123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542 |
- //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements an analysis that determines, for a given memory
- // operation, what preceding memory operations it depends on. It builds on
- // alias analysis information, and tries to provide a lazy, caching interface to
- // a common kind of alias information query.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "memdep"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/PHITransAddr.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/PredIteratorCache.h"
- using namespace llvm;
- STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
- STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
- STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
- STATISTIC(NumCacheNonLocalPtr,
- "Number of fully cached non-local ptr responses");
- STATISTIC(NumCacheDirtyNonLocalPtr,
- "Number of cached, but dirty, non-local ptr responses");
- STATISTIC(NumUncacheNonLocalPtr,
- "Number of uncached non-local ptr responses");
- STATISTIC(NumCacheCompleteNonLocalPtr,
- "Number of block queries that were completely cached");
- // Limit for the number of instructions to scan in a block.
- static const int BlockScanLimit = 100;
- char MemoryDependenceAnalysis::ID = 0;
- // Register this pass...
- INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
- "Memory Dependence Analysis", false, true)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
- "Memory Dependence Analysis", false, true)
- MemoryDependenceAnalysis::MemoryDependenceAnalysis()
- : FunctionPass(ID), PredCache(0) {
- initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
- }
- MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
- }
- /// Clean up memory in between runs
- void MemoryDependenceAnalysis::releaseMemory() {
- LocalDeps.clear();
- NonLocalDeps.clear();
- NonLocalPointerDeps.clear();
- ReverseLocalDeps.clear();
- ReverseNonLocalDeps.clear();
- ReverseNonLocalPtrDeps.clear();
- PredCache->clear();
- }
- /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
- ///
- void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AliasAnalysis>();
- }
- bool MemoryDependenceAnalysis::runOnFunction(Function &) {
- AA = &getAnalysis<AliasAnalysis>();
- DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : 0;
- if (!PredCache)
- PredCache.reset(new PredIteratorCache());
- return false;
- }
- /// RemoveFromReverseMap - This is a helper function that removes Val from
- /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
- template <typename KeyTy>
- static void RemoveFromReverseMap(DenseMap<Instruction*,
- SmallPtrSet<KeyTy, 4> > &ReverseMap,
- Instruction *Inst, KeyTy Val) {
- typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
- InstIt = ReverseMap.find(Inst);
- assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
- bool Found = InstIt->second.erase(Val);
- assert(Found && "Invalid reverse map!"); (void)Found;
- if (InstIt->second.empty())
- ReverseMap.erase(InstIt);
- }
- /// GetLocation - If the given instruction references a specific memory
- /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
- /// Return a ModRefInfo value describing the general behavior of the
- /// instruction.
- static
- AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
- AliasAnalysis::Location &Loc,
- AliasAnalysis *AA) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- if (LI->isUnordered()) {
- Loc = AA->getLocation(LI);
- return AliasAnalysis::Ref;
- }
- if (LI->getOrdering() == Monotonic) {
- Loc = AA->getLocation(LI);
- return AliasAnalysis::ModRef;
- }
- Loc = AliasAnalysis::Location();
- return AliasAnalysis::ModRef;
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->isUnordered()) {
- Loc = AA->getLocation(SI);
- return AliasAnalysis::Mod;
- }
- if (SI->getOrdering() == Monotonic) {
- Loc = AA->getLocation(SI);
- return AliasAnalysis::ModRef;
- }
- Loc = AliasAnalysis::Location();
- return AliasAnalysis::ModRef;
- }
- if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
- Loc = AA->getLocation(V);
- return AliasAnalysis::ModRef;
- }
- if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
- // calls to free() deallocate the entire structure
- Loc = AliasAnalysis::Location(CI->getArgOperand(0));
- return AliasAnalysis::Mod;
- }
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
- switch (II->getIntrinsicID()) {
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- Loc = AliasAnalysis::Location(II->getArgOperand(1),
- cast<ConstantInt>(II->getArgOperand(0))
- ->getZExtValue(),
- II->getMetadata(LLVMContext::MD_tbaa));
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return AliasAnalysis::Mod;
- case Intrinsic::invariant_end:
- Loc = AliasAnalysis::Location(II->getArgOperand(2),
- cast<ConstantInt>(II->getArgOperand(1))
- ->getZExtValue(),
- II->getMetadata(LLVMContext::MD_tbaa));
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return AliasAnalysis::Mod;
- default:
- break;
- }
- // Otherwise, just do the coarse-grained thing that always works.
- if (Inst->mayWriteToMemory())
- return AliasAnalysis::ModRef;
- if (Inst->mayReadFromMemory())
- return AliasAnalysis::Ref;
- return AliasAnalysis::NoModRef;
- }
- /// getCallSiteDependencyFrom - Private helper for finding the local
- /// dependencies of a call site.
- MemDepResult MemoryDependenceAnalysis::
- getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
- BasicBlock::iterator ScanIt, BasicBlock *BB) {
- unsigned Limit = BlockScanLimit;
- // Walk backwards through the block, looking for dependencies
- while (ScanIt != BB->begin()) {
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --Limit;
- if (!Limit)
- return MemDepResult::getUnknown();
- Instruction *Inst = --ScanIt;
- // If this inst is a memory op, get the pointer it accessed
- AliasAnalysis::Location Loc;
- AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
- if (Loc.Ptr) {
- // A simple instruction.
- if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
- return MemDepResult::getClobber(Inst);
- continue;
- }
- if (CallSite InstCS = cast<Value>(Inst)) {
- // Debug intrinsics don't cause dependences.
