123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860 |
- //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the implementation of the scalar evolution expander,
- // which is used to generate the code corresponding to a given scalar evolution
- // expression.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
- /// reusing an existing cast if a suitable one exists, moving an existing
- /// cast if a suitable one exists but isn't in the right place, or
- /// creating a new one.
- Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
- Instruction::CastOps Op,
- BasicBlock::iterator IP) {
- // This function must be called with the builder having a valid insertion
- // point. It doesn't need to be the actual IP where the uses of the returned
- // cast will be added, but it must dominate such IP.
- // We use this precondition to produce a cast that will dominate all its
- // uses. In particular, this is crucial for the case where the builder's
- // insertion point *is* the point where we were asked to put the cast.
- // Since we don't know the builder's insertion point is actually
- // where the uses will be added (only that it dominates it), we are
- // not allowed to move it.
- BasicBlock::iterator BIP = Builder.GetInsertPoint();
- Instruction *Ret = NULL;
- // Check to see if there is already a cast!
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- User *U = *UI;
- if (U->getType() == Ty)
- if (CastInst *CI = dyn_cast<CastInst>(U))
- if (CI->getOpcode() == Op) {
- // If the cast isn't where we want it, create a new cast at IP.
- // Likewise, do not reuse a cast at BIP because it must dominate
- // instructions that might be inserted before BIP.
- if (BasicBlock::iterator(CI) != IP || BIP == IP) {
- // Create a new cast, and leave the old cast in place in case
- // it is being used as an insert point. Clear its operand
- // so that it doesn't hold anything live.
- Ret = CastInst::Create(Op, V, Ty, "", IP);
- Ret->takeName(CI);
- CI->replaceAllUsesWith(Ret);
- CI->setOperand(0, UndefValue::get(V->getType()));
- break;
- }
- Ret = CI;
- break;
- }
- }
- // Create a new cast.
- if (!Ret)
- Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
- // We assert at the end of the function since IP might point to an
- // instruction with different dominance properties than a cast
- // (an invoke for example) and not dominate BIP (but the cast does).
- assert(SE.DT->dominates(Ret, BIP));
- rememberInstruction(Ret);
- return Ret;
- }
- /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
- /// which must be possible with a noop cast, doing what we can to share
- /// the casts.
- Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
- Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
- assert((Op == Instruction::BitCast ||
- Op == Instruction::PtrToInt ||
- Op == Instruction::IntToPtr) &&
- "InsertNoopCastOfTo cannot perform non-noop casts!");
- assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
- "InsertNoopCastOfTo cannot change sizes!");
- // Short-circuit unnecessary bitcasts.
- if (Op == Instruction::BitCast) {
- if (V->getType() == Ty)
- return V;
- if (CastInst *CI = dyn_cast<CastInst>(V)) {
- if (CI->getOperand(0)->getType() == Ty)
- return CI->getOperand(0);
- }
- }
- // Short-circuit unnecessary inttoptr<->ptrtoint casts.
- if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
- if (CastInst *CI = dyn_cast<CastInst>(V))
- if ((CI->getOpcode() == Instruction::PtrToInt ||
- CI->getOpcode() == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(CI->getType()) ==
- SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
- return CI->getOperand(0);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if ((CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::IntToPtr) &&
- SE.getTypeSizeInBits(CE->getType()) ==
- SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
- return CE->getOperand(0);
- }
- // Fold a cast of a constant.
- if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(Op, C, Ty);
- // Cast the argument at the beginning of the entry block, after
- // any bitcasts of other arguments.
- if (Argument *A = dyn_cast<Argument>(V)) {
- BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
- while ((isa<BitCastInst>(IP) &&
- isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
- cast<BitCastInst>(IP)->getOperand(0) != A) ||
- isa<DbgInfoIntrinsic>(IP) ||
- isa<LandingPadInst>(IP))
- ++IP;
- return ReuseOrCreateCast(A, Ty, Op, IP);
- }
- // Cast the instruction immediately after the instruction.
- Instruction *I = cast<Instruction>(V);
- BasicBlock::iterator IP = I; ++IP;
- if (InvokeInst *II = dyn_cast<InvokeInst>(I))
- IP = II->getNormalDest()->begin();
- while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
- ++IP;
- return ReuseOrCreateCast(I, Ty, Op, IP);
- }
- /// InsertBinop - Insert the specified binary operator, doing a small amount
- /// of work to avoid inserting an obviously redundant operation.
- Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
- Value *LHS, Value *RHS) {
- // Fold a binop with constant operands.
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantExpr::get(Opcode, CLHS, CRHS);
- // Do a quick scan to see if we have this binop nearby. If so, reuse it.
- unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
- // Scanning starts from the last instruction before the insertion point.
- BasicBlock::iterator IP = Builder.GetInsertPoint();
- if (IP != BlockBegin) {
- --IP;
- for (; ScanLimit; --IP, --ScanLimit) {
- // Don't count dbg.value against the ScanLimit, to avoid perturbing the
- // generated code.
- if (isa<DbgInfoIntrinsic>(IP))
- ScanLimit++;
- if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
- IP->getOperand(1) == RHS)
- return IP;
- if (IP == BlockBegin) break;
- }
- }
- // Save the original insertion point so we can restore it when we're done.
- DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
- BuilderType::InsertPointGuard Guard(Builder);
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
- }
- // If we haven't found this binop, insert it.
- Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
- BO->setDebugLoc(Loc);
- rememberInstruction(BO);
- return BO;
- }
- /// FactorOutConstant - Test if S is divisible by Factor, using signed
- /// division. If so, update S with Factor divided out and return true.
- /// S need not be evenly divisible if a reasonable remainder can be
- /// computed.
- /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
- /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
- /// check to see if the divide was folded.
- static bool FactorOutConstant(const SCEV *&S,
- const SCEV *&Remainder,
- const SCEV *Factor,
- ScalarEvolution &SE,
- const DataLayout *DL) {
- // Everything is divisible by one.
- if (Factor->isOne())
- return true;
- // x/x == 1.
- if (S == Factor) {
- S = SE.getConstant(S->getType(), 1);
- return true;
- }
- // For a Constant, check for a multiple of the given factor.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- // 0/x == 0.
- if (C->isZero())
- return true;
- // Check for divisibility.
- if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
- ConstantInt *CI =
- ConstantInt::get(SE.getContext(),
- C->getValue()->getValue().sdiv(
- FC->getValue()->getValue()));
- // If the quotient is zero and the remainder is non-zero, reject
- // the value at this scale. It will be considered for subsequent
- // smaller scales.
- if (!CI->isZero()) {
- const SCEV *Div = SE.getConstant(CI);
- S = Div;
- Remainder =
- SE.getAddExpr(Remainder,
- SE.getConstant(C->getValue()->getValue().srem(
- FC->getValue()->getValue())));
- return true;
- }
- }
- }
- // In a Mul, check if there is a constant operand which is a multiple
- // of the given factor.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- if (DL) {
- // With DataLayout, the size is known. Check if there is a constant
- // operand which is a multiple of the given factor. If so, we can
- // factor it.
