123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498 |
- //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the SelectionDAG class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CodeGen.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Mutex.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <limits>
- #include <set>
- #include <string>
- #include <utility>
- #include <vector>
- using namespace llvm;
- /// makeVTList - Return an instance of the SDVTList struct initialized with the
- /// specified members.
- static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
- SDVTList Res = {VTs, NumVTs};
- return Res;
- }
- // Default null implementations of the callbacks.
- void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
- void SelectionDAG::DAGNodeDeletedListener::anchor() {}
- #define DEBUG_TYPE "selectiondag"
- static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
- cl::Hidden, cl::init(true),
- cl::desc("Gang up loads and stores generated by inlining of memcpy"));
- static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
- cl::desc("Number limit for gluing ld/st of memcpy."),
- cl::Hidden, cl::init(0));
- static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
- LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
- }
- //===----------------------------------------------------------------------===//
- // ConstantFPSDNode Class
- //===----------------------------------------------------------------------===//
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
- return getValueAPF().bitwiseIsEqual(V);
- }
- bool ConstantFPSDNode::isValueValidForType(EVT VT,
- const APFloat& Val) {
- assert(VT.isFloatingPoint() && "Can only convert between FP types");
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven,
- &losesInfo);
- return !losesInfo;
- }
- //===----------------------------------------------------------------------===//
- // ISD Namespace
- //===----------------------------------------------------------------------===//
- bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
- auto *BV = dyn_cast<BuildVectorSDNode>(N);
- if (!BV)
- return false;
- APInt SplatUndef;
- unsigned SplatBitSize;
- bool HasUndefs;
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
- return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
- EltSize) &&
- EltSize == SplatBitSize;
- }
- // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
- // specializations of the more general isConstantSplatVector()?
- bool ISD::isBuildVectorAllOnes(const SDNode *N) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).isUndef())
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-~0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target and
- // a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all ones, not whether the individual
- // constants are.
- SDValue NotZero = N->getOperand(i);
- unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
- if (CN->getAPIntValue().countTrailingOnes() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
- return false;
- } else
- return false;
- // Okay, we have at least one ~0 value, check to see if the rest match or are
- // undefs. Even with the above element type twiddling, this should be OK, as
- // the same type legalization should have applied to all the elements.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
- return false;
- return true;
- }
- bool ISD::isBuildVectorAllZeros(const SDNode *N) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- bool IsAllUndef = true;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- IsAllUndef = false;
- // Do not accept build_vectors that aren't all constants or which have non-0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target
- // and a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all zeros, not whether the individual
- // constants are.
- unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
- if (CN->getAPIntValue().countTrailingZeros() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
- return false;
- } else
- return false;
- }
- // Do not accept an all-undef vector.
- if (IsAllUndef)
- return false;
- return true;
- }
- bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- if (!isa<ConstantSDNode>(Op))
- return false;
- }
- return true;
- }
- bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.isUndef())
- continue;
- if (!isa<ConstantFPSDNode>(Op))
- return false;
- }
- return true;
- }
- bool ISD::allOperandsUndef(const SDNode *N) {
- // Return false if the node has no operands.
- // This is "logically inconsistent" with the definition of "all" but
- // is probably the desired behavior.
- if (N->getNumOperands() == 0)
- return false;
- for (const SDValue &Op : N->op_values())
- if (!Op.isUndef())
- return false;
- return true;
- }
- bool ISD::matchUnaryPredicate(SDValue Op,
- std::function<bool(ConstantSDNode *)> Match,
- bool AllowUndefs) {
- // FIXME: Add support for scalar UNDEF cases?
- if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
- return Match(Cst);
- // FIXME: Add support for vector UNDEF cases?
- if (ISD::BUILD_VECTOR != Op.getOpcode())
- return false;
- EVT SVT = Op.getValueType().getScalarType();
- for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
- if (AllowUndefs && Op.getOperand(i).isUndef()) {
- if (!Match(nullptr))
- return false;
- continue;
- }
- auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
- if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
- return false;
- }
- return true;
- }
- bool ISD::matchBinaryPredicate(
- SDValue LHS, SDValue RHS,
- std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
- bool AllowUndefs) {
- if (LHS.getValueType() != RHS.getValueType())
- return false;
- // TODO: Add support for scalar UNDEF cases?
- if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
- if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
- return Match(LHSCst, RHSCst);
- // TODO: Add support for vector UNDEF cases?
- if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
- ISD::BUILD_VECTOR != RHS.getOpcode())
- return false;
- EVT SVT = LHS.getValueType().getScalarType();
- for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
- SDValue LHSOp = LHS.getOperand(i);
- SDValue RHSOp = RHS.getOperand(i);
- bool LHSUndef = AllowUndefs && LHSOp.isUndef();
- bool RHSUndef = AllowUndefs && RHSOp.isUndef();
- auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
- auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
- if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
- return false;
- if (LHSOp.getValueType() != SVT ||
- LHSOp.getValueType() != RHSOp.getValueType())
- return false;
- if (!Match(LHSCst, RHSCst))
- return false;
- }
- return true;
- }
- ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
- switch (ExtType) {
- case ISD::EXTLOAD:
- return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
- case ISD::SEXTLOAD:
- return ISD::SIGN_EXTEND;
- case ISD::ZEXTLOAD:
- return ISD::ZERO_EXTEND;
- default:
- break;
- }
- llvm_unreachable("Invalid LoadExtType");
- }
- ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
- // To perform this operation, we just need to swap the L and G bits of the
- // operation.
- unsigned OldL = (Operation >> 2) & 1;
- unsigned OldG = (Operation >> 1) & 1;
- return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
- (OldL << 1) | // New G bit
- (OldG << 2)); // New L bit.
- }
- ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
- unsigned Operation = Op;
- if (isInteger)
- Operation ^= 7; // Flip L, G, E bits, but not U.
- else
- Operation ^= 15; // Flip all of the condition bits.
- if (Operation > ISD::SETTRUE2)
- Operation &= ~8; // Don't let N and U bits get set.
- return ISD::CondCode(Operation);
- }
- /// For an integer comparison, return 1 if the comparison is a signed operation
- /// and 2 if the result is an unsigned comparison. Return zero if the operation
- /// does not depend on the sign of the input (setne and seteq).
- static int isSignedOp(ISD::CondCode Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Illegal integer setcc operation!");
- case ISD::SETEQ:
- case ISD::SETNE: return 0;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE: return 1;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETUGT:
- case ISD::SETUGE: return 2;
- }
- }
- ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool IsInteger) {
- if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed integer setcc with an unsigned integer setcc.
- return ISD::SETCC_INVALID;
- unsigned Op = Op1 | Op2; // Combine all of the condition bits.
- // If the N and U bits get set, then the resultant comparison DOES suddenly
- // care about orderedness, and it is true when ordered.
- if (Op > ISD::SETTRUE2)
- Op &= ~16; // Clear the U bit if the N bit is set.
- // Canonicalize illegal integer setcc's.
- if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
- Op = ISD::SETNE;
- return ISD::CondCode(Op);
- }
- ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool IsInteger) {
- if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed setcc with an unsigned setcc.
- return ISD::SETCC_INVALID;
- // Combine all of the condition bits.
- ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
- // Canonicalize illegal integer setcc's.
- if (IsInteger) {
- switch (Result) {
- default: break;
- case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
- case ISD::SETOEQ: // SETEQ & SETU[LG]E
- case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
- case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
- case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
- }
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SDNode Profile Support
- //===----------------------------------------------------------------------===//
- /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
- static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
- ID.AddInteger(OpC);
- }
- /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
- /// solely with their pointer.
- static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
- ID.AddPointer(VTList.VTs);
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDValue> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDUse> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
- SDVTList VTList, ArrayRef<SDValue> OpList) {
- AddNodeIDOpcode(ID, OpC);
- AddNodeIDValueTypes(ID, VTList);
- AddNodeIDOperands(ID, OpList);
- }
- /// If this is an SDNode with special info, add this info to the NodeID data.
- static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
- switch (N->getOpcode()) {
- case ISD::TargetExternalSymbol:
- case ISD::ExternalSymbol:
- case ISD::MCSymbol:
- llvm_unreachable("Should only be used on nodes with operands");
- default: break; // Normal nodes don't need extra info.
- case ISD::TargetConstant:
- case ISD::Constant: {
- const ConstantSDNode *C = cast<ConstantSDNode>(N);
- ID.AddPointer(C->getConstantIntValue());
- ID.AddBoolean(C->isOpaque());
- break;
- }
- case ISD::TargetConstantFP:
- case ISD::ConstantFP:
- ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
- break;
- case ISD::TargetGlobalAddress:
- case ISD::GlobalAddress:
- case ISD::TargetGlobalTLSAddress:
- case ISD::GlobalTLSAddress: {
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
- ID.AddPointer(GA->getGlobal());
- ID.AddInteger(GA->getOffset());
- ID.AddInteger(GA->getTargetFlags());
- break;
- }
- case ISD::BasicBlock:
- ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
- break;
- case ISD::Register:
- ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
- break;
- case ISD::RegisterMask:
- ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
- break;
- case ISD::SRCVALUE:
- ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
- break;
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
- break;
- case ISD::LIFETIME_START:
- case ISD::LIFETIME_END:
- if (cast<LifetimeSDNode>(N)->hasOffset()) {
- ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
- ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
- }
- break;
- case ISD::JumpTable:
- case ISD::TargetJumpTable:
- ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
- ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
- break;
- case ISD::ConstantPool:
- case ISD::TargetConstantPool: {
- const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
- ID.AddInteger(CP->getAlignment());
- ID.AddInteger(CP->getOffset());
- if (CP->isMachineConstantPoolEntry())
- CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
- else
- ID.AddPointer(CP->getConstVal());
- ID.AddInteger(CP->getTargetFlags());
- break;
- }
- case ISD::TargetIndex: {
- const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
- ID.AddInteger(TI->getIndex());
- ID.AddInteger(TI->getOffset());
- ID.AddInteger(TI->getTargetFlags());
- break;
- }
- case ISD::LOAD: {
- const LoadSDNode *LD = cast<LoadSDNode>(N);
- ID.AddInteger(LD->getMemoryVT().getRawBits());
- ID.AddInteger(LD->getRawSubclassData());
- ID.AddInteger(LD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::STORE: {
- const StoreSDNode *ST = cast<StoreSDNode>(N);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MLOAD: {
- const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
- ID.AddInteger(MLD->getMemoryVT().getRawBits());
- ID.AddInteger(MLD->getRawSubclassData());
- ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MSTORE: {
- const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
- ID.AddInteger(MST->getMemoryVT().getRawBits());
- ID.AddInteger(MST->getRawSubclassData());
- ID.AddInteger(MST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MGATHER: {
- const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
- ID.AddInteger(MG->getMemoryVT().getRawBits());
- ID.AddInteger(MG->getRawSubclassData());
- ID.AddInteger(MG->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::MSCATTER: {
- const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
- ID.AddInteger(MS->getMemoryVT().getRawBits());
- ID.AddInteger(MS->getRawSubclassData());
- ID.AddInteger(MS->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_CLR:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD:
- case ISD::ATOMIC_STORE: {
- const AtomicSDNode *AT = cast<AtomicSDNode>(N);
- ID.AddInteger(AT->getMemoryVT().getRawBits());
- ID.AddInteger(AT->getRawSubclassData());
- ID.AddInteger(AT->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::PREFETCH: {
- const MemSDNode *PF = cast<MemSDNode>(N);
- ID.AddInteger(PF->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
- i != e; ++i)
- ID.AddInteger(SVN->getMaskElt(i));
- break;
- }
- case ISD::TargetBlockAddress:
- case ISD::BlockAddress: {
- const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
- ID.AddPointer(BA->getBlockAddress());
- ID.AddInteger(BA->getOffset());
- ID.AddInteger(BA->getTargetFlags());
- break;
- }
- } // end switch (N->getOpcode())
- // Target specific memory nodes could also have address spaces to check.
- if (N->isTargetMemoryOpcode())
- ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
- }
- /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
- /// data.
- static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
- AddNodeIDOpcode(ID, N->getOpcode());
- // Add the return value info.
- AddNodeIDValueTypes(ID, N->getVTList());
- // Add the operand info.
- AddNodeIDOperands(ID, N->ops());
- // Handle SDNode leafs with special info.
- AddNodeIDCustom(ID, N);
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG Class
- //===----------------------------------------------------------------------===//
- /// doNotCSE - Return true if CSE should not be performed for this node.
- static bool doNotCSE(SDNode *N) {
- if (N->getValueType(0) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- switch (N->getOpcode()) {
- default: break;
- case ISD::HANDLENODE:
- case ISD::EH_LABEL:
- return true; // Never CSE these nodes.
- }
- // Check that remaining values produced are not flags.
- for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
- if (N->getValueType(i) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- return false;
- }
- /// RemoveDeadNodes - This method deletes all unreachable nodes in the
- /// SelectionDAG.
- void SelectionDAG::RemoveDeadNodes() {
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted.
- HandleSDNode Dummy(getRoot());
- SmallVector<SDNode*, 128> DeadNodes;
- // Add all obviously-dead nodes to the DeadNodes worklist.
- for (SDNode &Node : allnodes())
- if (Node.use_empty())
- DeadNodes.push_back(&Node);
- RemoveDeadNodes(DeadNodes);
- // If the root changed (e.g. it was a dead load, update the root).
- setRoot(Dummy.getValue());
- }
- /// RemoveDeadNodes - This method deletes the unreachable nodes in the
- /// given list, and any nodes that become unreachable as a result.
- void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
- // Process the worklist, deleting the nodes and adding their uses to the
- // worklist.
- while (!DeadNodes.empty()) {
- SDNode *N = DeadNodes.pop_back_val();
- // Skip to next node if we've already managed to delete the node. This could
- // happen if replacing a node causes a node previously added to the node to
- // be deleted.
- if (N->getOpcode() == ISD::DELETED_NODE)
- continue;
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, nullptr);
- // Take the node out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Next, brutally remove the operand list. This is safe to do, as there are
- // no cycles in the graph.
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Operand = Use.getNode();
- Use.set(SDValue());
- // Now that we removed this operand, see if there are no uses of it left.
- if (Operand->use_empty())
- DeadNodes.push_back(Operand);
- }
- DeallocateNode(N);
- }
- }
- void SelectionDAG::RemoveDeadNode(SDNode *N){
- SmallVector<SDNode*, 16> DeadNodes(1, N);
- // Create a dummy node that adds a reference to the root node, preventing
- // it from being deleted. (This matters if the root is an operand of the
- // dead node.)
- HandleSDNode Dummy(getRoot());
- RemoveDeadNodes(DeadNodes);
- }
- void SelectionDAG::DeleteNode(SDNode *N) {
- // First take this out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Finally, remove uses due to operands of this node, remove from the
- // AllNodes list, and delete the node.
- DeleteNodeNotInCSEMaps(N);
- }
- void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
- assert(N->getIterator() != AllNodes.begin() &&
- "Cannot delete the entry node!");
- assert(N->use_empty() && "Cannot delete a node that is not dead!");
- // Drop all of the operands and decrement used node's use counts.
- N->DropOperands();
- DeallocateNode(N);
- }
- void SDDbgInfo::erase(const SDNode *Node) {
- DbgValMapType::iterator I = DbgValMap.find(Node);
- if (I == DbgValMap.end())
- return;
- for (auto &Val: I->second)
- Val->setIsInvalidated();
- DbgValMap.erase(I);
- }
- void SelectionDAG::DeallocateNode(SDNode *N) {
- // If we have operands, deallocate them.
- removeOperands(N);
- NodeAllocator.Deallocate(AllNodes.remove(N));
- // Set the opcode to DELETED_NODE to help catch bugs when node
- // memory is reallocated.
- // FIXME: There are places in SDag that have grown a dependency on the opcode
- // value in the released node.
- __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
- N->NodeType = ISD::DELETED_NODE;
- // If any of the SDDbgValue nodes refer to this SDNode, invalidate
- // them and forget about that node.
- DbgInfo->erase(N);
- }
- #ifndef NDEBUG
- /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
- static void VerifySDNode(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
- assert((I->getValueType() == EltVT ||
- (EltVT.isInteger() && I->getValueType().isInteger() &&
- EltVT.bitsLE(I->getValueType()))) &&
- "Wrong operand type!");
- assert(I->getValueType() == N->getOperand(0).getValueType() &&
- "Operands must all have the same type");
- }
- break;
- }
- }
- }
- #endif // NDEBUG
- /// Insert a newly allocated node into the DAG.
- ///
- /// Handles insertion into the all nodes list and CSE map, as well as
- /// verification and other common operations when a new node is allocated.
- void SelectionDAG::InsertNode(SDNode *N) {
- AllNodes.push_back(N);
- #ifndef NDEBUG
- N->PersistentId = NextPersistentId++;
- VerifySDNode(N);
- #endif
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeInserted(N);
- }
- /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
- /// correspond to it. This is useful when we're about to delete or repurpose
- /// the node. We don't want future request for structurally identical nodes
- /// to return N anymore.
- bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
- bool Erased = false;
- switch (N->getOpcode()) {
- case ISD::HANDLENODE: return false; // noop.
- case ISD::CONDCODE:
- assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
- "Cond code doesn't exist!");
- Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
- CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
- break;
- case ISD::ExternalSymbol:
- Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
- break;
- case ISD::TargetExternalSymbol: {
- ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
- Erased = TargetExternalSymbols.erase(
- std::pair<std::string,unsigned char>(ESN->getSymbol(),
- ESN->getTargetFlags()));
- break;
- }
- case ISD::MCSymbol: {
- auto *MCSN = cast<MCSymbolSDNode>(N);
- Erased = MCSymbols.erase(MCSN->getMCSymbol());
- break;
- }
- case ISD::VALUETYPE: {
- EVT VT = cast<VTSDNode>(N)->getVT();
- if (VT.isExtended()) {
- Erased = ExtendedValueTypeNodes.erase(VT);
- } else {
- Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
- ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
- }
- break;
- }
- default:
- // Remove it from the CSE Map.
- assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
- assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
- Erased = CSEMap.RemoveNode(N);
- break;
- }
- #ifndef NDEBUG
- // Verify that the node was actually in one of the CSE maps, unless it has a
- // flag result (which cannot be CSE'd) or is one of the special cases that are
- // not subject to CSE.
- if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
- !N->isMachineOpcode() && !doNotCSE(N)) {
- N->dump(this);
- dbgs() << "\n";
- llvm_unreachable("Node is not in map!");
- }
- #endif
- return Erased;
- }
- /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
- /// maps and modified in place. Add it back to the CSE maps, unless an identical
- /// node already exists, in which case transfer all its users to the existing
- /// node. This transfer can potentially trigger recursive merging.
- void
- SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
- // For node types that aren't CSE'd, just act as if no identical node
- // already exists.
- if (!doNotCSE(N)) {
- SDNode *Existing = CSEMap.GetOrInsertNode(N);
- if (Existing != N) {
- // If there was already an existing matching node, use ReplaceAllUsesWith
- // to replace the dead one with the existing one. This can cause
- // recursive merging of other unrelated nodes down the line.
- ReplaceAllUsesWith(N, Existing);
- // N is now dead. Inform the listeners and delete it.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, Existing);
- DeleteNodeNotInCSEMaps(N);
- return;
- }
- }
- // If the node doesn't already exist, we updated it. Inform listeners.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeUpdated(N);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- SDValue Op1, SDValue Op2,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op1, Op2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
- if (Node)
- Node->intersectFlagsWith(N->getFlags());
- return Node;
- }
- unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
- Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::getInt8Ty(*getContext()), 0) :
- VT.getTypeForEVT(*getContext());
- return getDataLayout().getABITypeAlignment(Ty);
- }
- // EntryNode could meaningfully have debug info if we can find it...
- SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), OptLevel(OL),
- EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()) {
- InsertNode(&EntryNode);
- DbgInfo = new SDDbgInfo();
- }
- void SelectionDAG::init(MachineFunction &NewMF,
- OptimizationRemarkEmitter &NewORE,
- Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
- LegacyDivergenceAnalysis * Divergence) {
- MF = &NewMF;
- SDAGISelPass = PassPtr;
- ORE = &NewORE;
- TLI = getSubtarget().getTargetLowering();
- TSI = getSubtarget().getSelectionDAGInfo();
- LibInfo = LibraryInfo;
- Context = &MF->getFunction().getContext();
- DA = Divergence;
- }
- SelectionDAG::~SelectionDAG() {
- assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
- allnodes_clear();
- OperandRecycler.clear(OperandAllocator);
- delete DbgInfo;
- }
- void SelectionDAG::allnodes_clear() {
- assert(&*AllNodes.begin() == &EntryNode);
- AllNodes.remove(AllNodes.begin());
- while (!AllNodes.empty())
- DeallocateNode(&AllNodes.front());
- #ifndef NDEBUG
- NextPersistentId = 0;
- #endif
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::Constant:
- case ISD::ConstantFP:
- llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
- "debug location. Use another overload.");
- }
- }
- return N;
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- const SDLoc &DL, void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- case ISD::Constant:
- case ISD::ConstantFP:
- // Erase debug location from the node if the node is used at several
- // different places. Do not propagate one location to all uses as it
- // will cause a worse single stepping debugging experience.
- if (N->getDebugLoc() != DL.getDebugLoc())
- N->setDebugLoc(DebugLoc());
- break;
- default:
- // When the node's point of use is located earlier in the instruction
- // sequence than its prior point of use, update its debug info to the
- // earlier location.
- if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
- N->setDebugLoc(DL.getDebugLoc());
- break;
- }
- }
- return N;
- }
- void SelectionDAG::clear() {
- allnodes_clear();
- OperandRecycler.clear(OperandAllocator);
- OperandAllocator.Reset();
- CSEMap.clear();
- ExtendedValueTypeNodes.clear();
- ExternalSymbols.clear();
- TargetExternalSymbols.clear();
- MCSymbols.clear();
- std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
- static_cast<CondCodeSDNode*>(nullptr));
- std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
- static_cast<SDNode*>(nullptr));
- EntryNode.UseList = nullptr;
- InsertNode(&EntryNode);
- Root = getEntryNode();
- DbgInfo->clear();
- }
- SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType())
- ? getNode(ISD::FP_EXTEND, DL, VT, Op)
- : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
- }
- SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ANY_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
- EVT OpVT) {
- if (VT.bitsLE(Op.getValueType()))
- return getNode(ISD::TRUNCATE, SL, VT, Op);
- TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
- return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
- }
- SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
- assert(!VT.isVector() &&
- "getZeroExtendInReg should use the vector element type instead of "
- "the vector type!");
- if (Op.getValueType().getScalarType() == VT) return Op;
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- APInt Imm = APInt::getLowBitsSet(BitWidth,
- VT.getSizeInBits());
- return getNode(ISD::AND, DL, Op.getValueType(), Op,
- getConstant(Imm, DL, Op.getValueType()));
- }
- /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
- SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
- EVT EltVT = VT.getScalarType();
- SDValue NegOne =
- getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
- return getNode(ISD::XOR, DL, VT, Val, NegOne);
- }
- SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
- SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
- return getNode(ISD::XOR, DL, VT, Val, TrueValue);
- }
- SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
- EVT OpVT) {
- if (!V)
- return getConstant(0, DL, VT);
- switch (TLI->getBooleanContents(OpVT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- case TargetLowering::UndefinedBooleanContent:
- return getConstant(1, DL, VT);
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return getAllOnesConstant(DL, VT);
- }
- llvm_unreachable("Unexpected boolean content enum!");
- }
- SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
- bool isT, bool isO) {
- EVT EltVT = VT.getScalarType();
- assert((EltVT.getSizeInBits() >= 64 ||
- (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
- "getConstant with a uint64_t value that doesn't fit in the type!");
- return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
- bool isT, bool isO) {
- return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
- EVT VT, bool isT, bool isO) {
- assert(VT.isInteger() && "Cannot create FP integer constant!");
- EVT EltVT = VT.getScalarType();
- const ConstantInt *Elt = &Val;
- // In some cases the vector type is legal but the element type is illegal and
- // needs to be promoted, for example v8i8 on ARM. In this case, promote the
- // inserted value (the type does not need to match the vector element type).
