123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958 |
- //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the LiveRange and LiveInterval classes. Given some
- // numbering of each the machine instructions an interval [i, j) is said to be a
- // live range for register v if there is no instruction with number j' >= j
- // such that v is live at j' and there is no instruction with number i' < i such
- // that v is live at i'. In this implementation ranges can have holes,
- // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
- // individual segment is represented as an instance of LiveRange::Segment,
- // and the whole range is represented as an instance of LiveRange.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/LiveInterval.h"
- #include "RegisterCoalescer.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/CodeGen/LiveIntervalAnalysis.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include <algorithm>
- using namespace llvm;
- LiveRange::iterator LiveRange::find(SlotIndex Pos) {
- // This algorithm is basically std::upper_bound.
- // Unfortunately, std::upper_bound cannot be used with mixed types until we
- // adopt C++0x. Many libraries can do it, but not all.
- if (empty() || Pos >= endIndex())
- return end();
- iterator I = begin();
- size_t Len = size();
- do {
- size_t Mid = Len >> 1;
- if (Pos < I[Mid].end)
- Len = Mid;
- else
- I += Mid + 1, Len -= Mid + 1;
- } while (Len);
- return I;
- }
- VNInfo *LiveRange::createDeadDef(SlotIndex Def,
- VNInfo::Allocator &VNInfoAllocator) {
- assert(!Def.isDead() && "Cannot define a value at the dead slot");
- iterator I = find(Def);
- if (I == end()) {
- VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
- segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
- return VNI;
- }
- if (SlotIndex::isSameInstr(Def, I->start)) {
- assert(I->valno->def == I->start && "Inconsistent existing value def");
- // It is possible to have both normal and early-clobber defs of the same
- // register on an instruction. It doesn't make a lot of sense, but it is
- // possible to specify in inline assembly.
- //
- // Just convert everything to early-clobber.
- Def = std::min(Def, I->start);
- if (Def != I->start)
- I->start = I->valno->def = Def;
- return I->valno;
- }
- assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
- VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
- segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
- return VNI;
- }
- // overlaps - Return true if the intersection of the two live ranges is
- // not empty.
- //
- // An example for overlaps():
- //
- // 0: A = ...
- // 4: B = ...
- // 8: C = A + B ;; last use of A
- //
- // The live ranges should look like:
- //
- // A = [3, 11)
- // B = [7, x)
- // C = [11, y)
- //
- // A->overlaps(C) should return false since we want to be able to join
- // A and C.
- //
- bool LiveRange::overlapsFrom(const LiveRange& other,
- const_iterator StartPos) const {
- assert(!empty() && "empty range");
- const_iterator i = begin();
- const_iterator ie = end();
- const_iterator j = StartPos;
- const_iterator je = other.end();
- assert((StartPos->start <= i->start || StartPos == other.begin()) &&
- StartPos != other.end() && "Bogus start position hint!");
- if (i->start < j->start) {
- i = std::upper_bound(i, ie, j->start);
- if (i != begin()) --i;
- } else if (j->start < i->start) {
- ++StartPos;
- if (StartPos != other.end() && StartPos->start <= i->start) {
- assert(StartPos < other.end() && i < end());
- j = std::upper_bound(j, je, i->start);
- if (j != other.begin()) --j;
- }
- } else {
- return true;
- }
- if (j == je) return false;
- while (i != ie) {
- if (i->start > j->start) {
- std::swap(i, j);
- std::swap(ie, je);
- }
- if (i->end > j->start)
- return true;
- ++i;
- }
- return false;
- }
- bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
- const SlotIndexes &Indexes) const {
- assert(!empty() && "empty range");
- if (Other.empty())
- return false;
- // Use binary searches to find initial positions.
- const_iterator I = find(Other.beginIndex());
- const_iterator IE = end();
- if (I == IE)
- return false;
- const_iterator J = Other.find(I->start);
- const_iterator JE = Other.end();
- if (J == JE)
- return false;
- for (;;) {
- // J has just been advanced to satisfy:
- assert(J->end >= I->start);
- // Check for an overlap.