- const SCEVConstant *FC = cast<SCEVConstant>(Factor);
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
- if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
- SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
- NewMulOps[0] =
- SE.getConstant(C->getValue()->getValue().sdiv(
- FC->getValue()->getValue()));
- S = SE.getMulExpr(NewMulOps);
- return true;
- }
- } else {
- // Without DataLayout, check if Factor can be factored out of any of the
- // Mul's operands. If so, we can just remove it.
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV *SOp = M->getOperand(i);
- const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
- if (FactorOutConstant(SOp, Remainder, Factor, SE, DL) &&
- Remainder->isZero()) {
- SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
- NewMulOps[i] = SOp;
- S = SE.getMulExpr(NewMulOps);
- return true;
- }
- }
- }
- }
- // In an AddRec, check if both start and step are divisible.
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *Step = A->getStepRecurrence(SE);
- const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
- if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
- return false;
- if (!StepRem->isZero())
- return false;
- const SCEV *Start = A->getStart();
- if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
- return false;
- S = SE.getAddRecExpr(Start, Step, A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW));
- return true;
- }
- return false;
- }
- /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
- /// is the number of SCEVAddRecExprs present, which are kept at the end of
- /// the list.
- ///
- static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
- Type *Ty,
- ScalarEvolution &SE) {
- unsigned NumAddRecs = 0;
- for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
- ++NumAddRecs;
- // Group Ops into non-addrecs and addrecs.
- SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
- SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
- // Let ScalarEvolution sort and simplify the non-addrecs list.
- const SCEV *Sum = NoAddRecs.empty() ?
- SE.getConstant(Ty, 0) :
- SE.getAddExpr(NoAddRecs);
- // If it returned an add, use the operands. Otherwise it simplified
- // the sum into a single value, so just use that.
- Ops.clear();
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
- Ops.append(Add->op_begin(), Add->op_end());
- else if (!Sum->isZero())
- Ops.push_back(Sum);
- // Then append the addrecs.
- Ops.append(AddRecs.begin(), AddRecs.end());
- }
- /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
- /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
- /// This helps expose more opportunities for folding parts of the expressions
- /// into GEP indices.
- ///
- static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
- Type *Ty,
- ScalarEvolution &SE) {
- // Find the addrecs.
- SmallVector<const SCEV *, 8> AddRecs;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
- const SCEV *Start = A->getStart();
- if (Start->isZero()) break;
- const SCEV *Zero = SE.getConstant(Ty, 0);
- AddRecs.push_back(SE.getAddRecExpr(Zero,
- A->getStepRecurrence(SE),
- A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW)));
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
- Ops[i] = Zero;
- Ops.append(Add->op_begin(), Add->op_end());
- e += Add->getNumOperands();
- } else {
- Ops[i] = Start;
- }
- }
- if (!AddRecs.empty()) {
- // Add the addrecs onto the end of the list.
- Ops.append(AddRecs.begin(), AddRecs.end());
- // Resort the operand list, moving any constants to the front.
- SimplifyAddOperands(Ops, Ty, SE);
- }
- }
- /// expandAddToGEP - Expand an addition expression with a pointer type into
- /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
- /// BasicAliasAnalysis and other passes analyze the result. See the rules
- /// for getelementptr vs. inttoptr in
- /// http://llvm.org/docs/LangRef.html#pointeraliasing
- /// for details.
- ///
- /// Design note: The correctness of using getelementptr here depends on
- /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
- /// they may introduce pointer arithmetic which may not be safely converted
- /// into getelementptr.
- ///
- /// Design note: It might seem desirable for this function to be more
- /// loop-aware. If some of the indices are loop-invariant while others
- /// aren't, it might seem desirable to emit multiple GEPs, keeping the
- /// loop-invariant portions of the overall computation outside the loop.
- /// However, there are a few reasons this is not done here. Hoisting simple
- /// arithmetic is a low-level optimization that often isn't very
- /// important until late in the optimization process. In fact, passes
- /// like InstructionCombining will combine GEPs, even if it means
- /// pushing loop-invariant computation down into loops, so even if the
- /// GEPs were split here, the work would quickly be undone. The
- /// LoopStrengthReduction pass, which is usually run quite late (and
- /// after the last InstructionCombining pass), takes care of hoisting
- /// loop-invariant portions of expressions, after considering what
- /// can be folded using target addressing modes.
- ///
- Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
- const SCEV *const *op_end,
- PointerType *PTy,
- Type *Ty,
- Value *V) {
- Type *ElTy = PTy->getElementType();
- SmallVector<Value *, 4> GepIndices;
- SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
- bool AnyNonZeroIndices = false;
- // Split AddRecs up into parts as either of the parts may be usable
- // without the other.
- SplitAddRecs(Ops, Ty, SE);
- Type *IntPtrTy = SE.DL
- ? SE.DL->getIntPtrType(PTy)
- : Type::getInt64Ty(PTy->getContext());
- // Descend down the pointer's type and attempt to convert the other
- // operands into GEP indices, at each level. The first index in a GEP
- // indexes into the array implied by the pointer operand; the rest of
- // the indices index into the element or field type selected by the
- // preceding index.
- for (;;) {
- // If the scale size is not 0, attempt to factor out a scale for
- // array indexing.
- SmallVector<const SCEV *, 8> ScaledOps;
- if (ElTy->isSized()) {
- const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
- if (!ElSize->isZero()) {
- SmallVector<const SCEV *, 8> NewOps;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- const SCEV *Op = Ops[i];
- const SCEV *Remainder = SE.getConstant(Ty, 0);
- if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.DL)) {
- // Op now has ElSize factored out.
- ScaledOps.push_back(Op);
- if (!Remainder->isZero())
- NewOps.push_back(Remainder);
- AnyNonZeroIndices = true;
- } else {
- // The operand was not divisible, so add it to the list of operands
- // we'll scan next iteration.
- NewOps.push_back(Ops[i]);
- }
- }
- // If we made any changes, update Ops.
- if (!ScaledOps.empty()) {
- Ops = NewOps;
- SimplifyAddOperands(Ops, Ty, SE);
- }
- }
- }
- // Record the scaled array index for this level of the type. If
- // we didn't find any operands that could be factored, tentatively
- // assume that element zero was selected (since the zero offset
- // would obviously be folded away).
- Value *Scaled = ScaledOps.empty() ?
- Constant::getNullValue(Ty) :
- expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
- GepIndices.push_back(Scaled);
- // Collect struct field index operands.
- while (StructType *STy = dyn_cast<StructType>(ElTy)) {
- bool FoundFieldNo = false;
- // An empty struct has no fields.
- if (STy->getNumElements() == 0) break;
- if (SE.DL) {
- // With DataLayout, field offsets are known. See if a constant offset
- // falls within any of the struct fields.