- if (isa<DbgInfoIntrinsic>(Inst)) continue;
- // If these two calls do not interfere, look past it.
- switch (AA->getModRefInfo(CS, InstCS)) {
- case AliasAnalysis::NoModRef:
- // If the two calls are the same, return InstCS as a Def, so that
- // CS can be found redundant and eliminated.
- if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
- CS.getInstruction()->isIdenticalToWhenDefined(Inst))
- return MemDepResult::getDef(Inst);
- // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
- // keep scanning.
- continue;
- default:
- return MemDepResult::getClobber(Inst);
- }
- }
- // If we could not obtain a pointer for the instruction and the instruction
- // touches memory then assume that this is a dependency.
- if (MR != AliasAnalysis::NoModRef)
- return MemDepResult::getClobber(Inst);
- }
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
- }
- /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
- /// would fully overlap MemLoc if done as a wider legal integer load.
- ///
- /// MemLocBase, MemLocOffset are lazily computed here the first time the
- /// base/offs of memloc is needed.
- static bool
- isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
- const Value *&MemLocBase,
- int64_t &MemLocOffs,
- const LoadInst *LI,
- const DataLayout *DL) {
- // If we have no target data, we can't do this.
- if (DL == 0) return false;
- // If we haven't already computed the base/offset of MemLoc, do so now.
- if (MemLocBase == 0)
- MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
- unsigned Size = MemoryDependenceAnalysis::
- getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
- LI, *DL);
- return Size != 0;
- }
- /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
- /// looks at a memory location for a load (specified by MemLocBase, Offs,
- /// and Size) and compares it against a load. If the specified load could
- /// be safely widened to a larger integer load that is 1) still efficient,
- /// 2) safe for the target, and 3) would provide the specified memory
- /// location value, then this function returns the size in bytes of the
- /// load width to use. If not, this returns zero.
- unsigned MemoryDependenceAnalysis::
- getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
- unsigned MemLocSize, const LoadInst *LI,
- const DataLayout &DL) {
- // We can only extend simple integer loads.
- if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
- // Load widening is hostile to ThreadSanitizer: it may cause false positives
- // or make the reports more cryptic (access sizes are wrong).
- if (LI->getParent()->getParent()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
- return 0;
- // Get the base of this load.
- int64_t LIOffs = 0;
- const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL);
- // If the two pointers are not based on the same pointer, we can't tell that
- // they are related.
- if (LIBase != MemLocBase) return 0;
- // Okay, the two values are based on the same pointer, but returned as
- // no-alias. This happens when we have things like two byte loads at "P+1"
- // and "P+3". Check to see if increasing the size of the "LI" load up to its
- // alignment (or the largest native integer type) will allow us to load all
- // the bits required by MemLoc.
- // If MemLoc is before LI, then no widening of LI will help us out.
- if (MemLocOffs < LIOffs) return 0;
- // Get the alignment of the load in bytes. We assume that it is safe to load
- // any legal integer up to this size without a problem. For example, if we're
- // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
- // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
- // to i16.
- unsigned LoadAlign = LI->getAlignment();
- int64_t MemLocEnd = MemLocOffs+MemLocSize;
- // If no amount of rounding up will let MemLoc fit into LI, then bail out.
- if (LIOffs+LoadAlign < MemLocEnd) return 0;
- // This is the size of the load to try. Start with the next larger power of
- // two.
- unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
- NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
- while (1) {
- // If this load size is bigger than our known alignment or would not fit
- // into a native integer register, then we fail.
- if (NewLoadByteSize > LoadAlign ||
- !DL.fitsInLegalInteger(NewLoadByteSize*8))
- return 0;
- if (LIOffs+NewLoadByteSize > MemLocEnd &&
- LI->getParent()->getParent()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
- // We will be reading past the location accessed by the original program.
- // While this is safe in a regular build, Address Safety analysis tools
- // may start reporting false warnings. So, don't do widening.
- return 0;
- // If a load of this width would include all of MemLoc, then we succeed.
- if (LIOffs+NewLoadByteSize >= MemLocEnd)
- return NewLoadByteSize;
- NewLoadByteSize <<= 1;
- }
- }
- /// getPointerDependencyFrom - Return the instruction on which a memory
- /// location depends. If isLoad is true, this routine ignores may-aliases with
- /// read-only operations. If isLoad is false, this routine ignores may-aliases
- /// with reads from read-only locations. If possible, pass the query
- /// instruction as well; this function may take advantage of the metadata
- /// annotated to the query instruction to refine the result.
- MemDepResult MemoryDependenceAnalysis::
- getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
- BasicBlock::iterator ScanIt, BasicBlock *BB,
- Instruction *QueryInst) {
- const Value *MemLocBase = 0;
- int64_t MemLocOffset = 0;
- unsigned Limit = BlockScanLimit;
- bool isInvariantLoad = false;
- if (isLoad && QueryInst) {
- LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
- if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
- isInvariantLoad = true;
- }
- // Walk backwards through the basic block, looking for dependencies.
- while (ScanIt != BB->begin()) {
- Instruction *Inst = --ScanIt;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
- // Debug intrinsics don't (and can't) cause dependencies.