- if (J->start < I->end) {
- // I and J are overlapping. Find the later start.
- SlotIndex Def = std::max(I->start, J->start);
- // Allow the overlap if Def is a coalescable copy.
- if (Def.isBlock() ||
- !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
- return true;
- }
- // Advance the iterator that ends first to check for more overlaps.
- if (J->end > I->end) {
- std::swap(I, J);
- std::swap(IE, JE);
- }
- // Advance J until J->end >= I->start.
- do
- if (++J == JE)
- return false;
- while (J->end < I->start);
- }
- }
- /// overlaps - Return true if the live range overlaps an interval specified
- /// by [Start, End).
- bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
- assert(Start < End && "Invalid range");
- const_iterator I = std::lower_bound(begin(), end(), End);
- return I != begin() && (--I)->end > Start;
- }
- /// ValNo is dead, remove it. If it is the largest value number, just nuke it
- /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
- /// it can be nuked later.
- void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
- if (ValNo->id == getNumValNums()-1) {
- do {
- valnos.pop_back();
- } while (!valnos.empty() && valnos.back()->isUnused());
- } else {
- ValNo->markUnused();
- }
- }
- /// RenumberValues - Renumber all values in order of appearance and delete the
- /// remaining unused values.
- void LiveRange::RenumberValues() {
- SmallPtrSet<VNInfo*, 8> Seen;
- valnos.clear();
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- VNInfo *VNI = I->valno;
- if (!Seen.insert(VNI))
- continue;
- assert(!VNI->isUnused() && "Unused valno used by live segment");
- VNI->id = (unsigned)valnos.size();
- valnos.push_back(VNI);
- }
- }
- /// This method is used when we want to extend the segment specified by I to end
- /// at the specified endpoint. To do this, we should merge and eliminate all
- /// segments that this will overlap with. The iterator is not invalidated.
- void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
- assert(I != end() && "Not a valid segment!");
- VNInfo *ValNo = I->valno;
- // Search for the first segment that we can't merge with.
- iterator MergeTo = std::next(I);
- for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
- assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
- }
- // If NewEnd was in the middle of a segment, make sure to get its endpoint.
- I->end = std::max(NewEnd, std::prev(MergeTo)->end);
- // If the newly formed segment now touches the segment after it and if they
- // have the same value number, merge the two segments into one segment.
- if (MergeTo != end() && MergeTo->start <= I->end &&
- MergeTo->valno == ValNo) {
- I->end = MergeTo->end;
- ++MergeTo;
- }
- // Erase any dead segments.
- segments.erase(std::next(I), MergeTo);
- }
- /// This method is used when we want to extend the segment specified by I to
- /// start at the specified endpoint. To do this, we should merge and eliminate
- /// all segments that this will overlap with.
- LiveRange::iterator
- LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
- assert(I != end() && "Not a valid segment!");
- VNInfo *ValNo = I->valno;
- // Search for the first segment that we can't merge with.
- iterator MergeTo = I;
- do {
- if (MergeTo == begin()) {
- I->start = NewStart;
- segments.erase(MergeTo, I);
- return I;
- }
- assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
- --MergeTo;
- } while (NewStart <= MergeTo->start);
- // If we start in the middle of another segment, just delete a range and
- // extend that segment.
- if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
- MergeTo->end = I->end;
- } else {
- // Otherwise, extend the segment right after.
- ++MergeTo;
- MergeTo->start = NewStart;
- MergeTo->end = I->end;
- }
- segments.erase(std::next(MergeTo), std::next(I));
- return MergeTo;
- }
- LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
- SlotIndex Start = S.start, End = S.end;
- iterator it = std::upper_bound(From, end(), Start);
- // If the inserted segment starts in the middle or right at the end of
- // another segment, just extend that segment to contain the segment of S.
- if (it != begin()) {
- iterator B = std::prev(it);
- if (S.valno == B->valno) {
- if (B->start <= Start && B->end >= Start) {
- extendSegmentEndTo(B, End);
- return B;
- }
- } else {
- // Check to make sure that we are not overlapping two live segments with
- // different valno's.