- if (Ops.empty()) break;
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
- if (SE.getTypeSizeInBits(C->getType()) <= 64) {
- const StructLayout &SL = *SE.DL->getStructLayout(STy);
- uint64_t FullOffset = C->getValue()->getZExtValue();
- if (FullOffset < SL.getSizeInBytes()) {
- unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
- GepIndices.push_back(
- ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
- ElTy = STy->getTypeAtIndex(ElIdx);
- Ops[0] =
- SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
- AnyNonZeroIndices = true;
- FoundFieldNo = true;
- }
- }
- } else {
- // Without DataLayout, just check for an offsetof expression of the
- // appropriate struct type.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
- Type *CTy;
- Constant *FieldNo;
- if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
- GepIndices.push_back(FieldNo);
- ElTy =
- STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
- Ops[i] = SE.getConstant(Ty, 0);
- AnyNonZeroIndices = true;
- FoundFieldNo = true;
- break;
- }
- }
- }
- // If no struct field offsets were found, tentatively assume that
- // field zero was selected (since the zero offset would obviously
- // be folded away).
- if (!FoundFieldNo) {
- ElTy = STy->getTypeAtIndex(0u);
- GepIndices.push_back(
- Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
- }
- }
- if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
- ElTy = ATy->getElementType();
- else
- break;
- }
- // If none of the operands were convertible to proper GEP indices, cast
- // the base to i8* and do an ugly getelementptr with that. It's still
- // better than ptrtoint+arithmetic+inttoptr at least.
- if (!AnyNonZeroIndices) {
- // Cast the base to i8*.
- V = InsertNoopCastOfTo(V,
- Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
- assert(!isa<Instruction>(V) ||
- SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
- // Expand the operands for a plain byte offset.
- Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
- // Fold a GEP with constant operands.
- if (Constant *CLHS = dyn_cast<Constant>(V))
- if (Constant *CRHS = dyn_cast<Constant>(Idx))
- return ConstantExpr::getGetElementPtr(CLHS, CRHS);
- // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
- unsigned ScanLimit = 6;
- BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
- // Scanning starts from the last instruction before the insertion point.
- BasicBlock::iterator IP = Builder.GetInsertPoint();
- if (IP != BlockBegin) {
- --IP;
- for (; ScanLimit; --IP, --ScanLimit) {
- // Don't count dbg.value against the ScanLimit, to avoid perturbing the
- // generated code.
- if (isa<DbgInfoIntrinsic>(IP))
- ScanLimit++;
- if (IP->getOpcode() == Instruction::GetElementPtr &&
- IP->getOperand(0) == V && IP->getOperand(1) == Idx)
- return IP;
- if (IP == BlockBegin) break;
- }
- }
- // Save the original insertion point so we can restore it when we're done.
- BuilderType::InsertPointGuard Guard(Builder);
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
- }
- // Emit a GEP.
- Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
- rememberInstruction(GEP);
- return GEP;
- }
- // Save the original insertion point so we can restore it when we're done.
- BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
- // Move the insertion point out of as many loops as we can.
- while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
- if (!L->isLoopInvariant(V)) break;
- bool AnyIndexNotLoopInvariant = false;
- for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
- E = GepIndices.end(); I != E; ++I)
- if (!L->isLoopInvariant(*I)) {
- AnyIndexNotLoopInvariant = true;
- break;
- }
- if (AnyIndexNotLoopInvariant)
- break;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) break;
- // Ok, move up a level.
- Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
- }
- // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
- // because ScalarEvolution may have changed the address arithmetic to
- // compute a value which is beyond the end of the allocated object.
- Value *Casted = V;
- if (V->getType() != PTy)
- Casted = InsertNoopCastOfTo(Casted, PTy);
- Value *GEP = Builder.CreateGEP(Casted,
- GepIndices,
- "scevgep");
- Ops.push_back(SE.getUnknown(GEP));
- rememberInstruction(GEP);
- // Restore the original insert point.
- Builder.restoreIP(SaveInsertPt);
- return expand(SE.getAddExpr(Ops));
- }
- /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
- /// SCEV expansion. If they are nested, this is the most nested. If they are
- /// neighboring, pick the later.
- static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
- DominatorTree &DT) {
- if (!A) return B;
- if (!B) return A;
- if (A->contains(B)) return B;
- if (B->contains(A)) return A;
- if (DT.dominates(A->getHeader(), B->getHeader())) return B;
- if (DT.dominates(B->getHeader(), A->getHeader())) return A;
- return A; // Arbitrarily break the tie.
- }
- /// getRelevantLoop - Get the most relevant loop associated with the given
- /// expression, according to PickMostRelevantLoop.
- const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
- // Test whether we've already computed the most relevant loop for this SCEV.
- std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
- RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
- if (!Pair.second)
- return Pair.first->second;
- if (isa<SCEVConstant>(S))
- // A constant has no relevant loops.
- return 0;
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
- return Pair.first->second = SE.LI->getLoopFor(I->getParent());
- // A non-instruction has no relevant loops.
- return 0;
- }
- if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
- const Loop *L = 0;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- L = AR->getLoop();
- for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
- I != E; ++I)
- L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
- return RelevantLoops[N] = L;
- }
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
- const Loop *Result = getRelevantLoop(C->getOperand());
- return RelevantLoops[C] = Result;
- }
- if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- const Loop *Result =
- PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
- getRelevantLoop(D->getRHS()),
- *SE.DT);
- return RelevantLoops[D] = Result;
- }
- llvm_unreachable("Unexpected SCEV type!");
- }
- namespace {
- /// LoopCompare - Compare loops by PickMostRelevantLoop.
- class LoopCompare {
- DominatorTree &DT;
- public:
- explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
- bool operator()(std::pair<const Loop *, const SCEV *> LHS,
- std::pair<const Loop *, const SCEV *> RHS) const {
- // Keep pointer operands sorted at the end.
- if (LHS.second->getType()->isPointerTy() !=
- RHS.second->getType()->isPointerTy())
- return LHS.second->getType()->isPointerTy();
- // Compare loops with PickMostRelevantLoop.
- if (LHS.first != RHS.first)
- return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
- // If one operand is a non-constant negative and the other is not,
- // put the non-constant negative on the right so that a sub can
- // be used instead of a negate and add.
- if (LHS.second->isNonConstantNegative()) {
- if (!RHS.second->isNonConstantNegative())
- return false;
- } else if (RHS.second->isNonConstantNegative())
- return true;
- // Otherwise they are equivalent according to this comparison.
- return false;
- }
- };
- }
- Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- // Collect all the add operands in a loop, along with their associated loops.
- // Iterate in reverse so that constants are emitted last, all else equal, and
- // so that pointer operands are inserted first, which the code below relies on
- // to form more involved GEPs.
- SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
- for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
- E(S->op_begin()); I != E; ++I)
- OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
- // Sort by loop. Use a stable sort so that constants follow non-constants and
- // pointer operands precede non-pointer operands.