- // Any extra bits introduced will be truncated away.
- if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypePromoteInteger) {
- EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
- Elt = ConstantInt::get(*getContext(), NewVal);
- }
- // In other cases the element type is illegal and needs to be expanded, for
- // example v2i64 on MIPS32. In this case, find the nearest legal type, split
- // the value into n parts and use a vector type with n-times the elements.
- // Then bitcast to the type requested.
- // Legalizing constants too early makes the DAGCombiner's job harder so we
- // only legalize if the DAG tells us we must produce legal types.
- else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
- TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypeExpandInteger) {
- const APInt &NewVal = Elt->getValue();
- EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
- unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
- EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
- // Check the temporary vector is the correct size. If this fails then
- // getTypeToTransformTo() probably returned a type whose size (in bits)
- // isn't a power-of-2 factor of the requested type size.
- assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
- SmallVector<SDValue, 2> EltParts;
- for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
- EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
- .zextOrTrunc(ViaEltSizeInBits), DL,
- ViaEltVT, isT, isO));
- }
- // EltParts is currently in little endian order. If we actually want
- // big-endian order then reverse it now.
- if (getDataLayout().isBigEndian())
- std::reverse(EltParts.begin(), EltParts.end());
- // The elements must be reversed when the element order is different
- // to the endianness of the elements (because the BITCAST is itself a
- // vector shuffle in this situation). However, we do not need any code to
- // perform this reversal because getConstant() is producing a vector
- // splat.
- // This situation occurs in MIPS MSA.
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
- Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
- SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
- return V;
- }
- assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
- "APInt size does not match type size!");
- unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(Elt);
- ID.AddBoolean(isO);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
- }
- SDValue Result(N, 0);
- if (VT.isVector())
- Result = getSplatBuildVector(VT, DL, Result);
- return Result;
- }
- SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
- bool isTarget) {
- return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
- }
- SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
- const SDLoc &DL, bool LegalTypes) {
- EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
- return getConstant(Val, DL, ShiftVT);
- }
- SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
- bool isTarget) {
- return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
- EVT VT, bool isTarget) {
- assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- EVT EltVT = VT.getScalarType();
- // Do the map lookup using the actual bit pattern for the floating point
- // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
- // we don't have issues with SNANs.
- unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(&V);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector())
- Result = getSplatBuildVector(VT, DL, Result);
- NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
- return Result;
- }
- SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
- bool isTarget) {
- EVT EltVT = VT.getScalarType();
- if (EltVT == MVT::f32)
- return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
- else if (EltVT == MVT::f64)
- return getConstantFP(APFloat(Val), DL, VT, isTarget);
- else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
- EltVT == MVT::f16) {
- bool Ignored;
- APFloat APF = APFloat(Val);
- APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
- &Ignored);
- return getConstantFP(APF, DL, VT, isTarget);
- } else
- llvm_unreachable("Unsupported type in getConstantFP");
- }
- SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
- EVT VT, int64_t Offset, bool isTargetGA,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTargetGA) &&
- "Cannot set target flags on target-independent globals");
- // Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
- if (BitWidth < 64)
- Offset = SignExtend64(Offset, BitWidth);
- unsigned Opc;
- if (GV->isThreadLocal())
- Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
- else
- Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(GV);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<GlobalAddressSDNode>(
- Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
- unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(FI);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent jump tables");
- unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(JTI);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = MF->getFunction().hasOptSize()
- ? getDataLayout().getABITypeAlignment(C->getType())
- : getDataLayout().getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- ID.AddPointer(C);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- C->addSelectionDAGCSEId(ID);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
- unsigned char TargetFlags) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
- ID.AddInteger(Index);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
- ID.AddPointer(MBB);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<BasicBlockSDNode>(MBB);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getValueType(EVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
- ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
- SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
- if (N) return SDValue(N, 0);
- N = newSDNode<VTSDNode>(VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
- SDNode *&N = ExternalSymbols[Sym];
- if (N) return SDValue(N, 0);
- N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
- SDNode *&N = MCSymbols[Sym];
- if (N)
- return SDValue(N, 0);
- N = newSDNode<MCSymbolSDNode>(Sym, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
- unsigned char TargetFlags) {
- SDNode *&N =
- TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
- TargetFlags)];
- if (N) return SDValue(N, 0);
- N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
- if ((unsigned)Cond >= CondCodeNodes.size())
- CondCodeNodes.resize(Cond+1);
- if (!CondCodeNodes[Cond]) {
- auto *N = newSDNode<CondCodeSDNode>(Cond);
- CondCodeNodes[Cond] = N;
- InsertNode(N);
- }
- return SDValue(CondCodeNodes[Cond], 0);
- }
- /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
- /// point at N1 to point at N2 and indices that point at N2 to point at N1.
- static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
- std::swap(N1, N2);
- ShuffleVectorSDNode::commuteMask(M);
- }
- SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
- SDValue N2, ArrayRef<int> Mask) {
- assert(VT.getVectorNumElements() == Mask.size() &&
- "Must have the same number of vector elements as mask elements!");
- assert(VT == N1.getValueType() && VT == N2.getValueType() &&
- "Invalid VECTOR_SHUFFLE");
- // Canonicalize shuffle undef, undef -> undef
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
- // input to the shuffle.
- int NElts = Mask.size();
- assert(llvm::all_of(Mask,
- [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
- "Index out of range");
- // Copy the mask so we can do any needed cleanup.
- SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
- // Canonicalize shuffle v, v -> v, undef
- if (N1 == N2) {
- N2 = getUNDEF(VT);
- for (int i = 0; i != NElts; ++i)
- if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
- }
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N1.isUndef())
- commuteShuffle(N1, N2, MaskVec);
- if (TLI->hasVectorBlend()) {
- // If shuffling a splat, try to blend the splat instead. We do this here so
- // that even when this arises during lowering we don't have to re-handle it.
- auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- if (!Splat)
- return;
- for (int i = 0; i < NElts; ++i) {
- if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
- continue;
- // If this input comes from undef, mark it as such.
- if (UndefElements[MaskVec[i] - Offset]) {
- MaskVec[i] = -1;
- continue;
- }
- // If we can blend a non-undef lane, use that instead.
- if (!UndefElements[i])
- MaskVec[i] = i + Offset;
- }
- };
- if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
- BlendSplat(N1BV, 0);
- if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
- BlendSplat(N2BV, NElts);
- }
- // Canonicalize all index into lhs, -> shuffle lhs, undef
- // Canonicalize all index into rhs, -> shuffle rhs, undef
- bool AllLHS = true, AllRHS = true;
- bool N2Undef = N2.isUndef();
- for (int i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= NElts) {
- if (N2Undef)
- MaskVec[i] = -1;
- else
- AllLHS = false;
- } else if (MaskVec[i] >= 0) {
- AllRHS = false;
- }
- }
- if (AllLHS && AllRHS)
- return getUNDEF(VT);
- if (AllLHS && !N2Undef)
- N2 = getUNDEF(VT);
- if (AllRHS) {
- N1 = getUNDEF(VT);
- commuteShuffle(N1, N2, MaskVec);
- }
- // Reset our undef status after accounting for the mask.
- N2Undef = N2.isUndef();
- // Re-check whether both sides ended up undef.
- if (N1.isUndef() && N2Undef)
- return getUNDEF(VT);
- // If Identity shuffle return that node.
- bool Identity = true, AllSame = true;
- for (int i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
- if (MaskVec[i] != MaskVec[0]) AllSame = false;
- }
- if (Identity && NElts)
- return N1;
- // Shuffling a constant splat doesn't change the result.
- if (N2Undef) {
- SDValue V = N1;
- // Look through any bitcasts. We check that these don't change the number
- // (and size) of elements and just changes their types.
- while (V.getOpcode() == ISD::BITCAST)
- V = V->getOperand(0);
- // A splat should always show up as a build vector node.
- if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- // If this is a splat of an undef, shuffling it is also undef.
- if (Splat && Splat.isUndef())
- return getUNDEF(VT);
- bool SameNumElts =
- V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
- // We only have a splat which can skip shuffles if there is a splatted
- // value and no undef lanes rearranged by the shuffle.
- if (Splat && UndefElements.none()) {
- // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
- // number of elements match or the value splatted is a zero constant.
- if (SameNumElts)
- return N1;
- if (auto *C = dyn_cast<ConstantSDNode>(Splat))
- if (C->isNullValue())
- return N1;
- }
- // If the shuffle itself creates a splat, build the vector directly.
- if (AllSame && SameNumElts) {
- EVT BuildVT = BV->getValueType(0);
- const SDValue &Splatted = BV->getOperand(MaskVec[0]);
- SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
- // We may have jumped through bitcasts, so the type of the
- // BUILD_VECTOR may not match the type of the shuffle.
- if (BuildVT != VT)
- NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
- return NewBV;
- }
- }
- }
- FoldingSetNodeID ID;
- SDValue Ops[2] = { N1, N2 };
- AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
- for (int i = 0; i != NElts; ++i)
- ID.AddInteger(MaskVec[i]);
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- // Allocate the mask array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the NodeAllocator is released.
- int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
- llvm::copy(MaskVec, MaskAlloc);
- auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
- dl.getDebugLoc(), MaskAlloc);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
- EVT VT = SV.getValueType(0);
- SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
- ShuffleVectorSDNode::commuteMask(MaskVec);
- SDValue Op0 = SV.getOperand(0);
- SDValue Op1 = SV.getOperand(1);
- return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
- }
- SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
- ID.AddInteger(RegNo);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
- N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
- ID.AddPointer(RegMask);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
- MCSymbol *Label) {
- return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
- }
- SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
- SDValue Root, MCSymbol *Label) {
- FoldingSetNodeID ID;
- SDValue Ops[] = { Root };
- AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
- ID.AddPointer(Label);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
- int64_t Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(BA);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getSrcValue(const Value *V) {
- assert((!V || V->getType()->isPointerTy()) &&
- "SrcValue is not a pointer?");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<SrcValueSDNode>(V);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMDNode(const MDNode *MD) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
- ID.AddPointer(MD);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<MDNodeSDNode>(MD);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
- if (VT == V.getValueType())
- return V;
- return getNode(ISD::BITCAST, SDLoc(V), VT, V);
- }
- SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
- unsigned SrcAS, unsigned DestAS) {
- SDValue Ops[] = {Ptr};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
- ID.AddInteger(SrcAS);
- ID.AddInteger(DestAS);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VT, SrcAS, DestAS);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- /// getShiftAmountOperand - Return the specified value casted to
- /// the target's desired shift amount type.
- SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
- EVT OpTy = Op.getValueType();
- EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
- if (OpTy == ShTy || OpTy.isVector()) return Op;
- return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
- }
- SDValue SelectionDAG::expandVAArg(SDNode *Node) {
- SDLoc dl(Node);
- const TargetLowering &TLI = getTargetLoweringInfo();
- const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
- EVT VT = Node->getValueType(0);
- SDValue Tmp1 = Node->getOperand(0);
- SDValue Tmp2 = Node->getOperand(1);
- unsigned Align = Node->getConstantOperandVal(3);
- SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
- Tmp2, MachinePointerInfo(V));
- SDValue VAList = VAListLoad;
- if (Align > TLI.getMinStackArgumentAlignment()) {
- assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
- VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
- getConstant(Align - 1, dl, VAList.getValueType()));
- VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
- getConstant(-(int64_t)Align, dl, VAList.getValueType()));
- }
- // Increment the pointer, VAList, to the next vaarg
- Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
- getConstant(getDataLayout().getTypeAllocSize(
- VT.getTypeForEVT(*getContext())),
- dl, VAList.getValueType()));
- // Store the incremented VAList to the legalized pointer
- Tmp1 =
- getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
- // Load the actual argument out of the pointer VAList
- return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
- }
- SDValue SelectionDAG::expandVACopy(SDNode *Node) {
- SDLoc dl(Node);
- const TargetLowering &TLI = getTargetLoweringInfo();
- // This defaults to loading a pointer from the input and storing it to the
- // output, returning the chain.
- const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
- const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
- SDValue Tmp1 =
- getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
- Node->getOperand(2), MachinePointerInfo(VS));
- return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
- MachinePointerInfo(VD));
- }
- SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
- unsigned ByteSize = VT.getStoreSize();
- Type *Ty = VT.getTypeForEVT(*getContext());
- unsigned StackAlign =
- std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
- int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
- return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
- }
- SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
- unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
- Type *Ty1 = VT1.getTypeForEVT(*getContext());
- Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const DataLayout &DL = getDataLayout();
- unsigned Align =
- std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
- MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
- int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
- return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
- }
- SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
- ISD::CondCode Cond, const SDLoc &dl) {
- EVT OpVT = N1.getValueType();
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETONE:
- case ISD::SETO:
- case ISD::SETUO:
- case ISD::SETUEQ:
- case ISD::SETUNE:
- assert(!OpVT.isInteger() && "Illegal setcc for integer!");
- break;
- }
- if (OpVT.isInteger()) {
- // For EQ and NE, we can always pick a value for the undef to make the
- // predicate pass or fail, so we can return undef.
- // Matches behavior in llvm::ConstantFoldCompareInstruction.
- // icmp eq/ne X, undef -> undef.
- if ((N1.isUndef() || N2.isUndef()) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE))
- return getUNDEF(VT);
- // If both operands are undef, we can return undef for int comparison.
- // icmp undef, undef -> undef.
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- // icmp X, X -> true/false
- // icmp X, undef -> true/false because undef could be X.
- if (N1 == N2)
- return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
- }
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
- const APInt &C2 = N2C->getAPIntValue();
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
- case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
- case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
- case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
- case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
- case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
- case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
- case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
- case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
- case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
- }
- }
- }
- auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- if (N1CFP && N2CFP) {
- APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
- switch (Cond) {
- default: break;
- case ISD::SETEQ: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETNE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETLT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETGT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
- VT, OpVT);
- case ISD::SETLE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETGE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- LLVM_FALLTHROUGH;
- case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual, dl, VT, OpVT);
- case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
- OpVT);
- case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan, dl, VT,
- OpVT);
- case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpUnordered, dl, VT,
- OpVT);
- case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
- VT, OpVT);
- case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
- OpVT);
- }
- } else if (N1CFP && OpVT.isSimple()) {
- // Ensure that the constant occurs on the RHS.
- ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
- if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
- return SDValue();
- return getSetCC(dl, VT, N2, N1, SwappedCond);
- } else if (N2CFP && N2CFP->getValueAPF().isNaN()) {
- // If an operand is known to be a nan, we can fold it.
- switch (ISD::getUnorderedFlavor(Cond)) {
- default:
- llvm_unreachable("Unknown flavor!");
- case 0: // Known false.
- return getBoolConstant(false, dl, VT, OpVT);
- case 1: // Known true.
- return getBoolConstant(true, dl, VT, OpVT);
- case 2: // Undefined.
- return getUNDEF(VT);
- }
- }
- // Could not fold it.
- return SDValue();
- }
- /// See if the specified operand can be simplified with the knowledge that only
- /// the bits specified by Mask are used.
- SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
- switch (V.getOpcode()) {
- default:
- break;
- case ISD::Constant: {
- const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
- assert(CV && "Const value should be ConstSDNode.");
- const APInt &CVal = CV->getAPIntValue();
- APInt NewVal = CVal & Mask;
- if (NewVal != CVal)
- return getConstant(NewVal, SDLoc(V), V.getValueType());
- break;
- }
- case ISD::OR:
- case ISD::XOR:
- // If the LHS or RHS don't contribute bits to the or, drop them.
- if (MaskedValueIsZero(V.getOperand(0), Mask))
- return V.getOperand(1);
- if (MaskedValueIsZero(V.getOperand(1), Mask))
- return V.getOperand(0);
- break;
- case ISD::SRL:
- // Only look at single-use SRLs.
- if (!V.getNode()->hasOneUse())
- break;
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
- // See if we can recursively simplify the LHS.
- unsigned Amt = RHSC->getZExtValue();
- // Watch out for shift count overflow though.
- if (Amt >= Mask.getBitWidth())
- break;
- APInt NewMask = Mask << Amt;
- if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
- return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
- V.getOperand(1));
- }
- break;
- case ISD::AND: {
- // X & -1 -> X (ignoring bits which aren't demanded).
- // Also handle the case where masked out bits in X are known to be zero.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
- const APInt &AndVal = RHSC->getAPIntValue();
- if (Mask.isSubsetOf(AndVal) ||
- Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal))
- return V.getOperand(0);
- }
- break;
- }
- case ISD::ANY_EXTEND: {
- SDValue Src = V.getOperand(0);
- unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
- // Being conservative here - only peek through if we only demand bits in the
- // non-extended source (even though the extended bits are technically undef).
- if (Mask.getActiveBits() > SrcBitWidth)
- break;
- APInt SrcMask = Mask.trunc(SrcBitWidth);
- if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
- return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
- break;
- }
- case ISD::SIGN_EXTEND_INREG:
- EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
- unsigned ExVTBits = ExVT.getScalarSizeInBits();
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if (Mask.getActiveBits() <= ExVTBits)
- return V.getOperand(0);
- break;
- }
- return SDValue();
- }
- /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
- /// use this predicate to simplify operations downstream.
- bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be zero
- /// for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
- unsigned Depth) const {
- return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
- }
- /// isSplatValue - Return true if the vector V has the same value
- /// across all DemandedElts.
- bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
- APInt &UndefElts) {
- if (!DemandedElts)
- return false; // No demanded elts, better to assume we don't know anything.
- EVT VT = V.getValueType();
- assert(VT.isVector() && "Vector type expected");
- unsigned NumElts = VT.getVectorNumElements();
- assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
- UndefElts = APInt::getNullValue(NumElts);
- switch (V.getOpcode()) {
- case ISD::BUILD_VECTOR: {
- SDValue Scl;
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue Op = V.getOperand(i);
- if (Op.isUndef()) {
- UndefElts.setBit(i);
- continue;
- }
- if (!DemandedElts[i])
- continue;
- if (Scl && Scl != Op)
- return false;
- Scl = Op;
- }
- return true;
- }
- case ISD::VECTOR_SHUFFLE: {
- // Check if this is a shuffle node doing a splat.
- // TODO: Do we need to handle shuffle(splat, undef, mask)?
- int SplatIndex = -1;
- ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
- for (int i = 0; i != (int)NumElts; ++i) {
- int M = Mask[i];
- if (M < 0) {
- UndefElts.setBit(i);
- continue;
- }
- if (!DemandedElts[i])
- continue;
- if (0 <= SplatIndex && SplatIndex != M)
- return false;
- SplatIndex = M;
- }
- return true;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- SDValue Src = V.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- APInt UndefSrcElts;
- APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
- UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
- return true;
- }
- }
- break;
- }
- case ISD::ADD:
- case ISD::SUB:
- case ISD::AND: {
- APInt UndefLHS, UndefRHS;
- SDValue LHS = V.getOperand(0);
- SDValue RHS = V.getOperand(1);
- if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
- isSplatValue(RHS, DemandedElts, UndefRHS)) {
- UndefElts = UndefLHS | UndefRHS;
- return true;
- }
- break;
- }
- }
- return false;
- }
- /// Helper wrapper to main isSplatValue function.
- bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
- EVT VT = V.getValueType();
- assert(VT.isVector() && "Vector type expected");
- unsigned NumElts = VT.getVectorNumElements();
- APInt UndefElts;
- APInt DemandedElts = APInt::getAllOnesValue(NumElts);
- return isSplatValue(V, DemandedElts, UndefElts) &&
- (AllowUndefs || !UndefElts);
- }
- /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
- /// is less than the element bit-width of the shift node, return it.
- static const APInt *getValidShiftAmountConstant(SDValue V) {
- if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
- // Shifting more than the bitwidth is not valid.
- const APInt &ShAmt = SA->getAPIntValue();
- if (ShAmt.ult(V.getScalarValueSizeInBits()))
- return &ShAmt;
- }
- return nullptr;
- }
- /// Determine which bits of Op are known to be either zero or one and return
- /// them in Known. For vectors, the known bits are those that are shared by
- /// every vector element.
- KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnesValue(VT.getVectorNumElements())
- : APInt(1, 1);
- return computeKnownBits(Op, DemandedElts, Depth);
- }
- /// Determine which bits of Op are known to be either zero or one and return
- /// them in Known. The DemandedElts argument allows us to only collect the known
- /// bits that are shared by the requested vector elements.
- KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
- unsigned Depth) const {
- unsigned BitWidth = Op.getScalarValueSizeInBits();
- KnownBits Known(BitWidth); // Don't know anything.
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- // We know all of the bits for a constant!
- Known.One = C->getAPIntValue();
- Known.Zero = ~Known.One;
- return Known;
- }
- if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
- // We know all of the bits for a constant fp!
- Known.One = C->getValueAPF().bitcastToAPInt();
- Known.Zero = ~Known.One;
- return Known;
- }
- if (Depth == 6)
- return Known; // Limit search depth.
- KnownBits Known2;
- unsigned NumElts = DemandedElts.getBitWidth();
- assert((!Op.getValueType().isVector() ||
- NumElts == Op.getValueType().getVectorNumElements()) &&
- "Unexpected vector size");
- if (!DemandedElts)
- return Known; // No demanded elts, better to assume we don't know anything.
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- case ISD::BUILD_VECTOR:
- // Collect the known bits that are shared by every demanded vector element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue SrcOp = Op.getOperand(i);
- Known2 = computeKnownBits(SrcOp, Depth + 1);
- // BUILD_VECTOR can implicitly truncate sources, we must handle this.
- if (SrcOp.getValueSizeInBits() != BitWidth) {
- assert(SrcOp.getValueSizeInBits() > BitWidth &&
- "Expected BUILD_VECTOR implicit truncation");
- Known2 = Known2.trunc(BitWidth);
- }
- // Known bits are the values that are shared by every demanded element.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- break;
- case ISD::VECTOR_SHUFFLE: {
- // Collect the known bits that are shared by every vector element referenced
- // by the shuffle.
- APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- Known.Zero.setAllBits(); Known.One.setAllBits();
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
- assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- int M = SVN->getMaskElt(i);
- if (M < 0) {
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- Known.resetAll();
- DemandedLHS.clearAllBits();
- DemandedRHS.clearAllBits();
- break;
- }
- if ((unsigned)M < NumElts)
- DemandedLHS.setBit((unsigned)M % NumElts);
- else
- DemandedRHS.setBit((unsigned)M % NumElts);
- }
- // Known bits are the values that are shared by every demanded element.
- if (!!DemandedLHS) {
- SDValue LHS = Op.getOperand(0);
- Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- if (!!DemandedRHS) {
- SDValue RHS = Op.getOperand(1);
- Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- // Split DemandedElts and test each of the demanded subvectors.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- EVT SubVectorVT = Op.getOperand(0).getValueType();
- unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
- unsigned NumSubVectors = Op.getNumOperands();
- for (unsigned i = 0; i != NumSubVectors; ++i) {
- APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
- DemandedSub = DemandedSub.trunc(NumSubVectorElts);
- if (!!DemandedSub) {
- SDValue Sub = Op.getOperand(i);
- Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- // If we know the element index, demand any elements from the subvector and
- // the remainder from the src its inserted into, otherwise demand them all.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
- Known.One.setAllBits();
- Known.Zero.setAllBits();
- uint64_t Idx = SubIdx->getZExtValue();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- if (!!DemandedSubElts) {
- Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
- if (Known.isUnknown())
- break; // early-out.
- }
- APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
- APInt DemandedSrcElts = DemandedElts & ~SubMask;
- if (!!DemandedSrcElts) {
- Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- } else {
- Known = computeKnownBits(Sub, Depth + 1);
- if (Known.isUnknown())
- break; // early-out.
- Known2 = computeKnownBits(Src, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // If we know the element index, just demand that subvector elements,
- // otherwise demand them all.
- SDValue Src = Op.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
- } else {
- Known = computeKnownBits(Src, Depth + 1);
- }
- break;
- }
- case ISD::SCALAR_TO_VECTOR: {
- // We know about scalar_to_vector as much as we know about it source,
- // which becomes the first element of otherwise unknown vector.
- if (DemandedElts != 1)
- break;
- SDValue N0 = Op.getOperand(0);
- Known = computeKnownBits(N0, Depth + 1);
- if (N0.getValueSizeInBits() != BitWidth)
- Known = Known.trunc(BitWidth);
- break;
- }
- case ISD::BITCAST: {
- SDValue N0 = Op.getOperand(0);
- EVT SubVT = N0.getValueType();
- unsigned SubBitWidth = SubVT.getScalarSizeInBits();
- // Ignore bitcasts from unsupported types.
- if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
- break;
- // Fast handling of 'identity' bitcasts.
- if (BitWidth == SubBitWidth) {
- Known = computeKnownBits(N0, DemandedElts, Depth + 1);
- break;
- }
- bool IsLE = getDataLayout().isLittleEndian();
- // Bitcast 'small element' vector to 'large element' scalar/vector.
- if ((BitWidth % SubBitWidth) == 0) {
- assert(N0.getValueType().isVector() && "Expected bitcast from vector");
- // Collect known bits for the (larger) output by collecting the known
- // bits from each set of sub elements and shift these into place.
- // We need to separately call computeKnownBits for each set of
- // sub elements as the knownbits for each is likely to be different.
- unsigned SubScale = BitWidth / SubBitWidth;
- APInt SubDemandedElts(NumElts * SubScale, 0);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SubDemandedElts.setBit(i * SubScale);
- for (unsigned i = 0; i != SubScale; ++i) {
- Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
- Depth + 1);
- unsigned Shifts = IsLE ? i : SubScale - 1 - i;
- Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
- Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
- }
- }
- // Bitcast 'large element' scalar/vector to 'small element' vector.
- if ((SubBitWidth % BitWidth) == 0) {
- assert(Op.getValueType().isVector() && "Expected bitcast to vector");
- // Collect known bits for the (smaller) output by collecting the known
- // bits from the overlapping larger input elements and extracting the
- // sub sections we actually care about.
- unsigned SubScale = SubBitWidth / BitWidth;
- APInt SubDemandedElts(NumElts / SubScale, 0);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SubDemandedElts.setBit(i / SubScale);
- Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Shifts = IsLE ? i : NumElts - 1 - i;
- unsigned Offset = (Shifts % SubScale) * BitWidth;
- Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
- Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- }
- }
- break;
- }
- case ISD::AND:
- // If either the LHS or the RHS are Zero, the result is zero.
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // Output known-1 bits are only known if set in both the LHS & RHS.
- Known.One &= Known2.One;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- Known.Zero |= Known2.Zero;
- break;
- case ISD::OR:
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- Known.Zero &= Known2.Zero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- Known.One |= Known2.One;
- break;
- case ISD::XOR: {
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
- Known.Zero = KnownZeroOut;
- break;
- }
- case ISD::MUL: {
- Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conservative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- unsigned TrailZ = Known.countMinTrailingZeros() +
- Known2.countMinTrailingZeros();
- unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
- Known2.countMinLeadingZeros(),
- BitWidth) - BitWidth;
- Known.resetAll();
- Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
- Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
- break;
- }
- case ISD::UDIV: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned LeadZ = Known2.countMinLeadingZeros();
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
- if (RHSMaxLeadingZeros != BitWidth)
- LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
- Known.Zero.setHighBits(LeadZ);
- break;
- }
- case ISD::SELECT:
- case ISD::VSELECT:
- Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SELECT_CC:
- Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
- // If we don't know any bits, early out.
- if (Known.isUnknown())
- break;
- Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SMULO:
- case ISD::UMULO:
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents.
- // If we know the result of a setcc has the top bits zero, use this info.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- case ISD::SETCC:
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- case ISD::SHL:
- if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned Shift = ShAmt->getZExtValue();
- Known.Zero <<= Shift;
- Known.One <<= Shift;
- // Low bits are known zero.
- Known.Zero.setLowBits(Shift);
- }
- break;
- case ISD::SRL:
- if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned Shift = ShAmt->getZExtValue();
- Known.Zero.lshrInPlace(Shift);
- Known.One.lshrInPlace(Shift);
- // High bits are known zero.
- Known.Zero.setHighBits(Shift);
- } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
- // If the shift amount is a vector of constants see if we can bound
- // the number of upper zero bits.
- unsigned ShiftAmountMin = BitWidth;
- for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
- if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
- const APInt &ShAmt = C->getAPIntValue();
- if (ShAmt.ult(BitWidth)) {
- ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
- ShAmt.getZExtValue());
- continue;
- }
- }
- // Don't know anything.
- ShiftAmountMin = 0;
- break;
- }
- Known.Zero.setHighBits(ShiftAmountMin);
- }
- break;
- case ISD::SRA:
- if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned Shift = ShAmt->getZExtValue();
- // Sign extend known zero/one bit (else is unknown).
- Known.Zero.ashrInPlace(Shift);
- Known.One.ashrInPlace(Shift);
- }
- break;
- case ISD::FSHL:
- case ISD::FSHR:
- if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
- unsigned Amt = C->getAPIntValue().urem(BitWidth);
- // For fshl, 0-shift returns the 1st arg.
- // For fshr, 0-shift returns the 2nd arg.
- if (Amt == 0) {
- Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
- DemandedElts, Depth + 1);
- break;
- }
- // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- if (Opcode == ISD::FSHL) {
- Known.One <<= Amt;
- Known.Zero <<= Amt;
- Known2.One.lshrInPlace(BitWidth - Amt);
- Known2.Zero.lshrInPlace(BitWidth - Amt);
- } else {
- Known.One <<= BitWidth - Amt;
- Known.Zero <<= BitWidth - Amt;
- Known2.One.lshrInPlace(Amt);
- Known2.Zero.lshrInPlace(Amt);
- }
- Known.One |= Known2.One;
- Known.Zero |= Known2.Zero;
- }
- break;
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getScalarSizeInBits();
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
- APInt InSignMask = APInt::getSignMask(EBits);
- APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
- // If the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InSignMask = InSignMask.zext(BitWidth);
- if (NewBits.getBoolValue())
- InputDemandedBits |= InSignMask;
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known.One &= InputDemandedBits;
- Known.Zero &= InputDemandedBits;
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
- Known.Zero |= NewBits;
- Known.One &= ~NewBits;
- } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
- Known.One |= NewBits;
- Known.Zero &= ~NewBits;
- } else { // Input sign bit unknown
- Known.Zero &= ~NewBits;
- Known.One &= ~NewBits;
- }
- break;
- }
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleTZ = Known2.countMaxTrailingZeros();
- unsigned LowBits = Log2_32(PossibleTZ) + 1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleLZ = Known2.countMaxLeadingZeros();
- unsigned LowBits = Log2_32(PossibleLZ) + 1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case ISD::CTPOP: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If we know some of the bits are zero, they can't be one.
- unsigned PossibleOnes = Known2.countMaxPopulation();
- Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
- break;
- }
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- // If this is a ZEXTLoad and we are looking at the loaded value.
- if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
- EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getScalarSizeInBits();
- Known.Zero.setBitsFrom(MemBits);
- } else if (const MDNode *Ranges = LD->getRanges()) {
- if (LD->getExtensionType() == ISD::NON_EXTLOAD)
- computeKnownBitsFromRangeMetadata(*Ranges, Known);
- }
- break;
- }
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- EVT InVT = Op.getOperand(0).getValueType();
- APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
- Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
- Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
- break;
- }
- case ISD::ZERO_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
- break;
- }
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- EVT InVT = Op.getOperand(0).getValueType();
- APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
- Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
- // If the sign bit is known to be zero or one, then sext will extend
- // it to the top bits, else it will just zext.
- Known = Known.sext(BitWidth);
- break;
- }
- case ISD::SIGN_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If the sign bit is known to be zero or one, then sext will extend
- // it to the top bits, else it will just zext.
- Known = Known.sext(BitWidth);
- break;
- }
- case ISD::ANY_EXTEND: {
- Known = computeKnownBits(Op.getOperand(0), Depth+1);
- Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
- break;
- }
- case ISD::TRUNCATE: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known = Known.trunc(BitWidth);
- break;
- }
- case ISD::AssertZext: {
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- Known = computeKnownBits(Op.getOperand(0), Depth+1);
- Known.Zero |= (~InMask);
- Known.One &= (~Known.Zero);
- break;
- }
- case ISD::FGETSIGN:
- // All bits are zero except the low bit.
- Known.Zero.setBitsFrom(1);
- break;
- case ISD::USUBO:
- case ISD::SSUBO:
- if (Op.getResNo() == 1) {
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- LLVM_FALLTHROUGH;
- case ISD::SUB:
- case ISD::SUBC: {
- if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (CLHS->getAPIntValue().isNonNegative()) {
- unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
- Depth + 1);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((Known2.Zero & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
- // Top bits known zero.
- Known.Zero.setHighBits(NLZ2);
- }
- }
- }
- // If low bits are know to be zero in both operands, then we know they are
- // going to be 0 in the result. Both addition and complement operations
- // preserve the low zero bits.
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned KnownZeroLow = Known2.countMinTrailingZeros();
- if (KnownZeroLow == 0)
- break;
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
- Known.Zero.setLowBits(KnownZeroLow);
- break;
- }
- case ISD::UADDO:
- case ISD::SADDO:
- case ISD::ADDCARRY:
- if (Op.getResNo() == 1) {
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- LLVM_FALLTHROUGH;
- case ISD::ADD:
- case ISD::ADDC:
- case ISD::ADDE: {
- // Output known-0 bits are known if clear or set in both the low clear bits
- // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
- // low 3 bits clear.
- // Output known-0 bits are also known if the top bits of each input are
- // known to be clear. For example, if one input has the top 10 bits clear
- // and the other has the top 8 bits clear, we know the top 7 bits of the
- // output must be clear.
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
- unsigned KnownZeroLow = Known2.countMinTrailingZeros();
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
- KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
- if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
- // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
- // use this information if we know (at least) that the low two bits are
- // clear. We then return to the caller that the low bit is unknown but
- // that other bits are known zero.
- if (KnownZeroLow >= 2)
- Known.Zero.setBits(1, KnownZeroLow);
- break;
- }
- Known.Zero.setLowBits(KnownZeroLow);
- if (KnownZeroHigh > 1)
- Known.Zero.setHighBits(KnownZeroHigh - 1);
- break;
- }
- case ISD::SREM:
- if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // The low bits of the first operand are unchanged by the srem.
- Known.Zero = Known2.Zero & LowBits;
- Known.One = Known2.One & LowBits;
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
- Known.Zero |= ~LowBits;
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
- Known.One |= ~LowBits;
- assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
- }
- }
- break;
- case ISD::UREM: {
- if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // The upper bits are all zero, the lower ones are unchanged.
- Known.Zero = Known2.Zero | ~LowBits;
- Known.One = Known2.One & LowBits;
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- uint32_t Leaders =
- std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
- Known.resetAll();
- Known.Zero.setHighBits(Leaders);
- break;
- }
- case ISD::EXTRACT_ELEMENT: {
- Known = computeKnownBits(Op.getOperand(0), Depth+1);
- const unsigned Index = Op.getConstantOperandVal(1);
- const unsigned BitWidth = Op.getValueSizeInBits();
- // Remove low part of known bits mask
- Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
- Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
- // Remove high part of known bit mask
- Known = Known.trunc(BitWidth);
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue EltNo = Op.getOperand(1);
- EVT VecVT = InVec.getValueType();
- const unsigned BitWidth = Op.getValueSizeInBits();
- const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
- const unsigned NumSrcElts = VecVT.getVectorNumElements();
- // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
- // anything about the extended bits.
- if (BitWidth > EltBitWidth)
- Known = Known.trunc(EltBitWidth);
- ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
- // If we know the element index, just demand that vector element.
- unsigned Idx = ConstEltNo->getZExtValue();
- APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
- Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
- } else {
- // Unknown element index, so ignore DemandedElts and demand them all.
- Known = computeKnownBits(InVec, Depth + 1);
- }
- if (BitWidth > EltBitWidth)
- Known = Known.zext(BitWidth, false /* => any extend */);
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue InVal = Op.getOperand(1);
- SDValue EltNo = Op.getOperand(2);
- ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
- // If we know the element index, split the demand between the
- // source vector and the inserted element.
- Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
- unsigned EltIdx = CEltNo->getZExtValue();
- // If we demand the inserted element then add its common known bits.
- if (DemandedElts[EltIdx]) {
- Known2 = computeKnownBits(InVal, Depth + 1);
- Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
- Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
- }
- // If we demand the source vector then add its common known bits, ensuring
- // that we don't demand the inserted element.
- APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
- if (!!VectorElts) {
- Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- } else {
- // Unknown element index, so ignore DemandedElts and demand them all.
- Known = computeKnownBits(InVec, Depth + 1);
- Known2 = computeKnownBits(InVal, Depth + 1);
- Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
- Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
- }
- break;
- }
- case ISD::BITREVERSE: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known.Zero = Known2.Zero.reverseBits();
- Known.One = Known2.One.reverseBits();
- break;
- }
- case ISD::BSWAP: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known.Zero = Known2.Zero.byteSwap();
- Known.One = Known2.One.byteSwap();
- break;
- }
- case ISD::ABS: {
- Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- // If the source's MSB is zero then we know the rest of the bits already.
- if (Known2.isNonNegative()) {
- Known.Zero = Known2.Zero;
- Known.One = Known2.One;
- break;
- }
- // We only know that the absolute values's MSB will be zero iff there is
- // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
- Known2.One.clearSignBit();
- if (Known2.One.getBoolValue()) {
- Known.Zero = APInt::getSignMask(BitWidth);
- break;
- }
- break;
- }
- case ISD::UMIN: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // UMIN - we know that the result will have the maximum of the
- // known zero leading bits of the inputs.
- unsigned LeadZero = Known.countMinLeadingZeros();
- LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
- Known.Zero &= Known2.Zero;
- Known.One &= Known2.One;
- Known.Zero.setHighBits(LeadZero);
- break;
- }
- case ISD::UMAX: {
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // UMAX - we know that the result will have the maximum of the
- // known one leading bits of the inputs.
- unsigned LeadOne = Known.countMinLeadingOnes();
- LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
- Known.Zero &= Known2.Zero;
- Known.One &= Known2.One;
- Known.One.setHighBits(LeadOne);
- break;
- }
- case ISD::SMIN:
- case ISD::SMAX: {
- // If we have a clamp pattern, we know that the number of sign bits will be
- // the minimum of the clamp min/max range.
- bool IsMax = (Opcode == ISD::SMAX);
- ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
- if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
- if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
- CstHigh =
- isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
- if (CstLow && CstHigh) {
- if (!IsMax)
- std::swap(CstLow, CstHigh);
- const APInt &ValueLow = CstLow->getAPIntValue();
- const APInt &ValueHigh = CstHigh->getAPIntValue();
- if (ValueLow.sle(ValueHigh)) {
- unsigned LowSignBits = ValueLow.getNumSignBits();
- unsigned HighSignBits = ValueHigh.getNumSignBits();
- unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
- if (ValueLow.isNegative() && ValueHigh.isNegative()) {
- Known.One.setHighBits(MinSignBits);
- break;
- }
- if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
- Known.Zero.setHighBits(MinSignBits);
- break;
- }
- }
- }
- // Fallback - just get the shared known bits of the operands.
- Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- if (Known.isUnknown()) break; // Early-out
- Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- Known.Zero &= Known2.Zero;
- Known.One &= Known2.One;
- break;
- }
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
- break;
- default:
- if (Opcode < ISD::BUILTIN_OP_END)
- break;
- LLVM_FALLTHROUGH;
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_W_CHAIN:
- case ISD::INTRINSIC_VOID:
- // Allow the target to implement this method for its nodes.
- TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
- break;
- }
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- return Known;
- }
- SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
- SDValue N1) const {
- // X + 0 never overflow
- if (isNullConstant(N1))
- return OFK_Never;
- KnownBits N1Known = computeKnownBits(N1);
- if (N1Known.Zero.getBoolValue()) {
- KnownBits N0Known = computeKnownBits(N0);
- bool overflow;
- (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
- if (!overflow)
- return OFK_Never;
- }
- // mulhi + 1 never overflow
- if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
- (~N1Known.Zero & 0x01) == ~N1Known.Zero)
- return OFK_Never;
- if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
- KnownBits N0Known = computeKnownBits(N0);
- if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
- return OFK_Never;
- }
- return OFK_Sometime;
- }
- bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
- EVT OpVT = Val.getValueType();
- unsigned BitWidth = OpVT.getScalarSizeInBits();
- // Is the constant a known power of 2?
- if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
- return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
- // A left-shift of a constant one will have exactly one bit set because
- // shifting the bit off the end is undefined.
- if (Val.getOpcode() == ISD::SHL) {
- auto *C = isConstOrConstSplat(Val.getOperand(0));
- if (C && C->getAPIntValue() == 1)
- return true;
- }
- // Similarly, a logical right-shift of a constant sign-bit will have exactly
- // one bit set.
- if (Val.getOpcode() == ISD::SRL) {
- auto *C = isConstOrConstSplat(Val.getOperand(0));
- if (C && C->getAPIntValue().isSignMask())
- return true;
- }
- // Are all operands of a build vector constant powers of two?
- if (Val.getOpcode() == ISD::BUILD_VECTOR)
- if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
- return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
- return false;
- }))
- return true;
- // More could be done here, though the above checks are enough
- // to handle some common cases.
- // Fall back to computeKnownBits to catch other known cases.
- KnownBits Known = computeKnownBits(Val);
- return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
- }
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnesValue(VT.getVectorNumElements())
- : APInt(1, 1);
- return ComputeNumSignBits(Op, DemandedElts, Depth);
- }
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
- unsigned Depth) const {
- EVT VT = Op.getValueType();
- assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
- unsigned VTBits = VT.getScalarSizeInBits();
- unsigned NumElts = DemandedElts.getBitWidth();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
- const APInt &Val = C->getAPIntValue();
- return Val.getNumSignBits();
- }
- if (Depth == 6)
- return 1; // Limit search depth.
- if (!DemandedElts)
- return 1; // No demanded elts, better to assume we don't know anything.
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- default: break;
- case ISD::AssertSext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::AssertZext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp;
- case ISD::BUILD_VECTOR:
- Tmp = VTBits;
- for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue SrcOp = Op.getOperand(i);
- Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
- // BUILD_VECTOR can implicitly truncate sources, we must handle this.
- if (SrcOp.getValueSizeInBits() != VTBits) {
- assert(SrcOp.getValueSizeInBits() > VTBits &&
- "Expected BUILD_VECTOR implicit truncation");
- unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
- Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
- }
- Tmp = std::min(Tmp, Tmp2);
- }
- return Tmp;
- case ISD::VECTOR_SHUFFLE: {
- // Collect the minimum number of sign bits that are shared by every vector
- // element referenced by the shuffle.
- APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
- assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = SVN->getMaskElt(i);
- if (!DemandedElts[i])
- continue;
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- if (M < 0)
- return 1;
- if ((unsigned)M < NumElts)
- DemandedLHS.setBit((unsigned)M % NumElts);
- else
- DemandedRHS.setBit((unsigned)M % NumElts);
- }
- Tmp = std::numeric_limits<unsigned>::max();
- if (!!DemandedLHS)
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
- if (!!DemandedRHS) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- // If we don't know anything, early out and try computeKnownBits fall-back.
- if (Tmp == 1)
- break;
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::BITCAST: {
- SDValue N0 = Op.getOperand(0);
- EVT SrcVT = N0.getValueType();
- unsigned SrcBits = SrcVT.getScalarSizeInBits();
- // Ignore bitcasts from unsupported types..
- if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
- break;
- // Fast handling of 'identity' bitcasts.
- if (VTBits == SrcBits)
- return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
- bool IsLE = getDataLayout().isLittleEndian();
- // Bitcast 'large element' scalar/vector to 'small element' vector.
- if ((SrcBits % VTBits) == 0) {
- assert(VT.isVector() && "Expected bitcast to vector");
- unsigned Scale = SrcBits / VTBits;
- APInt SrcDemandedElts(NumElts / Scale, 0);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SrcDemandedElts.setBit(i / Scale);
- // Fast case - sign splat can be simply split across the small elements.
- Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
- if (Tmp == SrcBits)
- return VTBits;
- // Slow case - determine how far the sign extends into each sub-element.
- Tmp2 = VTBits;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned SubOffset = i % Scale;
- SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
- SubOffset = SubOffset * VTBits;
- if (Tmp <= SubOffset)
- return 1;
- Tmp2 = std::min(Tmp2, Tmp - SubOffset);
- }
- return Tmp2;
- }
- break;
- }
- case ISD::SIGN_EXTEND:
- Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
- return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
- case ISD::SIGN_EXTEND_INREG:
- // Max of the input and what this extends.