- assert(B->end <= Start &&
- "Cannot overlap two segments with differing ValID's"
- " (did you def the same reg twice in a MachineInstr?)");
- }
- }
- // Otherwise, if this segment ends in the middle of, or right next to, another
- // segment, merge it into that segment.
- if (it != end()) {
- if (S.valno == it->valno) {
- if (it->start <= End) {
- it = extendSegmentStartTo(it, Start);
- // If S is a complete superset of a segment, we may need to grow its
- // endpoint as well.
- if (End > it->end)
- extendSegmentEndTo(it, End);
- return it;
- }
- } else {
- // Check to make sure that we are not overlapping two live segments with
- // different valno's.
- assert(it->start >= End &&
- "Cannot overlap two segments with differing ValID's");
- }
- }
- // Otherwise, this is just a new segment that doesn't interact with anything.
- // Insert it.
- return segments.insert(it, S);
- }
- /// extendInBlock - If this range is live before Kill in the basic
- /// block that starts at StartIdx, extend it to be live up to Kill and return
- /// the value. If there is no live range before Kill, return NULL.
- VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
- if (empty())
- return 0;
- iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
- if (I == begin())
- return 0;
- --I;
- if (I->end <= StartIdx)
- return 0;
- if (I->end < Kill)
- extendSegmentEndTo(I, Kill);
- return I->valno;
- }
- /// Remove the specified segment from this range. Note that the segment must
- /// be in a single Segment in its entirety.
- void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
- bool RemoveDeadValNo) {
- // Find the Segment containing this span.
- iterator I = find(Start);
- assert(I != end() && "Segment is not in range!");
- assert(I->containsInterval(Start, End)
- && "Segment is not entirely in range!");
- // If the span we are removing is at the start of the Segment, adjust it.
- VNInfo *ValNo = I->valno;
- if (I->start == Start) {
- if (I->end == End) {
- if (RemoveDeadValNo) {
- // Check if val# is dead.
- bool isDead = true;
- for (const_iterator II = begin(), EE = end(); II != EE; ++II)
- if (II != I && II->valno == ValNo) {
- isDead = false;
- break;
- }
- if (isDead) {
- // Now that ValNo is dead, remove it.
- markValNoForDeletion(ValNo);
- }
- }
- segments.erase(I); // Removed the whole Segment.
- } else
- I->start = End;
- return;
- }
- // Otherwise if the span we are removing is at the end of the Segment,
- // adjust the other way.
- if (I->end == End) {
- I->end = Start;
- return;
- }
- // Otherwise, we are splitting the Segment into two pieces.
- SlotIndex OldEnd = I->end;
- I->end = Start; // Trim the old segment.
- // Insert the new one.
- segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
- }
- /// removeValNo - Remove all the segments defined by the specified value#.
- /// Also remove the value# from value# list.
- void LiveRange::removeValNo(VNInfo *ValNo) {
- if (empty()) return;
- iterator I = end();
- iterator E = begin();
- do {
- --I;
- if (I->valno == ValNo)
- segments.erase(I);
- } while (I != E);
- // Now that ValNo is dead, remove it.
- markValNoForDeletion(ValNo);
- }
- void LiveRange::join(LiveRange &Other,
- const int *LHSValNoAssignments,
- const int *RHSValNoAssignments,
- SmallVectorImpl<VNInfo *> &NewVNInfo) {
- verify();
- // Determine if any of our values are mapped. This is uncommon, so we want
- // to avoid the range scan if not.
- bool MustMapCurValNos = false;
- unsigned NumVals = getNumValNums();
- unsigned NumNewVals = NewVNInfo.size();
- for (unsigned i = 0; i != NumVals; ++i) {
- unsigned LHSValID = LHSValNoAssignments[i];
- if (i != LHSValID ||
- (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
- MustMapCurValNos = true;
- break;
- }
- }
- // If we have to apply a mapping to our base range assignment, rewrite it now.