- std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
- // Emit instructions to add all the operands. Hoist as much as possible
- // out of loops, and form meaningful getelementptrs where possible.
- Value *Sum = 0;
- for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
- I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
- const Loop *CurLoop = I->first;
- const SCEV *Op = I->second;
- if (!Sum) {
- // This is the first operand. Just expand it.
- Sum = expand(Op);
- ++I;
- } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
- // The running sum expression is a pointer. Try to form a getelementptr
- // at this level with that as the base.
- SmallVector<const SCEV *, 4> NewOps;
- for (; I != E && I->first == CurLoop; ++I) {
- // If the operand is SCEVUnknown and not instructions, peek through
- // it, to enable more of it to be folded into the GEP.
- const SCEV *X = I->second;
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
- if (!isa<Instruction>(U->getValue()))
- X = SE.getSCEV(U->getValue());
- NewOps.push_back(X);
- }
- Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
- } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
- // The running sum is an integer, and there's a pointer at this level.
- // Try to form a getelementptr. If the running sum is instructions,
- // use a SCEVUnknown to avoid re-analyzing them.
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
- SE.getSCEV(Sum));
- for (++I; I != E && I->first == CurLoop; ++I)
- NewOps.push_back(I->second);
- Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
- } else if (Op->isNonConstantNegative()) {
- // Instead of doing a negate and add, just do a subtract.
- Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
- Sum = InsertNoopCastOfTo(Sum, Ty);
- Sum = InsertBinop(Instruction::Sub, Sum, W);
- ++I;
- } else {
- // A simple add.
- Value *W = expandCodeFor(Op, Ty);
- Sum = InsertNoopCastOfTo(Sum, Ty);
- // Canonicalize a constant to the RHS.
- if (isa<Constant>(Sum)) std::swap(Sum, W);
- Sum = InsertBinop(Instruction::Add, Sum, W);
- ++I;
- }
- }
- return Sum;
- }
- Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- // Collect all the mul operands in a loop, along with their associated loops.
- // Iterate in reverse so that constants are emitted last, all else equal.
- SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
- for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
- E(S->op_begin()); I != E; ++I)
- OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
- // Sort by loop. Use a stable sort so that constants follow non-constants.
- std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
- // Emit instructions to mul all the operands. Hoist as much as possible
- // out of loops.
- Value *Prod = 0;
- for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
- I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
- const SCEV *Op = I->second;
- if (!Prod) {
- // This is the first operand. Just expand it.
- Prod = expand(Op);
- ++I;
- } else if (Op->isAllOnesValue()) {
- // Instead of doing a multiply by negative one, just do a negate.
- Prod = InsertNoopCastOfTo(Prod, Ty);
- Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
- ++I;
- } else {
- // A simple mul.
- Value *W = expandCodeFor(Op, Ty);
- Prod = InsertNoopCastOfTo(Prod, Ty);
- // Canonicalize a constant to the RHS.
- if (isa<Constant>(Prod)) std::swap(Prod, W);
- Prod = InsertBinop(Instruction::Mul, Prod, W);
- ++I;
- }
- }
- return Prod;
- }
- Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *LHS = expandCodeFor(S->getLHS(), Ty);
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
- const APInt &RHS = SC->getValue()->getValue();
- if (RHS.isPowerOf2())
- return InsertBinop(Instruction::LShr, LHS,
- ConstantInt::get(Ty, RHS.logBase2()));
- }
- Value *RHS = expandCodeFor(S->getRHS(), Ty);
- return InsertBinop(Instruction::UDiv, LHS, RHS);
- }
- /// Move parts of Base into Rest to leave Base with the minimal
- /// expression that provides a pointer operand suitable for a
- /// GEP expansion.
- static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
- ScalarEvolution &SE) {
- while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
- Base = A->getStart();
- Rest = SE.getAddExpr(Rest,
- SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
- A->getStepRecurrence(SE),
- A->getLoop(),
- A->getNoWrapFlags(SCEV::FlagNW)));
- }
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
- Base = A->getOperand(A->getNumOperands()-1);
- SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
- NewAddOps.back() = Rest;
- Rest = SE.getAddExpr(NewAddOps);
- ExposePointerBase(Base, Rest, SE);
- }
- }
- /// Determine if this is a well-behaved chain of instructions leading back to
- /// the PHI. If so, it may be reused by expanded expressions.
- bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
- const Loop *L) {
- if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
- (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
- return false;
- // If any of the operands don't dominate the insert position, bail.
- // Addrec operands are always loop-invariant, so this can only happen
- // if there are instructions which haven't been hoisted.
- if (L == IVIncInsertLoop) {
- for (User::op_iterator OI = IncV->op_begin()+1,
- OE = IncV->op_end(); OI != OE; ++OI)
- if (Instruction *OInst = dyn_cast<Instruction>(OI))
- if (!SE.DT->dominates(OInst, IVIncInsertPos))
- return false;
- }
- // Advance to the next instruction.
- IncV = dyn_cast<Instruction>(IncV->getOperand(0));
- if (!IncV)
- return false;
- if (IncV->mayHaveSideEffects())
- return false;
- if (IncV != PN)
- return true;
- return isNormalAddRecExprPHI(PN, IncV, L);
- }
- /// getIVIncOperand returns an induction variable increment's induction
- /// variable operand.
- ///
- /// If allowScale is set, any type of GEP is allowed as long as the nonIV
- /// operands dominate InsertPos.
- ///
- /// If allowScale is not set, ensure that a GEP increment conforms to one of the
- /// simple patterns generated by getAddRecExprPHILiterally and
- /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
- Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
- Instruction *InsertPos,
- bool allowScale) {
- if (IncV == InsertPos)
- return NULL;
- switch (IncV->getOpcode()) {
- default:
- return NULL;
- // Check for a simple Add/Sub or GEP of a loop invariant step.
- case Instruction::Add:
- case Instruction::Sub: {
- Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
- if (!OInst || SE.DT->dominates(OInst, InsertPos))
- return dyn_cast<Instruction>(IncV->getOperand(0));
- return NULL;
- }
- case Instruction::BitCast:
- return dyn_cast<Instruction>(IncV->getOperand(0));
- case Instruction::GetElementPtr:
- for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
- I != E; ++I) {
- if (isa<Constant>(*I))
- continue;
- if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
- if (!SE.DT->dominates(OInst, InsertPos))
- return NULL;
- }
- if (allowScale) {
- // allow any kind of GEP as long as it can be hoisted.
- continue;
- }
- // This must be a pointer addition of constants (pretty), which is already
- // handled, or some number of address-size elements (ugly). Ugly geps
- // have 2 operands. i1* is used by the expander to represent an
- // address-size element.
- if (IncV->getNumOperands() != 2)
- return NULL;
- unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
- if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
- && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
- return NULL;
- break;
- }
- return dyn_cast<Instruction>(IncV->getOperand(0));
- }
- }
- /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
- /// it available to other uses in this loop. Recursively hoist any operands,
- /// until we reach a value that dominates InsertPos.
- bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
- if (SE.DT->dominates(IncV, InsertPos))
- return true;
- // InsertPos must itself dominate IncV so that IncV's new position satisfies
- // its existing users.
- if (isa<PHINode>(InsertPos)
- || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
- return false;
- // Check that the chain of IV operands leading back to Phi can be hoisted.
- SmallVector<Instruction*, 4> IVIncs;
- for(;;) {
- Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
- if (!Oper)
- return false;
- // IncV is safe to hoist.
- IVIncs.push_back(IncV);
- IncV = Oper;
- if (SE.DT->dominates(IncV, InsertPos))
- break;
- }
- for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
- E = IVIncs.rend(); I != E; ++I) {
- (*I)->moveBefore(InsertPos);
- }
- return true;
- }
- /// Determine if this cyclic phi is in a form that would have been generated by
- /// LSR. We don't care if the phi was actually expanded in this pass, as long
- /// as it is in a low-cost form, for example, no implied multiplication. This
- /// should match any patterns generated by getAddRecExprPHILiterally and
- /// expandAddtoGEP.
- bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
- const Loop *L) {
- for(Instruction *IVOper = IncV;
- (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
- /*allowScale=*/false));) {
- if (IVOper == PN)
- return true;
- }
- return false;
- }
- /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
- /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
- /// need to materialize IV increments elsewhere to handle difficult situations.
- Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
- Type *ExpandTy, Type *IntTy,
- bool useSubtract) {
- Value *IncV;
- // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
- if (ExpandTy->isPointerTy()) {
- PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
- // If the step isn't constant, don't use an implicitly scaled GEP, because
- // that would require a multiply inside the loop.
- if (!isa<ConstantInt>(StepV))
- GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
- GEPPtrTy->getAddressSpace());
- const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
- IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
- if (IncV->getType() != PN->getType()) {
- IncV = Builder.CreateBitCast(IncV, PN->getType());
- rememberInstruction(IncV);
- }
- } else {
- IncV = useSubtract ?
- Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
- Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
- rememberInstruction(IncV);
- }
- return IncV;
- }
- /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
- /// position. This routine assumes that this is possible (has been checked).
- static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
- Instruction *Pos, PHINode *LoopPhi) {
- do {
- if (DT->dominates(InstToHoist, Pos))
- break;
- // Make sure the increment is where we want it. But don't move it
- // down past a potential existing post-inc user.
- InstToHoist->moveBefore(Pos);
- Pos = InstToHoist;
- InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
- } while (InstToHoist != LoopPhi);
- }
- /// \brief Check whether we can cheaply express the requested SCEV in terms of
- /// the available PHI SCEV by truncation and/or invertion of the step.
- static bool canBeCheaplyTransformed(ScalarEvolution &SE,
- const SCEVAddRecExpr *Phi,
- const SCEVAddRecExpr *Requested,
- bool &InvertStep) {
- Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
- Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
- if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
- return false;
- // Try truncate it if necessary.
- Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
- if (!Phi)
- return false;
- // Check whether truncation will help.
- if (Phi == Requested) {
- InvertStep = false;
- return true;
- }
- // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
- if (SE.getAddExpr(Requested->getStart(),
- SE.getNegativeSCEV(Requested)) == Phi) {
- InvertStep = true;
- return true;
- }
- return false;
- }
- /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
- /// the base addrec, which is the addrec without any non-loop-dominating
- /// values, and return the PHI.
- PHINode *
- SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
- const Loop *L,
- Type *ExpandTy,
- Type *IntTy,
- Type *&TruncTy,
- bool &InvertStep) {
- assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
- // Reuse a previously-inserted PHI, if present.
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (LatchBlock) {
- PHINode *AddRecPhiMatch = 0;
- Instruction *IncV = 0;
- TruncTy = 0;
- InvertStep = false;
- // Only try partially matching scevs that need truncation and/or
- // step-inversion if we know this loop is outside the current loop.
- bool TryNonMatchingSCEV = IVIncInsertLoop &&
- SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
- for (BasicBlock::iterator I = L->getHeader()->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (!SE.isSCEVable(PN->getType()))
- continue;
- const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
- if (!PhiSCEV)
- continue;
- bool IsMatchingSCEV = PhiSCEV == Normalized;
- // We only handle truncation and inversion of phi recurrences for the
- // expanded expression if the expanded expression's loop dominates the
- // loop we insert to. Check now, so we can bail out early.
- if (!IsMatchingSCEV && !TryNonMatchingSCEV)
- continue;
- Instruction *TempIncV =
- cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
- // Check whether we can reuse this PHI node.
- if (LSRMode) {
- if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
- continue;
- if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
- continue;
- } else {
- if (!isNormalAddRecExprPHI(PN, TempIncV, L))
- continue;
- }
- // Stop if we have found an exact match SCEV.
- if (IsMatchingSCEV) {
- IncV = TempIncV;
- TruncTy = 0;
- InvertStep = false;
- AddRecPhiMatch = PN;
- break;
- }
- // Try whether the phi can be translated into the requested form
- // (truncated and/or offset by a constant).
- if ((!TruncTy || InvertStep) &&
- canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
- // Record the phi node. But don't stop we might find an exact match
- // later.
- AddRecPhiMatch = PN;
- IncV = TempIncV;
- TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
- }
- }
- if (AddRecPhiMatch) {
- // Potentially, move the increment. We have made sure in
- // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
- if (L == IVIncInsertLoop)
- hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
- // Ok, the add recurrence looks usable.
- // Remember this PHI, even in post-inc mode.
- InsertedValues.insert(AddRecPhiMatch);
- // Remember the increment.
- rememberInstruction(IncV);
- return AddRecPhiMatch;
- }
- }
- // Save the original insertion point so we can restore it when we're done.
- BuilderType::InsertPointGuard Guard(Builder);
- // Another AddRec may need to be recursively expanded below. For example, if
- // this AddRec is quadratic, the StepV may itself be an AddRec in this
- // loop. Remove this loop from the PostIncLoops set before expanding such
- // AddRecs. Otherwise, we cannot find a valid position for the step
- // (i.e. StepV can never dominate its loop header). Ideally, we could do
- // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
- // so it's not worth implementing SmallPtrSet::swap.
- PostIncLoopSet SavedPostIncLoops = PostIncLoops;
- PostIncLoops.clear();
- // Expand code for the start value.
- Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
- L->getHeader()->begin());
- // StartV must be hoisted into L's preheader to dominate the new phi.
- assert(!isa<Instruction>(StartV) ||
- SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
- L->getHeader()));
- // Expand code for the step value. Do this before creating the PHI so that PHI
- // reuse code doesn't see an incomplete PHI.