- if (isa<DbgInfoIntrinsic>(II)) continue;
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --Limit;
- if (!Limit)
- return MemDepResult::getUnknown();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // If we reach a lifetime begin or end marker, then the query ends here
- // because the value is undefined.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
- // FIXME: This only considers queries directly on the invariant-tagged
- // pointer, not on query pointers that are indexed off of them. It'd
- // be nice to handle that at some point (the right approach is to use
- // GetPointerBaseWithConstantOffset).
- if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
- MemLoc))
- return MemDepResult::getDef(II);
- continue;
- }
- }
- // Values depend on loads if the pointers are must aliased. This means that
- // a load depends on another must aliased load from the same value.
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- // Atomic loads have complications involved.
- // FIXME: This is overly conservative.
- if (!LI->isUnordered())
- return MemDepResult::getClobber(LI);
- AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
- // If we found a pointer, check if it could be the same as our pointer.
- AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
- if (isLoad) {
- if (R == AliasAnalysis::NoAlias) {
- // If this is an over-aligned integer load (for example,
- // "load i8* %P, align 4") see if it would obviously overlap with the
- // queried location if widened to a larger load (e.g. if the queried
- // location is 1 byte at P+1). If so, return it as a load/load
- // clobber result, allowing the client to decide to widen the load if
- // it wants to.
- if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
- if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
- isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
- MemLocOffset, LI, DL))
- return MemDepResult::getClobber(Inst);
- continue;
- }
- // Must aliased loads are defs of each other.
- if (R == AliasAnalysis::MustAlias)
- return MemDepResult::getDef(Inst);
- #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
- // in terms of clobbering loads, but since it does this by looking
- // at the clobbering load directly, it doesn't know about any
- // phi translation that may have happened along the way.
- // If we have a partial alias, then return this as a clobber for the
- // client to handle.
- if (R == AliasAnalysis::PartialAlias)
- return MemDepResult::getClobber(Inst);
- #endif
- // Random may-alias loads don't depend on each other without a
- // dependence.
- continue;
- }
- // Stores don't depend on other no-aliased accesses.
- if (R == AliasAnalysis::NoAlias)
- continue;
- // Stores don't alias loads from read-only memory.
- if (AA->pointsToConstantMemory(LoadLoc))
- continue;
- // Stores depend on may/must aliased loads.
- return MemDepResult::getDef(Inst);
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // Atomic stores have complications involved.
- // FIXME: This is overly conservative.
- if (!SI->isUnordered())
- return MemDepResult::getClobber(SI);
- // If alias analysis can tell that this store is guaranteed to not modify
- // the query pointer, ignore it. Use getModRefInfo to handle cases where
- // the query pointer points to constant memory etc.
- if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
- continue;
- // Ok, this store might clobber the query pointer. Check to see if it is
- // a must alias: in this case, we want to return this as a def.
- AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
- // If we found a pointer, check if it could be the same as our pointer.
- AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
- if (R == AliasAnalysis::NoAlias)
- continue;
- if (R == AliasAnalysis::MustAlias)
- return MemDepResult::getDef(Inst);
- if (isInvariantLoad)
- continue;
- return MemDepResult::getClobber(Inst);
- }
- // If this is an allocation, and if we know that the accessed pointer is to
- // the allocation, return Def. This means that there is no dependence and
- // the access can be optimized based on that. For example, a load could
- // turn into undef.
- // Note: Only determine this to be a malloc if Inst is the malloc call, not
- // a subsequent bitcast of the malloc call result. There can be stores to
- // the malloced memory between the malloc call and its bitcast uses, and we
- // need to continue scanning until the malloc call.
- const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
- if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
- const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
- if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
- return MemDepResult::getDef(Inst);
- // Be conservative if the accessed pointer may alias the allocation.
- if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
- return MemDepResult::getClobber(Inst);
- // If the allocation is not aliased and does not read memory (like
- // strdup), it is safe to ignore.
- if (isa<AllocaInst>(Inst) ||
- isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
- continue;
- }
- // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
- AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
- // If necessary, perform additional analysis.
- if (MR == AliasAnalysis::ModRef)
- MR = AA->callCapturesBefore(Inst, MemLoc, DT);
- switch (MR) {
- case AliasAnalysis::NoModRef:
- // If the call has no effect on the queried pointer, just ignore it.
- continue;
- case AliasAnalysis::Mod:
- return MemDepResult::getClobber(Inst);
- case AliasAnalysis::Ref:
- // If the call is known to never store to the pointer, and if this is a
- // load query, we can safely ignore it (scan past it).
- if (isLoad)
- continue;
- default:
- // Otherwise, there is a potential dependence. Return a clobber.
- return MemDepResult::getClobber(Inst);
- }
- }
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
- }
- /// getDependency - Return the instruction on which a memory operation
- /// depends.
- MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
- Instruction *ScanPos = QueryInst;
- // Check for a cached result
- MemDepResult &LocalCache = LocalDeps[QueryInst];
- // If the cached entry is non-dirty, just return it. Note that this depends
- // on MemDepResult's default constructing to 'dirty'.
- if (!LocalCache.isDirty())
- return LocalCache;
- // Otherwise, if we have a dirty entry, we know we can start the scan at that
- // instruction, which may save us some work.
- if (Instruction *Inst = LocalCache.getInst()) {
- ScanPos = Inst;
- RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
- }
- BasicBlock *QueryParent = QueryInst->getParent();
- // Do the scan.
- if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (QueryParent != &QueryParent->getParent()->getEntryBlock())
- LocalCache = MemDepResult::getNonLocal();
- else
- LocalCache = MemDepResult::getNonFuncLocal();
- } else {
- AliasAnalysis::Location MemLoc;
- AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
- if (MemLoc.Ptr) {
- // If we can do a pointer scan, make it happen.