- if (MustMapCurValNos && !empty()) {
- // Map the first live range.
- iterator OutIt = begin();
- OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
- for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
- VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
- assert(nextValNo != 0 && "Huh?");
- // If this live range has the same value # as its immediate predecessor,
- // and if they are neighbors, remove one Segment. This happens when we
- // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
- if (OutIt->valno == nextValNo && OutIt->end == I->start) {
- OutIt->end = I->end;
- } else {
- // Didn't merge. Move OutIt to the next segment,
- ++OutIt;
- OutIt->valno = nextValNo;
- if (OutIt != I) {
- OutIt->start = I->start;
- OutIt->end = I->end;
- }
- }
- }
- // If we merge some segments, chop off the end.
- ++OutIt;
- segments.erase(OutIt, end());
- }
- // Rewrite Other values before changing the VNInfo ids.
- // This can leave Other in an invalid state because we're not coalescing
- // touching segments that now have identical values. That's OK since Other is
- // not supposed to be valid after calling join();
- for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
- I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
- // Update val# info. Renumber them and make sure they all belong to this
- // LiveRange now. Also remove dead val#'s.
- unsigned NumValNos = 0;
- for (unsigned i = 0; i < NumNewVals; ++i) {
- VNInfo *VNI = NewVNInfo[i];
- if (VNI) {
- if (NumValNos >= NumVals)
- valnos.push_back(VNI);
- else
- valnos[NumValNos] = VNI;
- VNI->id = NumValNos++; // Renumber val#.
- }
- }
- if (NumNewVals < NumVals)
- valnos.resize(NumNewVals); // shrinkify
- // Okay, now insert the RHS live segments into the LHS.
- LiveRangeUpdater Updater(this);
- for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
- Updater.add(*I);
- }
- /// Merge all of the segments in RHS into this live range as the specified
- /// value number. The segments in RHS are allowed to overlap with segments in
- /// the current range, but only if the overlapping segments have the
- /// specified value number.
- void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
- VNInfo *LHSValNo) {
- LiveRangeUpdater Updater(this);
- for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
- Updater.add(I->start, I->end, LHSValNo);
- }
- /// MergeValueInAsValue - Merge all of the live segments of a specific val#
- /// in RHS into this live range as the specified value number.
- /// The segments in RHS are allowed to overlap with segments in the
- /// current range, it will replace the value numbers of the overlaped
- /// segments with the specified value number.
- void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
- const VNInfo *RHSValNo,
- VNInfo *LHSValNo) {
- LiveRangeUpdater Updater(this);
- for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
- if (I->valno == RHSValNo)
- Updater.add(I->start, I->end, LHSValNo);
- }
- /// MergeValueNumberInto - This method is called when two value nubmers
- /// are found to be equivalent. This eliminates V1, replacing all
- /// segments with the V1 value number with the V2 value number. This can
- /// cause merging of V1/V2 values numbers and compaction of the value space.
- VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
- assert(V1 != V2 && "Identical value#'s are always equivalent!");
- // This code actually merges the (numerically) larger value number into the
- // smaller value number, which is likely to allow us to compactify the value
- // space. The only thing we have to be careful of is to preserve the
- // instruction that defines the result value.
- // Make sure V2 is smaller than V1.
- if (V1->id < V2->id) {
- V1->copyFrom(*V2);
- std::swap(V1, V2);
- }
- // Merge V1 segments into V2.
- for (iterator I = begin(); I != end(); ) {
- iterator S = I++;
- if (S->valno != V1) continue; // Not a V1 Segment.
- // Okay, we found a V1 live range. If it had a previous, touching, V2 live
- // range, extend it.
- if (S != begin()) {
- iterator Prev = S-1;
- if (Prev->valno == V2 && Prev->end == S->start) {
- Prev->end = S->end;
- // Erase this live-range.
- segments.erase(S);
- I = Prev+1;
- S = Prev;
- }
- }
- // Okay, now we have a V1 or V2 live range that is maximally merged forward.
- // Ensure that it is a V2 live-range.
