
  935. for (unsigned i = 0; i != NWords; ++i) {
  936. emitSignedInt64(Record, RawWords[i]);
  937. }
  938. Code = bitc::CST_CODE_WIDE_INTEGER;
  939. }
  940. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  941. Code = bitc::CST_CODE_FLOAT;
  942. Type *Ty = CFP->getType();
  943. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  944. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  945. } else if (Ty->isX86_FP80Ty()) {
  946. // api needed to prevent premature destruction
  947. // bits are not in the same order as a normal i80 APInt, compensate.
  948. APInt api = CFP->getValueAPF().bitcastToAPInt();
  949. const uint64_t *p = api.getRawData();
  950. Record.push_back((p[1] << 48) | (p[0] >> 16));
  951. Record.push_back(p[0] & 0xffffLL);
  952. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  953. APInt api = CFP->getValueAPF().bitcastToAPInt();
  954. const uint64_t *p = api.getRawData();
  955. Record.push_back(p[0]);
  956. Record.push_back(p[1]);
  957. } else {
  958. assert (0 && "Unknown FP type!");
  959. }
  960. } else if (isa<ConstantDataSequential>(C) &&
  961. cast<ConstantDataSequential>(C)->isString()) {
  962. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  963. // Emit constant strings specially.
  964. unsigned NumElts = Str->getNumElements();
  965. // If this is a null-terminated string, use the denser CSTRING encoding.
  966. if (Str->isCString()) {
  967. Code = bitc::CST_CODE_CSTRING;
  968. --NumElts; // Don't encode the null, which isn't allowed by char6.
  969. } else {
  970. Code = bitc::CST_CODE_STRING;
  971. AbbrevToUse = String8Abbrev;
  972. }
  973. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  974. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  975. for (unsigned i = 0; i != NumElts; ++i) {
  976. unsigned char V = Str->getElementAsInteger(i);
  977. Record.push_back(V);
  978. isCStr7 &= (V & 128) == 0;
  979. if (isCStrChar6)
  980. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  981. }
  982. if (isCStrChar6)
  983. AbbrevToUse = CString6Abbrev;
  984. else if (isCStr7)
  985. AbbrevToUse = CString7Abbrev;
  986. } else if (const ConstantDataSequential *CDS =
  987. dyn_cast<ConstantDataSequential>(C)) {
  988. Code = bitc::CST_CODE_DATA;
  989. Type *EltTy = CDS->getType()->getElementType();
  990. if (isa<IntegerType>(EltTy)) {
  991. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  992. Record.push_back(CDS->getElementAsInteger(i));
  993. } else if (EltTy->isFloatTy()) {
  994. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  995. union { float F; uint32_t I; };
  996. F = CDS->getElementAsFloat(i);
  997. Record.push_back(I);
  998. }
  999. } else {
  1000. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  1001. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  1002. union { double F; uint64_t I; };
  1003. F = CDS->getElementAsDouble(i);
  1004. Record.push_back(I);
  1005. }
  1006. }
  1007. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  1008. isa<ConstantVector>(C)) {
  1009. Code = bitc::CST_CODE_AGGREGATE;
  1010. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  1011. Record.push_back(VE.getValueID(C->getOperand(i)));
  1012. AbbrevToUse = AggregateAbbrev;
  1013. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  1014. switch (CE->getOpcode()) {
  1015. default:
  1016. if (Instruction::isCast(CE->getOpcode())) {
  1017. Code = bitc::CST_CODE_CE_CAST;
  1018. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  1019. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1020. Record.push_back(VE.getValueID(C->getOperand(0)));
  1021. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  1022. } else {
  1023. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  1024. Code = bitc::CST_CODE_CE_BINOP;
  1025. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  1026. Record.push_back(VE.getValueID(C->getOperand(0)));
  1027. Record.push_back(VE.getValueID(C->getOperand(1)));
  1028. uint64_t Flags = GetOptimizationFlags(CE);
  1029. if (Flags != 0)
  1030. Record.push_back(Flags);
  1031. }
  1032. break;
  1033. case Instruction::GetElementPtr:
  1034. Code = bitc::CST_CODE_CE_GEP;