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
- Tmp = VTBits-Tmp+1;
- Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- return std::max(Tmp, Tmp2);
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
- Tmp = VTBits - SrcVT.getScalarSizeInBits();
- return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
- }
- case ISD::SRA:
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- // SRA X, C -> adds C sign bits.
- if (ConstantSDNode *C =
- isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
- APInt ShiftVal = C->getAPIntValue();
- ShiftVal += Tmp;
- Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
- }
- return Tmp;
- case ISD::SHL:
- if (ConstantSDNode *C =
- isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- if (C->getAPIntValue().uge(VTBits) || // Bad shift.
- C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out.
- return Tmp - C->getZExtValue();
- }
- break;
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case ISD::SELECT:
- case ISD::VSELECT:
- Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SELECT_CC:
- Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SMIN:
- case ISD::SMAX: {
- // If we have a clamp pattern, we know that the number of sign bits will be
- // the minimum of the clamp min/max range.
- bool IsMax = (Opcode == ISD::SMAX);
- ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
- if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
- if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
- CstHigh =
- isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
- if (CstLow && CstHigh) {
- if (!IsMax)
- std::swap(CstLow, CstHigh);
- if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
- Tmp = CstLow->getAPIntValue().getNumSignBits();
- Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
- return std::min(Tmp, Tmp2);
- }
- }
- // Fallback - just get the minimum number of sign bits of the operands.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (Tmp == 1)
- return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
- return std::min(Tmp, Tmp2);
- }
- case ISD::UMIN:
- case ISD::UMAX:
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (Tmp == 1)
- return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
- return std::min(Tmp, Tmp2);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents. Fall through.
- // If setcc returns 0/-1, all bits are sign bits.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(VT.isVector(), false) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::SETCC:
- // If setcc returns 0/-1, all bits are sign bits.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned RotAmt = C->getAPIntValue().urem(VTBits);
- // Handle rotate right by N like a rotate left by 32-N.
- if (Opcode == ISD::ROTR)
- RotAmt = (VTBits - RotAmt) % VTBits;
- // If we aren't rotating out all of the known-in sign bits, return the
- // number that are left. This handles rotl(sext(x), 1) for example.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
- }
- break;
- case ISD::ADD:
- case ISD::ADDC:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnesValue())
- return VTBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (Known.isNonNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- case ISD::SUB:
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
- if (CLHS->isNullValue()) {
- KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnesValue())
- return VTBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (Known.isNonNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- case ISD::TRUNCATE: {
- // Check if the sign bits of source go down as far as the truncated value.
- unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
- unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (NumSrcSignBits > (NumSrcBits - VTBits))
- return NumSrcSignBits - (NumSrcBits - VTBits);
- break;
- }
- case ISD::EXTRACT_ELEMENT: {
- const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- const int BitWidth = Op.getValueSizeInBits();
- const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
- // Get reverse index (starting from 1), Op1 value indexes elements from
- // little end. Sign starts at big end.
- const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
- // If the sign portion ends in our element the subtraction gives correct
- // result. Otherwise it gives either negative or > bitwidth result
- return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue InVal = Op.getOperand(1);
- SDValue EltNo = Op.getOperand(2);
- unsigned NumElts = InVec.getValueType().getVectorNumElements();
- ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
- // If we know the element index, split the demand between the
- // source vector and the inserted element.
- unsigned EltIdx = CEltNo->getZExtValue();
- // If we demand the inserted element then get its sign bits.
- Tmp = std::numeric_limits<unsigned>::max();
- if (DemandedElts[EltIdx]) {
- // TODO - handle implicit truncation of inserted elements.
- if (InVal.getScalarValueSizeInBits() != VTBits)
- break;
- Tmp = ComputeNumSignBits(InVal, Depth + 1);
- }
- // If we demand the source vector then get its sign bits, and determine
- // the minimum.
- APInt VectorElts = DemandedElts;
- VectorElts.clearBit(EltIdx);
- if (!!VectorElts) {
- Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- } else {
- // Unknown element index, so ignore DemandedElts and demand them all.
- Tmp = ComputeNumSignBits(InVec, Depth + 1);
- Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue InVec = Op.getOperand(0);
- SDValue EltNo = Op.getOperand(1);
- EVT VecVT = InVec.getValueType();
- const unsigned BitWidth = Op.getValueSizeInBits();
- const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
- const unsigned NumSrcElts = VecVT.getVectorNumElements();
- // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
- // anything about sign bits. But if the sizes match we can derive knowledge
- // about sign bits from the vector operand.
- if (BitWidth != EltBitWidth)
- break;
- // If we know the element index, just demand that vector element, else for
- // an unknown element index, ignore DemandedElts and demand them all.
- APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
- ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
- if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts =
- APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
- return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // If we know the element index, just demand that subvector elements,
- // otherwise demand them all.
- SDValue Src = Op.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
- }
- return ComputeNumSignBits(Src, Depth + 1);
- }
- case ISD::CONCAT_VECTORS: {
- // Determine the minimum number of sign bits across all demanded
- // elts of the input vectors. Early out if the result is already 1.
- Tmp = std::numeric_limits<unsigned>::max();
- EVT SubVectorVT = Op.getOperand(0).getValueType();
- unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
- unsigned NumSubVectors = Op.getNumOperands();
- for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
- APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
- DemandedSub = DemandedSub.trunc(NumSubVectorElts);
- if (!DemandedSub)
- continue;
- Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- case ISD::INSERT_SUBVECTOR: {
- // If we know the element index, demand any elements from the subvector and
- // the remainder from the src its inserted into, otherwise demand them all.
- SDValue Src = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
- Tmp = std::numeric_limits<unsigned>::max();
- uint64_t Idx = SubIdx->getZExtValue();
- APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
- if (!!DemandedSubElts) {
- Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
- if (Tmp == 1) return 1; // early-out
- }
- APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
- APInt DemandedSrcElts = DemandedElts & ~SubMask;
- if (!!DemandedSrcElts) {
- Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- }
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- // Not able to determine the index so just assume worst case.
- Tmp = ComputeNumSignBits(Sub, Depth + 1);
- if (Tmp == 1) return 1; // early-out
- Tmp2 = ComputeNumSignBits(Src, Depth + 1);
- Tmp = std::min(Tmp, Tmp2);
- assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
- return Tmp;
- }
- }
- // If we are looking at the loaded value of the SDNode.
- if (Op.getResNo() == 0) {
- // Handle LOADX separately here. EXTLOAD case will fallthrough.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
- unsigned ExtType = LD->getExtensionType();
- switch (ExtType) {
- default: break;
- case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getScalarSizeInBits();
- return VTBits-Tmp+1;
- case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getScalarSizeInBits();
- return VTBits-Tmp;
- }
- }
- }
- // Allow the target to implement this method for its nodes.
- if (Opcode >= ISD::BUILTIN_OP_END ||
- Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::INTRINSIC_VOID) {
- unsigned NumBits =
- TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
- if (NumBits > 1)
- FirstAnswer = std::max(FirstAnswer, NumBits);
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
- APInt Mask;
- if (Known.isNonNegative()) { // sign bit is 0
- Mask = Known.Zero;
- } else if (Known.isNegative()) { // sign bit is 1;
- Mask = Known.One;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-VTBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
- }
- bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
- if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- if (Op.getOpcode() == ISD::OR &&
- !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
- return false;
- return true;
- }
- bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
- // If we're told that NaNs won't happen, assume they won't.
- if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
- return true;
- if (Depth == 6)
- return false; // Limit search depth.
- // TODO: Handle vectors.
- // If the value is a constant, we can obviously see if it is a NaN or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
- return !C->getValueAPF().isNaN() ||
- (SNaN && !C->getValueAPF().isSignaling());
- }
- unsigned Opcode = Op.getOpcode();
- switch (Opcode) {
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::FSIN:
- case ISD::FCOS: {
- if (SNaN)
- return true;
- // TODO: Need isKnownNeverInfinity
- return false;
- }
- case ISD::FCANONICALIZE:
- case ISD::FEXP:
- case ISD::FEXP2:
- case ISD::FTRUNC:
- case ISD::FFLOOR:
- case ISD::FCEIL:
- case ISD::FROUND:
- case ISD::FRINT:
- case ISD::FNEARBYINT: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::FABS:
- case ISD::FNEG:
- case ISD::FCOPYSIGN: {
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::SELECT:
- return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
- case ISD::FP_EXTEND:
- case ISD::FP_ROUND: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- return true;
- case ISD::FMA:
- case ISD::FMAD: {
- if (SNaN)
- return true;
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
- }
- case ISD::FSQRT: // Need is known positive
- case ISD::FLOG:
- case ISD::FLOG2:
- case ISD::FLOG10:
- case ISD::FPOWI:
- case ISD::FPOW: {
- if (SNaN)
- return true;
- // TODO: Refine on operand
- return false;
- }
- case ISD::FMINNUM:
- case ISD::FMAXNUM: {
- // Only one needs to be known not-nan, since it will be returned if the
- // other ends up being one.
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
- }
- case ISD::FMINNUM_IEEE:
- case ISD::FMAXNUM_IEEE: {
- if (SNaN)
- return true;
- // This can return a NaN if either operand is an sNaN, or if both operands
- // are NaN.
- return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
- isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
- (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
- isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
- }
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM: {
- // TODO: Does this quiet or return the origina NaN as-is?
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
- isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
- }
- default:
- if (Opcode >= ISD::BUILTIN_OP_END ||
- Opcode == ISD::INTRINSIC_WO_CHAIN ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::INTRINSIC_VOID) {
- return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
- }
- return false;
- }
- }
- bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
- assert(Op.getValueType().isFloatingPoint() &&
- "Floating point type expected");
- // If the value is a constant, we can obviously see if it is a zero or not.
- // TODO: Add BuildVector support.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->isZero();
- return false;
- }
- bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
- assert(!Op.getValueType().isFloatingPoint() &&
- "Floating point types unsupported - use isKnownNeverZeroFloat");
- // If the value is a constant, we can obviously see if it is a zero or not.
- if (ISD::matchUnaryPredicate(
- Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
- return true;
- // TODO: Recognize more cases here.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::OR:
- if (isKnownNeverZero(Op.getOperand(1)) ||
- isKnownNeverZero(Op.getOperand(0)))
- return true;
- break;
- }
- return false;
- }
- bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
- // Check the obvious case.
- if (A == B) return true;
- // For for negative and positive zero.
- if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
- if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
- if (CA->isZero() && CB->isZero()) return true;
- // Otherwise they may not be equal.
- return false;
- }
- // FIXME: unify with llvm::haveNoCommonBitsSet.
- // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
- bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
- assert(A.getValueType() == B.getValueType() &&
- "Values must have the same type");
- return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
- }
- static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops,
- SelectionDAG &DAG) {
- int NumOps = Ops.size();
- assert(NumOps != 0 && "Can't build an empty vector!");
- assert(VT.getVectorNumElements() == (unsigned)NumOps &&
- "Incorrect element count in BUILD_VECTOR!");
- // BUILD_VECTOR of UNDEFs is UNDEF.
- if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
- return DAG.getUNDEF(VT);
- // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
- SDValue IdentitySrc;
- bool IsIdentity = true;
- for (int i = 0; i != NumOps; ++i) {
- if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- Ops[i].getOperand(0).getValueType() != VT ||
- (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
- !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
- cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
- IsIdentity = false;
- break;
- }
- IdentitySrc = Ops[i].getOperand(0);
- }
- if (IsIdentity)
- return IdentitySrc;
- return SDValue();
- }
- static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops,
- SelectionDAG &DAG) {
- assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
- assert(llvm::all_of(Ops,
- [Ops](SDValue Op) {
- return Ops[0].getValueType() == Op.getValueType();
- }) &&
- "Concatenation of vectors with inconsistent value types!");
- assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
- VT.getVectorNumElements() &&
- "Incorrect element count in vector concatenation!");
- if (Ops.size() == 1)
- return Ops[0];
- // Concat of UNDEFs is UNDEF.
- if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
- return DAG.getUNDEF(VT);
- // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
- // simplified to one big BUILD_VECTOR.
- // FIXME: Add support for SCALAR_TO_VECTOR as well.
- EVT SVT = VT.getScalarType();
- SmallVector<SDValue, 16> Elts;
- for (SDValue Op : Ops) {
- EVT OpVT = Op.getValueType();
- if (Op.isUndef())
- Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
- else if (Op.getOpcode() == ISD::BUILD_VECTOR)
- Elts.append(Op->op_begin(), Op->op_end());
- else
- return SDValue();
- }
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- for (SDValue Op : Elts)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT.bitsGT(VT.getScalarType()))
- for (SDValue &Op : Elts)
- Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
- ? DAG.getZExtOrTrunc(Op, DL, SVT)
- : DAG.getSExtOrTrunc(Op, DL, SVT);
- SDValue V = DAG.getBuildVector(VT, DL, Elts);
- NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
- return V;
- }
- /// Gets or creates the specified node.
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, getVTList(VT), None);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- getVTList(VT));
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue Operand, const SDNodeFlags Flags) {
- // Constant fold unary operations with an integer constant operand. Even
- // opaque constant will be folded, because the folding of unary operations
- // doesn't create new constants with different values. Nevertheless, the
- // opaque flag is preserved during folding to prevent future folding with
- // other constants.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
- const APInt &Val = C->getAPIntValue();
- switch (Opcode) {
- default: break;
- case ISD::SIGN_EXTEND:
- return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::TRUNCATE:
- if (C->isOpaque())
- break;
- LLVM_FALLTHROUGH;
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: {
- APFloat apf(EVTToAPFloatSemantics(VT),
- APInt::getNullValue(VT.getSizeInBits()));
- (void)apf.convertFromAPInt(Val,
- Opcode==ISD::SINT_TO_FP,
- APFloat::rmNearestTiesToEven);
- return getConstantFP(apf, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
- return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
- if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
- if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
- if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
- return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
- break;
- case ISD::ABS:
- return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::BITREVERSE:
- return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::BSWAP:
- return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTPOP:
- return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::FP16_TO_FP: {
- bool Ignored;
- APFloat FPV(APFloat::IEEEhalf(),
- (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)FPV.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &Ignored);
- return getConstantFP(FPV, DL, VT);
- }
- }
- }
- // Constant fold unary operations with a floating point constant operand.
- if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
- APFloat V = C->getValueAPF(); // make copy
- switch (Opcode) {
- case ISD::FNEG:
- V.changeSign();
- return getConstantFP(V, DL, VT);
- case ISD::FABS:
- V.clearSign();
- return getConstantFP(V, DL, VT);
- case ISD::FCEIL: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FTRUNC: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FFLOOR: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FP_EXTEND: {
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, DL, VT);
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT: {
- bool ignored;
- APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
- // FIXME need to be more flexible about rounding mode.
- APFloat::opStatus s =
- V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
- if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
- break;
- return getConstant(IntVal, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
- return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
- return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
- return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
- break;
- case ISD::FP_TO_FP16: {
- bool Ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(APFloat::IEEEhalf(),
- APFloat::rmNearestTiesToEven, &Ignored);
- return getConstant(V.bitcastToAPInt(), DL, VT);
- }
- }
- }
- // Constant fold unary operations with a vector integer or float operand.
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
- if (BV->isConstant()) {
- switch (Opcode) {
- default:
- // FIXME: Entirely reasonable to perform folding of other unary
- // operations here as the need arises.
- break;
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FFLOOR:
- case ISD::FP_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::TRUNCATE:
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP:
- case ISD::ABS:
- case ISD::BITREVERSE:
- case ISD::BSWAP:
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP: {
- SDValue Ops = { Operand };
- if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
- return Fold;
- }
- }
- }
- }
- unsigned OpOpcode = Operand.getNode()->getOpcode();
- switch (Opcode) {
- case ISD::TokenFactor:
- case ISD::MERGE_VALUES:
- case ISD::CONCAT_VECTORS:
- return Operand; // Factor, merge or concat of one node? No need.
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {Operand};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
- case ISD::FP_EXTEND:
- assert(VT.isFloatingPoint() &&
- Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
- if (Operand.getValueType() == VT) return Operand; // noop conversion.
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid fpext node, dst < src!");
- if (Operand.isUndef())
- return getUNDEF(VT);
- break;
- case ISD::SIGN_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid SIGN_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid sext node, dst < src!");
- if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // sext(undef) = 0, because the top bits will all be the same.
- return getConstant(0, DL, VT);
- break;
- case ISD::ZERO_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ZERO_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid zext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
- return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // zext(undef) = 0, because the top bits will be zero.
- return getConstant(0, DL, VT);
- break;
- case ISD::ANY_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ANY_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsLT(VT) &&
- "Invalid anyext node, dst < src!");
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND)
- // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // (ext (trunc x)) -> x
- if (OpOpcode == ISD::TRUNCATE) {
- SDValue OpOp = Operand.getOperand(0);
- if (OpOp.getValueType() == VT) {
- transferDbgValues(Operand, OpOp);
- return OpOp;
- }
- }
- break;
- case ISD::TRUNCATE:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid TRUNCATE!");
- if (Operand.getValueType() == VT) return Operand; // noop truncate
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- assert(Operand.getValueType().bitsGT(VT) &&
- "Invalid truncate node, src < dst!");
- if (OpOpcode == ISD::TRUNCATE)
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND) {
- // If the source is smaller than the dest, we still need an extend.
- if (Operand.getOperand(0).getValueType().getScalarType()
- .bitsLT(VT.getScalarType()))
- return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
- if (Operand.getOperand(0).getValueType().bitsGT(VT))
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
- return Operand.getOperand(0);
- }
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(Operand.getValueType().bitsLE(VT) &&
- "The input must be the same size or smaller than the result.");
- assert(VT.getVectorNumElements() <
- Operand.getValueType().getVectorNumElements() &&
- "The destination vector type must have fewer lanes than the input.");
- break;
- case ISD::ABS:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid ABS!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BSWAP:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid BSWAP!");
- assert((VT.getScalarSizeInBits() % 16 == 0) &&
- "BSWAP types must be a multiple of 16 bits!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BITREVERSE:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid BITREVERSE!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BITCAST:
- // Basic sanity checking.
- assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
- "Cannot BITCAST between types of different sizes!");
- if (VT == Operand.getValueType()) return Operand; // noop conversion.
- if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
- return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SCALAR_TO_VECTOR:
- assert(VT.isVector() && !Operand.getValueType().isVector() &&
- (VT.getVectorElementType() == Operand.getValueType() ||
- (VT.getVectorElementType().isInteger() &&
- Operand.getValueType().isInteger() &&
- VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
- "Illegal SCALAR_TO_VECTOR node!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
- if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(Operand.getOperand(1)) &&
- Operand.getConstantOperandVal(1) == 0 &&
- Operand.getOperand(0).getValueType() == VT)
- return Operand.getOperand(0);
- break;
- case ISD::FNEG:
- // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
- if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
- OpOpcode == ISD::FSUB)
- return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
- Operand.getOperand(0), Flags);
- if (OpOpcode == ISD::FNEG) // --X -> X
- return Operand.getOperand(0);
- break;
- case ISD::FABS:
- if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
- return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
- break;
- }
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {Operand};
- if (VT != MVT::Glue) { // Don't CSE flag producing nodes
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
- const APInt &C2) {
- switch (Opcode) {
- case ISD::ADD: return std::make_pair(C1 + C2, true);
- case ISD::SUB: return std::make_pair(C1 - C2, true);
- case ISD::MUL: return std::make_pair(C1 * C2, true);
- case ISD::AND: return std::make_pair(C1 & C2, true);
- case ISD::OR: return std::make_pair(C1 | C2, true);
- case ISD::XOR: return std::make_pair(C1 ^ C2, true);
- case ISD::SHL: return std::make_pair(C1 << C2, true);
- case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
- case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
- case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
- case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
- case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
- case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
- case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
- case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
- case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
- case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
- case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
- case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
- case ISD::UDIV:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.udiv(C2), true);
- case ISD::UREM:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.urem(C2), true);
- case ISD::SDIV:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.sdiv(C2), true);
- case ISD::SREM:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.srem(C2), true);
- }
- return std::make_pair(APInt(1, 0), false);
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
- EVT VT, const ConstantSDNode *C1,
- const ConstantSDNode *C2) {
- if (C1->isOpaque() || C2->isOpaque())
- return SDValue();
- std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
- C2->getAPIntValue());
- if (!Folded.second)
- return SDValue();
- return getConstant(Folded.first, DL, VT);
- }
- SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
- const GlobalAddressSDNode *GA,
- const SDNode *N2) {
- if (GA->getOpcode() != ISD::GlobalAddress)
- return SDValue();
- if (!TLI->isOffsetFoldingLegal(GA))
- return SDValue();
- auto *C2 = dyn_cast<ConstantSDNode>(N2);
- if (!C2)
- return SDValue();
- int64_t Offset = C2->getSExtValue();
- switch (Opcode) {
- case ISD::ADD: break;
- case ISD::SUB: Offset = -uint64_t(Offset); break;
- default: return SDValue();
- }
- return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
- GA->getOffset() + uint64_t(Offset));
- }
- bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
- switch (Opcode) {
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM: {
- // If a divisor is zero/undef or any element of a divisor vector is
- // zero/undef, the whole op is undef.
- assert(Ops.size() == 2 && "Div/rem should have 2 operands");
- SDValue Divisor = Ops[1];
- if (Divisor.isUndef() || isNullConstant(Divisor))
- return true;
- return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
- llvm::any_of(Divisor->op_values(),
- [](SDValue V) { return V.isUndef() ||
- isNullConstant(V); });
- // TODO: Handle signed overflow.
- }
- // TODO: Handle oversized shifts.
- default:
- return false;
- }
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
- EVT VT, SDNode *N1, SDNode *N2) {
- // If the opcode is a target-specific ISD node, there's nothing we can
- // do here and the operand rules may not line up with the below, so
- // bail early.
- if (Opcode >= ISD::BUILTIN_OP_END)
- return SDValue();
- if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
- return getUNDEF(VT);
- // Handle the case of two scalars.
- if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
- if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
- SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
- assert((!Folded || !VT.isVector()) &&
- "Can't fold vectors ops with scalar operands");
- return Folded;
- }
- }
- // fold (add Sym, c) -> Sym+c
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
- return FoldSymbolOffset(Opcode, VT, GA, N2);
- if (TLI->isCommutativeBinOp(Opcode))
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
- return FoldSymbolOffset(Opcode, VT, GA, N1);
- // For vectors, extract each constant element and fold them individually.
- // Either input may be an undef value.
- auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
- if (!BV1 && !N1->isUndef())
- return SDValue();
- auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
- if (!BV2 && !N2->isUndef())
- return SDValue();
- // If both operands are undef, that's handled the same way as scalars.