- S->valno = V2;
- // If we can merge it into later V2 segments, do so now. We ignore any
- // following V1 segments, as they will be merged in subsequent iterations
- // of the loop.
- if (I != end()) {
- if (I->start == S->end && I->valno == V2) {
- S->end = I->end;
- segments.erase(I);
- I = S+1;
- }
- }
- }
- // Now that V1 is dead, remove it.
- markValNoForDeletion(V1);
- return V2;
- }
- unsigned LiveInterval::getSize() const {
- unsigned Sum = 0;
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- Sum += I->start.distance(I->end);
- return Sum;
- }
- raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
- return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LiveRange::Segment::dump() const {
- dbgs() << *this << "\n";
- }
- #endif
- void LiveRange::print(raw_ostream &OS) const {
- if (empty())
- OS << "EMPTY";
- else {
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- OS << *I;
- assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
- }
- }
- // Print value number info.
- if (getNumValNums()) {
- OS << " ";
- unsigned vnum = 0;
- for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
- ++i, ++vnum) {
- const VNInfo *vni = *i;
- if (vnum) OS << " ";
- OS << vnum << "@";
- if (vni->isUnused()) {
- OS << "x";
- } else {
- OS << vni->def;
- if (vni->isPHIDef())
- OS << "-phi";
- }
- }
- }
- }
- void LiveInterval::print(raw_ostream &OS) const {
- OS << PrintReg(reg) << ' ';
- super::print(OS);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void LiveRange::dump() const {
- dbgs() << *this << "\n";
- }
- void LiveInterval::dump() const {
- dbgs() << *this << "\n";
- }
- #endif
- #ifndef NDEBUG
- void LiveRange::verify() const {
- for (const_iterator I = begin(), E = end(); I != E; ++I) {
- assert(I->start.isValid());
- assert(I->end.isValid());
- assert(I->start < I->end);
- assert(I->valno != 0);
- assert(I->valno->id < valnos.size());
- assert(I->valno == valnos[I->valno->id]);
- if (std::next(I) != E) {
- assert(I->end <= std::next(I)->start);
- if (I->end == std::next(I)->start)
- assert(I->valno != std::next(I)->valno);
- }
- }
- }
- #endif
- //===----------------------------------------------------------------------===//
- // LiveRangeUpdater class
- //===----------------------------------------------------------------------===//
- //
- // The LiveRangeUpdater class always maintains these invariants:
- //
- // - When LastStart is invalid, Spills is empty and the iterators are invalid.
- // This is the initial state, and the state created by flush().
- // In this state, isDirty() returns false.
- //
- // Otherwise, segments are kept in three separate areas:
- //
- // 1. [begin; WriteI) at the front of LR.
- // 2. [ReadI; end) at the back of LR.
- // 3. Spills.
- //
- // - LR.begin() <= WriteI <= ReadI <= LR.end().
- // - Segments in all three areas are fully ordered and coalesced.
- // - Segments in area 1 precede and can't coalesce with segments in area 2.
- // - Segments in Spills precede and can't coalesce with segments in area 2.
- // - No coalescing is possible between segments in Spills and segments in area
- // 1, and there are no overlapping segments.
- //
- // The segments in Spills are not ordered with respect to the segments in area
- // 1. They need to be merged.
- //
- // When they exist, Spills.back().start <= LastStart,
- // and WriteI[-1].start <= LastStart.
- void LiveRangeUpdater::print(raw_ostream &OS) const {
- if (!isDirty()) {
- if (LR)
- OS << "Clean updater: " << *LR << '\n';
- else
- OS << "Null updater.\n";
- return;
- }
- assert(LR && "Can't have null LR in dirty updater.");
- OS << " updater with gap = " << (ReadI - WriteI)
- << ", last start = " << LastStart
- << ":\n Area 1:";
- for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
- OS << ' ' << *I;
- OS << "\n Spills:";
- for (unsigned I = 0, E = Spills.size(); I != E; ++I)
- OS << ' ' << Spills[I];
- OS << "\n Area 2:";
- for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
- OS << ' ' << *I;
- OS << '\n';
- }
- void LiveRangeUpdater::dump() const
- {
- print(errs());
- }
- // Determine if A and B should be coalesced.