  1035. if (cast<GEPOperator>(C)->isInBounds())
  1036. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  1037. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  1038. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  1039. Record.push_back(VE.getValueID(C->getOperand(i)));
  1040. }
  1041. break;
  1042. case Instruction::Select:
  1043. Code = bitc::CST_CODE_CE_SELECT;
  1044. Record.push_back(VE.getValueID(C->getOperand(0)));
  1045. Record.push_back(VE.getValueID(C->getOperand(1)));
  1046. Record.push_back(VE.getValueID(C->getOperand(2)));
  1047. break;
  1048. case Instruction::ExtractElement:
  1049. Code = bitc::CST_CODE_CE_EXTRACTELT;
  1050. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1051. Record.push_back(VE.getValueID(C->getOperand(0)));
  1052. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  1053. Record.push_back(VE.getValueID(C->getOperand(1)));
  1054. break;
  1055. case Instruction::InsertElement:
  1056. Code = bitc::CST_CODE_CE_INSERTELT;
  1057. Record.push_back(VE.getValueID(C->getOperand(0)));
  1058. Record.push_back(VE.getValueID(C->getOperand(1)));
  1059. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  1060. Record.push_back(VE.getValueID(C->getOperand(2)));
  1061. break;
  1062. case Instruction::ShuffleVector:
  1063. // If the return type and argument types are the same, this is a
  1064. // standard shufflevector instruction. If the types are different,
  1065. // then the shuffle is widening or truncating the input vectors, and
  1066. // the argument type must also be encoded.
  1067. if (C->getType() == C->getOperand(0)->getType()) {
  1068. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1069. } else {
  1070. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1071. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1072. }
  1073. Record.push_back(VE.getValueID(C->getOperand(0)));
  1074. Record.push_back(VE.getValueID(C->getOperand(1)));
  1075. Record.push_back(VE.getValueID(C->getOperand(2)));
  1076. break;
  1077. case Instruction::ICmp:
  1078. case Instruction::FCmp:
  1079. Code = bitc::CST_CODE_CE_CMP;
  1080. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1081. Record.push_back(VE.getValueID(C->getOperand(0)));
  1082. Record.push_back(VE.getValueID(C->getOperand(1)));
  1083. Record.push_back(CE->getPredicate());
  1084. break;
  1085. }
  1086. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1087. Code = bitc::CST_CODE_BLOCKADDRESS;
  1088. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1089. Record.push_back(VE.getValueID(BA->getFunction()));
  1090. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1091. } else {
  1092. #ifndef NDEBUG
  1093. C->dump();
  1094. #endif
  1095. llvm_unreachable("Unknown constant!");
  1096. }
  1097. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1098. Record.clear();
  1099. }
  1100. Stream.ExitBlock();
  1101. }
  1102. static void WriteModuleConstants(const ValueEnumerator &VE,
  1103. BitstreamWriter &Stream) {
  1104. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1105. // Find the first constant to emit, which is the first non-globalvalue value.
  1106. // We know globalvalues have been emitted by WriteModuleInfo.
  1107. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1108. if (!isa<GlobalValue>(Vals[i].first)) {
  1109. WriteConstants(i, Vals.size(), VE, Stream, true);
  1110. return;
  1111. }
  1112. }
  1113. }
  1114. /// PushValueAndType - The file has to encode both the value and type id for
  1115. /// many values, because we need to know what type to create for forward
  1116. /// references. However, most operands are not forward references, so this type
  1117. /// field is not needed.
  1118. ///
  1119. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1120. /// instruction ID, then it is a forward reference, and it also includes the
  1121. /// type ID. The value ID that is written is encoded relative to the InstID.
  1122. static bool PushValueAndType(const Value *V, unsigned InstID,
  1123. SmallVectorImpl<unsigned> &Vals,
  1124. ValueEnumerator &VE) {
  1125. unsigned ValID = VE.getValueID(V);
  1126. // Make encoding relative to the InstID.