- if (!BV1 && !BV2)
- return SDValue();
- assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
- "Vector binop with different number of elements in operands?");
- EVT SVT = VT.getScalarType();
- EVT LegalSVT = SVT;
- if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
- LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
- if (LegalSVT.bitsLT(SVT))
- return SDValue();
- }
- SmallVector<SDValue, 4> Outputs;
- unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
- for (unsigned I = 0; I != NumOps; ++I) {
- SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
- SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
- if (SVT.isInteger()) {
- if (V1->getValueType(0).bitsGT(SVT))
- V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
- if (V2->getValueType(0).bitsGT(SVT))
- V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
- }
- if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
- return SDValue();
- // Fold one vector element.
- SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
- if (LegalSVT != SVT)
- ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
- // Scalar folding only succeeded if the result is a constant or UNDEF.
- if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
- ScalarResult.getOpcode() != ISD::ConstantFP)
- return SDValue();
- Outputs.push_back(ScalarResult);
- }
- assert(VT.getVectorNumElements() == Outputs.size() &&
- "Vector size mismatch!");
- // We may have a vector type but a scalar result. Create a splat.
- Outputs.resize(VT.getVectorNumElements(), Outputs.back());
- // Build a big vector out of the scalar elements we generated.
- return getBuildVector(VT, SDLoc(), Outputs);
- }
- // TODO: Merge with FoldConstantArithmetic
- SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
- const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops,
- const SDNodeFlags Flags) {
- // If the opcode is a target-specific ISD node, there's nothing we can
- // do here and the operand rules may not line up with the below, so
- // bail early.
- if (Opcode >= ISD::BUILTIN_OP_END)
- return SDValue();
- if (isUndef(Opcode, Ops))
- return getUNDEF(VT);
- // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
- if (!VT.isVector())
- return SDValue();
- unsigned NumElts = VT.getVectorNumElements();
- auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
- return !Op.getValueType().isVector() ||
- Op.getValueType().getVectorNumElements() == NumElts;
- };
- auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
- BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
- return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
- (BV && BV->isConstant());
- };
- // All operands must be vector types with the same number of elements as
- // the result type and must be either UNDEF or a build vector of constant
- // or UNDEF scalars.
- if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
- !llvm::all_of(Ops, IsScalarOrSameVectorSize))
- return SDValue();
- // If we are comparing vectors, then the result needs to be a i1 boolean
- // that is then sign-extended back to the legal result type.
- EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
- // Find legal integer scalar type for constant promotion and
- // ensure that its scalar size is at least as large as source.
- EVT LegalSVT = VT.getScalarType();
- if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
- LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
- if (LegalSVT.bitsLT(VT.getScalarType()))
- return SDValue();
- }
- // Constant fold each scalar lane separately.
- SmallVector<SDValue, 4> ScalarResults;
- for (unsigned i = 0; i != NumElts; i++) {
- SmallVector<SDValue, 4> ScalarOps;
- for (SDValue Op : Ops) {
- EVT InSVT = Op.getValueType().getScalarType();
- BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
- if (!InBV) {
- // We've checked that this is UNDEF or a constant of some kind.
- if (Op.isUndef())
- ScalarOps.push_back(getUNDEF(InSVT));
- else
- ScalarOps.push_back(Op);
- continue;
- }
- SDValue ScalarOp = InBV->getOperand(i);
- EVT ScalarVT = ScalarOp.getValueType();
- // Build vector (integer) scalar operands may need implicit
- // truncation - do this before constant folding.
- if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
- ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
- ScalarOps.push_back(ScalarOp);
- }
- // Constant fold the scalar operands.
- SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
- // Legalize the (integer) scalar constant if necessary.
- if (LegalSVT != SVT)
- ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
- // Scalar folding only succeeded if the result is a constant or UNDEF.
- if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
- ScalarResult.getOpcode() != ISD::ConstantFP)
- return SDValue();
- ScalarResults.push_back(ScalarResult);
- }
- SDValue V = getBuildVector(VT, DL, ScalarResults);
- NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
- return V;
- }
- SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
- EVT VT, SDValue N1, SDValue N2) {
- auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
- auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
- bool HasFPExceptions = TLI->hasFloatingPointExceptions();
- if (N1CFP && N2CFP) {
- APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
- APFloat::opStatus Status;
- switch (Opcode) {
- case ISD::FADD:
- Status = C1.add(C2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || Status != APFloat::opInvalidOp)
- return getConstantFP(C1, DL, VT);
- break;
- case ISD::FSUB:
- Status = C1.subtract(C2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || Status != APFloat::opInvalidOp)
- return getConstantFP(C1, DL, VT);
- break;
- case ISD::FMUL:
- Status = C1.multiply(C2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || Status != APFloat::opInvalidOp)
- return getConstantFP(C1, DL, VT);
- break;
- case ISD::FDIV:
- Status = C1.divide(C2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
- Status != APFloat::opDivByZero)) {
- return getConstantFP(C1, DL, VT);
- }
- break;
- case ISD::FREM:
- Status = C1.mod(C2);
- if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
- Status != APFloat::opDivByZero)) {
- return getConstantFP(C1, DL, VT);
- }
- break;
- case ISD::FCOPYSIGN:
- C1.copySign(C2);
- return getConstantFP(C1, DL, VT);
- default: break;
- }
- }
- if (N1CFP && Opcode == ISD::FP_ROUND) {
- APFloat C1 = N1CFP->getValueAPF(); // make copy
- bool Unused;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
- &Unused);
- return getConstantFP(C1, DL, VT);
- }
- switch (Opcode) {
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- // If both operands are undef, the result is undef. If 1 operand is undef,
- // the result is NaN. This should match the behavior of the IR optimizer.
- if (N1.isUndef() && N2.isUndef())
- return getUNDEF(VT);
- if (N1.isUndef() || N2.isUndef())
- return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
- }
- return SDValue();
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, const SDNodeFlags Flags) {
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- // Canonicalize constant to RHS if commutative.
- if (TLI->isCommutativeBinOp(Opcode)) {
- if (N1C && !N2C) {
- std::swap(N1C, N2C);
- std::swap(N1, N2);
- } else if (N1CFP && !N2CFP) {
- std::swap(N1CFP, N2CFP);
- std::swap(N1, N2);
- }
- }
- switch (Opcode) {
- default: break;
- case ISD::TokenFactor:
- assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
- N2.getValueType() == MVT::Other && "Invalid token factor!");
- // Fold trivial token factors.
- if (N1.getOpcode() == ISD::EntryToken) return N2;
- if (N2.getOpcode() == ISD::EntryToken) return N1;
- if (N1 == N2) return N1;
- break;
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {N1, N2};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::CONCAT_VECTORS: {
- // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
- SDValue Ops[] = {N1, N2};
- if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::AND:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
- // worth handling here.
- if (N2C && N2C->isNullValue())
- return N2;
- if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
- return N1;
- break;
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
- // it's worth handling here.
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::UDIV:
- case ISD::UREM:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::MUL:
- case ISD::SDIV:
- case ISD::SREM:
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- case ISD::SADDSAT:
- case ISD::SSUBSAT:
- case ISD::UADDSAT:
- case ISD::USUBSAT:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
- return V;
- break;
- case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
- assert(N1.getValueType() == VT &&
- N1.getValueType().isFloatingPoint() &&
- N2.getValueType().isFloatingPoint() &&
- "Invalid FCOPYSIGN!");
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- if (SDValue V = simplifyShift(N1, N2))
- return V;
- LLVM_FALLTHROUGH;
- case ISD::ROTL:
- case ISD::ROTR:
- assert(VT == N1.getValueType() &&
- "Shift operators return type must be the same as their first arg");
- assert(VT.isInteger() && N2.getValueType().isInteger() &&
- "Shifts only work on integers");
- assert((!VT.isVector() || VT == N2.getValueType()) &&
- "Vector shift amounts must be in the same as their first arg");
- // Verify that the shift amount VT is big enough to hold valid shift
- // amounts. This catches things like trying to shift an i1024 value by an
- // i8, which is easy to fall into in generic code that uses
- // TLI.getShiftAmount().
- assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
- "Invalid use of small shift amount with oversized value!");
- // Always fold shifts of i1 values so the code generator doesn't need to
- // handle them. Since we know the size of the shift has to be less than the
- // size of the value, the shift/rotate count is guaranteed to be zero.
- if (VT == MVT::i1)
- return N1;
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::FP_ROUND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg round!");
- assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
- "Cannot FP_ROUND_INREG integer types");
- assert(EVT.isVector() == VT.isVector() &&
- "FP_ROUND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in FP_ROUND_INREG");
- assert(EVT.bitsLE(VT) && "Not rounding down!");
- (void)EVT;
- if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
- break;
- }
- case ISD::FP_ROUND:
- assert(VT.isFloatingPoint() &&
- N1.getValueType().isFloatingPoint() &&
- VT.bitsLE(N1.getValueType()) &&
- N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
- "Invalid FP_ROUND!");
- if (N1.getValueType() == VT) return N1; // noop conversion.
- break;
- case ISD::AssertSext:
- case ISD::AssertZext: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(!EVT.isVector() &&
- "AssertSExt/AssertZExt type should be the vector element type "
- "rather than the vector type!");
- assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
- if (VT.getScalarType() == EVT) return N1; // noop assertion.
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.isVector() == VT.isVector() &&
- "SIGN_EXTEND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in SIGN_EXTEND_INREG");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (EVT == VT) return N1; // Not actually extending
- auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
- unsigned FromBits = EVT.getScalarSizeInBits();
- Val <<= Val.getBitWidth() - FromBits;
- Val.ashrInPlace(Val.getBitWidth() - FromBits);
- return getConstant(Val, DL, ConstantVT);
- };
- if (N1C) {
- const APInt &Val = N1C->getAPIntValue();
- return SignExtendInReg(Val, VT);
- }
- if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
- SmallVector<SDValue, 8> Ops;
- llvm::EVT OpVT = N1.getOperand(0).getValueType();
- for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- SDValue Op = N1.getOperand(i);
- if (Op.isUndef()) {
- Ops.push_back(getUNDEF(OpVT));
- continue;
- }
- ConstantSDNode *C = cast<ConstantSDNode>(Op);
- APInt Val = C->getAPIntValue();
- Ops.push_back(SignExtendInReg(Val, OpVT));
- }
- return getBuildVector(VT, DL, Ops);
- }
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT:
- assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
- "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
- element type of the vector.");
- // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
- if (N1.isUndef())
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
- if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
- // expanding copies of large vectors from registers.
- if (N2C &&
- N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N1.getNumOperands() > 0) {
- unsigned Factor =
- N1.getOperand(0).getValueType().getVectorNumElements();
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
- N1.getOperand(N2C->getZExtValue() / Factor),
- getConstant(N2C->getZExtValue() % Factor, DL,
- N2.getValueType()));
- }
- // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
- // expanding large vector constants.
- if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue Elt = N1.getOperand(N2C->getZExtValue());
- if (VT != Elt.getValueType())
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated, and the result implicitly
- // extended. Make that explicit here.
- Elt = getAnyExtOrTrunc(Elt, DL, VT);
- return Elt;
- }
- // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
- // operations are lowered to scalars.
- if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
- // If the indices are the same, return the inserted element else
- // if the indices are known different, extract the element from
- // the original vector.
- SDValue N1Op2 = N1.getOperand(2);
- ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
- if (N1Op2C && N2C) {
- if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
- if (VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- else
- return getSExtOrTrunc(N1.getOperand(1), DL, VT);
- }
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
- }
- }
- // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
- // when vector types are scalarized and v1iX is legal.
- // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
- if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
- N1.getValueType().getVectorNumElements() == 1) {
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
- N1.getOperand(1));
- }
- break;
- case ISD::EXTRACT_ELEMENT:
- assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
- assert(!N1.getValueType().isVector() && !VT.isVector() &&
- (N1.getValueType().isInteger() == VT.isInteger()) &&
- N1.getValueType() != VT &&
- "Wrong types for EXTRACT_ELEMENT!");
- // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
- // 64-bit integers into 32-bit parts. Instead of building the extract of
- // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
- if (N1.getOpcode() == ISD::BUILD_PAIR)
- return N1.getOperand(N2C->getZExtValue());
- // EXTRACT_ELEMENT of a constant int is also very common.
- if (N1C) {
- unsigned ElementSize = VT.getSizeInBits();
- unsigned Shift = ElementSize * N2C->getZExtValue();
- APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
- return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
- }
- break;
- case ISD::EXTRACT_SUBVECTOR:
- if (VT.isSimple() && N1.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Extract subvector VTs must be a vectors!");
- assert(VT.getVectorElementType() ==
- N1.getValueType().getVectorElementType() &&
- "Extract subvector VTs must have the same element type!");
- assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
- "Extract subvector must be from larger vector to smaller vector!");
- if (N2C) {
- assert((VT.getVectorNumElements() + N2C->getZExtValue()
- <= N1.getValueType().getVectorNumElements())
- && "Extract subvector overflow!");
- }
- // Trivial extraction.
- if (VT.getSimpleVT() == N1.getSimpleValueType())
- return N1;
- // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
- if (N1.isUndef())
- return getUNDEF(VT);
- // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
- // the concat have the same type as the extract.
- if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N1.getNumOperands() > 0 &&
- VT == N1.getOperand(0).getValueType()) {
- unsigned Factor = VT.getVectorNumElements();
- return N1.getOperand(N2C->getZExtValue() / Factor);
- }
- // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
- // during shuffle legalization.
- if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
- VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- }
- break;
- }
- // Perform trivial constant folding.
- if (SDValue SV =
- FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
- return SV;
- if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
- return V;
- // Canonicalize an UNDEF to the RHS, even over a constant.
- if (N1.isUndef()) {
- if (TLI->isCommutativeBinOp(Opcode)) {
- std::swap(N1, N2);
- } else {
- switch (Opcode) {
- case ISD::FP_ROUND_INREG:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::SUB:
- return getUNDEF(VT); // fold op(undef, arg2) -> undef
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
- }
- }
- }
- // Fold a bunch of operators when the RHS is undef.
- if (N2.isUndef()) {
- switch (Opcode) {
- case ISD::XOR:
- if (N1.isUndef())
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return getConstant(0, DL, VT);
- LLVM_FALLTHROUGH;
- case ISD::ADD:
- case ISD::SUB:
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- return getUNDEF(VT); // fold op(arg1, undef) -> undef
- case ISD::MUL:
- case ISD::AND:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
- case ISD::OR:
- case ISD::SADDSAT:
- case ISD::UADDSAT:
- return getAllOnesConstant(DL, VT);
- }
- }
- // Memoize this node if possible.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {N1, N2};
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- const SDNodeFlags Flags) {
- // Perform various simplifications.
- switch (Opcode) {
- case ISD::FMA: {
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == VT && N2.getValueType() == VT &&
- N3.getValueType() == VT && "FMA types must match!");
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
- if (N1CFP && N2CFP && N3CFP) {
- APFloat V1 = N1CFP->getValueAPF();
- const APFloat &V2 = N2CFP->getValueAPF();
- const APFloat &V3 = N3CFP->getValueAPF();
- APFloat::opStatus s =
- V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
- if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
- return getConstantFP(V1, DL, VT);
- }
- break;
- }
- case ISD::BUILD_VECTOR: {
- // Attempt to simplify BUILD_VECTOR.
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::CONCAT_VECTORS: {
- // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- }
- case ISD::SETCC: {
- assert(VT.isInteger() && "SETCC result type must be an integer!");
- assert(N1.getValueType() == N2.getValueType() &&
- "SETCC operands must have the same type!");
- assert(VT.isVector() == N1.getValueType().isVector() &&
- "SETCC type should be vector iff the operand type is vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
- "SETCC vector element counts must match!");
- // Use FoldSetCC to simplify SETCC's.
- if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
- return V;
- // Vector constant folding.
- SDValue Ops[] = {N1, N2, N3};
- if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
- NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
- return V;
- }
- break;
- }
- case ISD::SELECT:
- case ISD::VSELECT:
- if (SDValue V = simplifySelect(N1, N2, N3))
- return V;
- break;
- case ISD::VECTOR_SHUFFLE:
- llvm_unreachable("should use getVectorShuffle constructor!");
- case ISD::INSERT_VECTOR_ELT: {
- ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
- // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
- if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
- return getUNDEF(VT);
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- SDValue Index = N3;
- if (VT.isSimple() && N1.getValueType().isSimple()
- && N2.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- N2.getValueType().isVector() &&
- "Insert subvector VTs must be a vectors");
- assert(VT == N1.getValueType() &&
- "Dest and insert subvector source types must match!");
- assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
- "Insert subvector must be from smaller vector to larger vector!");
- if (isa<ConstantSDNode>(Index)) {
- assert((N2.getValueType().getVectorNumElements() +
- cast<ConstantSDNode>(Index)->getZExtValue()
- <= VT.getVectorNumElements())
- && "Insert subvector overflow!");
- }
- // Trivial insertion.
- if (VT.getSimpleVT() == N2.getSimpleValueType())
- return N2;
- }
- break;
- }
- case ISD::BITCAST:
- // Fold bit_convert nodes from a type to themselves.
- if (N1.getValueType() == VT)
- return N1;
- break;
- }
- // Memoize node if it doesn't produce a flag.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = {N1, N2, N3};
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- E->intersectFlagsWith(Flags);
- return SDValue(E, 0);
- }
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- N->setFlags(Flags);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V = SDValue(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VT, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4,
- SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VT, Ops);
- }
- /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
- /// the incoming stack arguments to be loaded from the stack.
- SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
- SmallVector<SDValue, 8> ArgChains;
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
- // Add a chain value for each stack argument.
- for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
- UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0)
- ArgChains.push_back(SDValue(L, 1));
- // Build a tokenfactor for all the chains.
- return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
- }
- /// getMemsetValue - Vectorized representation of the memset value
- /// operand.
- static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
- const SDLoc &dl) {
- assert(!Value.isUndef());
- unsigned NumBits = VT.getScalarSizeInBits();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
- assert(C->getAPIntValue().getBitWidth() == 8);
- APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
- if (VT.isInteger()) {
- bool IsOpaque = VT.getSizeInBits() > 64 ||
- !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
- return DAG.getConstant(Val, dl, VT, false, IsOpaque);
- }
- return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
- VT);
- }
- assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
- EVT IntVT = VT.getScalarType();
- if (!IntVT.isInteger())
- IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
- if (NumBits > 8) {
- // Use a multiplication with 0x010101... to extend the input to the
- // required length.
- APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
- Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
- DAG.getConstant(Magic, dl, IntVT));
- }
- if (VT != Value.getValueType() && !VT.isInteger())
- Value = DAG.getBitcast(VT.getScalarType(), Value);
- if (VT != Value.getValueType())
- Value = DAG.getSplatBuildVector(VT, dl, Value);
- return Value;
- }
- /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
- /// used when a memcpy is turned into a memset when the source is a constant
- /// string ptr.
- static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
- const TargetLowering &TLI,
- const ConstantDataArraySlice &Slice) {
- // Handle vector with all elements zero.
- if (Slice.Array == nullptr) {
- if (VT.isInteger())
- return DAG.getConstant(0, dl, VT);
- else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
- return DAG.getConstantFP(0.0, dl, VT);
- else if (VT.isVector()) {
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getConstant(0, dl,
- EVT::getVectorVT(*DAG.getContext(),
- EltVT, NumElts)));
- } else
- llvm_unreachable("Expected type!");
- }
- assert(!VT.isVector() && "Can't handle vector type here!");
- unsigned NumVTBits = VT.getSizeInBits();
- unsigned NumVTBytes = NumVTBits / 8;
- unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
- APInt Val(NumVTBits, 0);
- if (DAG.getDataLayout().isLittleEndian()) {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
- } else {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
- }
- // If the "cost" of materializing the integer immediate is less than the cost
- // of a load, then it is cost effective to turn the load into the immediate.
- Type *Ty = VT.getTypeForEVT(*DAG.getContext());
- if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
- return DAG.getConstant(Val, dl, VT);
- return SDValue(nullptr, 0);
- }
- SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
- const SDLoc &DL) {
- EVT VT = Base.getValueType();
- return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
- }
- /// Returns true if memcpy source is constant data.
- static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
- uint64_t SrcDelta = 0;
- GlobalAddressSDNode *G = nullptr;
- if (Src.getOpcode() == ISD::GlobalAddress)
- G = cast<GlobalAddressSDNode>(Src);
- else if (Src.getOpcode() == ISD::ADD &&
- Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
- Src.getOperand(1).getOpcode() == ISD::Constant) {
- G = cast<GlobalAddressSDNode>(Src.getOperand(0));
- SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
- }
- if (!G)
- return false;
- return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
- SrcDelta + G->getOffset());
- }
- /// Determines the optimal series of memory ops to replace the memset / memcpy.
- /// Return true if the number of memory ops is below the threshold (Limit).
- /// It returns the types of the sequence of memory ops to perform
- /// memset / memcpy by reference.
- static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
- unsigned Limit, uint64_t Size,
- unsigned DstAlign, unsigned SrcAlign,
- bool IsMemset,
- bool ZeroMemset,
- bool MemcpyStrSrc,
- bool AllowOverlap,
- unsigned DstAS, unsigned SrcAS,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
- "Expecting memcpy / memset source to meet alignment requirement!");
- // If 'SrcAlign' is zero, that means the memory operation does not need to
- // load the value, i.e. memset or memcpy from constant string. Otherwise,
- // it's the inferred alignment of the source. 'DstAlign', on the other hand,
- // is the specified alignment of the memory operation. If it is zero, that
- // means it's possible to change the alignment of the destination.
- // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
- // not need to be loaded.
- EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
- IsMemset, ZeroMemset, MemcpyStrSrc,
- DAG.getMachineFunction());
- if (VT == MVT::Other) {
- // Use the largest integer type whose alignment constraints are satisfied.
- // We only need to check DstAlign here as SrcAlign is always greater or
- // equal to DstAlign (or zero).
- VT = MVT::i64;
- while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
- !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
- VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
- assert(VT.isInteger());
- // Find the largest legal integer type.
- MVT LVT = MVT::i64;
- while (!TLI.isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- // If the type we've chosen is larger than the largest legal integer type
- // then use that instead.
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- while (Size != 0) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- EVT NewVT = VT;
- unsigned NewVTSize;
- bool Found = false;
- if (VT.isVector() || VT.isFloatingPoint()) {
- NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
- if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
- TLI.isSafeMemOpType(NewVT.getSimpleVT()))
- Found = true;
- else if (NewVT == MVT::i64 &&
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
- TLI.isSafeMemOpType(MVT::f64)) {
- // i64 is usually not legal on 32-bit targets, but f64 may be.
- NewVT = MVT::f64;
- Found = true;
- }
- }
- if (!Found) {
- do {
- NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
- if (NewVT == MVT::i8)
- break;
- } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
- }
- NewVTSize = NewVT.getSizeInBits() / 8;
- // If the new VT cannot cover all of the remaining bits, then consider
- // issuing a (or a pair of) unaligned and overlapping load / store.
- bool Fast;
- if (NumMemOps && AllowOverlap && NewVTSize < Size &&
- TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
- Fast)
- VTSize = Size;
- else {
- VT = NewVT;
- VTSize = NewVTSize;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
- // On Darwin, -Os means optimize for size without hurting performance, so
- // only really optimize for size when -Oz (MinSize) is used.
