123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212 |
- //===- LoopVectorizationLegality.cpp --------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides loop vectorization legality analysis. Original code
- // resided in LoopVectorize.cpp for a long time.
- //
- // At this point, it is implemented as a utility class, not as an analysis
- // pass. It should be easy to create an analysis pass around it if there
- // is a need (but D45420 needs to happen first).
- //
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/IntrinsicInst.h"
- using namespace llvm;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
- static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
- "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum allowed number of runtime memory checks with a "
- "vectorize(enable) pragma."));
- static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
- "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed."));
- static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
- "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed with a "
- "vectorize(enable) pragma"));
- /// Maximum vectorization interleave count.
- static const unsigned MaxInterleaveFactor = 16;
- namespace llvm {
- OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
- StringRef RemarkName,
- Loop *TheLoop,
- Instruction *I) {
- Value *CodeRegion = TheLoop->getHeader();
- DebugLoc DL = TheLoop->getStartLoc();
- if (I) {
- CodeRegion = I->getParent();
- // If there is no debug location attached to the instruction, revert back to
- // using the loop's.
- if (I->getDebugLoc())
- DL = I->getDebugLoc();
- }
- OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
- R << "loop not vectorized: ";
- return R;
- }
- bool LoopVectorizeHints::Hint::validate(unsigned Val) {
- switch (Kind) {
- case HK_WIDTH:
- return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
- case HK_UNROLL:
- return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
- case HK_FORCE:
- return (Val <= 1);
- case HK_ISVECTORIZED:
- return (Val == 0 || Val == 1);
- }
- return false;
- }
- LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
- bool InterleaveOnlyWhenForced,
- OptimizationRemarkEmitter &ORE)
- : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
- Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
- Force("vectorize.enable", FK_Undefined, HK_FORCE),
- IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
- // Populate values with existing loop metadata.
- getHintsFromMetadata();
- // force-vector-interleave overrides DisableInterleaving.
- if (VectorizerParams::isInterleaveForced())
- Interleave.Value = VectorizerParams::VectorizationInterleave;
- if (IsVectorized.Value != 1)
- // If the vectorization width and interleaving count are both 1 then
- // consider the loop to have been already vectorized because there's
- // nothing more that we can do.
- IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
- LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
- << "LV: Interleaving disabled by the pass manager\n");
- }
- bool LoopVectorizeHints::allowVectorization(
- Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
- if (getForce() == LoopVectorizeHints::FK_Disabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
- emitRemarkWithHints();
- return false;
- }
- if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
- emitRemarkWithHints();
- return false;
- }
- if (getIsVectorized() == 1) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
- // FIXME: Add interleave.disable metadata. This will allow
- // vectorize.disable to be used without disabling the pass and errors
- // to differentiate between disabled vectorization and a width of 1.
- ORE.emit([&]() {
- return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
- "AllDisabled", L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: vectorization and interleaving are "
- "explicitly disabled, or the loop has already been "
- "vectorized";
- });
- return false;
- }
- return true;
- }
- void LoopVectorizeHints::emitRemarkWithHints() const {
- using namespace ore;
- ORE.emit([&]() {
- if (Force.Value == LoopVectorizeHints::FK_Disabled)
- return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
- TheLoop->getStartLoc(),
- TheLoop->getHeader())
- << "loop not vectorized: vectorization is explicitly disabled";
- else {
- OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
- TheLoop->getStartLoc(), TheLoop->getHeader());
- R << "loop not vectorized";
- if (Force.Value == LoopVectorizeHints::FK_Enabled) {
- R << " (Force=" << NV("Force", true);
- if (Width.Value != 0)
- R << ", Vector Width=" << NV("VectorWidth", Width.Value);
- if (Interleave.Value != 0)
- R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
- R << ")";
- }
- return R;
- }
- });
- }
- const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
- if (getWidth() == 1)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Disabled)
- return LV_NAME;
- if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
- return LV_NAME;
- return OptimizationRemarkAnalysis::AlwaysPrint;
- }
- void LoopVectorizeHints::getHintsFromMetadata() {
- MDNode *LoopID = TheLoop->getLoopID();
- if (!LoopID)
- return;
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = nullptr;
- SmallVector<Metadata *, 4> Args;
- // The expected hint is either a MDString or a MDNode with the first
- // operand a MDString.