  1127. Vals.push_back(InstID - ValID);
  1128. if (ValID >= InstID) {
  1129. Vals.push_back(VE.getTypeID(V->getType()));
  1130. return true;
  1131. }
  1132. return false;
  1133. }
  1134. /// pushValue - Like PushValueAndType, but where the type of the value is
  1135. /// omitted (perhaps it was already encoded in an earlier operand).
  1136. static void pushValue(const Value *V, unsigned InstID,
  1137. SmallVectorImpl<unsigned> &Vals,
  1138. ValueEnumerator &VE) {
  1139. unsigned ValID = VE.getValueID(V);
  1140. Vals.push_back(InstID - ValID);
  1141. }
  1142. static void pushValueSigned(const Value *V, unsigned InstID,
  1143. SmallVectorImpl<uint64_t> &Vals,
  1144. ValueEnumerator &VE) {
  1145. unsigned ValID = VE.getValueID(V);
  1146. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1147. emitSignedInt64(Vals, diff);
  1148. }
  1149. /// WriteInstruction - Emit an instruction to the specified stream.
  1150. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1151. ValueEnumerator &VE, BitstreamWriter &Stream,
  1152. SmallVectorImpl<unsigned> &Vals) {
  1153. unsigned Code = 0;
  1154. unsigned AbbrevToUse = 0;
  1155. VE.setInstructionID(&I);
  1156. switch (I.getOpcode()) {
  1157. default:
  1158. if (Instruction::isCast(I.getOpcode())) {
  1159. Code = bitc::FUNC_CODE_INST_CAST;
  1160. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1161. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1162. Vals.push_back(VE.getTypeID(I.getType()));
  1163. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1164. } else {
  1165. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1166. Code = bitc::FUNC_CODE_INST_BINOP;
  1167. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1168. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1169. pushValue(I.getOperand(1), InstID, Vals, VE);
  1170. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1171. uint64_t Flags = GetOptimizationFlags(&I);
  1172. if (Flags != 0) {
  1173. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1174. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1175. Vals.push_back(Flags);
  1176. }
  1177. }
  1178. break;
  1179. case Instruction::GetElementPtr:
  1180. Code = bitc::FUNC_CODE_INST_GEP;
  1181. if (cast<GEPOperator>(&I)->isInBounds())
  1182. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1183. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1184. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1185. break;
  1186. case Instruction::ExtractValue: {
  1187. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1188. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1189. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1190. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1191. Vals.push_back(*i);
  1192. break;
  1193. }
  1194. case Instruction::InsertValue: {
  1195. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1196. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1197. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1198. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1199. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1200. Vals.push_back(*i);
  1201. break;
  1202. }
  1203. case Instruction::Select:
  1204. Code = bitc::FUNC_CODE_INST_VSELECT;
  1205. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1206. pushValue(I.getOperand(2), InstID, Vals, VE);
  1207. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1208. break;
  1209. case Instruction::ExtractElement:
  1210. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1211. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1212. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1213. break;
  1214. case Instruction::InsertElement:
  1215. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1216. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1217. pushValue(I.getOperand(1), InstID, Vals, VE);
  1218. PushValueAndType(I.getOperand(2), InstID, Vals, VE);
  1219. break;
  1220. case Instruction::ShuffleVector:
  1221. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1222. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1223. pushValue(I.getOperand(1), InstID, Vals, VE);
  1224. pushValue(I.getOperand(2), InstID, Vals, VE);
  1225. break;
  1226. case Instruction::ICmp:
  1227. case Instruction::FCmp:
  1228. // compare returning Int1Ty or vector of Int1Ty
  1229. Code = bitc::FUNC_CODE_INST_CMP2;
  1230. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1231. pushValue(I.getOperand(1), InstID, Vals, VE);
  1232. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1233. break;
  1234. case Instruction::Ret:
  1235. {
  1236. Code = bitc::FUNC_CODE_INST_RET;
  1237. unsigned NumOperands = I.getNumOperands();
  1238. if (NumOperands == 0)
  1239. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1240. else if (NumOperands == 1) {
  1241. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1242. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1243. } else {
  1244. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1245. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1246. }
  1247. }
  1248. break;
  1249. case Instruction::Br:
  1250. {
  1251. Code = bitc::FUNC_CODE_INST_BR;
  1252. const BranchInst &II = cast<BranchInst>(I);
  1253. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1254. if (II.isConditional()) {
  1255. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1256. pushValue(II.getCondition(), InstID, Vals, VE);
  1257. }
  1258. }
  1259. break;
  1260. case Instruction::Switch:
  1261. {
  1262. Code = bitc::FUNC_CODE_INST_SWITCH;
  1263. const SwitchInst &SI = cast<SwitchInst>(I);
  1264. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1265. pushValue(SI.getCondition(), InstID, Vals, VE);
  1266. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1267. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1268. i != e; ++i) {
  1269. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1270. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1271. }
  1272. }
  1273. break;
  1274. case Instruction::IndirectBr:
  1275. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1276. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1277. // Encode the address operand as relative, but not the basic blocks.