- if (MF.getTarget().getTargetTriple().isOSDarwin())
- return MF.getFunction().hasMinSize();
- return MF.getFunction().hasOptSize();
- }
- static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
- SmallVector<SDValue, 32> &OutChains, unsigned From,
- unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
- SmallVector<SDValue, 16> &OutStoreChains) {
- assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
- assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
- SmallVector<SDValue, 16> GluedLoadChains;
- for (unsigned i = From; i < To; ++i) {
- OutChains.push_back(OutLoadChains[i]);
- GluedLoadChains.push_back(OutLoadChains[i]);
- }
- // Chain for all loads.
- SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- GluedLoadChains);
- for (unsigned i = From; i < To; ++i) {
- StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
- SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
- ST->getBasePtr(), ST->getMemoryVT(),
- ST->getMemOperand());
- OutChains.push_back(NewStore);
- }
- }
- static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, unsigned Align,
- bool isVol, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memcpy of undef to nop.
- if (Src.isUndef())
- return Chain;
- // Expand memcpy to a series of load and store ops if the size operand falls
- // below a certain threshold.
- // TODO: In the AlwaysInline case, if the size is big then generate a loop
- // rather than maybe a humongous number of loads and stores.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- LLVMContext &C = *DAG.getContext();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- ConstantDataArraySlice Slice;
- bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
- bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align),
- (isZeroConstant ? 0 : SrcAlign),
- false, false, CopyFromConstant, true,
- DstPtrInfo.getAddrSpace(),
- SrcPtrInfo.getAddrSpace(),
- DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(C);
- unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
- // Don't promote to an alignment that would require dynamic stack
- // realignment.
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TRI->needsStackRealignment(MF))
- while (NewAlign > Align &&
- DL.exceedsNaturalStackAlignment(NewAlign))
- NewAlign /= 2;
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- MachineMemOperand::Flags MMOFlags =
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
- SmallVector<SDValue, 16> OutLoadChains;
- SmallVector<SDValue, 16> OutStoreChains;
- SmallVector<SDValue, 32> OutChains;
- unsigned NumMemOps = MemOps.size();
- uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i != NumMemOps; ++i) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- SrcOff -= VTSize - Size;
- DstOff -= VTSize - Size;
- }
- if (CopyFromConstant &&
- (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
- // It's unlikely a store of a vector immediate can be done in a single
- // instruction. It would require a load from a constantpool first.
- // We only handle zero vectors here.
- // FIXME: Handle other cases where store of vector immediate is done in
- // a single instruction.
- ConstantDataArraySlice SubSlice;
- if (SrcOff < Slice.Length) {
- SubSlice = Slice;
- SubSlice.move(SrcOff);
- } else {
- // This is an out-of-bounds access and hence UB. Pretend we read zero.
- SubSlice.Array = nullptr;
- SubSlice.Offset = 0;
- SubSlice.Length = VTSize;
- }
- Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
- if (Value.getNode()) {
- Store = DAG.getStore(Chain, dl, Value,
- DAG.getMemBasePlusOffset(Dst, DstOff, dl),
- DstPtrInfo.getWithOffset(DstOff), Align,
- MMOFlags);
- OutChains.push_back(Store);
- }
- }
- if (!Store.getNode()) {
- // The type might not be legal for the target. This should only happen
- // if the type is smaller than a legal type, as on PPC, so the right
- // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
- // to Load/Store if NVT==VT.
- // FIXME does the case above also need this?
- EVT NVT = TLI.getTypeToTransformTo(C, VT);
- assert(NVT.bitsGE(VT));
- bool isDereferenceable =
- SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
- MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
- if (isDereferenceable)
- SrcMMOFlags |= MachineMemOperand::MODereferenceable;
- Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
- DAG.getMemBasePlusOffset(Src, SrcOff, dl),
- SrcPtrInfo.getWithOffset(SrcOff), VT,
- MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
- OutLoadChains.push_back(Value.getValue(1));
- Store = DAG.getTruncStore(
- Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
- DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
- OutStoreChains.push_back(Store);
- }
- SrcOff += VTSize;
- DstOff += VTSize;
- Size -= VTSize;
- }
- unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
- TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
- unsigned NumLdStInMemcpy = OutStoreChains.size();
- if (NumLdStInMemcpy) {
- // It may be that memcpy might be converted to memset if it's memcpy
- // of constants. In such a case, we won't have loads and stores, but
- // just stores. In the absence of loads, there is nothing to gang up.
- if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
- // If target does not care, just leave as it.
- for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
- OutChains.push_back(OutLoadChains[i]);
- OutChains.push_back(OutStoreChains[i]);
- }
- } else {
- // Ld/St less than/equal limit set by target.
- if (NumLdStInMemcpy <= GluedLdStLimit) {
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
- NumLdStInMemcpy, OutLoadChains,
- OutStoreChains);
- } else {
- unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
- unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
- unsigned GlueIter = 0;
- for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
- unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
- unsigned IndexTo = NumLdStInMemcpy - GlueIter;
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
- OutLoadChains, OutStoreChains);
- GlueIter += GluedLdStLimit;
- }
- // Residual ld/st.
- if (RemainingLdStInMemcpy) {
- chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
- RemainingLdStInMemcpy, OutLoadChains,
- OutStoreChains);
- }
- }
- }
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, unsigned Align,
- bool isVol, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memmove of undef to nop.
- if (Src.isUndef())
- return Chain;
- // Expand memmove to a series of load and store ops if the size operand falls
- // below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- LLVMContext &C = *DAG.getContext();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align), SrcAlign,
- false, false, false, false,
- DstPtrInfo.getAddrSpace(),
- SrcPtrInfo.getAddrSpace(),
- DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(C);
- unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- MachineMemOperand::Flags MMOFlags =
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
- uint64_t SrcOff = 0, DstOff = 0;
- SmallVector<SDValue, 8> LoadValues;
- SmallVector<SDValue, 8> LoadChains;
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value;
- bool isDereferenceable =
- SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
- MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
- if (isDereferenceable)
- SrcMMOFlags |= MachineMemOperand::MODereferenceable;
- Value =
- DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
- SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
- LoadValues.push_back(Value);
- LoadChains.push_back(Value.getValue(1));
- SrcOff += VTSize;
- }
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
- OutChains.clear();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Store;
- Store = DAG.getStore(Chain, dl, LoadValues[i],
- DAG.getMemBasePlusOffset(Dst, DstOff, dl),
- DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- /// Lower the call to 'memset' intrinsic function into a series of store
- /// operations.
- ///
- /// \param DAG Selection DAG where lowered code is placed.
- /// \param dl Link to corresponding IR location.
- /// \param Chain Control flow dependency.
- /// \param Dst Pointer to destination memory location.
- /// \param Src Value of byte to write into the memory.
- /// \param Size Number of bytes to write.
- /// \param Align Alignment of the destination in bytes.
- /// \param isVol True if destination is volatile.
- /// \param DstPtrInfo IR information on the memory pointer.
- /// \returns New head in the control flow, if lowering was successful, empty
- /// SDValue otherwise.
- ///
- /// The function tries to replace 'llvm.memset' intrinsic with several store
- /// operations and value calculation code. This is usually profitable for small
- /// memory size.
- static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
- SDValue Chain, SDValue Dst, SDValue Src,
- uint64_t Size, unsigned Align, bool isVol,
- MachinePointerInfo DstPtrInfo) {
- // Turn a memset of undef to nop.
- if (Src.isUndef())
- return Chain;
- // Expand memset to a series of load/store ops if the size operand
- // falls below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- bool OptSize = shouldLowerMemFuncForSize(MF);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- bool IsZeroVal =
- isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
- if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
- Size, (DstAlignCanChange ? 0 : Align), 0,
- true, IsZeroVal, false, true,
- DstPtrInfo.getAddrSpace(), ~0u,
- DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI.setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- uint64_t DstOff = 0;
- unsigned NumMemOps = MemOps.size();
- // Find the largest store and generate the bit pattern for it.
- EVT LargestVT = MemOps[0];
- for (unsigned i = 1; i < NumMemOps; i++)
- if (MemOps[i].bitsGT(LargestVT))
- LargestVT = MemOps[i];
- SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- DstOff -= VTSize - Size;
- }
- // If this store is smaller than the largest store see whether we can get
- // the smaller value for free with a truncate.
- SDValue Value = MemSetValue;
- if (VT.bitsLT(LargestVT)) {
- if (!LargestVT.isVector() && !VT.isVector() &&
- TLI.isTruncateFree(LargestVT, VT))
- Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
- else
- Value = getMemsetValue(Src, VT, DAG, dl);
- }
- assert(Value.getValueType() == VT && "Value with wrong type.");
- SDValue Store = DAG.getStore(
- Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
- DstPtrInfo.getWithOffset(DstOff), Align,
- isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
- OutChains.push_back(Store);
- DstOff += VT.getSizeInBits() / 8;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
- unsigned AS) {
- // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
- // pointer operands can be losslessly bitcasted to pointers of address space 0
- if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
- report_fatal_error("cannot lower memory intrinsic in address space " +
- Twine(AS));
- }
- }
- SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, unsigned Align,
- bool isVol, bool AlwaysInline, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memcpy to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memcpy with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(),Align,
- isVol, false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memcpy with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemcpy(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // If we really need inline code and the target declined to provide it,
- // use a (potentially long) sequence of loads and stores.
- if (AlwaysInline) {
- assert(ConstantSize && "AlwaysInline requires a constant size!");
- return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- true, DstPtrInfo, SrcPtrInfo);
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
- // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
- // memcpy is not guaranteed to be safe. libc memcpys aren't required to
- // respect volatile, so they may do things like read or write memory
- // beyond the given memory regions. But fixing this isn't easy, and most
- // people don't care.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Src, unsigned SrcAlign,
- SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Node = Src;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, unsigned Align,
- bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memmove to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memmove with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memmove with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemmove(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
- // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
- // not be safe. See memcpy above for more details.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Src, unsigned SrcAlign,
- SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Node = Src;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
- SDValue Src, SDValue Size, unsigned Align,
- bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memset to stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memset with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
- Align, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memset with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemset(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
- // Emit a library call.
- Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Dst; Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- Entry.Node = Src;
- Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
- Args.push_back(Entry);
- Entry.Node = Size;
- Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
- Dst.getValueType().getTypeForEVT(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
- SDValue Dst, unsigned DstAlign,
- SDValue Value, SDValue Size, Type *SizeTy,
- unsigned ElemSz, bool isTailCall,
- MachinePointerInfo DstPtrInfo) {
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst;
- Args.push_back(Entry);
- Entry.Ty = Type::getInt8Ty(*getContext());
- Entry.Node = Value;
- Args.push_back(Entry);
- Entry.Ty = SizeTy;
- Entry.Node = Size;
- Args.push_back(Entry);
- RTLIB::Libcall LibraryCall =
- RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
- if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported element size");
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(LibraryCall),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args))
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
- EVT MemVT, SDVTList VTs, SDValue Chain,
- SDValue Ptr, SDValue Cmp, SDValue Swp,
- MachineMemOperand *MMO) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
- Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- SDValue Chain, SDValue Ptr, SDValue Val,
- MachineMemOperand *MMO) {
- assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
- Opcode == ISD::ATOMIC_LOAD_SUB ||
- Opcode == ISD::ATOMIC_LOAD_AND ||
- Opcode == ISD::ATOMIC_LOAD_CLR ||
- Opcode == ISD::ATOMIC_LOAD_OR ||
- Opcode == ISD::ATOMIC_LOAD_XOR ||
- Opcode == ISD::ATOMIC_LOAD_NAND ||
- Opcode == ISD::ATOMIC_LOAD_MIN ||
- Opcode == ISD::ATOMIC_LOAD_MAX ||
- Opcode == ISD::ATOMIC_LOAD_UMIN ||
- Opcode == ISD::ATOMIC_LOAD_UMAX ||
- Opcode == ISD::ATOMIC_LOAD_FADD ||
- Opcode == ISD::ATOMIC_LOAD_FSUB ||
- Opcode == ISD::ATOMIC_SWAP ||
- Opcode == ISD::ATOMIC_STORE) &&
- "Invalid Atomic Op");
- EVT VT = Val.getValueType();
- SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
- getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr, Val};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
- EVT VT, SDValue Chain, SDValue Ptr,
- MachineMemOperand *MMO) {
- assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
- SDVTList VTs = getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
- }
- /// getMergeValues - Create a MERGE_VALUES node from the given operands.
- SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
- if (Ops.size() == 1)
- return Ops[0];
- SmallVector<EVT, 4> VTs;
- VTs.reserve(Ops.size());
- for (unsigned i = 0; i < Ops.size(); ++i)
- VTs.push_back(Ops[i].getValueType());
- return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
- }
- SDValue SelectionDAG::getMemIntrinsicNode(
- unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
- EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
- MachineMemOperand::Flags Flags, unsigned Size) {
- if (Align == 0) // Ensure that codegen never sees alignment 0
- Align = getEVTAlignment(MemVT);
- if (!Size)
- Size = MemVT.getStoreSize();
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
- return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
- }
- SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
- SDVTList VTList,
- ArrayRef<SDValue> Ops, EVT MemVT,
- MachineMemOperand *MMO) {
- assert((Opcode == ISD::INTRINSIC_VOID ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::PREFETCH ||
- Opcode == ISD::LIFETIME_START ||
- Opcode == ISD::LIFETIME_END ||
- ((int)Opcode <= std::numeric_limits<int>::max() &&
- (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
- "Opcode is not a memory-accessing opcode!");
- // Memoize the node unless it returns a flag.
- MemIntrinsicSDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
- Opcode, dl.getIROrder(), VTList, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
- VTList, MemVT, MMO);
- createOperands(N, Ops);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
- SDValue Chain, int FrameIndex,
- int64_t Size, int64_t Offset) {
- const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
- const auto VTs = getVTList(MVT::Other);
- SDValue Ops[2] = {
- Chain,
- getFrameIndex(FrameIndex,
- getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
- true)};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- ID.AddInteger(FrameIndex);
- ID.AddInteger(Size);
- ID.AddInteger(Offset);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
- Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
- SelectionDAG &DAG, SDValue Ptr,
- int64_t Offset = 0) {
- // If this is FI+Offset, we can model it.
- if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
- return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
- FI->getIndex(), Offset);
- // If this is (FI+Offset1)+Offset2, we can model it.
- if (Ptr.getOpcode() != ISD::ADD ||
- !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
- !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
- return Info;
- int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- return MachinePointerInfo::getFixedStack(
- DAG.getMachineFunction(), FI,
- Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
- SelectionDAG &DAG, SDValue Ptr,
- SDValue OffsetOp) {
- // If the 'Offset' value isn't a constant, we can't handle this.
- if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
- return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
- if (OffsetOp.isUndef())
- return InferPointerInfo(Info, DAG, Ptr);
- return Info;
- }
- SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Offset,
- MachinePointerInfo PtrInfo, EVT MemVT,
- unsigned Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, const MDNode *Ranges) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MMOFlags |= MachineMemOperand::MOLoad;
- assert((MMOFlags & MachineMemOperand::MOStore) == 0);
- // If we don't have a PtrInfo, infer the trivial frame index case to simplify
- // clients.
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
- return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
- }
- SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Offset, EVT MemVT,
- MachineMemOperand *MMO) {
- if (VT == MemVT) {
- ExtType = ISD::NON_EXTLOAD;
- } else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == MemVT && "Non-extending load from different memory type!");
- } else {
- // Extending load.
- assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be an extending load, not truncating!");
- assert(VT.isInteger() == MemVT.isInteger() &&
- "Cannot convert from FP to Int or Int -> FP!");
- assert(VT.isVector() == MemVT.isVector() &&
- "Cannot use an ext load to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
- "Cannot use an ext load to change the number of vector elements!");
- }
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
- SDVTList VTs = Indexed ?
- getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
- dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<LoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- ExtType, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- unsigned Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo, const MDNode *Ranges) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
- }
- SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- VT, MMO);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo, EVT MemVT,
- unsigned Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
- MemVT, Alignment, MMOFlags, AAInfo);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
- EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
- MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- MemVT, MMO);
- }
- SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
- assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
- // Don't propagate the invariant or dereferenceable flags.
- auto MMOFlags =
- LD->getMemOperand()->getFlags() &
- ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
- return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
- LD->getChain(), Base, Offset, LD->getPointerInfo(),
- LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
- LD->getAAInfo());
- }
- SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- unsigned Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(Val.getValueType());
- MMOFlags |= MachineMemOperand::MOStore;
- assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
- return getStore(Chain, dl, Val, Ptr, MMO);
- }
- SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachineMemOperand *MMO) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
- dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, false, VT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- EVT SVT, unsigned Alignment,
- MachineMemOperand::Flags MMOFlags,
- const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(SVT);
- MMOFlags |= MachineMemOperand::MOStore;
- assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
- return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
- SDValue Ptr, EVT SVT,
- MachineMemOperand *MMO) {
- EVT VT = Val.getValueType();
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, MMO);
- assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be a truncating store, not extending!");
- assert(VT.isInteger() == SVT.isInteger() &&
- "Can't do FP-INT conversion!");
- assert(VT.isVector() == SVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
- "Cannot use trunc store to change the number of vector elements!");
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
- dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, true, SVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
- SDValue Base, SDValue Offset,
- ISD::MemIndexedMode AM) {
- StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
- assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
- return SDValue(E, 0);
- auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
- ST->isTruncatingStore(), ST->getMemoryVT(),
- ST->getMemOperand());
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue Mask, SDValue PassThru,
- EVT MemVT, MachineMemOperand *MMO,
- ISD::LoadExtType ExtTy, bool isExpanding) {
- SDVTList VTs = getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
- dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- ExtTy, isExpanding, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
- SDValue Val, SDValue Ptr, SDValue Mask,
- EVT MemVT, MachineMemOperand *MMO,
- bool IsTruncating, bool IsCompressing) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Ops[] = { Chain, Val, Ptr, Mask };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
- dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
- IsTruncating, IsCompressing, MemVT, MMO);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- assert(Ops.size() == 6 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
- dl.getIROrder(), VTs, VT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VTs, VT, MMO);
- createOperands(N, Ops);
- assert(N->getPassThru().getValueType() == N->getValueType(0) &&
- "Incompatible type of the PassThru value in MaskedGatherSDNode");
- assert(N->getMask().getValueType().getVectorNumElements() ==
- N->getValueType(0).getVectorNumElements() &&
- "Vector width mismatch between mask and data");
- assert(N->getIndex().getValueType().getVectorNumElements() >=
- N->getValueType(0).getVectorNumElements() &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- assert(Ops.size() == 6 && "Incompatible number of operands");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
- dl.getIROrder(), VTs, VT, MMO));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
- cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
- VTs, VT, MMO);
- createOperands(N, Ops);
- assert(N->getMask().getValueType().getVectorNumElements() ==
- N->getValue().getValueType().getVectorNumElements() &&
- "Vector width mismatch between mask and data");
- assert(N->getIndex().getValueType().getVectorNumElements() >=
- N->getValue().getValueType().getVectorNumElements() &&
- "Vector width mismatch between index and data");
- assert(isa<ConstantSDNode>(N->getScale()) &&
- cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
- "Scale should be a constant power of 2");
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
- // select undef, T, F --> T (if T is a constant), otherwise F
- // select, ?, undef, F --> F
- // select, ?, T, undef --> T
- if (Cond.isUndef())
- return isConstantValueOfAnyType(T) ? T : F;
- if (T.isUndef())
- return F;
- if (F.isUndef())
- return T;
- // select true, T, F --> T
- // select false, T, F --> F
- if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
- return CondC->isNullValue() ? F : T;
- // TODO: This should simplify VSELECT with constant condition using something
- // like this (but check boolean contents to be complete?):
- // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
- // return T;
- // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
- // return F;
- // select ?, T, T --> T
- if (T == F)
- return T;
- return SDValue();
- }
- SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
- // shift undef, Y --> 0 (can always assume that the undef value is 0)
- if (X.isUndef())
- return getConstant(0, SDLoc(X.getNode()), X.getValueType());
- // shift X, undef --> undef (because it may shift by the bitwidth)
- if (Y.isUndef())
- return getUNDEF(X.getValueType());
- // shift 0, Y --> 0
- // shift X, 0 --> X
- if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
- return X;
- // shift X, C >= bitwidth(X) --> undef
- // All vector elements must be too big (or undef) to avoid partial undefs.
- auto isShiftTooBig = [X](ConstantSDNode *Val) {
- return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
- };
- if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
- return getUNDEF(X.getValueType());
- return SDValue();
- }
- // TODO: Use fast-math-flags to enable more simplifications.
- SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
- ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
- if (!YC)
- return SDValue();
- // X + -0.0 --> X
- if (Opcode == ISD::FADD)
- if (YC->getValueAPF().isNegZero())
- return X;
- // X - +0.0 --> X
- if (Opcode == ISD::FSUB)
- if (YC->getValueAPF().isPosZero())
- return X;
- // X * 1.0 --> X
- // X / 1.0 --> X
- if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
- if (YC->getValueAPF().isExactlyValue(1.0))
- return X;
- return SDValue();
- }
- SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
- SDValue Ptr, SDValue SV, unsigned Align) {
- SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
- return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- ArrayRef<SDUse> Ops) {
- switch (Ops.size()) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- // Copy from an SDUse array into an SDValue array for use with
- // the regular getNode logic.
- SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
- return getNode(Opcode, DL, VT, NewOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
- ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
- unsigned NumOps = Ops.size();
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
- default: break;
- }
- switch (Opcode) {
- default: break;
- case ISD::BUILD_VECTOR:
- // Attempt to simplify BUILD_VECTOR.
- if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
- return V;
- break;
- case ISD::CONCAT_VECTORS:
- // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
- if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
- return V;
- break;
- case ISD::SELECT_CC:
- assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
- assert(Ops[0].getValueType() == Ops[1].getValueType() &&
- "LHS and RHS of condition must have same type!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "True and False arms of SelectCC must have same type!");
- assert(Ops[2].getValueType() == VT &&
- "select_cc node must be of same type as true and false value!");
- break;
- case ISD::BR_CC:
- assert(NumOps == 5 && "BR_CC takes 5 operands!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "LHS/RHS of comparison should match types!");
- break;
- }
- // Memoize nodes.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
- ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
- return getNode(Opcode, DL, getVTList(ResultTys), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- ArrayRef<SDValue> Ops) {
- if (VTList.NumVTs == 1)
- return getNode(Opcode, DL, VTList.VTs[0], Ops);
- #if 0
- switch (Opcode) {
- // FIXME: figure out how to safely handle things like
- // int foo(int x) { return 1 << (x & 255); }
- // int bar() { return foo(256); }
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SHL_PARTS:
- if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- else if (N3.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
- // If the and is only masking out bits that cannot effect the shift,
- // eliminate the and.
- unsigned NumBits = VT.getScalarSizeInBits()*2;
- if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- }
- break;
- }
- #endif
- // Memoize the node unless it returns a flag.
- SDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
- return SDValue(E, 0);
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
- createOperands(N, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
- createOperands(N, Ops);
- }
- InsertNode(N);
- SDValue V(N, 0);
- NewSDValueDbgMsg(V, "Creating new node: ", this);
- return V;
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
- SDVTList VTList) {
- return getNode(Opcode, DL, VTList, None);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1) {
- SDValue Ops[] = { N1 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2) {
- SDValue Ops[] = { N1, N2 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3) {
- SDValue Ops[] = { N1, N2, N3 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3, SDValue N4,
- SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDVTList SelectionDAG::getVTList(EVT VT) {
- return makeVTList(SDNode::getValueTypeList(VT), 1);
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- FoldingSetNodeID ID;
- ID.AddInteger(2U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- FoldingSetNodeID ID;
- ID.AddInteger(3U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- FoldingSetNodeID ID;
- ID.AddInteger(4U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- ID.AddInteger(VT4.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(4);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
- unsigned NumVTs = VTs.size();
- FoldingSetNodeID ID;
- ID.AddInteger(NumVTs);
- for (unsigned index = 0; index < NumVTs; index++) {
- ID.AddInteger(VTs[index].getRawBits());
- }
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- llvm::copy(VTs, Array);
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
- /// specified operands. If the resultant node already exists in the DAG,
- /// this does not modify the specified node, instead it returns the node that
- /// already exists. If the resultant node does not exist in the DAG, the
- /// input node is returned. As a degenerate case, if you specify the same
- /// input operands as the node already has, the input node is returned.
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
- assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op == N->getOperand(0)) return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- N->OperandList[0].set(Op);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
- assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
- return N; // No operands changed, just return the input node.
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- if (N->OperandList[0] != Op1)
- N->OperandList[0].set(Op1);
- if (N->OperandList[1] != Op2)
- N->OperandList[1].set(Op2);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
- SDValue Ops[] = { Op1, Op2, Op3 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4, SDValue Op5) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
- unsigned NumOps = Ops.size();
- assert(N->getNumOperands() == NumOps &&
- "Update with wrong number of operands");
- // If no operands changed just return the input node.
- if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
- return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- for (unsigned i = 0; i != NumOps; ++i)
- if (N->OperandList[i] != Ops[i])
- N->OperandList[i].set(Ops[i]);
- updateDivergence(N);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void SDNode::DropOperands() {
- // Unlike the code in MorphNodeTo that does this, we don't need to
- // watch for dead nodes here.
- for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
- SDUse &Use = *I++;
- Use.set(SDValue());
- }
- }
- void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
- ArrayRef<MachineMemOperand *> NewMemRefs) {
- if (NewMemRefs.empty()) {
- N->clearMemRefs();
- return;
- }
- // Check if we can avoid allocating by storing a single reference directly.
- if (NewMemRefs.size() == 1) {
- N->MemRefs = NewMemRefs[0];
- N->NumMemRefs = 1;
- return;
- }
- MachineMemOperand **MemRefsBuffer =
- Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
- llvm::copy(NewMemRefs, MemRefsBuffer);
- N->MemRefs = MemRefsBuffer;
- N->NumMemRefs = static_cast<int>(NewMemRefs.size());
- }
- /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
- /// machine opcode.
- ///
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- SDVTList VTs,ArrayRef<SDValue> Ops) {
- SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
- // Reset the NodeID to -1.
- New->setNodeId(-1);
- if (New != N) {
- ReplaceAllUsesWith(N, New);
- RemoveDeadNode(N);
- }
- return New;
- }
- /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
- /// the line number information on the merged node since it is not possible to
- /// preserve the information that operation is associated with multiple lines.
- /// This will make the debugger working better at -O0, were there is a higher
- /// probability having other instructions associated with that line.
- ///
- /// For IROrder, we keep the smaller of the two
- SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
- DebugLoc NLoc = N->getDebugLoc();
- if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
- N->setDebugLoc(DebugLoc());
- }
- unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
- N->setIROrder(Order);
- return N;
- }
- /// MorphNodeTo - This *mutates* the specified node to have the specified
- /// return type, opcode, and operands.
- ///
- /// Note that MorphNodeTo returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one. Note that the SDLoc need not be the same.
- ///
- /// Using MorphNodeTo is faster than creating a new node and swapping it in
- /// with ReplaceAllUsesWith both because it often avoids allocating a new
- /// node, and because it doesn't require CSE recalculation for any of
- /// the node's users.
- ///
- /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
- /// As a consequence it isn't appropriate to use from within the DAG combiner or
- /// the legalizer which maintain worklists that would need to be updated when
- /// deleting things.
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- SDVTList VTs, ArrayRef<SDValue> Ops) {
- // If an identical node already exists, use it.
- void *IP = nullptr;
- if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, VTs, Ops);
- if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
- return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
- }
- if (!RemoveNodeFromCSEMaps(N))
- IP = nullptr;
- // Start the morphing.
- N->NodeType = Opc;
- N->ValueList = VTs.VTs;
- N->NumValues = VTs.NumVTs;
- // Clear the operands list, updating used nodes to remove this from their
- // use list. Keep track of any operands that become dead as a result.
- SmallPtrSet<SDNode*, 16> DeadNodeSet;
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Used = Use.getNode();
- Use.set(SDValue());
- if (Used->use_empty())
- DeadNodeSet.insert(Used);
- }
- // For MachineNode, initialize the memory references information.
- if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
- MN->clearMemRefs();
- // Swap for an appropriately sized array from the recycler.
- removeOperands(N);
- createOperands(N, Ops);
- // Delete any nodes that are still dead after adding the uses for the
- // new operands.
- if (!DeadNodeSet.empty()) {
- SmallVector<SDNode *, 16> DeadNodes;
- for (SDNode *N : DeadNodeSet)
- if (N->use_empty())
- DeadNodes.push_back(N);
- RemoveDeadNodes(DeadNodes);
- }
- if (IP)
- CSEMap.InsertNode(N, IP); // Memoize the new node.
- return N;
- }
- SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
- unsigned OrigOpc = Node->getOpcode();
- unsigned NewOpc;
- bool IsUnary = false;
- bool IsTernary = false;
- switch (OrigOpc) {
- default:
- llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
- case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
- case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
- case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
- case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
- case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
- case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
- case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
- case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
- case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
- case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
- case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
- case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
- case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
- case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
- case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
- case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
- case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
- case ISD::STRICT_FNEARBYINT:
- NewOpc = ISD::FNEARBYINT;
- IsUnary = true;
- break;
- case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
- case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
- case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
- case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
- case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
- case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
- }
- // We're taking this node out of the chain, so we need to re-link things.
- SDValue InputChain = Node->getOperand(0);
- SDValue OutputChain = SDValue(Node, 1);
- ReplaceAllUsesOfValueWith(OutputChain, InputChain);
- SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
- SDNode *Res = nullptr;
- if (IsUnary)
- Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
- else if (IsTernary)
- Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
- Node->getOperand(2),
- Node->getOperand(3)});
- else
- Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
- Node->getOperand(2) });
- // MorphNodeTo can operate in two ways: if an existing node with the
- // specified operands exists, it can just return it. Otherwise, it
- // updates the node in place to have the requested operands.
- if (Res == Node) {
- // If we updated the node in place, reset the node ID. To the isel,
- // this should be just like a newly allocated machine node.
- Res->setNodeId(-1);
- } else {
- ReplaceAllUsesWith(Node, Res);
- RemoveDeadNode(Node);
- }
- return Res;
- }
- /// getMachineNode - These are used for target selectors to create a new node
- /// with specified return type(s), MachineInstr opcode, and operands.
- ///
- /// Note that getMachineNode returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one.
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, None);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
- ArrayRef<EVT> ResultTys,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(ResultTys);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
- SDVTList VTs,
- ArrayRef<SDValue> Ops) {
- bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
- MachineSDNode *N;
- void *IP = nullptr;
- if (DoCSE) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ~Opcode, VTs, Ops);
- IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
- return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
- }
- }
- // Allocate a new MachineSDNode.
- N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
- createOperands(N, Ops);
- if (DoCSE)
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return N;
- }
- /// getTargetExtractSubreg - A convenience function for creating
- /// TargetOpcode::EXTRACT_SUBREG nodes.
- SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
- SDValue Operand) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
- VT, Operand, SRIdxVal);
- return SDValue(Subreg, 0);
- }
- /// getTargetInsertSubreg - A convenience function for creating
- /// TargetOpcode::INSERT_SUBREG nodes.
- SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
- SDValue Operand, SDValue Subreg) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
- VT, Operand, Subreg, SRIdxVal);
- return SDValue(Result, 0);
- }
- /// getNodeIfExists - Get the specified node if it's already available, or
- /// else return NULL.
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- ArrayRef<SDValue> Ops,
- const SDNodeFlags Flags) {
- if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
- E->intersectFlagsWith(Flags);
- return E;
- }
- }
- return nullptr;
- }
- /// getDbgValue - Creates a SDDbgValue node.
- ///
- /// SDNode
- SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
- SDNode *N, unsigned R, bool IsIndirect,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
- }
- /// Constant
- SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
- DIExpression *Expr,
- const Value *C,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
- }
- /// FrameIndex
- SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
- DIExpression *Expr, unsigned FI,
- bool IsIndirect,
- const DebugLoc &DL,
- unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
- }
- /// VReg
- SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
- DIExpression *Expr,
- unsigned VReg, bool IsIndirect,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
- }
- void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
- unsigned OffsetInBits, unsigned SizeInBits,
- bool InvalidateDbg) {
- SDNode *FromNode = From.getNode();
- SDNode *ToNode = To.getNode();
- assert(FromNode && ToNode && "Can't modify dbg values");
- // PR35338
- // TODO: assert(From != To && "Redundant dbg value transfer");
- // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
- if (From == To || FromNode == ToNode)
- return;
- if (!FromNode->getHasDebugValue())
- return;
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
- if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
- continue;
- // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
- // Just transfer the dbg value attached to From.
- if (Dbg->getResNo() != From.getResNo())
- continue;
- DIVariable *Var = Dbg->getVariable();
- auto *Expr = Dbg->getExpression();
- // If a fragment is requested, update the expression.
- if (SizeInBits) {
- // When splitting a larger (e.g., sign-extended) value whose
- // lower bits are described with an SDDbgValue, do not attempt
- // to transfer the SDDbgValue to the upper bits.
- if (auto FI = Expr->getFragmentInfo())
- if (OffsetInBits + SizeInBits > FI->SizeInBits)
- continue;
- auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
- SizeInBits);
- if (!Fragment)
- continue;
- Expr = *Fragment;
- }
- // Clone the SDDbgValue and move it to To.
- SDDbgValue *Clone =
- getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
- Dbg->getDebugLoc(), Dbg->getOrder());
- ClonedDVs.push_back(Clone);
- if (InvalidateDbg) {
- // Invalidate value and indicate the SDDbgValue should not be emitted.
- Dbg->setIsInvalidated();
- Dbg->setIsEmitted();
- }
- }
- for (SDDbgValue *Dbg : ClonedDVs)
- AddDbgValue(Dbg, ToNode, false);
- }
- void SelectionDAG::salvageDebugInfo(SDNode &N) {
- if (!N.getHasDebugValue())
- return;
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (auto DV : GetDbgValues(&N)) {
- if (DV->isInvalidated())
- continue;
- switch (N.getOpcode()) {
- default:
- break;
- case ISD::ADD:
- SDValue N0 = N.getOperand(0);
- SDValue N1 = N.getOperand(1);
- if (!isConstantIntBuildVectorOrConstantInt(N0) &&
- isConstantIntBuildVectorOrConstantInt(N1)) {
- uint64_t Offset = N.getConstantOperandVal(1);
- // Rewrite an ADD constant node into a DIExpression. Since we are
- // performing arithmetic to compute the variable's *value* in the
- // DIExpression, we need to mark the expression with a
- // DW_OP_stack_value.
- auto *DIExpr = DV->getExpression();
- DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
- DIExpression::NoDeref,
- DIExpression::WithStackValue);
- SDDbgValue *Clone =
- getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
- DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
- ClonedDVs.push_back(Clone);
- DV->setIsInvalidated();
- DV->setIsEmitted();
- LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
- N0.getNode()->dumprFull(this);
- dbgs() << " into " << *DIExpr << '\n');
- }
- }
- }
- for (SDDbgValue *Dbg : ClonedDVs)
- AddDbgValue(Dbg, Dbg->getSDNode(), false);
- }
- /// Creates a SDDbgLabel node.
- SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
- const DebugLoc &DL, unsigned O) {
- assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
- }
- namespace {
- /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
- /// pointed to by a use iterator is deleted, increment the use iterator
- /// so that it doesn't dangle.
- ///
- class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
- SDNode::use_iterator &UI;
- SDNode::use_iterator &UE;
- void NodeDeleted(SDNode *N, SDNode *E) override {
- // Increment the iterator as needed.
- while (UI != UE && N == *UI)
- ++UI;
- }
- public:
- RAUWUpdateListener(SelectionDAG &d,
- SDNode::use_iterator &ui,
- SDNode::use_iterator &ue)
- : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
- };
- } // end anonymous namespace
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes From has a single result value.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
- SDNode *From = FromN.getNode();
- assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
- "Cannot replace with this method!");
- assert(From != To.getNode() && "Cannot replace uses of with self");
- // Preserve Debug Values
- transferDbgValues(FromN, To);
- // Iterate over all the existing uses of From. New uses will be added
- // to the beginning of the use list, which we avoid visiting.
- // This specifically avoids visiting uses of From that arise while the
- // replacement is happening, because any such uses would be the result
- // of CSE: If an existing node looks like From after one of its operands
- // is replaced by To, we don't want to replace of all its users with To
- // too. See PR3018 for more info.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.set(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (FromN == getRoot())
- setRoot(To);
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes that for each value of From, there is a
- /// corresponding value in To in the same position with the same type.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
- #ifndef NDEBUG
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- assert((!From->hasAnyUseOfValue(i) ||
- From->getValueType(i) == To->getValueType(i)) &&
- "Cannot use this version of ReplaceAllUsesWith!");
- #endif
- // Handle the trivial case.
- if (From == To)
- return;
- // Preserve Debug Info. Only do this if there's a use.
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- if (From->hasAnyUseOfValue(i)) {
- assert((i < To->getNumValues()) && "Invalid To location");
- transferDbgValues(SDValue(From, i), SDValue(To, i));
- }
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.setNode(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To, getRoot().getResNo()));
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version can replace From with any result values. To must match the
- /// number and types of values returned by From.
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
- if (From->getNumValues() == 1) // Handle the simple case efficiently.
- return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
- // Preserve Debug Info.
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- transferDbgValues(SDValue(From, i), To[i]);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this happens the
- // uses are usually next to each other in the list. To help reduce the
- // number of CSE and divergence recomputations, process all the uses of this
- // user that we can find this way.
- bool To_IsDivergent = false;
- do {
- SDUse &Use = UI.getUse();
- const SDValue &ToOp = To[Use.getResNo()];
- ++UI;
- Use.set(ToOp);
- To_IsDivergent |= ToOp->isDivergent();
- } while (UI != UE && *UI == User);
- if (To_IsDivergent != From->isDivergent())
- updateDivergence(User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To[getRoot().getResNo()]));
- }
- /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The Deleted
- /// vector is handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
- // Handle the really simple, really trivial case efficiently.
- if (From == To) return;
- // Handle the simple, trivial, case efficiently.
- if (From.getNode()->getNumValues() == 1) {
- ReplaceAllUsesWith(From, To);
- return;
- }
- // Preserve Debug Info.
- transferDbgValues(From, To);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From.getNode()->use_begin(),
- UE = From.getNode()->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- bool UserRemovedFromCSEMaps = false;
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- // Skip uses of different values from the same node.
- if (Use.getResNo() != From.getResNo()) {
- ++UI;
- continue;
- }
- // If this node hasn't been modified yet, it's still in the CSE maps,
- // so remove its old self from the CSE maps.
- if (!UserRemovedFromCSEMaps) {
- RemoveNodeFromCSEMaps(User);
- UserRemovedFromCSEMaps = true;
- }
- ++UI;
- Use.set(To);
- if (To->isDivergent() != From->isDivergent())
- updateDivergence(User);
- } while (UI != UE && *UI == User);
- // We are iterating over all uses of the From node, so if a use
- // doesn't use the specific value, no changes are made.
- if (!UserRemovedFromCSEMaps)
- continue;
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot())
- setRoot(To);
- }
- namespace {
- /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
- /// to record information about a use.
- struct UseMemo {
- SDNode *User;
- unsigned Index;
- SDUse *Use;
- };
- /// operator< - Sort Memos by User.
- bool operator<(const UseMemo &L, const UseMemo &R) {
- return (intptr_t)L.User < (intptr_t)R.User;
- }
- } // end anonymous namespace
- void SelectionDAG::updateDivergence(SDNode * N)
- {
- if (TLI->isSDNodeAlwaysUniform(N))
- return;
- bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
- for (auto &Op : N->ops()) {
- if (Op.Val.getValueType() != MVT::Other)
- IsDivergent |= Op.getNode()->isDivergent();
- }
- if (N->SDNodeBits.IsDivergent != IsDivergent) {
- N->SDNodeBits.IsDivergent = IsDivergent;
- for (auto U : N->uses()) {
- updateDivergence(U);
- }
- }
- }
- void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
- DenseMap<SDNode *, unsigned> Degree;
- Order.reserve(AllNodes.size());
- for (auto & N : allnodes()) {
- unsigned NOps = N.getNumOperands();
- Degree[&N] = NOps;
- if (0 == NOps)
- Order.push_back(&N);
- }
- for (std::vector<SDNode *>::iterator I = Order.begin();
- I!=Order.end();++I) {
- SDNode * N = *I;
- for (auto U : N->uses()) {
- unsigned &UnsortedOps = Degree[U];
- if (0 == --UnsortedOps)
- Order.push_back(U);
- }
- }
- }
- #ifndef NDEBUG
- void SelectionDAG::VerifyDAGDiverence()
- {
- std::vector<SDNode*> TopoOrder;
- CreateTopologicalOrder(TopoOrder);
- const TargetLowering &TLI = getTargetLoweringInfo();
- DenseMap<const SDNode *, bool> DivergenceMap;
- for (auto &N : allnodes()) {
- DivergenceMap[&N] = false;
- }
- for (auto N : TopoOrder) {
- bool IsDivergent = DivergenceMap[N];
- bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
- for (auto &Op : N->ops()) {
- if (Op.Val.getValueType() != MVT::Other)
- IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
- }
- if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
- DivergenceMap[N] = true;
- }
- }
- for (auto &N : allnodes()) {
- (void)N;
- assert(DivergenceMap[&N] == N.isDivergent() &&
- "Divergence bit inconsistency detected\n");
- }
- }
- #endif
- /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The same value
- /// may appear in both the From and To list. The Deleted vector is
- /// handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
- const SDValue *To,
- unsigned Num){
- // Handle the simple, trivial case efficiently.
- if (Num == 1)
- return ReplaceAllUsesOfValueWith(*From, *To);
- transferDbgValues(*From, *To);
- // Read up all the uses and make records of them. This helps
- // processing new uses that are introduced during the
- // replacement process.
- SmallVector<UseMemo, 4> Uses;
- for (unsigned i = 0; i != Num; ++i) {
- unsigned FromResNo = From[i].getResNo();
- SDNode *FromNode = From[i].getNode();
- for (SDNode::use_iterator UI = FromNode->use_begin(),
- E = FromNode->use_end(); UI != E; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == FromResNo) {
- UseMemo Memo = { *UI, i, &Use };
- Uses.push_back(Memo);
- }
- }
- }
- // Sort the uses, so that all the uses from a given User are together.
- llvm::sort(Uses);
- for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
- UseIndex != UseIndexEnd; ) {
- // We know that this user uses some value of From. If it is the right
- // value, update it.
- SDNode *User = Uses[UseIndex].User;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // The Uses array is sorted, so all the uses for a given User
- // are next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- unsigned i = Uses[UseIndex].Index;
- SDUse &Use = *Uses[UseIndex].Use;
- ++UseIndex;
- Use.set(To[i]);
- } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- }
- /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
- /// based on their topological order. It returns the maximum id and a vector
- /// of the SDNodes* in assigned order by reference.
- unsigned SelectionDAG::AssignTopologicalOrder() {
- unsigned DAGSize = 0;
- // SortedPos tracks the progress of the algorithm. Nodes before it are
- // sorted, nodes after it are unsorted. When the algorithm completes
- // it is at the end of the list.
- allnodes_iterator SortedPos = allnodes_begin();
- // Visit all the nodes. Move nodes with no operands to the front of
- // the list immediately. Annotate nodes that do have operands with their
- // operand count. Before we do this, the Node Id fields of the nodes
- // may contain arbitrary values. After, the Node Id fields for nodes
- // before SortedPos will contain the topological sort index, and the
- // Node Id fields for nodes At SortedPos and after will contain the
- // count of outstanding operands.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
- SDNode *N = &*I++;
- checkForCycles(N, this);
- unsigned Degree = N->getNumOperands();
- if (Degree == 0) {
- // A node with no uses, add it to the result array immediately.
- N->setNodeId(DAGSize++);
- allnodes_iterator Q(N);
- if (Q != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Temporarily use the Node Id as scratch space for the degree count.
- N->setNodeId(Degree);
- }
- }
- // Visit all the nodes. As we iterate, move nodes into sorted order,
- // such that by the time the end is reached all nodes will be sorted.
- for (SDNode &Node : allnodes()) {
- SDNode *N = &Node;
- checkForCycles(N, this);
- // N is in sorted position, so all its uses have one less operand
- // that needs to be sorted.
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDNode *P = *UI;
- unsigned Degree = P->getNodeId();
- assert(Degree != 0 && "Invalid node degree");
- --Degree;
- if (Degree == 0) {
- // All of P's operands are sorted, so P may sorted now.
- P->setNodeId(DAGSize++);
- if (P->getIterator() != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Update P's outstanding operand count.
- P->setNodeId(Degree);
- }
- }
- if (Node.getIterator() == SortedPos) {
- #ifndef NDEBUG
- allnodes_iterator I(N);
- SDNode *S = &*++I;
- dbgs() << "Overran sorted position:\n";
- S->dumprFull(this); dbgs() << "\n";
- dbgs() << "Checking if this is due to cycles\n";
- checkForCycles(this, true);
- #endif
- llvm_unreachable(nullptr);
- }
- }
- assert(SortedPos == AllNodes.end() &&
- "Topological sort incomplete!");
- assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
- "First node in topological sort is not the entry token!");
- assert(AllNodes.front().getNodeId() == 0 &&
- "First node in topological sort has non-zero id!");
- assert(AllNodes.front().getNumOperands() == 0 &&
- "First node in topological sort has operands!");
- assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
- "Last node in topologic sort has unexpected id!");
- assert(AllNodes.back().use_empty() &&
- "Last node in topologic sort has users!");
- assert(DAGSize == allnodes_size() && "Node count mismatch!");
- return DAGSize;
- }
- /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
- /// value is produced by SD.