- if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
- if (!MD || MD->getNumOperands() == 0)
- continue;
- S = dyn_cast<MDString>(MD->getOperand(0));
- for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
- Args.push_back(MD->getOperand(i));
- } else {
- S = dyn_cast<MDString>(LoopID->getOperand(i));
- assert(Args.size() == 0 && "too many arguments for MDString");
- }
- if (!S)
- continue;
- // Check if the hint starts with the loop metadata prefix.
- StringRef Name = S->getString();
- if (Args.size() == 1)
- setHint(Name, Args[0]);
- }
- }
- void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
- if (!Name.startswith(Prefix()))
- return;
- Name = Name.substr(Prefix().size(), StringRef::npos);
- const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
- if (!C)
- return;
- unsigned Val = C->getZExtValue();
- Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
- for (auto H : Hints) {
- if (Name == H->Name) {
- if (H->validate(Val))
- H->Value = Val;
- else
- LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
- break;
- }
- }
- }
- MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
- unsigned V) const {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- Metadata *MDs[] = {
- MDString::get(Context, Name),
- ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
- return MDNode::get(Context, MDs);
- }
- bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
- ArrayRef<Hint> HintTypes) {
- MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
- if (!Name)
- return false;
- for (auto H : HintTypes)
- if (Name->getString().endswith(H.Name))
- return true;
- return false;
- }
- void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
- if (HintTypes.empty())
- return;
- // Reserve the first element to LoopID (see below).
- SmallVector<Metadata *, 4> MDs(1);
- // If the loop already has metadata, then ignore the existing operands.
- MDNode *LoopID = TheLoop->getLoopID();
- if (LoopID) {
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
- // If node in update list, ignore old value.
- if (!matchesHintMetadataName(Node, HintTypes))
- MDs.push_back(Node);
- }
- }
- // Now, add the missing hints.
- for (auto H : HintTypes)
- MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
- // Replace current metadata node with new one.
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- TheLoop->setLoopID(NewLoopID);
- }
- bool LoopVectorizationRequirements::doesNotMeet(
- Function *F, Loop *L, const LoopVectorizeHints &Hints) {
- const char *PassName = Hints.vectorizeAnalysisPassName();
- bool Failed = false;
- if (UnsafeAlgebraInst && !Hints.allowReordering()) {
- ORE.emit([&]() {
- return OptimizationRemarkAnalysisFPCommute(
- PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
- UnsafeAlgebraInst->getParent())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "floating-point operations";
- });
- Failed = true;
- }
- // Test if runtime memcheck thresholds are exceeded.
- bool PragmaThresholdReached =
- NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
- bool ThresholdReached =
- NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
- if ((ThresholdReached && !Hints.allowReordering()) ||
- PragmaThresholdReached) {
- ORE.emit([&]() {
- return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
- L->getStartLoc(),
- L->getHeader())
- << "loop not vectorized: cannot prove it is safe to reorder "
- "memory operations";
- });
- LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
- Failed = true;
- }
- return Failed;
- }
- // Return true if the inner loop \p Lp is uniform with regard to the outer loop
- // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
- // executing the inner loop will execute the same iterations). This check is
- // very constrained for now but it will be relaxed in the future. \p Lp is
- // considered uniform if it meets all the following conditions:
- // 1) it has a canonical IV (starting from 0 and with stride 1),
- // 2) its latch terminator is a conditional branch and,
- // 3) its latch condition is a compare instruction whose operands are the
- // canonical IV and an OuterLp invariant.
- // This check doesn't take into account the uniformity of other conditions not
- // related to the loop latch because they don't affect the loop uniformity.