- bool isLoad = !(MR & AliasAnalysis::Mod);
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
- isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
- LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
- QueryParent, QueryInst);
- } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
- CallSite QueryCS(QueryInst);
- bool isReadOnly = AA->onlyReadsMemory(QueryCS);
- LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
- QueryParent);
- } else
- // Non-memory instruction.
- LocalCache = MemDepResult::getUnknown();
- }
- // Remember the result!
- if (Instruction *I = LocalCache.getInst())
- ReverseLocalDeps[I].insert(QueryInst);
- return LocalCache;
- }
- #ifndef NDEBUG
- /// AssertSorted - This method is used when -debug is specified to verify that
- /// cache arrays are properly kept sorted.
- static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
- int Count = -1) {
- if (Count == -1) Count = Cache.size();
- if (Count == 0) return;
- for (unsigned i = 1; i != unsigned(Count); ++i)
- assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
- }
- #endif
- /// getNonLocalCallDependency - Perform a full dependency query for the
- /// specified call, returning the set of blocks that the value is
- /// potentially live across. The returned set of results will include a
- /// "NonLocal" result for all blocks where the value is live across.
- ///
- /// This method assumes the instruction returns a "NonLocal" dependency
- /// within its own block.
- ///
- /// This returns a reference to an internal data structure that may be
- /// invalidated on the next non-local query or when an instruction is
- /// removed. Clients must copy this data if they want it around longer than
- /// that.
- const MemoryDependenceAnalysis::NonLocalDepInfo &
- MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
- assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
- "getNonLocalCallDependency should only be used on calls with non-local deps!");
- PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
- NonLocalDepInfo &Cache = CacheP.first;
- /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
- /// the cached case, this can happen due to instructions being deleted etc. In
- /// the uncached case, this starts out as the set of predecessors we care
- /// about.
- SmallVector<BasicBlock*, 32> DirtyBlocks;
- if (!Cache.empty()) {
- // Okay, we have a cache entry. If we know it is not dirty, just return it
- // with no computation.
- if (!CacheP.second) {
- ++NumCacheNonLocal;
- return Cache;
- }
- // If we already have a partially computed set of results, scan them to
- // determine what is dirty, seeding our initial DirtyBlocks worklist.
- for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
- I != E; ++I)
- if (I->getResult().isDirty())
- DirtyBlocks.push_back(I->getBB());
- // Sort the cache so that we can do fast binary search lookups below.
- std::sort(Cache.begin(), Cache.end());
- ++NumCacheDirtyNonLocal;
- //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
- // << Cache.size() << " cached: " << *QueryInst;
- } else {
- // Seed DirtyBlocks with each of the preds of QueryInst's block.
- BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
- for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
- DirtyBlocks.push_back(*PI);
- ++NumUncacheNonLocal;
- }
- // isReadonlyCall - If this is a read-only call, we can be more aggressive.
- bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
- SmallPtrSet<BasicBlock*, 64> Visited;
- unsigned NumSortedEntries = Cache.size();
- DEBUG(AssertSorted(Cache));
- // Iterate while we still have blocks to update.
- while (!DirtyBlocks.empty()) {
- BasicBlock *DirtyBB = DirtyBlocks.back();
- DirtyBlocks.pop_back();
- // Already processed this block?
- if (!Visited.insert(DirtyBB))
- continue;
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- DEBUG(AssertSorted(Cache, NumSortedEntries));
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
- NonLocalDepEntry(DirtyBB));
- if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
- --Entry;
- NonLocalDepEntry *ExistingResult = 0;
- if (Entry != Cache.begin()+NumSortedEntries &&
- Entry->getBB() == DirtyBB) {
- // If we already have an entry, and if it isn't already dirty, the block
- // is done.
- if (!Entry->getResult().isDirty())
- continue;
- // Otherwise, remember this slot so we can update the value.
- ExistingResult = &*Entry;
- }
- // If the dirty entry has a pointer, start scanning from it so we don't have
- // to rescan the entire block.
- BasicBlock::iterator ScanPos = DirtyBB->end();
- if (ExistingResult) {
- if (Instruction *Inst = ExistingResult->getResult().getInst()) {
- ScanPos = Inst;
- // We're removing QueryInst's use of Inst.
- RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
- QueryCS.getInstruction());
- }
- }
- // Find out if this block has a local dependency for QueryInst.
- MemDepResult Dep;
- if (ScanPos != DirtyBB->begin()) {
- Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
- } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
- // No dependence found. If this is the entry block of the function, it is
- // a clobber, otherwise it is unknown.
- Dep = MemDepResult::getNonLocal();
- } else {
- Dep = MemDepResult::getNonFuncLocal();
- }
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the association!
- if (!Dep.isNonLocal()) {
- // Keep the ReverseNonLocalDeps map up to date so we can efficiently
- // update this when we remove instructions.
- if (Instruction *Inst = Dep.getInst())
- ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
- } else {
- // If the block *is* completely transparent to the load, we need to check
- // the predecessors of this block. Add them to our worklist.
- for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
- DirtyBlocks.push_back(*PI);
- }
- }
- return Cache;
- }
- /// getNonLocalPointerDependency - Perform a full dependency query for an
- /// access to the specified (non-volatile) memory location, returning the
- /// set of instructions that either define or clobber the value.
- ///
- /// This method assumes the pointer has a "NonLocal" dependency within its
- /// own block.