- const SCEV *Step = Normalized->getStepRecurrence(SE);
- // If the stride is negative, insert a sub instead of an add for the increment
- // (unless it's a constant, because subtracts of constants are canonicalized
- // to adds).
- bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
- if (useSubtract)
- Step = SE.getNegativeSCEV(Step);
- // Expand the step somewhere that dominates the loop header.
- Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
- // Create the PHI.
- BasicBlock *Header = L->getHeader();
- Builder.SetInsertPoint(Header, Header->begin());
- pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
- PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
- Twine(IVName) + ".iv");
- rememberInstruction(PN);
- // Create the step instructions and populate the PHI.
- for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
- BasicBlock *Pred = *HPI;
- // Add a start value.
- if (!L->contains(Pred)) {
- PN->addIncoming(StartV, Pred);
- continue;
- }
- // Create a step value and add it to the PHI.
- // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
- // instructions at IVIncInsertPos.
- Instruction *InsertPos = L == IVIncInsertLoop ?
- IVIncInsertPos : Pred->getTerminator();
- Builder.SetInsertPoint(InsertPos);
- Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
- if (isa<OverflowingBinaryOperator>(IncV)) {
- if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
- cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
- if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
- cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
- }
- PN->addIncoming(IncV, Pred);
- }
- // After expanding subexpressions, restore the PostIncLoops set so the caller
- // can ensure that IVIncrement dominates the current uses.
- PostIncLoops = SavedPostIncLoops;
- // Remember this PHI, even in post-inc mode.
- InsertedValues.insert(PN);
- return PN;
- }
- Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
- Type *STy = S->getType();
- Type *IntTy = SE.getEffectiveSCEVType(STy);
- const Loop *L = S->getLoop();
- // Determine a normalized form of this expression, which is the expression
- // before any post-inc adjustment is made.
- const SCEVAddRecExpr *Normalized = S;
- if (PostIncLoops.count(L)) {
- PostIncLoopSet Loops;
- Loops.insert(L);
- Normalized =
- cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
- Loops, SE, *SE.DT));
- }
- // Strip off any non-loop-dominating component from the addrec start.
- const SCEV *Start = Normalized->getStart();
- const SCEV *PostLoopOffset = 0;
- if (!SE.properlyDominates(Start, L->getHeader())) {
- PostLoopOffset = Start;
- Start = SE.getConstant(Normalized->getType(), 0);
- Normalized = cast<SCEVAddRecExpr>(
- SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
- Normalized->getLoop(),
- Normalized->getNoWrapFlags(SCEV::FlagNW)));
- }
- // Strip off any non-loop-dominating component from the addrec step.
- const SCEV *Step = Normalized->getStepRecurrence(SE);
- const SCEV *PostLoopScale = 0;
- if (!SE.dominates(Step, L->getHeader())) {
- PostLoopScale = Step;
- Step = SE.getConstant(Normalized->getType(), 1);
- Normalized =
- cast<SCEVAddRecExpr>(SE.getAddRecExpr(
- Start, Step, Normalized->getLoop(),
- Normalized->getNoWrapFlags(SCEV::FlagNW)));
- }
- // Expand the core addrec. If we need post-loop scaling, force it to
- // expand to an integer type to avoid the need for additional casting.
- Type *ExpandTy = PostLoopScale ? IntTy : STy;
- // In some cases, we decide to reuse an existing phi node but need to truncate
- // it and/or invert the step.
- Type *TruncTy = 0;
- bool InvertStep = false;
- PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
- TruncTy, InvertStep);
- // Accommodate post-inc mode, if necessary.
- Value *Result;
- if (!PostIncLoops.count(L))
- Result = PN;
- else {
- // In PostInc mode, use the post-incremented value.
- BasicBlock *LatchBlock = L->getLoopLatch();
- assert(LatchBlock && "PostInc mode requires a unique loop latch!");
- Result = PN->getIncomingValueForBlock(LatchBlock);
- // For an expansion to use the postinc form, the client must call
- // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
- // or dominated by IVIncInsertPos.
- if (isa<Instruction>(Result)
- && !SE.DT->dominates(cast<Instruction>(Result),
- Builder.GetInsertPoint())) {
- // The induction variable's postinc expansion does not dominate this use.
- // IVUsers tries to prevent this case, so it is rare. However, it can
- // happen when an IVUser outside the loop is not dominated by the latch
- // block. Adjusting IVIncInsertPos before expansion begins cannot handle
- // all cases. Consider a phi outide whose operand is replaced during
- // expansion with the value of the postinc user. Without fundamentally
- // changing the way postinc users are tracked, the only remedy is
- // inserting an extra IV increment. StepV might fold into PostLoopOffset,
- // but hopefully expandCodeFor handles that.
- bool useSubtract =
- !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
- if (useSubtract)
- Step = SE.getNegativeSCEV(Step);
- Value *StepV;
- {
- // Expand the step somewhere that dominates the loop header.
- BuilderType::InsertPointGuard Guard(Builder);
- StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
- }
- Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
- }
- }
- // We have decided to reuse an induction variable of a dominating loop. Apply
- // truncation and/or invertion of the step.
- if (TruncTy) {
- Type *ResTy = Result->getType();
- // Normalize the result type.
- if (ResTy != SE.getEffectiveSCEVType(ResTy))
- Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
- // Truncate the result.
- if (TruncTy != Result->getType()) {
- Result = Builder.CreateTrunc(Result, TruncTy);
- rememberInstruction(Result);
- }
- // Invert the result.
- if (InvertStep) {
- Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
- Result);
- rememberInstruction(Result);
- }
- }
- // Re-apply any non-loop-dominating scale.
- if (PostLoopScale) {
- assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
- Result = InsertNoopCastOfTo(Result, IntTy);
- Result = Builder.CreateMul(Result,
- expandCodeFor(PostLoopScale, IntTy));
- rememberInstruction(Result);
- }
- // Re-apply any non-loop-dominating offset.
- if (PostLoopOffset) {
- if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
- const SCEV *const OffsetArray[1] = { PostLoopOffset };
- Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
- } else {
- Result = InsertNoopCastOfTo(Result, IntTy);
- Result = Builder.CreateAdd(Result,
- expandCodeFor(PostLoopOffset, IntTy));
- rememberInstruction(Result);
- }
- }
- return Result;
- }
- Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
- if (!CanonicalMode) return expandAddRecExprLiterally(S);
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- const Loop *L = S->getLoop();
- // First check for an existing canonical IV in a suitable type.
- PHINode *CanonicalIV = 0;
- if (PHINode *PN = L->getCanonicalInductionVariable())
- if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
- CanonicalIV = PN;
- // Rewrite an AddRec in terms of the canonical induction variable, if
- // its type is more narrow.