- //
- // NOTE: We decided to keep all these checks and its associated documentation
- // together so that we can easily have a picture of the current supported loop
- // nests. However, some of the current checks don't depend on \p OuterLp and
- // would be redundantly executed for each \p Lp if we invoked this function for
- // different candidate outer loops. This is not the case for now because we
- // don't currently have the infrastructure to evaluate multiple candidate outer
- // loops and \p OuterLp will be a fixed parameter while we only support explicit
- // outer loop vectorization. It's also very likely that these checks go away
- // before introducing the aforementioned infrastructure. However, if this is not
- // the case, we should move the \p OuterLp independent checks to a separate
- // function that is only executed once for each \p Lp.
- static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
- assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
- // If Lp is the outer loop, it's uniform by definition.
- if (Lp == OuterLp)
- return true;
- assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
- // 1.
- PHINode *IV = Lp->getCanonicalInductionVariable();
- if (!IV) {
- LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
- return false;
- }
- // 2.
- BasicBlock *Latch = Lp->getLoopLatch();
- auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBr || LatchBr->isUnconditional()) {
- LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
- return false;
- }
- // 3.
- auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
- if (!LatchCmp) {
- LLVM_DEBUG(
- dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
- return false;
- }
- Value *CondOp0 = LatchCmp->getOperand(0);
- Value *CondOp1 = LatchCmp->getOperand(1);
- Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
- if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
- !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
- LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
- return false;
- }
- return true;
- }
- // Return true if \p Lp and all its nested loops are uniform with regard to \p
- // OuterLp.
- static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
- if (!isUniformLoop(Lp, OuterLp))
- return false;
- // Check if nested loops are uniform.
- for (Loop *SubLp : *Lp)
- if (!isUniformLoopNest(SubLp, OuterLp))
- return false;
- return true;
- }
- /// Check whether it is safe to if-convert this phi node.
- ///
- /// Phi nodes with constant expressions that can trap are not safe to if
- /// convert.
- static bool canIfConvertPHINodes(BasicBlock *BB) {
- for (PHINode &Phi : BB->phis()) {
- for (Value *V : Phi.incoming_values())
- if (auto *C = dyn_cast<Constant>(V))
- if (C->canTrap())
- return false;
- }
- return true;
- }
- static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
- if (Ty->isPointerTy())
- return DL.getIntPtrType(Ty);
- // It is possible that char's or short's overflow when we ask for the loop's
- // trip count, work around this by changing the type size.
- if (Ty->getScalarSizeInBits() < 32)
- return Type::getInt32Ty(Ty->getContext());
- return Ty;
- }
- static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
- Ty0 = convertPointerToIntegerType(DL, Ty0);
- Ty1 = convertPointerToIntegerType(DL, Ty1);
- if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
- return Ty0;
- return Ty1;
- }
- /// Check that the instruction has outside loop users and is not an
- /// identified reduction variable.
- static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- // Reductions, Inductions and non-header phis are allowed to have exit users. All
- // other instructions must not have external users.
- if (!AllowedExit.count(Inst))
- // Check that all of the users of the loop are inside the BB.
- for (User *U : Inst->users()) {
- Instruction *UI = cast<Instruction>(U);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(UI)) {
- LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
- return true;
- }
- }
- return false;
- }
- int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
- const ValueToValueMap &Strides =
- getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
- int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
- if (Stride == 1 || Stride == -1)
- return Stride;
- return 0;
- }
- bool LoopVectorizationLegality::isUniform(Value *V) {
- return LAI->isUniform(V);
- }
- bool LoopVectorizationLegality::canVectorizeOuterLoop() {
- assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Check whether the BB terminator is a BranchInst. Any other terminator is
- // not supported yet.
- auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Br) {
- LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check whether the BranchInst is a supported one. Only unconditional
- // branches, conditional branches with an outer loop invariant condition or
- // backedges are supported.
- if (Br && Br->isConditional() &&
- !TheLoop->isLoopInvariant(Br->getCondition()) &&
- !LI->isLoopHeader(Br->getSuccessor(0)) &&
- !LI->isLoopHeader(Br->getSuccessor(1))) {
- LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- }
- // Check whether inner loops are uniform. At this point, we only support
- // simple outer loops scenarios with uniform nested loops.
- if (!isUniformLoopNest(TheLoop /*loop nest*/,
- TheLoop /*context outer loop*/)) {
- LLVM_DEBUG(
- dbgs()
- << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check whether we are able to set up outer loop induction.