- static inline bool coalescable(const LiveRange::Segment &A,
- const LiveRange::Segment &B) {
- assert(A.start <= B.start && "Unordered live segments.");
- if (A.end == B.start)
- return A.valno == B.valno;
- if (A.end < B.start)
- return false;
- assert(A.valno == B.valno && "Cannot overlap different values");
- return true;
- }
- void LiveRangeUpdater::add(LiveRange::Segment Seg) {
- assert(LR && "Cannot add to a null destination");
- // Flush the state if Start moves backwards.
- if (!LastStart.isValid() || LastStart > Seg.start) {
- if (isDirty())
- flush();
- // This brings us to an uninitialized state. Reinitialize.
- assert(Spills.empty() && "Leftover spilled segments");
- WriteI = ReadI = LR->begin();
- }
- // Remember start for next time.
- LastStart = Seg.start;
- // Advance ReadI until it ends after Seg.start.
- LiveRange::iterator E = LR->end();
- if (ReadI != E && ReadI->end <= Seg.start) {
- // First try to close the gap between WriteI and ReadI with spills.
- if (ReadI != WriteI)
- mergeSpills();
- // Then advance ReadI.
- if (ReadI == WriteI)
- ReadI = WriteI = LR->find(Seg.start);
- else
- while (ReadI != E && ReadI->end <= Seg.start)
- *WriteI++ = *ReadI++;
- }
- assert(ReadI == E || ReadI->end > Seg.start);
- // Check if the ReadI segment begins early.
- if (ReadI != E && ReadI->start <= Seg.start) {
- assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
- // Bail if Seg is completely contained in ReadI.
- if (ReadI->end >= Seg.end)
- return;
- // Coalesce into Seg.
- Seg.start = ReadI->start;
- ++ReadI;
- }
- // Coalesce as much as possible from ReadI into Seg.
- while (ReadI != E && coalescable(Seg, *ReadI)) {
- Seg.end = std::max(Seg.end, ReadI->end);
- ++ReadI;
- }
- // Try coalescing Spills.back() into Seg.
- if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
- Seg.start = Spills.back().start;
- Seg.end = std::max(Spills.back().end, Seg.end);
- Spills.pop_back();
- }
- // Try coalescing Seg into WriteI[-1].
- if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
- WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
- return;
- }
- // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
- if (WriteI != ReadI) {
- *WriteI++ = Seg;
- return;
- }
- // Finally, append to LR or Spills.
- if (WriteI == E) {
- LR->segments.push_back(Seg);
- WriteI = ReadI = LR->end();
- } else
- Spills.push_back(Seg);
- }
- // Merge as many spilled segments as possible into the gap between WriteI
- // and ReadI. Advance WriteI to reflect the inserted instructions.
- void LiveRangeUpdater::mergeSpills() {
- // Perform a backwards merge of Spills and [SpillI;WriteI).
- size_t GapSize = ReadI - WriteI;
- size_t NumMoved = std::min(Spills.size(), GapSize);
- LiveRange::iterator Src = WriteI;
- LiveRange::iterator Dst = Src + NumMoved;
- LiveRange::iterator SpillSrc = Spills.end();
- LiveRange::iterator B = LR->begin();
- // This is the new WriteI position after merging spills.
- WriteI = Dst;
- // Now merge Src and Spills backwards.
- while (Src != Dst) {
- if (Src != B && Src[-1].start > SpillSrc[-1].start)
- *--Dst = *--Src;
- else
- *--Dst = *--SpillSrc;
- }
- assert(NumMoved == size_t(Spills.end() - SpillSrc));
- Spills.erase(SpillSrc, Spills.end());
- }
- void LiveRangeUpdater::flush() {
- if (!isDirty())
- return;
- // Clear the dirty state.
- LastStart = SlotIndex();
- assert(LR && "Cannot add to a null destination");
- // Nothing to merge?