- if (CanonicalIV &&
- SE.getTypeSizeInBits(CanonicalIV->getType()) >
- SE.getTypeSizeInBits(Ty)) {
- SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
- for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
- NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
- Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
- S->getNoWrapFlags(SCEV::FlagNW)));
- BasicBlock::iterator NewInsertPt =
- std::next(BasicBlock::iterator(cast<Instruction>(V)));
- BuilderType::InsertPointGuard Guard(Builder);
- while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
- isa<LandingPadInst>(NewInsertPt))
- ++NewInsertPt;
- V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
- NewInsertPt);
- return V;
- }
- // {X,+,F} --> X + {0,+,F}
- if (!S->getStart()->isZero()) {
- SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
- NewOps[0] = SE.getConstant(Ty, 0);
- const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
- S->getNoWrapFlags(SCEV::FlagNW));
- // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
- // comments on expandAddToGEP for details.
- const SCEV *Base = S->getStart();
- const SCEV *RestArray[1] = { Rest };
- // Dig into the expression to find the pointer base for a GEP.
- ExposePointerBase(Base, RestArray[0], SE);
- // If we found a pointer, expand the AddRec with a GEP.
- if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
- // Make sure the Base isn't something exotic, such as a multiplied
- // or divided pointer value. In those cases, the result type isn't
- // actually a pointer type.
- if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
- Value *StartV = expand(Base);
- assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
- return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
- }
- }
- // Just do a normal add. Pre-expand the operands to suppress folding.
- return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
- SE.getUnknown(expand(Rest))));
- }
- // If we don't yet have a canonical IV, create one.
- if (!CanonicalIV) {
- // Create and insert the PHI node for the induction variable in the
- // specified loop.
- BasicBlock *Header = L->getHeader();
- pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
- CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
- Header->begin());
- rememberInstruction(CanonicalIV);
- SmallSet<BasicBlock *, 4> PredSeen;
- Constant *One = ConstantInt::get(Ty, 1);
- for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
- BasicBlock *HP = *HPI;
- if (!PredSeen.insert(HP))
- continue;
- if (L->contains(HP)) {
- // Insert a unit add instruction right before the terminator
- // corresponding to the back-edge.
- Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
- "indvar.next",
- HP->getTerminator());
- Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
- rememberInstruction(Add);
- CanonicalIV->addIncoming(Add, HP);
- } else {
- CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
- }
- }
- }
- // {0,+,1} --> Insert a canonical induction variable into the loop!
- if (S->isAffine() && S->getOperand(1)->isOne()) {
- assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
- "IVs with types different from the canonical IV should "
- "already have been handled!");
- return CanonicalIV;
- }
- // {0,+,F} --> {0,+,1} * F
- // If this is a simple linear addrec, emit it now as a special case.
- if (S->isAffine()) // {0,+,F} --> i*F
- return
- expand(SE.getTruncateOrNoop(
- SE.getMulExpr(SE.getUnknown(CanonicalIV),
- SE.getNoopOrAnyExtend(S->getOperand(1),
- CanonicalIV->getType())),
- Ty));
- // If this is a chain of recurrences, turn it into a closed form, using the
- // folders, then expandCodeFor the closed form. This allows the folders to
- // simplify the expression without having to build a bunch of special code
- // into this folder.
- const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
- // Promote S up to the canonical IV type, if the cast is foldable.
- const SCEV *NewS = S;
- const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
- if (isa<SCEVAddRecExpr>(Ext))
- NewS = Ext;
- const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
- //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
- // Truncate the result down to the original type, if needed.
- const SCEV *T = SE.getTruncateOrNoop(V, Ty);
- return expand(T);
- }
- Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateTrunc(V, Ty);
- rememberInstruction(I);
- return I;
- }
- Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateZExt(V, Ty);
- rememberInstruction(I);
- return I;
- }
- Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
- Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expandCodeFor(S->getOperand(),
- SE.getEffectiveSCEVType(S->getOperand()->getType()));
- Value *I = Builder.CreateSExt(V, Ty);
- rememberInstruction(I);
- return I;
- }
- Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands()-2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- if (S->getOperand(i)->getType() != Ty) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
- }
- Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
- Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
- Type *Ty = LHS->getType();
- for (int i = S->getNumOperands()-2; i >= 0; --i) {
- // In the case of mixed integer and pointer types, do the
- // rest of the comparisons as integer.
- if (S->getOperand(i)->getType() != Ty) {
- Ty = SE.getEffectiveSCEVType(Ty);
- LHS = InsertNoopCastOfTo(LHS, Ty);
- }
- Value *RHS = expandCodeFor(S->getOperand(i), Ty);
- Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
- rememberInstruction(ICmp);
- Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
- rememberInstruction(Sel);
- LHS = Sel;
- }
- // In the case of mixed integer and pointer types, cast the
- // final result back to the pointer type.
- if (LHS->getType() != S->getType())
- LHS = InsertNoopCastOfTo(LHS, S->getType());
- return LHS;
- }
- Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
- Instruction *IP) {
- Builder.SetInsertPoint(IP->getParent(), IP);
- return expandCodeFor(SH, Ty);
- }
- Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
- // Expand the code for this SCEV.
- Value *V = expand(SH);
- if (Ty) {
- assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
- "non-trivial casts should be done with the SCEVs directly!");
- V = InsertNoopCastOfTo(V, Ty);
- }
- return V;
- }
- Value *SCEVExpander::expand(const SCEV *S) {
- // Compute an insertion point for this SCEV object. Hoist the instructions
- // as far out in the loop nest as possible.
- Instruction *InsertPt = Builder.GetInsertPoint();
- for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
- L = L->getParentLoop())
- if (SE.isLoopInvariant(S, L)) {
- if (!L) break;
- if (BasicBlock *Preheader = L->getLoopPreheader())
- InsertPt = Preheader->getTerminator();
- else {
- // LSR sets the insertion point for AddRec start/step values to the
- // block start to simplify value reuse, even though it's an invalid
- // position. SCEVExpander must correct for this in all cases.
- InsertPt = L->getHeader()->getFirstInsertionPt();
- }
- } else {
- // If the SCEV is computable at this level, insert it into the header
- // after the PHIs (and after any other instructions that we've inserted
- // there) so that it is guaranteed to dominate any user inside the loop.
- if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
- InsertPt = L->getHeader()->getFirstInsertionPt();
- while (InsertPt != Builder.GetInsertPoint()
- && (isInsertedInstruction(InsertPt)
- || isa<DbgInfoIntrinsic>(InsertPt))) {
- InsertPt = std::next(BasicBlock::iterator(InsertPt));
- }
- break;
- }
- // Check to see if we already expanded this here.
- std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
- I = InsertedExpressions.find(std::make_pair(S, InsertPt));
- if (I != InsertedExpressions.end())
- return I->second;
- BuilderType::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
- // Expand the expression into instructions.
- Value *V = visit(S);
- // Remember the expanded value for this SCEV at this location.
- //
- // This is independent of PostIncLoops. The mapped value simply materializes
- // the expression at this insertion point. If the mapped value happened to be
- // a postinc expansion, it could be reused by a non-postinc user, but only if
- // its insertion point was already at the head of the loop.