- if (!setupOuterLoopInductions()) {
- LLVM_DEBUG(
- dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
- ORE->emit(createMissedAnalysis("UnsupportedPhi")
- << "Unsupported outer loop Phi(s)");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- void LoopVectorizationLegality::addInductionPhi(
- PHINode *Phi, const InductionDescriptor &ID,
- SmallPtrSetImpl<Value *> &AllowedExit) {
- Inductions[Phi] = ID;
- // In case this induction also comes with casts that we know we can ignore
- // in the vectorized loop body, record them here. All casts could be recorded
- // here for ignoring, but suffices to record only the first (as it is the
- // only one that may bw used outside the cast sequence).
- const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
- if (!Casts.empty())
- InductionCastsToIgnore.insert(*Casts.begin());
- Type *PhiTy = Phi->getType();
- const DataLayout &DL = Phi->getModule()->getDataLayout();
- // Get the widest type.
- if (!PhiTy->isFloatingPointTy()) {
- if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
- else
- WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
- }
- // Int inductions are special because we only allow one IV.
- if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
- ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
- isa<Constant>(ID.getStartValue()) &&
- cast<Constant>(ID.getStartValue())->isNullValue()) {
- // Use the phi node with the widest type as induction. Use the last
- // one if there are multiple (no good reason for doing this other
- // than it is expedient). We've checked that it begins at zero and
- // steps by one, so this is a canonical induction variable.
- if (!PrimaryInduction || PhiTy == WidestIndTy)
- PrimaryInduction = Phi;
- }
- // Both the PHI node itself, and the "post-increment" value feeding
- // back into the PHI node may have external users.
- // We can allow those uses, except if the SCEVs we have for them rely
- // on predicates that only hold within the loop, since allowing the exit
- // currently means re-using this SCEV outside the loop (see PR33706 for more
- // details).
- if (PSE.getUnionPredicate().isAlwaysTrue()) {
- AllowedExit.insert(Phi);
- AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
- }
- LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
- }
- bool LoopVectorizationLegality::setupOuterLoopInductions() {
- BasicBlock *Header = TheLoop->getHeader();
- // Returns true if a given Phi is a supported induction.
- auto isSupportedPhi = [&](PHINode &Phi) -> bool {
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
- ID.getKind() == InductionDescriptor::IK_IntInduction) {
- addInductionPhi(&Phi, ID, AllowedExit);
- return true;
- } else {
- // Bail out for any Phi in the outer loop header that is not a supported
- // induction.
- LLVM_DEBUG(
- dbgs()
- << "LV: Found unsupported PHI for outer loop vectorization.\n");
- return false;
- }
- };
- if (llvm::all_of(Header->phis(), isSupportedPhi))
- return true;
- else
- return false;
- }
- bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *Header = TheLoop->getHeader();
- // Look for the attribute signaling the absence of NaNs.
- Function &F = *Header->getParent();
- HasFunNoNaNAttr =
- F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
- // For each block in the loop.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // Scan the instructions in the block and look for hazards.
- for (Instruction &I : *BB) {
- if (auto *Phi = dyn_cast<PHINode>(&I)) {
- Type *PhiTy = Phi->getType();
- // Check that this PHI type is allowed.
- if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy()) {
- ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
- << "loop control flow is not understood by vectorizer");
- LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
- return false;
- }
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (BB != Header) {
- // Non-header phi nodes that have outside uses can be vectorized. Add
- // them to the list of allowed exits.
- // Unsafe cyclic dependencies with header phis are identified during
- // legalization for reduction, induction and first order
- // recurrences.
- continue;
- }
- // We only allow if-converted PHIs with exactly two incoming values.
