123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform manipulations on basic blocks, and
- // instructions contained within basic blocks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Function.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Constant.h"
- #include "llvm/Type.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ValueHandle.h"
- #include <algorithm>
- using namespace llvm;
- /// DeleteDeadBlock - Delete the specified block, which must have no
- /// predecessors.
- void llvm::DeleteDeadBlock(BasicBlock *BB) {
- assert((pred_begin(BB) == pred_end(BB) ||
- // Can delete self loop.
- BB->getSinglePredecessor() == BB) && "Block is not dead!");
- TerminatorInst *BBTerm = BB->getTerminator();
-
- // Loop through all of our successors and make sure they know that one
- // of their predecessors is going away.
- for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
- BBTerm->getSuccessor(i)->removePredecessor(BB);
-
- // Zap all the instructions in the block.
- while (!BB->empty()) {
- Instruction &I = BB->back();
- // If this instruction is used, replace uses with an arbitrary value.
- // Because control flow can't get here, we don't care what we replace the
- // value with. Note that since this block is unreachable, and all values
- // contained within it must dominate their uses, that all uses will
- // eventually be removed (they are themselves dead).
- if (!I.use_empty())
- I.replaceAllUsesWith(UndefValue::get(I.getType()));
- BB->getInstList().pop_back();
- }
-
- // Zap the block!
- BB->eraseFromParent();
- }
- /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
- /// any single-entry PHI nodes in it, fold them away. This handles the case
- /// when all entries to the PHI nodes in a block are guaranteed equal, such as
- /// when the block has exactly one predecessor.
- void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
- if (!isa<PHINode>(BB->begin())) return;
-
- AliasAnalysis *AA = 0;
- MemoryDependenceAnalysis *MemDep = 0;
- if (P) {
- AA = P->getAnalysisIfAvailable<AliasAnalysis>();
- MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
- }
-
- while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
- if (PN->getIncomingValue(0) != PN)
- PN->replaceAllUsesWith(PN->getIncomingValue(0));
- else
- PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
-
- if (MemDep)
- MemDep->removeInstruction(PN); // Memdep updates AA itself.
- else if (AA && isa<PointerType>(PN->getType()))
- AA->deleteValue(PN);
-
- PN->eraseFromParent();
- }
- }
- /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
- /// is dead. Also recursively delete any operands that become dead as
- /// a result. This includes tracing the def-use list from the PHI to see if
- /// it is ultimately unused or if it reaches an unused cycle.
- bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
- // Recursively deleting a PHI may cause multiple PHIs to be deleted
- // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
- SmallVector<WeakVH, 8> PHIs;
- for (BasicBlock::iterator I = BB->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I)
- PHIs.push_back(PN);
- bool Changed = false;
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
- if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
- Changed |= RecursivelyDeleteDeadPHINode(PN);
- return Changed;
- }
- /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
- /// if possible. The return value indicates success or failure.
- bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
- // Don't merge away blocks who have their address taken.
- if (BB->hasAddressTaken()) return false;
-
- // Can't merge if there are multiple predecessors, or no predecessors.
- BasicBlock *PredBB = BB->getUniquePredecessor();
- if (!PredBB) return false;
- // Don't break self-loops.
- if (PredBB == BB) return false;
- // Don't break invokes.
- if (isa<InvokeInst>(PredBB->getTerminator())) return false;
-
- succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
- BasicBlock *OnlySucc = BB;
- for (; SI != SE; ++SI)
- if (*SI != OnlySucc) {
- OnlySucc = 0; // There are multiple distinct successors!
- break;
- }
-
- // Can't merge if there are multiple successors.
- if (!OnlySucc) return false;
- // Can't merge if there is PHI loop.
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
- if (PHINode *PN = dyn_cast<PHINode>(BI)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == PN)
- return false;
- } else
- break;
- }
- // Begin by getting rid of unneeded PHIs.
- if (isa<PHINode>(BB->front()))
- FoldSingleEntryPHINodes(BB, P);
-
- // Delete the unconditional branch from the predecessor...
- PredBB->getInstList().pop_back();
-
- // Move all definitions in the successor to the predecessor...
- PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
-
- // Make all PHI nodes that referred to BB now refer to Pred as their
- // source...
- BB->replaceAllUsesWith(PredBB);
-
- // Inherit predecessors name if it exists.
- if (!PredBB->hasName())
- PredBB->takeName(BB);
-
- // Finally, erase the old block and update dominator info.
- if (P) {
- if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
- if (DomTreeNode *DTN = DT->getNode(BB)) {
- DomTreeNode *PredDTN = DT->getNode(PredBB);
- SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
- for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
- DE = Children.end(); DI != DE; ++DI)
- DT->changeImmediateDominator(*DI, PredDTN);
- DT->eraseNode(BB);
- }
-
- if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
- LI->removeBlock(BB);
-
- if (MemoryDependenceAnalysis *MD =
- P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
- MD->invalidateCachedPredecessors();
- }
- }
-
- BB->eraseFromParent();
- return true;
- }
- /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
- /// with a value, then remove and delete the original instruction.
- ///
- void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
- BasicBlock::iterator &BI, Value *V) {
- Instruction &I = *BI;
- // Replaces all of the uses of the instruction with uses of the value
- I.replaceAllUsesWith(V);
- // Make sure to propagate a name if there is one already.
- if (I.hasName() && !V->hasName())
- V->takeName(&I);
- // Delete the unnecessary instruction now...
- BI = BIL.erase(BI);
- }
- /// ReplaceInstWithInst - Replace the instruction specified by BI with the
- /// instruction specified by I. The original instruction is deleted and BI is
- /// updated to point to the new instruction.
- ///
- void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
- BasicBlock::iterator &BI, Instruction *I) {
- assert(I->getParent() == 0 &&
- "ReplaceInstWithInst: Instruction already inserted into basic block!");
- // Insert the new instruction into the basic block...
- BasicBlock::iterator New = BIL.insert(BI, I);
- // Replace all uses of the old instruction, and delete it.
- ReplaceInstWithValue(BIL, BI, I);
- // Move BI back to point to the newly inserted instruction
- BI = New;
- }
- /// ReplaceInstWithInst - Replace the instruction specified by From with the
- /// instruction specified by To.
- ///
- void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
- BasicBlock::iterator BI(From);
- ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
- }
- /// GetSuccessorNumber - Search for the specified successor of basic block BB
- /// and return its position in the terminator instruction's list of
- /// successors. It is an error to call this with a block that is not a
- /// successor.
- unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
- TerminatorInst *Term = BB->getTerminator();
- #ifndef NDEBUG
- unsigned e = Term->getNumSuccessors();
- #endif
- for (unsigned i = 0; ; ++i) {
- assert(i != e && "Didn't find edge?");
- if (Term->getSuccessor(i) == Succ)
- return i;
- }
- return 0;
- }
- /// SplitEdge - Split the edge connecting specified block. Pass P must
- /// not be NULL.
- BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
- unsigned SuccNum = GetSuccessorNumber(BB, Succ);
-
- // If this is a critical edge, let SplitCriticalEdge do it.
- TerminatorInst *LatchTerm = BB->getTerminator();
- if (SplitCriticalEdge(LatchTerm, SuccNum, P))
- return LatchTerm->getSuccessor(SuccNum);
- // If the edge isn't critical, then BB has a single successor or Succ has a
- // single pred. Split the block.
- BasicBlock::iterator SplitPoint;
- if (BasicBlock *SP = Succ->getSinglePredecessor()) {
- // If the successor only has a single pred, split the top of the successor
- // block.
- assert(SP == BB && "CFG broken");
- SP = NULL;
- return SplitBlock(Succ, Succ->begin(), P);
- }
-
- // Otherwise, if BB has a single successor, split it at the bottom of the
- // block.
- assert(BB->getTerminator()->getNumSuccessors() == 1 &&
- "Should have a single succ!");
- return SplitBlock(BB, BB->getTerminator(), P);
- }
- /// SplitBlock - Split the specified block at the specified instruction - every
- /// thing before SplitPt stays in Old and everything starting with SplitPt moves
- /// to a new block. The two blocks are joined by an unconditional branch and
- /// the loop info is updated.