  1278. pushValue(I.getOperand(0), InstID, Vals, VE);
  1279. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1280. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1281. break;
  1282. case Instruction::Invoke: {
  1283. const InvokeInst *II = cast<InvokeInst>(&I);
  1284. const Value *Callee(II->getCalledValue());
  1285. PointerType *PTy = cast<PointerType>(Callee->getType());
  1286. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1287. Code = bitc::FUNC_CODE_INST_INVOKE;
  1288. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1289. Vals.push_back(II->getCallingConv());
  1290. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1291. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1292. PushValueAndType(Callee, InstID, Vals, VE);
  1293. // Emit value #'s for the fixed parameters.
  1294. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1295. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1296. // Emit type/value pairs for varargs params.
  1297. if (FTy->isVarArg()) {
  1298. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1299. i != e; ++i)
  1300. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1301. }
  1302. break;
  1303. }
  1304. case Instruction::Resume:
  1305. Code = bitc::FUNC_CODE_INST_RESUME;
  1306. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1307. break;
  1308. case Instruction::Unreachable:
  1309. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1310. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1311. break;
  1312. case Instruction::PHI: {
  1313. const PHINode &PN = cast<PHINode>(I);
  1314. Code = bitc::FUNC_CODE_INST_PHI;
  1315. // With the newer instruction encoding, forward references could give
  1316. // negative valued IDs. This is most common for PHIs, so we use
  1317. // signed VBRs.
  1318. SmallVector<uint64_t, 128> Vals64;
  1319. Vals64.push_back(VE.getTypeID(PN.getType()));
  1320. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1321. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1322. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1323. }
  1324. // Emit a Vals64 vector and exit.
  1325. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1326. Vals64.clear();
  1327. return;
  1328. }
  1329. case Instruction::LandingPad: {
  1330. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1331. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1332. Vals.push_back(VE.getTypeID(LP.getType()));
  1333. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1334. Vals.push_back(LP.isCleanup());
  1335. Vals.push_back(LP.getNumClauses());
  1336. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1337. if (LP.isCatch(I))
  1338. Vals.push_back(LandingPadInst::Catch);
  1339. else
  1340. Vals.push_back(LandingPadInst::Filter);
  1341. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1342. }
  1343. break;
  1344. }
  1345. case Instruction::Alloca: {
  1346. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1347. Vals.push_back(VE.getTypeID(I.getType()));
  1348. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1349. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1350. const AllocaInst &AI = cast<AllocaInst>(I);
  1351. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
  1352. assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
  1353. "not enough bits for maximum alignment");
  1354. assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
  1355. AlignRecord |= AI.isUsedWithInAlloca() << 5;
  1356. Vals.push_back(AlignRecord);
  1357. break;
  1358. }
  1359. case Instruction::Load:
  1360. if (cast<LoadInst>(I).isAtomic()) {
  1361. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1362. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1363. } else {
  1364. Code = bitc::FUNC_CODE_INST_LOAD;
  1365. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1366. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1367. }
  1368. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1369. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1370. if (cast<LoadInst>(I).isAtomic()) {
  1371. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1372. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1373. }
  1374. break;
  1375. case Instruction::Store:
  1376. if (cast<StoreInst>(I).isAtomic())
  1377. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1378. else
  1379. Code = bitc::FUNC_CODE_INST_STORE;
  1380. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1381. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1382. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1383. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1384. if (cast<StoreInst>(I).isAtomic()) {
  1385. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1386. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1387. }