- if (Phi->getNumIncomingValues() != 2) {
- ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
- << "control flow not understood by vectorizer");
- LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
- return false;
- }
- RecurrenceDescriptor RedDes;
- if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
- DT)) {
- if (RedDes.hasUnsafeAlgebra())
- Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
- AllowedExit.insert(RedDes.getLoopExitInstr());
- Reductions[Phi] = RedDes;
- continue;
- }
- // TODO: Instead of recording the AllowedExit, it would be good to record the
- // complementary set: NotAllowedExit. These include (but may not be
- // limited to):
- // 1. Reduction phis as they represent the one-before-last value, which
- // is not available when vectorized
- // 2. Induction phis and increment when SCEV predicates cannot be used
- // outside the loop - see addInductionPhi
- // 3. Non-Phis with outside uses when SCEV predicates cannot be used
- // outside the loop - see call to hasOutsideLoopUser in the non-phi
- // handling below
- // 4. FirstOrderRecurrence phis that can possibly be handled by
- // extraction.
- // By recording these, we can then reason about ways to vectorize each
- // of these NotAllowedExit.
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
- addInductionPhi(Phi, ID, AllowedExit);
- if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
- Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
- continue;
- }
- if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
- SinkAfter, DT)) {
- FirstOrderRecurrences.insert(Phi);
- continue;
- }
- // As a last resort, coerce the PHI to a AddRec expression
- // and re-try classifying it a an induction PHI.
- if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
- addInductionPhi(Phi, ID, AllowedExit);
- continue;
- }
- ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
- << "value that could not be identified as "
- "reduction is used outside the loop");
- LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
- return false;
- } // end of PHI handling
- // We handle calls that:
- // * Are debug info intrinsics.
- // * Have a mapping to an IR intrinsic.
- // * Have a vector version available.
- auto *CI = dyn_cast<CallInst>(&I);
- if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
- !isa<DbgInfoIntrinsic>(CI) &&
- !(CI->getCalledFunction() && TLI &&
- TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
- // If the call is a recognized math libary call, it is likely that
- // we can vectorize it given loosened floating-point constraints.
- LibFunc Func;
- bool IsMathLibCall =
- TLI && CI->getCalledFunction() &&
- CI->getType()->isFloatingPointTy() &&
- TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
- TLI->hasOptimizedCodeGen(Func);
- if (IsMathLibCall) {
- // TODO: Ideally, we should not use clang-specific language here,
- // but it's hard to provide meaningful yet generic advice.
- // Also, should this be guarded by allowExtraAnalysis() and/or be part
- // of the returned info from isFunctionVectorizable()?
- ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI)
- << "library call cannot be vectorized. "
- "Try compiling with -fno-math-errno, -ffast-math, "
- "or similar flags");
- } else {
- ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
- << "call instruction cannot be vectorized");
- }
- LLVM_DEBUG(
- dbgs() << "LV: Found a non-intrinsic callsite.\n");
- return false;
- }
- // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
- // second argument is the same (i.e. loop invariant)
- if (CI && hasVectorInstrinsicScalarOpd(
- getVectorIntrinsicIDForCall(CI, TLI), 1)) {
- auto *SE = PSE.getSE();
- if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
- ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
- << "intrinsic instruction cannot be vectorized");
- LLVM_DEBUG(dbgs()
- << "LV: Found unvectorizable intrinsic " << *CI << "\n");
- return false;
- }
- }
- // Check that the instruction return type is vectorizable.
- // Also, we can't vectorize extractelement instructions.
- if ((!VectorType::isValidElementType(I.getType()) &&
- !I.getType()->isVoidTy()) ||
- isa<ExtractElementInst>(I)) {
- ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
- << "instruction return type cannot be vectorized");
- LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
- return false;
- }
- // Check that the stored type is vectorizable.
- if (auto *ST = dyn_cast<StoreInst>(&I)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T)) {
- ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
- << "store instruction cannot be vectorized");
- return false;
- }
- // FP instructions can allow unsafe algebra, thus vectorizable by
- // non-IEEE-754 compliant SIMD units.
- // This applies to floating-point math operations and calls, not memory
- // operations, shuffles, or casts, as they don't change precision or
- // semantics.
- } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
- !I.isFast()) {
- LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
- Hints->setPotentiallyUnsafe();
- }
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
- // We can safely vectorize loops where instructions within the loop are
- // used outside the loop only if the SCEV predicates within the loop is
- // same as outside the loop. Allowing the exit means reusing the SCEV
- // outside the loop.