- if (Spills.empty()) {
- LR->segments.erase(WriteI, ReadI);
- LR->verify();
- return;
- }
- // Resize the WriteI - ReadI gap to match Spills.
- size_t GapSize = ReadI - WriteI;
- if (GapSize < Spills.size()) {
- // The gap is too small. Make some room.
- size_t WritePos = WriteI - LR->begin();
- LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
- // This also invalidated ReadI, but it is recomputed below.
- WriteI = LR->begin() + WritePos;
- } else {
- // Shrink the gap if necessary.
- LR->segments.erase(WriteI + Spills.size(), ReadI);
- }
- ReadI = WriteI + Spills.size();
- mergeSpills();
- LR->verify();
- }
- unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
- // Create initial equivalence classes.
- EqClass.clear();
- EqClass.grow(LI->getNumValNums());
- const VNInfo *used = 0, *unused = 0;
- // Determine connections.
- for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
- I != E; ++I) {
- const VNInfo *VNI = *I;
- // Group all unused values into one class.
- if (VNI->isUnused()) {
- if (unused)
- EqClass.join(unused->id, VNI->id);
- unused = VNI;
- continue;
- }
- used = VNI;
- if (VNI->isPHIDef()) {
- const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
- assert(MBB && "Phi-def has no defining MBB");
- // Connect to values live out of predecessors.
- for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI)
- if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
- EqClass.join(VNI->id, PVNI->id);
- } else {
- // Normal value defined by an instruction. Check for two-addr redef.
- // FIXME: This could be coincidental. Should we really check for a tied
- // operand constraint?
- // Note that VNI->def may be a use slot for an early clobber def.
- if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
- EqClass.join(VNI->id, UVNI->id);
- }
- }
- // Lump all the unused values in with the last used value.
- if (used && unused)
- EqClass.join(used->id, unused->id);
- EqClass.compress();
- return EqClass.getNumClasses();
- }
- void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
- MachineRegisterInfo &MRI) {
- assert(LIV[0] && "LIV[0] must be set");
- LiveInterval &LI = *LIV[0];
- // Rewrite instructions.
- for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
- RE = MRI.reg_end(); RI != RE;) {
- MachineOperand &MO = RI.getOperand();
- MachineInstr *MI = MO.getParent();
- ++RI;
- // DBG_VALUE instructions don't have slot indexes, so get the index of the
- // instruction before them.
- // Normally, DBG_VALUE instructions are removed before this function is
- // called, but it is not a requirement.
- SlotIndex Idx;
- if (MI->isDebugValue())
- Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
- else
- Idx = LIS.getInstructionIndex(MI);
- LiveQueryResult LRQ = LI.Query(Idx);
- const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
- // In the case of an <undef> use that isn't tied to any def, VNI will be
- // NULL. If the use is tied to a def, VNI will be the defined value.
- if (!VNI)
- continue;
- MO.setReg(LIV[getEqClass(VNI)]->reg);
- }
- // Move runs to new intervals.
- LiveInterval::iterator J = LI.begin(), E = LI.end();
- while (J != E && EqClass[J->valno->id] == 0)
- ++J;
- for (LiveInterval::iterator I = J; I != E; ++I) {
- if (unsigned eq = EqClass[I->valno->id]) {
- assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
- "New intervals should be empty");
- LIV[eq]->segments.push_back(*I);
- } else
- *J++ = *I;
- }
- LI.segments.erase(J, E);
- // Transfer VNInfos to their new owners and renumber them.
- unsigned j = 0, e = LI.getNumValNums();
- while (j != e && EqClass[j] == 0)
- ++j;
- for (unsigned i = j; i != e; ++i) {
- VNInfo *VNI = LI.getValNumInfo(i);
- if (unsigned eq = EqClass[i]) {
- VNI->id = LIV[eq]->getNumValNums();
- LIV[eq]->valnos.push_back(VNI);
- } else {
- VNI->id = j;
- LI.valnos[j++] = VNI;
- }
- }
- LI.valnos.resize(j);
- }
|