  1388. break;
  1389. case Instruction::AtomicCmpXchg:
  1390. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1391. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1392. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1393. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1394. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1395. Vals.push_back(GetEncodedOrdering(
  1396. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1397. Vals.push_back(GetEncodedSynchScope(
  1398. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1399. Vals.push_back(GetEncodedOrdering(
  1400. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1401. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  1402. break;
  1403. case Instruction::AtomicRMW:
  1404. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1405. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1406. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1407. Vals.push_back(GetEncodedRMWOperation(
  1408. cast<AtomicRMWInst>(I).getOperation()));
  1409. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1410. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1411. Vals.push_back(GetEncodedSynchScope(
  1412. cast<AtomicRMWInst>(I).getSynchScope()));
  1413. break;
  1414. case Instruction::Fence:
  1415. Code = bitc::FUNC_CODE_INST_FENCE;
  1416. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1417. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1418. break;
  1419. case Instruction::Call: {
  1420. const CallInst &CI = cast<CallInst>(I);
  1421. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1422. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1423. Code = bitc::FUNC_CODE_INST_CALL;
  1424. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1425. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
  1426. unsigned(CI.isMustTailCall()) << 14);
  1427. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1428. // Emit value #'s for the fixed parameters.
  1429. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1430. // Check for labels (can happen with asm labels).
  1431. if (FTy->getParamType(i)->isLabelTy())
  1432. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1433. else
  1434. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1435. }
  1436. // Emit type/value pairs for varargs params.
  1437. if (FTy->isVarArg()) {
  1438. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1439. i != e; ++i)
  1440. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1441. }
  1442. break;
  1443. }
  1444. case Instruction::VAArg:
  1445. Code = bitc::FUNC_CODE_INST_VAARG;
  1446. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1447. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1448. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1449. break;
  1450. }
  1451. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1452. Vals.clear();
  1453. }
  1454. // Emit names for globals/functions etc.
  1455. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1456. const ValueEnumerator &VE,
  1457. BitstreamWriter &Stream) {
  1458. if (VST.empty()) return;
  1459. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1460. // FIXME: Set up the abbrev, we know how many values there are!
  1461. // FIXME: We know if the type names can use 7-bit ascii.
  1462. SmallVector<unsigned, 64> NameVals;
  1463. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1464. SI != SE; ++SI) {
  1465. const ValueName &Name = *SI;
  1466. // Figure out the encoding to use for the name.
  1467. bool is7Bit = true;
  1468. bool isChar6 = true;
  1469. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1470. C != E; ++C) {
  1471. if (isChar6)
  1472. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1473. if ((unsigned char)*C & 128) {
  1474. is7Bit = false;
  1475. break; // don't bother scanning the rest.
  1476. }
  1477. }
  1478. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1479. // VST_ENTRY: [valueid, namechar x N]
  1480. // VST_BBENTRY: [bbid, namechar x N]
  1481. unsigned Code;
  1482. if (isa<BasicBlock>(SI->getValue())) {
  1483. Code = bitc::VST_CODE_BBENTRY;
  1484. if (isChar6)
  1485. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1486. } else {
  1487. Code = bitc::VST_CODE_ENTRY;
  1488. if (isChar6)
  1489. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1490. else if (is7Bit)
  1491. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1492. }
  1493. NameVals.push_back(VE.getValueID(SI->getValue()));
  1494. for (const char *P = Name.getKeyData(),
  1495. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1496. NameVals.push_back((unsigned char)*P);
  1497. // Emit the finished record.