- ///
- BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
- BasicBlock::iterator SplitIt = SplitPt;
- while (isa<PHINode>(SplitIt))
- ++SplitIt;
- BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
- // The new block lives in whichever loop the old one did. This preserves
- // LCSSA as well, because we force the split point to be after any PHI nodes.
- if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
- if (Loop *L = LI->getLoopFor(Old))
- L->addBasicBlockToLoop(New, LI->getBase());
- if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
- // Old dominates New. New node dominates all other nodes dominated by Old.
- DomTreeNode *OldNode = DT->getNode(Old);
- std::vector<DomTreeNode *> Children;
- for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
- I != E; ++I)
- Children.push_back(*I);
- DomTreeNode *NewNode = DT->addNewBlock(New,Old);
- for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
- E = Children.end(); I != E; ++I)
- DT->changeImmediateDominator(*I, NewNode);
- }
- return New;
- }
- /// SplitBlockPredecessors - This method transforms BB by introducing a new
- /// basic block into the function, and moving some of the predecessors of BB to
- /// be predecessors of the new block. The new predecessors are indicated by the
- /// Preds array, which has NumPreds elements in it. The new block is given a
- /// suffix of 'Suffix'.
- ///
- /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
- /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
- /// preserve LoopSimplify (because it's complicated to handle the case where one
- /// of the edges being split is an exit of a loop with other exits).
- ///
- BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
- BasicBlock *const *Preds,
- unsigned NumPreds, const char *Suffix,
- Pass *P) {
- // Create new basic block, insert right before the original block.
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
- BB->getParent(), BB);
-
- // The new block unconditionally branches to the old block.
- BranchInst *BI = BranchInst::Create(BB, NewBB);
-
- LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
- Loop *L = LI ? LI->getLoopFor(BB) : 0;
- bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
- // Move the edges from Preds to point to NewBB instead of BB.
- // While here, if we need to preserve loop analyses, collect
- // some information about how this split will affect loops.
- bool HasLoopExit = false;
- bool IsLoopEntry = !!L;
- bool SplitMakesNewLoopHeader = false;
- for (unsigned i = 0; i != NumPreds; ++i) {
- // This is slightly more strict than necessary; the minimum requirement
- // is that there be no more than one indirectbr branching to BB. And
- // all BlockAddress uses would need to be updated.
- assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
- "Cannot split an edge from an IndirectBrInst");
- Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
- if (LI) {
- // If we need to preserve LCSSA, determine if any of
- // the preds is a loop exit.
- if (PreserveLCSSA)
- if (Loop *PL = LI->getLoopFor(Preds[i]))
- if (!PL->contains(BB))
- HasLoopExit = true;
- // If we need to preserve LoopInfo, note whether any of the
- // preds crosses an interesting loop boundary.
- if (L) {
- if (L->contains(Preds[i]))
- IsLoopEntry = false;
- else
- SplitMakesNewLoopHeader = true;
- }
- }
- }
- // Update dominator tree if available.
- DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
- if (DT)
- DT->splitBlock(NewBB);
- // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
- // node becomes an incoming value for BB's phi node. However, if the Preds
- // list is empty, we need to insert dummy entries into the PHI nodes in BB to
- // account for the newly created predecessor.
- if (NumPreds == 0) {
- // Insert dummy values as the incoming value.
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
- cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
- return NewBB;
- }
- AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
- if (L) {
- if (IsLoopEntry) {
- // Add the new block to the nearest enclosing loop (and not an
- // adjacent loop). To find this, examine each of the predecessors and
- // determine which loops enclose them, and select the most-nested loop
- // which contains the loop containing the block being split.
- Loop *InnermostPredLoop = 0;
- for (unsigned i = 0; i != NumPreds; ++i)
- if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
- // Seek a loop which actually contains the block being split (to
- // avoid adjacent loops).
- while (PredLoop && !PredLoop->contains(BB))
- PredLoop = PredLoop->getParentLoop();
- // Select the most-nested of these loops which contains the block.