- if (PSE.getUnionPredicate().isAlwaysTrue()) {
- AllowedExit.insert(&I);
- continue;
- }
- ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
- << "value cannot be used outside the loop");
- return false;
- }
- } // next instr.
- }
- if (!PrimaryInduction) {
- LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- if (Inductions.empty()) {
- ORE->emit(createMissedAnalysis("NoInductionVariable")
- << "loop induction variable could not be identified");
- return false;
- } else if (!WidestIndTy) {
- ORE->emit(createMissedAnalysis("NoIntegerInductionVariable")
- << "integer loop induction variable could not be identified");
- return false;
- }
- }
- // Now we know the widest induction type, check if our found induction
- // is the same size. If it's not, unset it here and InnerLoopVectorizer
- // will create another.
- if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
- PrimaryInduction = nullptr;
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeMemory() {
- LAI = &(*GetLAA)(*TheLoop);
- const OptimizationRemarkAnalysis *LAR = LAI->getReport();
- if (LAR) {
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
- "loop not vectorized: ", *LAR);
- });
- }
- if (!LAI->canVectorizeMemory())
- return false;
- if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
- ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
- << "write to a loop invariant address could not "
- "be vectorized");
- LLVM_DEBUG(
- dbgs() << "LV: Non vectorizable stores to a uniform address\n");
- return false;
- }
- Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
- PSE.addPredicate(LAI->getPSE().getUnionPredicate());
- return true;
- }
- bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
- Value *In0 = const_cast<Value *>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
- return Inductions.count(PN);
- }
- bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
- auto *Inst = dyn_cast<Instruction>(V);
- return (Inst && InductionCastsToIgnore.count(Inst));
- }
- bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
- return isInductionPhi(V) || isCastedInductionVariable(V);
- }
- bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
- return FirstOrderRecurrences.count(Phi);
- }
- bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
- }
- bool LoopVectorizationLegality::blockCanBePredicated(
- BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
- const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
- for (Instruction &I : *BB) {
- // Check that we don't have a constant expression that can trap as operand.
- for (Value *Operand : I.operands()) {
- if (auto *C = dyn_cast<Constant>(Operand))
- if (C->canTrap())
- return false;
- }
- // We might be able to hoist the load.
- if (I.mayReadFromMemory()) {
- auto *LI = dyn_cast<LoadInst>(&I);
- if (!LI)
- return false;
- if (!SafePtrs.count(LI->getPointerOperand())) {
- // !llvm.mem.parallel_loop_access implies if-conversion safety.
- // Otherwise, record that the load needs (real or emulated) masking
- // and let the cost model decide.
- if (!IsAnnotatedParallel)
- MaskedOp.insert(LI);
- continue;
- }
- }
- if (I.mayWriteToMemory()) {
- auto *SI = dyn_cast<StoreInst>(&I);
- if (!SI)
- return false;
- // Predicated store requires some form of masking:
- // 1) masked store HW instruction,
- // 2) emulation via load-blend-store (only if safe and legal to do so,
- // be aware on the race conditions), or
- // 3) element-by-element predicate check and scalar store.
- MaskedOp.insert(SI);
- continue;
- }
- if (I.mayThrow())
- return false;
- }
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion) {
- ORE->emit(createMissedAnalysis("IfConversionDisabled")
- << "if-conversion is disabled");
- return false;
- }
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
- // A list of pointers that we can safely read and write to.
- SmallPtrSet<Value *, 8> SafePointes;
- // Collect safe addresses.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (blockNeedsPredication(BB))
- continue;
- for (Instruction &I : *BB)
- if (auto *Ptr = getLoadStorePointerOperand(&I))
- SafePointes.insert(Ptr);
- }
- // Collect the blocks that need predication.
- BasicBlock *Header = TheLoop->getHeader();
- for (BasicBlock *BB : TheLoop->blocks()) {
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator())) {
- ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
- << "loop contains a switch statement");
- return false;
- }
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB)) {
- if (!blockCanBePredicated(BB, SafePointes)) {
- ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- } else if (BB != Header && !canIfConvertPHINodes(BB)) {
- ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
- << "control flow cannot be substituted for a select");
- return false;
- }
- }
- // We can if-convert this loop.