  1498. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1499. NameVals.clear();
  1500. }
  1501. Stream.ExitBlock();
  1502. }
  1503. static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
  1504. BitstreamWriter &Stream) {
  1505. assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
  1506. unsigned Code;
  1507. if (isa<BasicBlock>(Order.V))
  1508. Code = bitc::USELIST_CODE_BB;
  1509. else
  1510. Code = bitc::USELIST_CODE_DEFAULT;
  1511. SmallVector<uint64_t, 64> Record;
  1512. for (unsigned I : Order.Shuffle)
  1513. Record.push_back(I);
  1514. Record.push_back(VE.getValueID(Order.V));
  1515. Stream.EmitRecord(Code, Record);
  1516. }
  1517. static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
  1518. BitstreamWriter &Stream) {
  1519. auto hasMore = [&]() {
  1520. return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
  1521. };
  1522. if (!hasMore())
  1523. // Nothing to do.
  1524. return;
  1525. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1526. while (hasMore()) {
  1527. WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
  1528. VE.UseListOrders.pop_back();
  1529. }
  1530. Stream.ExitBlock();
  1531. }
  1532. /// WriteFunction - Emit a function body to the module stream.
  1533. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1534. BitstreamWriter &Stream) {
  1535. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1536. VE.incorporateFunction(F);
  1537. SmallVector<unsigned, 64> Vals;
  1538. // Emit the number of basic blocks, so the reader can create them ahead of
  1539. // time.
  1540. Vals.push_back(VE.getBasicBlocks().size());
  1541. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1542. Vals.clear();
  1543. // If there are function-local constants, emit them now.
  1544. unsigned CstStart, CstEnd;
  1545. VE.getFunctionConstantRange(CstStart, CstEnd);
  1546. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1547. // If there is function-local metadata, emit it now.
  1548. WriteFunctionLocalMetadata(F, VE, Stream);
  1549. // Keep a running idea of what the instruction ID is.
  1550. unsigned InstID = CstEnd;
  1551. bool NeedsMetadataAttachment = false;
  1552. DebugLoc LastDL;
  1553. // Finally, emit all the instructions, in order.
  1554. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1555. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1556. I != E; ++I) {
  1557. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1558. if (!I->getType()->isVoidTy())
  1559. ++InstID;
  1560. // If the instruction has metadata, write a metadata attachment later.
  1561. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1562. // If the instruction has a debug location, emit it.
  1563. DebugLoc DL = I->getDebugLoc();
  1564. if (DL.isUnknown()) {
  1565. // nothing todo.
  1566. } else if (DL == LastDL) {
  1567. // Just repeat the same debug loc as last time.
  1568. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1569. } else {
  1570. MDNode *Scope, *IA;
  1571. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1572. assert(Scope && "Expected valid scope");
  1573. Vals.push_back(DL.getLine());
  1574. Vals.push_back(DL.getCol());
  1575. Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0);
  1576. Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0);
  1577. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1578. Vals.clear();
  1579. LastDL = DL;
  1580. }
  1581. }
  1582. // Emit names for all the instructions etc.
  1583. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1584. if (NeedsMetadataAttachment)
  1585. WriteMetadataAttachment(F, VE, Stream);
  1586. if (shouldPreserveBitcodeUseListOrder())
  1587. WriteUseListBlock(&F, VE, Stream);
  1588. VE.purgeFunction();
  1589. Stream.ExitBlock();
  1590. }
  1591. // Emit blockinfo, which defines the standard abbreviations etc.
  1592. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1593. // We only want to emit block info records for blocks that have multiple
  1594. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1595. // Other blocks can define their abbrevs inline.
  1596. Stream.EnterBlockInfoBlock(2);
  1597. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1598. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1599. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1600. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1601. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1602. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1603. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1604. Abbv) != VST_ENTRY_8_ABBREV)
  1605. llvm_unreachable("Unexpected abbrev ordering!");
  1606. }
  1607. { // 7-bit fixed width VST_ENTRY strings.
  1608. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1609. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1610. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1611. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1612. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1613. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1614. Abbv) != VST_ENTRY_7_ABBREV)
  1615. llvm_unreachable("Unexpected abbrev ordering!");
  1616. }
  1617. { // 6-bit char6 VST_ENTRY strings.
  1618. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1619. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1620. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1621. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1622. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1623. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1624. Abbv) != VST_ENTRY_6_ABBREV)
  1625. llvm_unreachable("Unexpected abbrev ordering!");
  1626. }
  1627. { // 6-bit char6 VST_BBENTRY strings.