- void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
- if (SD) {
- assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
- SD->setHasDebugValue(true);
- }
- DbgInfo->add(DB, SD, isParameter);
- }
- void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
- DbgInfo->add(DB);
- }
- SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
- SDValue NewMemOp) {
- assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
- // The new memory operation must have the same position as the old load in
- // terms of memory dependency. Create a TokenFactor for the old load and new
- // memory operation and update uses of the old load's output chain to use that
- // TokenFactor.
- SDValue OldChain = SDValue(OldLoad, 1);
- SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
- if (!OldLoad->hasAnyUseOfValue(1))
- return NewChain;
- SDValue TokenFactor =
- getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
- ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
- UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
- return TokenFactor;
- }
- SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
- Function **OutFunction) {
- assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
- auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
- auto *Module = MF->getFunction().getParent();
- auto *Function = Module->getFunction(Symbol);
- if (OutFunction != nullptr)
- *OutFunction = Function;
- if (Function != nullptr) {
- auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
- return getGlobalAddress(Function, SDLoc(Op), PtrTy);
- }
- std::string ErrorStr;
- raw_string_ostream ErrorFormatter(ErrorStr);
- ErrorFormatter << "Undefined external symbol ";
- ErrorFormatter << '"' << Symbol << '"';
- ErrorFormatter.flush();
- report_fatal_error(ErrorStr);
- }
- //===----------------------------------------------------------------------===//
- // SDNode Class
- //===----------------------------------------------------------------------===//
- bool llvm::isNullConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isNullValue();
- }
- bool llvm::isNullFPConstant(SDValue V) {
- ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
- return Const != nullptr && Const->isZero() && !Const->isNegative();
- }
- bool llvm::isAllOnesConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isAllOnesValue();
- }
- bool llvm::isOneConstant(SDValue V) {
- ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
- return Const != nullptr && Const->isOne();
- }
- SDValue llvm::peekThroughBitcasts(SDValue V) {
- while (V.getOpcode() == ISD::BITCAST)
- V = V.getOperand(0);
- return V;
- }
- SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
- while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
- V = V.getOperand(0);
- return V;
- }
- bool llvm::isBitwiseNot(SDValue V) {
- if (V.getOpcode() != ISD::XOR)
- return false;
- ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
- return C && C->isAllOnesValue();
- }
- ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
- // BuildVectors can truncate their operands. Ignore that case here.
- if (CN && (UndefElements.none() || AllowUndefs) &&
- CN->getValueType(0) == N.getValueType().getScalarType())
- return CN;
- }
- return nullptr;
- }
- ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
- bool AllowUndefs) {
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
- // BuildVectors can truncate their operands. Ignore that case here.
- if (CN && (UndefElements.none() || AllowUndefs) &&
- CN->getValueType(0) == N.getValueType().getScalarType())
- return CN;
- }
- return nullptr;
- }
- ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
- if (CN && (UndefElements.none() || AllowUndefs))
- return CN;
- }
- return nullptr;
- }
- ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
- const APInt &DemandedElts,
- bool AllowUndefs) {
- if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
- return CN;
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
- BitVector UndefElements;
- ConstantFPSDNode *CN =
- BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
- if (CN && (UndefElements.none() || AllowUndefs))
- return CN;
- }
- return nullptr;
- }
- bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
- // TODO: may want to use peekThroughBitcast() here.
- ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
- return C && C->isNullValue();
- }
- bool llvm::isOneOrOneSplat(SDValue N) {
- // TODO: may want to use peekThroughBitcast() here.
- unsigned BitWidth = N.getScalarValueSizeInBits();
- ConstantSDNode *C = isConstOrConstSplat(N);
- return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
- }
- bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
- N = peekThroughBitcasts(N);
- unsigned BitWidth = N.getScalarValueSizeInBits();
- ConstantSDNode *C = isConstOrConstSplat(N);
- return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
- }
- HandleSDNode::~HandleSDNode() {
- DropOperands();
- }
- GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
- const DebugLoc &DL,
- const GlobalValue *GA, EVT VT,
- int64_t o, unsigned char TF)
- : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
- TheGlobal = GA;
- }
- AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
- EVT VT, unsigned SrcAS,
- unsigned DestAS)
- : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
- SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
- MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
- SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
- : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
- MemSDNodeBits.IsVolatile = MMO->isVolatile();
- MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
- MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
- MemSDNodeBits.IsInvariant = MMO->isInvariant();
- // We check here that the size of the memory operand fits within the size of
- // the MMO. This is because the MMO might indicate only a possible address
- // range instead of specifying the affected memory addresses precisely.
- assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
- }
- /// Profile - Gather unique data for the node.
- ///
- void SDNode::Profile(FoldingSetNodeID &ID) const {
- AddNodeIDNode(ID, this);
- }
- namespace {
- struct EVTArray {
- std::vector<EVT> VTs;
- EVTArray() {
- VTs.reserve(MVT::LAST_VALUETYPE);
- for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
- VTs.push_back(MVT((MVT::SimpleValueType)i));
- }
- };
- } // end anonymous namespace
- static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
- static ManagedStatic<EVTArray> SimpleVTArray;
- static ManagedStatic<sys::SmartMutex<true>> VTMutex;
- /// getValueTypeList - Return a pointer to the specified value type.
- ///
- const EVT *SDNode::getValueTypeList(EVT VT) {
- if (VT.isExtended()) {
- sys::SmartScopedLock<true> Lock(*VTMutex);
- return &(*EVTs->insert(VT).first);
- } else {
- assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
- "Value type out of range!");
- return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
- }
- }
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- // TODO: Only iterate over uses of a given value of the node
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- if (UI.getUse().getResNo() == Value) {
- if (NUses == 0)
- return false;
- --NUses;
- }
- }
- // Found exactly the right number of uses?
- return NUses == 0;
- }
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool SDNode::hasAnyUseOfValue(unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
- if (UI.getUse().getResNo() == Value)
- return true;
- return false;
- }
- /// isOnlyUserOf - Return true if this node is the only use of N.
- bool SDNode::isOnlyUserOf(const SDNode *N) const {
- bool Seen = false;
- for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
- SDNode *User = *I;
- if (User == this)
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// Return true if the only users of N are contained in Nodes.
- bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
- bool Seen = false;
- for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
- SDNode *User = *I;
- if (llvm::any_of(Nodes,
- [&User](const SDNode *Node) { return User == Node; }))
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// isOperand - Return true if this node is an operand of N.
- bool SDValue::isOperandOf(const SDNode *N) const {
- for (const SDValue &Op : N->op_values())
- if (*this == Op)
- return true;
- return false;
- }
- bool SDNode::isOperandOf(const SDNode *N) const {
- for (const SDValue &Op : N->op_values())
- if (this == Op.getNode())
- return true;
- return false;
- }
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions on any chain path. In practice, this looks
- /// through token factors and non-volatile loads. In order to remain efficient,
- /// this only looks a couple of nodes in, it does not do an exhaustive search.
- ///
- /// Note that we only need to examine chains when we're searching for
- /// side-effects; SelectionDAG requires that all side-effects are represented
- /// by chains, even if another operand would force a specific ordering. This
- /// constraint is necessary to allow transformations like splitting loads.
- bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth) const {
- if (*this == Dest) return true;
- // Don't search too deeply, we just want to be able to see through
- // TokenFactor's etc.
- if (Depth == 0) return false;
- // If this is a token factor, all inputs to the TF happen in parallel.
- if (getOpcode() == ISD::TokenFactor) {
- // First, try a shallow search.
- if (is_contained((*this)->ops(), Dest)) {
- // We found the chain we want as an operand of this TokenFactor.
- // Essentially, we reach the chain without side-effects if we could
- // serialize the TokenFactor into a simple chain of operations with
- // Dest as the last operation. This is automatically true if the
- // chain has one use: there are no other ordering constraints.
- // If the chain has more than one use, we give up: some other
- // use of Dest might force a side-effect between Dest and the current
- // node.
- if (Dest.hasOneUse())
- return true;
- }
- // Next, try a deep search: check whether every operand of the TokenFactor
- // reaches Dest.
- return llvm::all_of((*this)->ops(), [=](SDValue Op) {
- return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
- });
- }
- // Loads don't have side effects, look through them.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
- if (!Ld->isVolatile())
- return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
- }
- return false;
- }
- bool SDNode::hasPredecessor(const SDNode *N) const {
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- Worklist.push_back(this);
- return hasPredecessorHelper(N, Visited, Worklist);
- }
- void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
- this->Flags.intersectWith(Flags);
- }
- SDValue
- SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
- ArrayRef<ISD::NodeType> CandidateBinOps) {
- // The pattern must end in an extract from index 0.
- if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
- !isNullConstant(Extract->getOperand(1)))
- return SDValue();
- SDValue Op = Extract->getOperand(0);
- unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
- // Match against one of the candidate binary ops.
- if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
- return Op.getOpcode() == unsigned(BinOp);
- }))
- return SDValue();
- // At each stage, we're looking for something that looks like:
- // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
- // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
- // i32 undef, i32 undef, i32 undef, i32 undef>
- // %a = binop <8 x i32> %op, %s
- // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
- // we expect something like:
- // <4,5,6,7,u,u,u,u>
- // <2,3,u,u,u,u,u,u>
- // <1,u,u,u,u,u,u,u>
- unsigned CandidateBinOp = Op.getOpcode();
- for (unsigned i = 0; i < Stages; ++i) {
- if (Op.getOpcode() != CandidateBinOp)
- return SDValue();
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
- if (Shuffle) {
- Op = Op1;
- } else {
- Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
- Op = Op0;
- }
- // The first operand of the shuffle should be the same as the other operand
- // of the binop.
- if (!Shuffle || Shuffle->getOperand(0) != Op)
- return SDValue();
- // Verify the shuffle has the expected (at this stage of the pyramid) mask.
- for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
- if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
- return SDValue();
- }
- BinOp = (ISD::NodeType)CandidateBinOp;
- return Op;
- }
- SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
- assert(N->getNumValues() == 1 &&
- "Can't unroll a vector with multiple results!");
- EVT VT = N->getValueType(0);
- unsigned NE = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDLoc dl(N);
- SmallVector<SDValue, 8> Scalars;
- SmallVector<SDValue, 4> Operands(N->getNumOperands());
- // If ResNE is 0, fully unroll the vector op.
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- unsigned i;
- for (i= 0; i != NE; ++i) {
- for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
- SDValue Operand = N->getOperand(j);
- EVT OperandVT = Operand.getValueType();
- if (OperandVT.isVector()) {
- // A vector operand; extract a single element.
- EVT OperandEltVT = OperandVT.getVectorElementType();
- Operands[j] =
- getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
- getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
- } else {
- // A scalar operand; just use it as is.
- Operands[j] = Operand;
- }
- }
- switch (N->getOpcode()) {
- default: {
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
- N->getFlags()));
- break;
- }
- case ISD::VSELECT:
- Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
- getShiftAmountOperand(Operands[0].getValueType(),
- Operands[1])));
- break;
- case ISD::SIGN_EXTEND_INREG:
- case ISD::FP_ROUND_INREG: {
- EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
- Operands[0],
- getValueType(ExtVT)));
- }
- }
- }
- for (; i < ResNE; ++i)
- Scalars.push_back(getUNDEF(EltVT));
- EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
- return getBuildVector(VecVT, dl, Scalars);
- }
- std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
- SDNode *N, unsigned ResNE) {
- unsigned Opcode = N->getOpcode();
- assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
- Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
- Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
- "Expected an overflow opcode");
- EVT ResVT = N->getValueType(0);
- EVT OvVT = N->getValueType(1);
- EVT ResEltVT = ResVT.getVectorElementType();
- EVT OvEltVT = OvVT.getVectorElementType();
- SDLoc dl(N);
- // If ResNE is 0, fully unroll the vector op.
- unsigned NE = ResVT.getVectorNumElements();
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- SmallVector<SDValue, 8> LHSScalars;
- SmallVector<SDValue, 8> RHSScalars;
- ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
- ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
- EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
- SDVTList VTs = getVTList(ResEltVT, SVT);
- SmallVector<SDValue, 8> ResScalars;
- SmallVector<SDValue, 8> OvScalars;
- for (unsigned i = 0; i < NE; ++i) {
- SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
- SDValue Ov =
- getSelect(dl, OvEltVT, Res.getValue(1),
- getBoolConstant(true, dl, OvEltVT, ResVT),
- getConstant(0, dl, OvEltVT));
- ResScalars.push_back(Res);
- OvScalars.push_back(Ov);
- }
- ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
- OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
- EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
- EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
- return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
- getBuildVector(NewOvVT, dl, OvScalars));
- }
- bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
- LoadSDNode *Base,
- unsigned Bytes,
- int Dist) const {
- if (LD->isVolatile() || Base->isVolatile())
- return false;
- if (LD->isIndexed() || Base->isIndexed())
- return false;
- if (LD->getChain() != Base->getChain())
- return false;
- EVT VT = LD->getValueType(0);
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
- auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
- auto LocDecomp = BaseIndexOffset::match(LD, *this);
- int64_t Offset = 0;
- if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
- return (Dist * Bytes == Offset);
- return false;
- }
- /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
- /// it cannot be inferred.
- unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
- // If this is a GlobalAddress + cst, return the alignment.
- const GlobalValue *GV;
- int64_t GVOffset = 0;
- if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
- unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
- KnownBits Known(IdxWidth);
- llvm::computeKnownBits(GV, Known, getDataLayout());
- unsigned AlignBits = Known.countMinTrailingZeros();
- unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
- if (Align)
- return MinAlign(Align, GVOffset);
- }
- // If this is a direct reference to a stack slot, use information about the
- // stack slot's alignment.
- int FrameIdx = 1 << 31;
- int64_t FrameOffset = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
- FrameIdx = FI->getIndex();
- } else if (isBaseWithConstantOffset(Ptr) &&
- isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
- // Handle FI+Cst
- FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- FrameOffset = Ptr.getConstantOperandVal(1);
- }
- if (FrameIdx != (1 << 31)) {
- const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
- unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
- FrameOffset);
- return FIInfoAlign;
- }
- return 0;
- }
- /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
- /// which is split (or expanded) into two not necessarily identical pieces.
- std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
- // Currently all types are split in half.
- EVT LoVT, HiVT;
- if (!VT.isVector())
- LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
- else
- LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
- return std::make_pair(LoVT, HiVT);
- }
- /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
- /// low/high part.
- std::pair<SDValue, SDValue>
- SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
- const EVT &HiVT) {
- assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
- N.getValueType().getVectorNumElements() &&
- "More vector elements requested than available!");
- SDValue Lo, Hi;
- Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
- getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
- Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
- getConstant(LoVT.getVectorNumElements(), DL,
- TLI->getVectorIdxTy(getDataLayout())));
- return std::make_pair(Lo, Hi);
- }
- /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
- SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
- EVT VT = N.getValueType();
- EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
- NextPowerOf2(VT.getVectorNumElements()));
- return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
- getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
- }
- void SelectionDAG::ExtractVectorElements(SDValue Op,
- SmallVectorImpl<SDValue> &Args,
- unsigned Start, unsigned Count) {
- EVT VT = Op.getValueType();
- if (Count == 0)
- Count = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
- SDLoc SL(Op);
- for (unsigned i = Start, e = Start + Count; i != e; ++i) {
- Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
- Op, getConstant(i, SL, IdxTy)));
- }
- }
- // getAddressSpace - Return the address space this GlobalAddress belongs to.
- unsigned GlobalAddressSDNode::getAddressSpace() const {
- return getGlobal()->getType()->getAddressSpace();
- }
- Type *ConstantPoolSDNode::getType() const {
- if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
- return Val.ConstVal->getType();
- }
- bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
- unsigned &SplatBitSize,
- bool &HasAnyUndefs,
- unsigned MinSplatBits,
- bool IsBigEndian) const {
- EVT VT = getValueType(0);
- assert(VT.isVector() && "Expected a vector type");
- unsigned VecWidth = VT.getSizeInBits();
- if (MinSplatBits > VecWidth)
- return false;
- // FIXME: The widths are based on this node's type, but build vectors can
- // truncate their operands.
- SplatValue = APInt(VecWidth, 0);
- SplatUndef = APInt(VecWidth, 0);
- // Get the bits. Bits with undefined values (when the corresponding element
- // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
- // in SplatValue. If any of the values are not constant, give up and return
- // false.
- unsigned int NumOps = getNumOperands();
- assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltWidth = VT.getScalarSizeInBits();
- for (unsigned j = 0; j < NumOps; ++j) {
- unsigned i = IsBigEndian ? NumOps - 1 - j : j;
- SDValue OpVal = getOperand(i);
- unsigned BitPos = j * EltWidth;
- if (OpVal.isUndef())
- SplatUndef.setBits(BitPos, BitPos + EltWidth);
- else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
- SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
- else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
- SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
- else
- return false;
- }
- // The build_vector is all constants or undefs. Find the smallest element
- // size that splats the vector.
- HasAnyUndefs = (SplatUndef != 0);
- // FIXME: This does not work for vectors with elements less than 8 bits.
- while (VecWidth > 8) {
- unsigned HalfSize = VecWidth / 2;
- APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
- APInt LowValue = SplatValue.trunc(HalfSize);
- APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
- APInt LowUndef = SplatUndef.trunc(HalfSize);
- // If the two halves do not match (ignoring undef bits), stop here.
- if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
- MinSplatBits > HalfSize)
- break;
- SplatValue = HighValue | LowValue;
- SplatUndef = HighUndef & LowUndef;
- VecWidth = HalfSize;
- }
- SplatBitSize = VecWidth;
- return true;
- }
- SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- if (UndefElements) {
- UndefElements->clear();
- UndefElements->resize(getNumOperands());
- }
- assert(getNumOperands() == DemandedElts.getBitWidth() &&
- "Unexpected vector size");
- if (!DemandedElts)
- return SDValue();
- SDValue Splatted;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- if (!DemandedElts[i])
- continue;
- SDValue Op = getOperand(i);
- if (Op.isUndef()) {
- if (UndefElements)
- (*UndefElements)[i] = true;
- } else if (!Splatted) {
- Splatted = Op;
- } else if (Splatted != Op) {
- return SDValue();
- }
- }
- if (!Splatted) {
- unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
- assert(getOperand(FirstDemandedIdx).isUndef() &&
- "Can only have a splat without a constant for all undefs.");
- return getOperand(FirstDemandedIdx);
- }
- return Splatted;
- }
- SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
- APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
- return getSplatValue(DemandedElts, UndefElements);
- }
- ConstantSDNode *
- BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantSDNode>(
- getSplatValue(DemandedElts, UndefElements));
- }
- ConstantSDNode *
- BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
- }
- ConstantFPSDNode *
- BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
- BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantFPSDNode>(
- getSplatValue(DemandedElts, UndefElements));
- }
- ConstantFPSDNode *
- BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
- }
- int32_t
- BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
- uint32_t BitWidth) const {
- if (ConstantFPSDNode *CN =
- dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
- bool IsExact;
- APSInt IntVal(BitWidth);
- const APFloat &APF = CN->getValueAPF();
- if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
- APFloat::opOK ||
- !IsExact)
- return -1;
- return IntVal.exactLogBase2();
- }
- return -1;
- }
- bool BuildVectorSDNode::isConstant() const {
- for (const SDValue &Op : op_values()) {
- unsigned Opc = Op.getOpcode();
- if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
- return false;
- }
- return true;
- }
- bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
- // Find the first non-undef value in the shuffle mask.
- unsigned i, e;
- for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
- /* search */;
- assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
- // Make sure all remaining elements are either undef or the same as the first
- // non-undef value.
- for (int Idx = Mask[i]; i != e; ++i)
- if (Mask[i] >= 0 && Mask[i] != Idx)
- return false;
- return true;
- }
- // Returns the SDNode if it is a constant integer BuildVector
- // or constant integer.
- SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
- if (isa<ConstantSDNode>(N))
- return N.getNode();
- if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
- return N.getNode();
- // Treat a GlobalAddress supporting constant offset folding as a
- // constant integer.
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
- if (GA->getOpcode() == ISD::GlobalAddress &&
- TLI->isOffsetFoldingLegal(GA))
- return GA;
- return nullptr;
- }
- SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
- if (isa<ConstantFPSDNode>(N))
- return N.getNode();
- if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
- return N.getNode();
- return nullptr;
- }
- void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
- assert(!Node->OperandList && "Node already has operands");
- assert(SDNode::getMaxNumOperands() >= Vals.size() &&
- "too many operands to fit into SDNode");
- SDUse *Ops = OperandRecycler.allocate(
- ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
- bool IsDivergent = false;
- for (unsigned I = 0; I != Vals.size(); ++I) {
- Ops[I].setUser(Node);
- Ops[I].setInitial(Vals[I]);
- if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
- IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
- }
- Node->NumOperands = Vals.size();
- Node->OperandList = Ops;
- IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
- if (!TLI->isSDNodeAlwaysUniform(Node))
- Node->SDNodeBits.IsDivergent = IsDivergent;
- checkForCycles(Node);
- }
- SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
- SmallVectorImpl<SDValue> &Vals) {
- size_t Limit = SDNode::getMaxNumOperands();
- while (Vals.size() > Limit) {
- unsigned SliceIdx = Vals.size() - Limit;
- auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
- SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
- Vals.erase(Vals.begin() + SliceIdx, Vals.end());
- Vals.emplace_back(NewTF);
- }
- return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
- }
- #ifndef NDEBUG
- static void checkForCyclesHelper(const SDNode *N,
- SmallPtrSetImpl<const SDNode*> &Visited,
- SmallPtrSetImpl<const SDNode*> &Checked,
- const llvm::SelectionDAG *DAG) {
- // If this node has already been checked, don't check it again.
- if (Checked.count(N))
- return;
- // If a node has already been visited on this depth-first walk, reject it as
- // a cycle.
- if (!Visited.insert(N).second) {
- errs() << "Detected cycle in SelectionDAG\n";
- dbgs() << "Offending node:\n";
- N->dumprFull(DAG); dbgs() << "\n";
- abort();
- }
- for (const SDValue &Op : N->op_values())
- checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
- Checked.insert(N);
- Visited.erase(N);
- }
- #endif
- void llvm::checkForCycles(const llvm::SDNode *N,
- const llvm::SelectionDAG *DAG,
- bool force) {
- #ifndef NDEBUG
- bool check = force;
- #ifdef EXPENSIVE_CHECKS
- check = true;
- #endif // EXPENSIVE_CHECKS
- if (check) {
- assert(N && "Checking nonexistent SDNode");
- SmallPtrSet<const SDNode*, 32> visited;
- SmallPtrSet<const SDNode*, 32> checked;
- checkForCyclesHelper(N, visited, checked, DAG);
- }
- #endif // !NDEBUG
- }
- void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
- checkForCycles(DAG->getRoot().getNode(), DAG, force);
- }
|