- ///
- void MemoryDependenceAnalysis::
- getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
- BasicBlock *FromBB,
- SmallVectorImpl<NonLocalDepResult> &Result) {
- assert(Loc.Ptr->getType()->isPointerTy() &&
- "Can't get pointer deps of a non-pointer!");
- Result.clear();
- PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL);
- // This is the set of blocks we've inspected, and the pointer we consider in
- // each block. Because of critical edges, we currently bail out if querying
- // a block with multiple different pointers. This can happen during PHI
- // translation.
- DenseMap<BasicBlock*, Value*> Visited;
- if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
- Result, Visited, true))
- return;
- Result.clear();
- Result.push_back(NonLocalDepResult(FromBB,
- MemDepResult::getUnknown(),
- const_cast<Value *>(Loc.Ptr)));
- }
- /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
- /// Pointer/PointeeSize using either cached information in Cache or by doing a
- /// lookup (which may use dirty cache info if available). If we do a lookup,
- /// add the result to the cache.
- MemDepResult MemoryDependenceAnalysis::
- GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
- bool isLoad, BasicBlock *BB,
- NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
- NonLocalDepEntry(BB));
- if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
- --Entry;
- NonLocalDepEntry *ExistingResult = 0;
- if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
- ExistingResult = &*Entry;
- // If we have a cached entry, and it is non-dirty, use it as the value for
- // this dependency.
- if (ExistingResult && !ExistingResult->getResult().isDirty()) {
- ++NumCacheNonLocalPtr;
- return ExistingResult->getResult();
- }
- // Otherwise, we have to scan for the value. If we have a dirty cache
- // entry, start scanning from its position, otherwise we scan from the end
- // of the block.
- BasicBlock::iterator ScanPos = BB->end();
- if (ExistingResult && ExistingResult->getResult().getInst()) {
- assert(ExistingResult->getResult().getInst()->getParent() == BB &&
- "Instruction invalidated?");
- ++NumCacheDirtyNonLocalPtr;
- ScanPos = ExistingResult->getResult().getInst();
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
- } else {
- ++NumUncacheNonLocalPtr;
- }
- // Scan the block for the dependency.
- MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache->push_back(NonLocalDepEntry(BB, Dep));
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the reverse association because we just added it
- // to Cache!
- if (!Dep.isDef() && !Dep.isClobber())
- return Dep;
- // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
- // update MemDep when we remove instructions.
- Instruction *Inst = Dep.getInst();
- assert(Inst && "Didn't depend on anything?");
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
- return Dep;
- }
- /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
- /// number of elements in the array that are already properly ordered. This is
- /// optimized for the case when only a few entries are added.
- static void
- SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
- unsigned NumSortedEntries) {
- switch (Cache.size() - NumSortedEntries) {
- case 0:
- // done, no new entries.
- break;
- case 2: {
- // Two new entries, insert the last one into place.
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end()-1, Val);
- Cache.insert(Entry, Val);
- // FALL THROUGH.
- }
- case 1:
- // One new entry, Just insert the new value at the appropriate position.
- if (Cache.size() != 1) {
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end(), Val);
- Cache.insert(Entry, Val);
- }
- break;
- default:
- // Added many values, do a full scale sort.
- std::sort(Cache.begin(), Cache.end());
- break;
- }
- }
- /// getNonLocalPointerDepFromBB - Perform a dependency query based on
- /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
- /// results to the results vector and keep track of which blocks are visited in
- /// 'Visited'.
- ///
- /// This has special behavior for the first block queries (when SkipFirstBlock
- /// is true). In this special case, it ignores the contents of the specified
- /// block and starts returning dependence info for its predecessors.
- ///
- /// This function returns false on success, or true to indicate that it could
- /// not compute dependence information for some reason. This should be treated
- /// as a clobber dependence on the first instruction in the predecessor block.
- bool MemoryDependenceAnalysis::
- getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
- const AliasAnalysis::Location &Loc,
- bool isLoad, BasicBlock *StartBB,
- SmallVectorImpl<NonLocalDepResult> &Result,
- DenseMap<BasicBlock*, Value*> &Visited,
- bool SkipFirstBlock) {
- // Look up the cached info for Pointer.
- ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
- // Set up a temporary NLPI value. If the map doesn't yet have an entry for
- // CacheKey, this value will be inserted as the associated value. Otherwise,
- // it'll be ignored, and we'll have to check to see if the cached size and
- // tbaa tag are consistent with the current query.
- NonLocalPointerInfo InitialNLPI;
- InitialNLPI.Size = Loc.Size;
- InitialNLPI.TBAATag = Loc.TBAATag;
- // Get the NLPI for CacheKey, inserting one into the map if it doesn't
- // already have one.
- std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
- NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
- NonLocalPointerInfo *CacheInfo = &Pair.first->second;
- // If we already have a cache entry for this CacheKey, we may need to do some
- // work to reconcile the cache entry and the current query.
- if (!Pair.second) {
- if (CacheInfo->Size < Loc.Size) {
- // The query's Size is greater than the cached one. Throw out the
- // cached data and proceed with the query at the greater size.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->Size = Loc.Size;
- for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
- DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- } else if (CacheInfo->Size > Loc.Size) {
- // This query's Size is less than the cached one. Conservatively restart
- // the query using the greater size.