  1628. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1629. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1630. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1631. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1632. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1633. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1634. Abbv) != VST_BBENTRY_6_ABBREV)
  1635. llvm_unreachable("Unexpected abbrev ordering!");
  1636. }
  1637. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1638. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1639. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1640. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1641. Log2_32_Ceil(VE.getTypes().size()+1)));
  1642. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1643. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1644. llvm_unreachable("Unexpected abbrev ordering!");
  1645. }
  1646. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1647. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1648. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1649. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1650. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1651. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1652. llvm_unreachable("Unexpected abbrev ordering!");
  1653. }
  1654. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1655. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1656. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1657. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1658. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1659. Log2_32_Ceil(VE.getTypes().size()+1)));
  1660. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1661. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1662. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1663. llvm_unreachable("Unexpected abbrev ordering!");
  1664. }
  1665. { // NULL abbrev for CONSTANTS_BLOCK.
  1666. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1667. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1668. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1669. Abbv) != CONSTANTS_NULL_Abbrev)
  1670. llvm_unreachable("Unexpected abbrev ordering!");
  1671. }
  1672. // FIXME: This should only use space for first class types!
  1673. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1674. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1675. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1676. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1677. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1678. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1679. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1680. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1681. llvm_unreachable("Unexpected abbrev ordering!");
  1682. }
  1683. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1684. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1685. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1686. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1687. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1688. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1689. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1690. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1691. llvm_unreachable("Unexpected abbrev ordering!");
  1692. }
  1693. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1694. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1695. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1696. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1697. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1698. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1699. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  1700. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1701. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  1702. llvm_unreachable("Unexpected abbrev ordering!");
  1703. }
  1704. { // INST_CAST abbrev for FUNCTION_BLOCK.
  1705. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1706. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  1707. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  1708. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  1709. Log2_32_Ceil(VE.getTypes().size()+1)));
  1710. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1711. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1712. Abbv) != FUNCTION_INST_CAST_ABBREV)
  1713. llvm_unreachable("Unexpected abbrev ordering!");
  1714. }
  1715. { // INST_RET abbrev for FUNCTION_BLOCK.
  1716. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1717. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1718. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1719. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  1720. llvm_unreachable("Unexpected abbrev ordering!");
  1721. }
  1722. { // INST_RET abbrev for FUNCTION_BLOCK.
  1723. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1724. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1725. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  1726. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1727. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  1728. llvm_unreachable("Unexpected abbrev ordering!");
  1729. }
  1730. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  1731. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1732. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  1733. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1734. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  1735. llvm_unreachable("Unexpected abbrev ordering!");
  1736. }
  1737. Stream.ExitBlock();
  1738. }
  1739. /// WriteModule - Emit the specified module to the bitstream.
  1740. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  1741. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  1742. SmallVector<unsigned, 1> Vals;
  1743. unsigned CurVersion = 1;
  1744. Vals.push_back(CurVersion);
  1745. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  1746. // Analyze the module, enumerating globals, functions, etc.
  1747. ValueEnumerator VE(*M);
  1748. // Emit blockinfo, which defines the standard abbreviations etc.
  1749. WriteBlockInfo(VE, Stream);
  1750. // Emit information about attribute groups.
  1751. WriteAttributeGroupTable(VE, Stream);
  1752. // Emit information about parameter attributes.
  1753. WriteAttributeTable(VE, Stream);
  1754. // Emit information describing all of the types in the module.
  1755. WriteTypeTable(VE, Stream);
  1756. writeComdats(VE, Stream);
  1757. // Emit top-level description of module, including target triple, inline asm,
  1758. // descriptors for global variables, and function prototype info.
  1759. WriteModuleInfo(M, VE, Stream);
  1760. // Emit constants.
  1761. WriteModuleConstants(VE, Stream);
  1762. // Emit metadata.
  1763. WriteModuleMetadata(M, VE, Stream);
  1764. // Emit metadata.
  1765. WriteModuleMetadataStore(M, Stream);
  1766. // Emit names for globals/functions etc.