- InsertedExpressions[std::make_pair(S, InsertPt)] = V;
- return V;
- }
- void SCEVExpander::rememberInstruction(Value *I) {
- if (!PostIncLoops.empty())
- InsertedPostIncValues.insert(I);
- else
- InsertedValues.insert(I);
- }
- /// getOrInsertCanonicalInductionVariable - This method returns the
- /// canonical induction variable of the specified type for the specified
- /// loop (inserting one if there is none). A canonical induction variable
- /// starts at zero and steps by one on each iteration.
- PHINode *
- SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
- Type *Ty) {
- assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
- // Build a SCEV for {0,+,1}<L>.
- // Conservatively use FlagAnyWrap for now.
- const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
- SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
- // Emit code for it.
- BuilderType::InsertPointGuard Guard(Builder);
- PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
- return V;
- }
- /// Sort values by integer width for replaceCongruentIVs.
- static bool width_descending(Value *lhs, Value *rhs) {
- // Put pointers at the back and make sure pointer < pointer = false.
- if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
- return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
- return rhs->getType()->getPrimitiveSizeInBits()
- < lhs->getType()->getPrimitiveSizeInBits();
- }
- /// replaceCongruentIVs - Check for congruent phis in this loop header and
- /// replace them with their most canonical representative. Return the number of
- /// phis eliminated.
- ///
- /// This does not depend on any SCEVExpander state but should be used in
- /// the same context that SCEVExpander is used.
- unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
- SmallVectorImpl<WeakVH> &DeadInsts,
- const TargetTransformInfo *TTI) {
- // Find integer phis in order of increasing width.
- SmallVector<PHINode*, 8> Phis;
- for (BasicBlock::iterator I = L->getHeader()->begin();
- PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
- Phis.push_back(Phi);
- }
- if (TTI)
- std::sort(Phis.begin(), Phis.end(), width_descending);
- unsigned NumElim = 0;
- DenseMap<const SCEV *, PHINode *> ExprToIVMap;
- // Process phis from wide to narrow. Mapping wide phis to the their truncation
- // so narrow phis can reuse them.
- for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
- PEnd = Phis.end(); PIter != PEnd; ++PIter) {
- PHINode *Phi = *PIter;
- // Fold constant phis. They may be congruent to other constant phis and
- // would confuse the logic below that expects proper IVs.
- if (Value *V = Phi->hasConstantValue()) {
- Phi->replaceAllUsesWith(V);
- DeadInsts.push_back(Phi);
- ++NumElim;
- DEBUG_WITH_TYPE(DebugType, dbgs()
- << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
- continue;
- }
- if (!SE.isSCEVable(Phi->getType()))
- continue;
- PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
- if (!OrigPhiRef) {
- OrigPhiRef = Phi;
- if (Phi->getType()->isIntegerTy() && TTI
- && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
- // This phi can be freely truncated to the narrowest phi type. Map the
- // truncated expression to it so it will be reused for narrow types.
- const SCEV *TruncExpr =
- SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
- ExprToIVMap[TruncExpr] = Phi;
- }
- continue;
- }
- // Replacing a pointer phi with an integer phi or vice-versa doesn't make
- // sense.
- if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
- continue;
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- Instruction *OrigInc =
- cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
- Instruction *IsomorphicInc =
- cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
- // If this phi has the same width but is more canonical, replace the
- // original with it. As part of the "more canonical" determination,
- // respect a prior decision to use an IV chain.
- if (OrigPhiRef->getType() == Phi->getType()
- && !(ChainedPhis.count(Phi)
- || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
- && (ChainedPhis.count(Phi)
- || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
- std::swap(OrigPhiRef, Phi);
- std::swap(OrigInc, IsomorphicInc);
- }
- // Replacing the congruent phi is sufficient because acyclic redundancy
- // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
- // that a phi is congruent, it's often the head of an IV user cycle that
- // is isomorphic with the original phi. It's worth eagerly cleaning up the
- // common case of a single IV increment so that DeleteDeadPHIs can remove
- // cycles that had postinc uses.
- const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
- IsomorphicInc->getType());
- if (OrigInc != IsomorphicInc
- && TruncExpr == SE.getSCEV(IsomorphicInc)
- && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
- || hoistIVInc(OrigInc, IsomorphicInc))) {
- DEBUG_WITH_TYPE(DebugType, dbgs()
- << "INDVARS: Eliminated congruent iv.inc: "
- << *IsomorphicInc << '\n');
- Value *NewInc = OrigInc;
- if (OrigInc->getType() != IsomorphicInc->getType()) {
- Instruction *IP = isa<PHINode>(OrigInc)
- ? (Instruction*)L->getHeader()->getFirstInsertionPt()
- : OrigInc->getNextNode();
- IRBuilder<> Builder(IP);
- Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
- NewInc = Builder.
- CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
- }
- IsomorphicInc->replaceAllUsesWith(NewInc);
- DeadInsts.push_back(IsomorphicInc);
- }
- }
- DEBUG_WITH_TYPE(DebugType, dbgs()
- << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
- ++NumElim;
- Value *NewIV = OrigPhiRef;
- if (OrigPhiRef->getType() != Phi->getType()) {
- IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
- Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
- NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
- }
- Phi->replaceAllUsesWith(NewIV);
- DeadInsts.push_back(Phi);
- }
- return NumElim;
- }
- namespace {
- // Search for a SCEV subexpression that is not safe to expand. Any expression
- // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
- // UDiv expressions. We don't know if the UDiv is derived from an IR divide
- // instruction, but the important thing is that we prove the denominator is
- // nonzero before expansion.
- //
- // IVUsers already checks that IV-derived expressions are safe. So this check is
- // only needed when the expression includes some subexpression that is not IV
- // derived.
- //
- // Currently, we only allow division by a nonzero constant here. If this is
- // inadequate, we could easily allow division by SCEVUnknown by using
- // ValueTracking to check isKnownNonZero().
- //
- // We cannot generally expand recurrences unless the step dominates the loop
- // header. The expander handles the special case of affine recurrences by
- // scaling the recurrence outside the loop, but this technique isn't generally
- // applicable. Expanding a nested recurrence outside a loop requires computing
- // binomial coefficients. This could be done, but the recurrence has to be in a
- // perfectly reduced form, which can't be guaranteed.
- struct SCEVFindUnsafe {
- ScalarEvolution &SE;
- bool IsUnsafe;
- SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
- bool follow(const SCEV *S) {
- if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
- if (!SC || SC->getValue()->isZero()) {
- IsUnsafe = true;
- return false;
- }
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV *Step = AR->getStepRecurrence(SE);
- if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
- IsUnsafe = true;
- return false;
- }
- }
- return true;
- }
- bool isDone() const { return IsUnsafe; }
- };
- }
- namespace llvm {
- bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
- SCEVFindUnsafe Search(SE);
- visitAll(S, Search);
- return !Search.IsUnsafe;
- }
- }
|