- return getNonLocalPointerDepFromBB(Pointer,
- Loc.getWithNewSize(CacheInfo->Size),
- isLoad, StartBB, Result, Visited,
- SkipFirstBlock);
- }
- // If the query's TBAATag is inconsistent with the cached one,
- // conservatively throw out the cached data and restart the query with
- // no tag if needed.
- if (CacheInfo->TBAATag != Loc.TBAATag) {
- if (CacheInfo->TBAATag) {
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->TBAATag = 0;
- for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
- DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- }
- if (Loc.TBAATag)
- return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
- isLoad, StartBB, Result, Visited,
- SkipFirstBlock);
- }
- }
- NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
- // If we have valid cached information for exactly the block we are
- // investigating, just return it with no recomputation.
- if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
- // We have a fully cached result for this query then we can just return the
- // cached results and populate the visited set. However, we have to verify
- // that we don't already have conflicting results for these blocks. Check
- // to ensure that if a block in the results set is in the visited set that
- // it was for the same pointer query.
- if (!Visited.empty()) {
- for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
- I != E; ++I) {
- DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
- if (VI == Visited.end() || VI->second == Pointer.getAddr())
- continue;
- // We have a pointer mismatch in a block. Just return clobber, saying
- // that something was clobbered in this result. We could also do a
- // non-fully cached query, but there is little point in doing this.
- return true;
- }
- }
- Value *Addr = Pointer.getAddr();
- for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
- I != E; ++I) {
- Visited.insert(std::make_pair(I->getBB(), Addr));
- if (I->getResult().isNonLocal()) {
- continue;
- }
- if (!DT) {
- Result.push_back(NonLocalDepResult(I->getBB(),
- MemDepResult::getUnknown(),
- Addr));
- } else if (DT->isReachableFromEntry(I->getBB())) {
- Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
- }
- }
- ++NumCacheCompleteNonLocalPtr;
- return false;
- }
- // Otherwise, either this is a new block, a block with an invalid cache
- // pointer or one that we're about to invalidate by putting more info into it
- // than its valid cache info. If empty, the result will be valid cache info,
- // otherwise it isn't.
- if (Cache->empty())
- CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
- else
- CacheInfo->Pair = BBSkipFirstBlockPair();
- SmallVector<BasicBlock*, 32> Worklist;
- Worklist.push_back(StartBB);
- // PredList used inside loop.
- SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
- // Keep track of the entries that we know are sorted. Previously cached
- // entries will all be sorted. The entries we add we only sort on demand (we
- // don't insert every element into its sorted position). We know that we
- // won't get any reuse from currently inserted values, because we don't
- // revisit blocks after we insert info for them.
- unsigned NumSortedEntries = Cache->size();
- DEBUG(AssertSorted(*Cache));
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- // Skip the first block if we have it.
- if (!SkipFirstBlock) {
- // Analyze the dependency of *Pointer in FromBB. See if we already have
- // been here.
- assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
- // Get the dependency info for Pointer in BB. If we have cached
- // information, we will use it, otherwise we compute it.
- DEBUG(AssertSorted(*Cache, NumSortedEntries));
- MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
- NumSortedEntries);
- // If we got a Def or Clobber, add this to the list of results.
- if (!Dep.isNonLocal()) {
- if (!DT) {
- Result.push_back(NonLocalDepResult(BB,
- MemDepResult::getUnknown(),
- Pointer.getAddr()));
- continue;
- } else if (DT->isReachableFromEntry(BB)) {
- Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
- continue;
- }
- }
- }
- // If 'Pointer' is an instruction defined in this block, then we need to do
- // phi translation to change it into a value live in the predecessor block.
- // If not, we just add the predecessors to the worklist and scan them with
- // the same Pointer.
- if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
- SkipFirstBlock = false;
- SmallVector<BasicBlock*, 16> NewBlocks;
- for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
- // Verify that we haven't looked at this block yet.
- std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
- if (InsertRes.second) {
- // First time we've looked at *PI.
- NewBlocks.push_back(*PI);
- continue;
- }
- // If we have seen this block before, but it was with a different
- // pointer then we have a phi translation failure and we have to treat
- // this as a clobber.
- if (InsertRes.first->second != Pointer.getAddr()) {
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0; i < NewBlocks.size(); i++)
- Visited.erase(NewBlocks[i]);
- goto PredTranslationFailure;
- }
- }
- Worklist.append(NewBlocks.begin(), NewBlocks.end());
- continue;
- }
- // We do need to do phi translation, if we know ahead of time we can't phi
- // translate this value, don't even try.
- if (!Pointer.IsPotentiallyPHITranslatable())
- goto PredTranslationFailure;
- // We may have added values to the cache list before this PHI translation.
- // If so, we haven't done anything to ensure that the cache remains sorted.
- // Sort it now (if needed) so that recursive invocations of
- // getNonLocalPointerDepFromBB and other routines that could reuse the cache
- // value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size()) {
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- NumSortedEntries = Cache->size();
- }
- Cache = 0;
- PredList.clear();
- for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
- BasicBlock *Pred = *PI;
- PredList.push_back(std::make_pair(Pred, Pointer));
- // Get the PHI translated pointer in this predecessor. This can fail if
- // not translatable, in which case the getAddr() returns null.
- PHITransAddr &PredPointer = PredList.back().second;
- PredPointer.PHITranslateValue(BB, Pred, 0);
- Value *PredPtrVal = PredPointer.getAddr();
- // Check to see if we have already visited this pred block with another
- // pointer. If so, we can't do this lookup. This failure can occur
- // with PHI translation when a critical edge exists and the PHI node in
- // the successor translates to a pointer value different than the
- // pointer the block was first analyzed with.