  1767. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  1768. // Emit module-level use-lists.
  1769. if (shouldPreserveBitcodeUseListOrder())
  1770. WriteUseListBlock(nullptr, VE, Stream);
  1771. // Emit function bodies.
  1772. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  1773. if (!F->isDeclaration())
  1774. WriteFunction(*F, VE, Stream);
  1775. Stream.ExitBlock();
  1776. }
  1777. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  1778. /// header and trailer to make it compatible with the system archiver. To do
  1779. /// this we emit the following header, and then emit a trailer that pads the
  1780. /// file out to be a multiple of 16 bytes.
  1781. ///
  1782. /// struct bc_header {
  1783. /// uint32_t Magic; // 0x0B17C0DE
  1784. /// uint32_t Version; // Version, currently always 0.
  1785. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  1786. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  1787. /// uint32_t CPUType; // CPU specifier.
  1788. /// ... potentially more later ...
  1789. /// };
  1790. enum {
  1791. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  1792. DarwinBCHeaderSize = 5*4
  1793. };
  1794. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  1795. uint32_t &Position) {
  1796. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  1797. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  1798. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  1799. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  1800. Position += 4;
  1801. }
  1802. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  1803. const Triple &TT) {
  1804. unsigned CPUType = ~0U;
  1805. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  1806. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  1807. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  1808. // specific constants here because they are implicitly part of the Darwin ABI.
  1809. enum {
  1810. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  1811. DARWIN_CPU_TYPE_X86 = 7,
  1812. DARWIN_CPU_TYPE_ARM = 12,
  1813. DARWIN_CPU_TYPE_POWERPC = 18
  1814. };
  1815. Triple::ArchType Arch = TT.getArch();
  1816. if (Arch == Triple::x86_64)
  1817. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  1818. else if (Arch == Triple::x86)
  1819. CPUType = DARWIN_CPU_TYPE_X86;
  1820. else if (Arch == Triple::ppc)
  1821. CPUType = DARWIN_CPU_TYPE_POWERPC;
  1822. else if (Arch == Triple::ppc64)
  1823. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  1824. else if (Arch == Triple::arm || Arch == Triple::thumb)
  1825. CPUType = DARWIN_CPU_TYPE_ARM;
  1826. // Traditional Bitcode starts after header.
  1827. assert(Buffer.size() >= DarwinBCHeaderSize &&
  1828. "Expected header size to be reserved");
  1829. unsigned BCOffset = DarwinBCHeaderSize;
  1830. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  1831. // Write the magic and version.
  1832. unsigned Position = 0;
  1833. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  1834. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  1835. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  1836. WriteInt32ToBuffer(BCSize , Buffer, Position);
  1837. WriteInt32ToBuffer(CPUType , Buffer, Position);
  1838. // If the file is not a multiple of 16 bytes, insert dummy padding.
  1839. while (Buffer.size() & 15)
  1840. Buffer.push_back(0);
  1841. }
  1842. /// WriteBitcodeToFile - Write the specified module to the specified output
  1843. /// stream.
  1844. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  1845. SmallVector<char, 0> Buffer;
  1846. Buffer.reserve(256*1024);
  1847. // If this is darwin or another generic macho target, reserve space for the
  1848. // header.
  1849. Triple TT(M->getTargetTriple());
  1850. if (TT.isOSDarwin())
  1851. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  1852. // Emit the module into the buffer.
  1853. {
  1854. BitstreamWriter Stream(Buffer);
  1855. // Emit the file header.
  1856. Stream.Emit((unsigned)'B', 8);
  1857. Stream.Emit((unsigned)'C', 8);
  1858. Stream.Emit(0x0, 4);
  1859. Stream.Emit(0xC, 4);
  1860. Stream.Emit(0xE, 4);
  1861. Stream.Emit(0xD, 4);
  1862. // Emit the module.
  1863. WriteModule(M, Stream);
  1864. }
  1865. if (TT.isOSDarwin())
  1866. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  1867. // Write the generated bitstream to "Out".
  1868. Out.write((char*)&Buffer.front(), Buffer.size());
  1869. }