- return true;
- }
- // Helper function to canVectorizeLoopNestCFG.
- bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
- bool UseVPlanNativePath) {
- assert((UseVPlanNativePath || Lp->empty()) &&
- "VPlan-native path is not enabled.");
- // TODO: ORE should be improved to show more accurate information when an
- // outer loop can't be vectorized because a nested loop is not understood or
- // legal. Something like: "outer_loop_location: loop not vectorized:
- // (inner_loop_location) loop control flow is not understood by vectorizer".
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- // We must have a loop in canonical form. Loops with indirectbr in them cannot
- // be canonicalized.
- if (!Lp->getLoopPreheader()) {
- LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We must have a single backedge.
- if (Lp->getNumBackEdges() != 1) {
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We must have a single exiting block.
- if (!Lp->getExitingBlock()) {
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We only handle bottom-tested loops, i.e. loop in which the condition is
- // checked at the end of each iteration. With that we can assume that all
- // instructions in the loop are executed the same number of times.
- if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
- ORE->emit(createMissedAnalysis("CFGNotUnderstood")
- << "loop control flow is not understood by vectorizer");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
- Loop *Lp, bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Recursively check whether the loop control flow of nested loops is
- // understood.
- for (Loop *SubLp : *Lp)
- if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- return Result;
- }
- bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
- // Store the result and return it at the end instead of exiting early, in case
- // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
- bool Result = true;
- bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
- // Check whether the loop-related control flow in the loop nest is expected by
- // vectorizer.
- if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // We need to have a loop header.
- LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
- << '\n');
- // Specific checks for outer loops. We skip the remaining legal checks at this
- // point because they don't support outer loops.
- if (!TheLoop->empty()) {
- assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
- if (!canVectorizeOuterLoop()) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
- // TODO: Implement DoExtraAnalysis when subsequent legal checks support
- // outer loops.
- return false;
- }
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
- return Result;
- }
- assert(TheLoop->empty() && "Inner loop expected.");
- // Check if we can if-convert non-single-bb loops.
- unsigned NumBlocks = TheLoop->getNumBlocks();
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
- << (LAI->getRuntimePointerChecking()->Need
- ? " (with a runtime bound check)"
- : "")
- << "!\n");
- unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
- if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
- SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
- if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
- ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
- << "Too many SCEV assumptions need to be made and checked "
- << "at runtime");
- LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
- if (DoExtraAnalysis)
- Result = false;
- else
- return false;
- }
- // Okay! We've done all the tests. If any have failed, return false. Otherwise
- // we can vectorize, and at this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return Result;
- }
- bool LoopVectorizationLegality::canFoldTailByMasking() {
- LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
- if (!PrimaryInduction) {
- ORE->emit(createMissedAnalysis("NoPrimaryInduction")
- << "Missing a primary induction variable in the loop, which is "
- << "needed in order to fold tail by masking as required.");
- LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by "
- << "masking.\n");
- return false;
- }
- // TODO: handle reductions when tail is folded by masking.
- if (!Reductions.empty()) {
- ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking")
- << "Cannot fold tail by masking in the presence of reductions.");
- LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by "
- << "masking.\n");
- return false;
- }
- // TODO: handle outside users when tail is folded by masking.
- for (auto *AE : AllowedExit) {
- // Check that all users of allowed exit values are inside the loop.
- for (User *U : AE->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (TheLoop->contains(UI))
- continue;
- ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking")
- << "Cannot fold tail by masking in the presence of live outs.");
- LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an "
- << "outside user for : " << *UI << '\n');
- return false;
- }
- }
- // The list of pointers that we can safely read and write to remains empty.
- SmallPtrSet<Value *, 8> SafePointers;
- // Check and mark all blocks for predication, including those that ordinarily
- // do not need predication such as the header block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockCanBePredicated(BB, SafePointers)) {
- ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
- << "control flow cannot be substituted for a select");
- LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n");
- return false;
- }
- }
- LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
- return true;
- }
- } // namespace llvm
|