- std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
- if (!InsertRes.second) {
- // We found the pred; take it off the list of preds to visit.
- PredList.pop_back();
- // If the predecessor was visited with PredPtr, then we already did
- // the analysis and can ignore it.
- if (InsertRes.first->second == PredPtrVal)
- continue;
- // Otherwise, the block was previously analyzed with a different
- // pointer. We can't represent the result of this case, so we just
- // treat this as a phi translation failure.
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0, n = PredList.size(); i < n; ++i)
- Visited.erase(PredList[i].first);
- goto PredTranslationFailure;
- }
- }
- // Actually process results here; this need to be a separate loop to avoid
- // calling getNonLocalPointerDepFromBB for blocks we don't want to return
- // any results for. (getNonLocalPointerDepFromBB will modify our
- // datastructures in ways the code after the PredTranslationFailure label
- // doesn't expect.)
- for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
- BasicBlock *Pred = PredList[i].first;
- PHITransAddr &PredPointer = PredList[i].second;
- Value *PredPtrVal = PredPointer.getAddr();
- bool CanTranslate = true;
- // If PHI translation was unable to find an available pointer in this
- // predecessor, then we have to assume that the pointer is clobbered in
- // that predecessor. We can still do PRE of the load, which would insert
- // a computation of the pointer in this predecessor.
- if (PredPtrVal == 0)
- CanTranslate = false;
- // FIXME: it is entirely possible that PHI translating will end up with
- // the same value. Consider PHI translating something like:
- // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
- // to recurse here, pedantically speaking.
- // If getNonLocalPointerDepFromBB fails here, that means the cached
- // result conflicted with the Visited list; we have to conservatively
- // assume it is unknown, but this also does not block PRE of the load.
- if (!CanTranslate ||
- getNonLocalPointerDepFromBB(PredPointer,
- Loc.getWithNewPtr(PredPtrVal),
- isLoad, Pred,
- Result, Visited)) {
- // Add the entry to the Result list.
- NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
- Result.push_back(Entry);
- // Since we had a phi translation failure, the cache for CacheKey won't
- // include all of the entries that we need to immediately satisfy future
- // queries. Mark this in NonLocalPointerDeps by setting the
- // BBSkipFirstBlockPair pointer to null. This requires reuse of the
- // cached value to do more work but not miss the phi trans failure.
- NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
- NLPI.Pair = BBSkipFirstBlockPair();
- continue;
- }
- }
- // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
- // Since we did phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set" Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- SkipFirstBlock = false;
- continue;
- PredTranslationFailure:
- // The following code is "failure"; we can't produce a sane translation
- // for the given block. It assumes that we haven't modified any of
- // our datastructures while processing the current block.
- if (Cache == 0) {
- // Refresh the CacheInfo/Cache pointer if it got invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
- }
- // Since we failed phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set". Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- // If *nothing* works, mark the pointer as unknown.
- //
- // If this is the magic first block, return this as a clobber of the whole
- // incoming value. Since we can't phi translate to one of the predecessors,
- // we have to bail out.
- if (SkipFirstBlock)
- return true;
- for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
- assert(I != Cache->rend() && "Didn't find current block??");
- if (I->getBB() != BB)
- continue;
- assert(I->getResult().isNonLocal() &&
- "Should only be here with transparent block");
- I->setResult(MemDepResult::getUnknown());
- Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
- Pointer.getAddr()));
- break;
- }
- }
- // Okay, we're done now. If we added new values to the cache, re-sort it.
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- DEBUG(AssertSorted(*Cache));
- return false;
- }
- /// RemoveCachedNonLocalPointerDependencies - If P exists in
- /// CachedNonLocalPointerInfo, remove it.
- void MemoryDependenceAnalysis::
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
- CachedNonLocalPointerInfo::iterator It =
- NonLocalPointerDeps.find(P);
- if (It == NonLocalPointerDeps.end()) return;
- // Remove all of the entries in the BB->val map. This involves removing
- // instructions from the reverse map.
- NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
- for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
- Instruction *Target = PInfo[i].getResult().getInst();
- if (Target == 0) continue; // Ignore non-local dep results.
- assert(Target->getParent() == PInfo[i].getBB());
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
- }
- // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
- NonLocalPointerDeps.erase(It);
- }
- /// invalidateCachedPointerInfo - This method is used to invalidate cached
- /// information about the specified pointer, because it may be too
- /// conservative in memdep. This is an optional call that can be used when
- /// the client detects an equivalence between the pointer and some other
- /// value and replaces the other value with ptr. This can make Ptr available
- /// in more places that cached info does not necessarily keep.
- void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
- // If Ptr isn't really a pointer, just ignore it.
- if (!Ptr->getType()->isPointerTy()) return;
- // Flush store info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
- // Flush load info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
- }
- /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
- /// This needs to be done when the CFG changes, e.g., due to splitting
- /// critical edges.
- void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
- PredCache->clear();
- }
- /// removeInstruction - Remove an instruction from the dependence analysis,
- /// updating the dependence of instructions that previously depended on it.
- /// This method attempts to keep the cache coherent using the reverse map.
- void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
- // Walk through the Non-local dependencies, removing this one as the value
- // for any cached queries.
- NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
- if (NLDI != NonLocalDeps.end()) {
- NonLocalDepInfo &BlockMap = NLDI->second.first;
- for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
- DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
- NonLocalDeps.erase(NLDI);
- }
- // If we have a cached local dependence query for this instruction, remove it.