- if (PredLoop &&
- PredLoop->contains(BB) &&
- (!InnermostPredLoop ||
- InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
- InnermostPredLoop = PredLoop;
- }
- if (InnermostPredLoop)
- InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
- } else {
- L->addBasicBlockToLoop(NewBB, LI->getBase());
- if (SplitMakesNewLoopHeader)
- L->moveToHeader(NewBB);
- }
- }
-
- // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
- PHINode *PN = cast<PHINode>(I++);
-
- // Check to see if all of the values coming in are the same. If so, we
- // don't need to create a new PHI node, unless it's needed for LCSSA.
- Value *InVal = 0;
- if (!HasLoopExit) {
- InVal = PN->getIncomingValueForBlock(Preds[0]);
- for (unsigned i = 1; i != NumPreds; ++i)
- if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
- InVal = 0;
- break;
- }
- }
- if (InVal) {
- // If all incoming values for the new PHI would be the same, just don't
- // make a new PHI. Instead, just remove the incoming values from the old
- // PHI.
- for (unsigned i = 0; i != NumPreds; ++i)
- PN->removeIncomingValue(Preds[i], false);
- } else {
- // If the values coming into the block are not the same, we need a PHI.
- // Create the new PHI node, insert it into NewBB at the end of the block
- PHINode *NewPHI =
- PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
- NewPHI->reserveOperandSpace(NumPreds);
- if (AA) AA->copyValue(PN, NewPHI);
-
- // Move all of the PHI values for 'Preds' to the new PHI.
- for (unsigned i = 0; i != NumPreds; ++i) {
- Value *V = PN->removeIncomingValue(Preds[i], false);
- NewPHI->addIncoming(V, Preds[i]);
- }
- InVal = NewPHI;
- }
-
- // Add an incoming value to the PHI node in the loop for the preheader
- // edge.
- PN->addIncoming(InVal, NewBB);
- }
-
- return NewBB;
- }
- /// FindFunctionBackedges - Analyze the specified function to find all of the
- /// loop backedges in the function and return them. This is a relatively cheap
- /// (compared to computing dominators and loop info) analysis.
- ///
- /// The output is added to Result, as pairs of <from,to> edge info.
- void llvm::FindFunctionBackedges(const Function &F,
- SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
- const BasicBlock *BB = &F.getEntryBlock();
- if (succ_begin(BB) == succ_end(BB))
- return;
-
- SmallPtrSet<const BasicBlock*, 8> Visited;
- SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
- SmallPtrSet<const BasicBlock*, 8> InStack;
-
- Visited.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- InStack.insert(BB);
- do {
- std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
- const BasicBlock *ParentBB = Top.first;
- succ_const_iterator &I = Top.second;
-
- bool FoundNew = false;
- while (I != succ_end(ParentBB)) {
- BB = *I++;
- if (Visited.insert(BB)) {
- FoundNew = true;
- break;
- }
- // Successor is in VisitStack, it's a back edge.
- if (InStack.count(BB))
- Result.push_back(std::make_pair(ParentBB, BB));
- }
-
- if (FoundNew) {
- // Go down one level if there is a unvisited successor.
- InStack.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- } else {
- // Go up one level.
- InStack.erase(VisitStack.pop_back_val().first);
- }
- } while (!VisitStack.empty());
- }
- /// FoldReturnIntoUncondBranch - This method duplicates the specified return
- /// instruction into a predecessor which ends in an unconditional branch. If
- /// the return instruction returns a value defined by a PHI, propagate the
- /// right value into the return. It returns the new return instruction in the
- /// predecessor.
- ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
- BasicBlock *Pred) {
- Instruction *UncondBranch = Pred->getTerminator();
- // Clone the return and add it to the end of the predecessor.
- Instruction *NewRet = RI->clone();
- Pred->getInstList().push_back(NewRet);
-
- // If the return instruction returns a value, and if the value was a
- // PHI node in "BB", propagate the right value into the return.
- for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
- i != e; ++i)
- if (PHINode *PN = dyn_cast<PHINode>(*i))
- if (PN->getParent() == BB)
- *i = PN->getIncomingValueForBlock(Pred);
-
- // Update any PHI nodes in the returning block to realize that we no
- // longer branch to them.
- BB->removePredecessor(Pred);
- UncondBranch->eraseFromParent();
- return cast<ReturnInst>(NewRet);
- }
|