- //
- LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
- if (LocalDepEntry != LocalDeps.end()) {
- // Remove us from DepInst's reverse set now that the local dep info is gone.
- if (Instruction *Inst = LocalDepEntry->second.getInst())
- RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
- // Remove this local dependency info.
- LocalDeps.erase(LocalDepEntry);
- }
- // If we have any cached pointer dependencies on this instruction, remove
- // them. If the instruction has non-pointer type, then it can't be a pointer
- // base.
- // Remove it from both the load info and the store info. The instruction
- // can't be in either of these maps if it is non-pointer.
- if (RemInst->getType()->isPointerTy()) {
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
- }
- // Loop over all of the things that depend on the instruction we're removing.
- //
- SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
- // If we find RemInst as a clobber or Def in any of the maps for other values,
- // we need to replace its entry with a dirty version of the instruction after
- // it. If RemInst is a terminator, we use a null dirty value.
- //
- // Using a dirty version of the instruction after RemInst saves having to scan
- // the entire block to get to this point.
- MemDepResult NewDirtyVal;
- if (!RemInst->isTerminator())
- NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
- ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseLocalDeps.end()) {
- SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
- // RemInst can't be the terminator if it has local stuff depending on it.
- assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
- "Nothing can locally depend on a terminator");
- for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
- E = ReverseDeps.end(); I != E; ++I) {
- Instruction *InstDependingOnRemInst = *I;
- assert(InstDependingOnRemInst != RemInst &&
- "Already removed our local dep info");
- LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
- // Make sure to remember that new things depend on NewDepInst.
- assert(NewDirtyVal.getInst() && "There is no way something else can have "
- "a local dep on this if it is a terminator!");
- ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
- InstDependingOnRemInst));
- }
- ReverseLocalDeps.erase(ReverseDepIt);
- // Add new reverse deps after scanning the set, to avoid invalidating the
- // 'ReverseDeps' reference.
- while (!ReverseDepsToAdd.empty()) {
- ReverseLocalDeps[ReverseDepsToAdd.back().first]
- .insert(ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
- ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseNonLocalDeps.end()) {
- SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
- for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
- I != E; ++I) {
- assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
- PerInstNLInfo &INLD = NonLocalDeps[*I];
- // The information is now dirty!
- INLD.second = true;
- for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
- DE = INLD.first.end(); DI != DE; ++DI) {
- if (DI->getResult().getInst() != RemInst) continue;
- // Convert to a dirty entry for the subsequent instruction.
- DI->setResult(NewDirtyVal);
- if (Instruction *NextI = NewDirtyVal.getInst())
- ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
- }
- }
- ReverseNonLocalDeps.erase(ReverseDepIt);
- // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
- while (!ReverseDepsToAdd.empty()) {
- ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
- .insert(ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
- // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
- // value in the NonLocalPointerDeps info.
- ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
- ReverseNonLocalPtrDeps.find(RemInst);
- if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
- SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
- SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
- for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
- E = Set.end(); I != E; ++I) {
- ValueIsLoadPair P = *I;
- assert(P.getPointer() != RemInst &&
- "Already removed NonLocalPointerDeps info for RemInst");
- NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
- // The cache is not valid for any specific block anymore.
- NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
- // Update any entries for RemInst to use the instruction after it.
- for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
- DI != DE; ++DI) {
- if (DI->getResult().getInst() != RemInst) continue;
- // Convert to a dirty entry for the subsequent instruction.
- DI->setResult(NewDirtyVal);
- if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
- ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
- }
- // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
- // subsequent value may invalidate the sortedness.
- std::sort(NLPDI.begin(), NLPDI.end());
- }
- ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
- while (!ReversePtrDepsToAdd.empty()) {
- ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
- .insert(ReversePtrDepsToAdd.back().second);
- ReversePtrDepsToAdd.pop_back();
- }
- }
- assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
- AA->deleteValue(RemInst);
- DEBUG(verifyRemoved(RemInst));
- }
- /// verifyRemoved - Verify that the specified instruction does not occur
- /// in our internal data structures.
- void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
- for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
- E = LocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- assert(I->second.getInst() != D &&
- "Inst occurs in data structures");
- }
- for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
- E = NonLocalPointerDeps.end(); I != E; ++I) {
- assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
- const NonLocalDepInfo &Val = I->second.NonLocalDeps;
- for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
- II != E; ++II)
- assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
- }
- for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
- E = NonLocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- const PerInstNLInfo &INLD = I->second;
- for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
- EE = INLD.first.end(); II != EE; ++II)
- assert(II->getResult().getInst() != D && "Inst occurs in data structures");
- }
- for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
- E = ReverseLocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
- EE = I->second.end(); II != EE; ++II)
- assert(*II != D && "Inst occurs in data structures");
- }
- for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
- E = ReverseNonLocalDeps.end();
- I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
- EE = I->second.end(); II != EE; ++II)
- assert(*II != D && "Inst occurs in data structures");
- }
- for (ReverseNonLocalPtrDepTy::const_iterator
- I = ReverseNonLocalPtrDeps.begin(),
- E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in rev NLPD map");
- for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
- E = I->second.end(); II != E; ++II)
- assert(*II != ValueIsLoadPair(D, false) &&
- *II != ValueIsLoadPair(D, true) &&
- "Inst occurs in ReverseNonLocalPtrDeps map");
- }
- }
|