123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665 |
- //===- Type.cpp - Implement the Type class --------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Type class for the IR library.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Type.h"
- #include "LLVMContextImpl.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <utility>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Type Class Implementation
- //===----------------------------------------------------------------------===//
- Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
- switch (IDNumber) {
- case VoidTyID : return getVoidTy(C);
- case HalfTyID : return getHalfTy(C);
- case FloatTyID : return getFloatTy(C);
- case DoubleTyID : return getDoubleTy(C);
- case X86_FP80TyID : return getX86_FP80Ty(C);
- case FP128TyID : return getFP128Ty(C);
- case PPC_FP128TyID : return getPPC_FP128Ty(C);
- case LabelTyID : return getLabelTy(C);
- case MetadataTyID : return getMetadataTy(C);
- case X86_MMXTyID : return getX86_MMXTy(C);
- case TokenTyID : return getTokenTy(C);
- default:
- return nullptr;
- }
- }
- bool Type::isIntegerTy(unsigned Bitwidth) const {
- return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
- }
- bool Type::canLosslesslyBitCastTo(Type *Ty) const {
- // Identity cast means no change so return true
- if (this == Ty)
- return true;
- // They are not convertible unless they are at least first class types
- if (!this->isFirstClassType() || !Ty->isFirstClassType())
- return false;
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not. Also, 64-bit vector types can be
- // converted to x86mmx.
- if (auto *thisPTy = dyn_cast<VectorType>(this)) {
- if (auto *thatPTy = dyn_cast<VectorType>(Ty))
- return thisPTy->getBitWidth() == thatPTy->getBitWidth();
- if (Ty->getTypeID() == Type::X86_MMXTyID &&
- thisPTy->getBitWidth() == 64)
- return true;
- }
- if (this->getTypeID() == Type::X86_MMXTyID)
- if (auto *thatPTy = dyn_cast<VectorType>(Ty))
- if (thatPTy->getBitWidth() == 64)
- return true;
- // At this point we have only various mismatches of the first class types
- // remaining and ptr->ptr. Just select the lossless conversions. Everything
- // else is not lossless. Conservatively assume we can't losslessly convert
- // between pointers with different address spaces.
- if (auto *PTy = dyn_cast<PointerType>(this)) {
- if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
- return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
- return false;
- }
- return false; // Other types have no identity values
- }
- bool Type::isEmptyTy() const {
- if (auto *ATy = dyn_cast<ArrayType>(this)) {
- unsigned NumElements = ATy->getNumElements();
- return NumElements == 0 || ATy->getElementType()->isEmptyTy();
- }
- if (auto *STy = dyn_cast<StructType>(this)) {
- unsigned NumElements = STy->getNumElements();
- for (unsigned i = 0; i < NumElements; ++i)
- if (!STy->getElementType(i)->isEmptyTy())
- return false;
- return true;
- }
- return false;
- }
- unsigned Type::getPrimitiveSizeInBits() const {
- switch (getTypeID()) {
- case Type::HalfTyID: return 16;
- case Type::FloatTyID: return 32;
- case Type::DoubleTyID: return 64;
- case Type::X86_FP80TyID: return 80;
- case Type::FP128TyID: return 128;
- case Type::PPC_FP128TyID: return 128;
- case Type::X86_MMXTyID: return 64;
- case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
- case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
- default: return 0;
- }
- }
- unsigned Type::getScalarSizeInBits() const {
- return getScalarType()->getPrimitiveSizeInBits();
- }
- int Type::getFPMantissaWidth() const {
- if (auto *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->getFPMantissaWidth();
- assert(isFloatingPointTy() && "Not a floating point type!");
- if (getTypeID() == HalfTyID) return 11;
- if (getTypeID() == FloatTyID) return 24;
- if (getTypeID() == DoubleTyID) return 53;
- if (getTypeID() == X86_FP80TyID) return 64;
- if (getTypeID() == FP128TyID) return 113;
- assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
- return -1;
- }
- bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
- if (auto *ATy = dyn_cast<ArrayType>(this))
- return ATy->getElementType()->isSized(Visited);
- if (auto *VTy = dyn_cast<VectorType>(this))
- return VTy->getElementType()->isSized(Visited);
- return cast<StructType>(this)->isSized(Visited);
- }
- //===----------------------------------------------------------------------===//
- // Primitive 'Type' data
- //===----------------------------------------------------------------------===//
- Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
- Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
- Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
- Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
- Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
- Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
- Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
- Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
- Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
- Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
- Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
- IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
- IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
- IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
- IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
- IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
- IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
- IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
- return IntegerType::get(C, N);
- }
- PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
- return getHalfTy(C)->getPointerTo(AS);
- }
- PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
- return getFloatTy(C)->getPointerTo(AS);
- }
- PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
- return getDoubleTy(C)->getPointerTo(AS);
- }
- PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
- return getX86_FP80Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
- return getFP128Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
- return getPPC_FP128Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
- return getX86_MMXTy(C)->getPointerTo(AS);
- }
- PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
- return getIntNTy(C, N)->getPointerTo(AS);
- }
- PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
- return getInt1Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
- return getInt8Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
- return getInt16Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
- return getInt32Ty(C)->getPointerTo(AS);
- }
- PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
- return getInt64Ty(C)->getPointerTo(AS);
- }
- //===----------------------------------------------------------------------===//
- // IntegerType Implementation
- //===----------------------------------------------------------------------===//
- IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
- assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
- assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
- // Check for the built-in integer types
- switch (NumBits) {
- case 1: return cast<IntegerType>(Type::getInt1Ty(C));
- case 8: return cast<IntegerType>(Type::getInt8Ty(C));
- case 16: return cast<IntegerType>(Type::getInt16Ty(C));
- case 32: return cast<IntegerType>(Type::getInt32Ty(C));
- case 64: return cast<IntegerType>(Type::getInt64Ty(C));
- case 128: return cast<IntegerType>(Type::getInt128Ty(C));
- default:
- break;
- }
- IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
- if (!Entry)
- Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
- return Entry;
- }
- bool IntegerType::isPowerOf2ByteWidth() const {
- unsigned BitWidth = getBitWidth();
- return (BitWidth > 7) && isPowerOf2_32(BitWidth);
- }
- APInt IntegerType::getMask() const {
- return APInt::getAllOnesValue(getBitWidth());
- }
- //===----------------------------------------------------------------------===//
- // FunctionType Implementation
- //===----------------------------------------------------------------------===//
- FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
- bool IsVarArgs)
- : Type(Result->getContext(), FunctionTyID) {
- Type **SubTys = reinterpret_cast<Type**>(this+1);
- assert(isValidReturnType(Result) && "invalid return type for function");
- setSubclassData(IsVarArgs);
- SubTys[0] = Result;
- for (unsigned i = 0, e = Params.size(); i != e; ++i) {
- assert(isValidArgumentType(Params[i]) &&
- "Not a valid type for function argument!");
- SubTys[i+1] = Params[i];
- }
- ContainedTys = SubTys;
- NumContainedTys = Params.size() + 1; // + 1 for result type
- }
- // This is the factory function for the FunctionType class.
- FunctionType *FunctionType::get(Type *ReturnType,
- ArrayRef<Type*> Params, bool isVarArg) {
- LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
- const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
- FunctionType *FT;
- // Since we only want to allocate a fresh function type in case none is found
- // and we don't want to perform two lookups (one for checking if existent and
- // one for inserting the newly allocated one), here we instead lookup based on
- // Key and update the reference to the function type in-place to a newly
- // allocated one if not found.
- auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
- if (Insertion.second) {
- // The function type was not found. Allocate one and update FunctionTypes
- // in-place.
- FT = (FunctionType *)pImpl->Alloc.Allocate(
- sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
- alignof(FunctionType));
- new (FT) FunctionType(ReturnType, Params, isVarArg);
- *Insertion.first = FT;
- } else {
- // The function type was found. Just return it.
- FT = *Insertion.first;
- }
- return FT;
- }
- FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
- return get(Result, None, isVarArg);
- }
- bool FunctionType::isValidReturnType(Type *RetTy) {
- return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
- !RetTy->isMetadataTy();
- }
- bool FunctionType::isValidArgumentType(Type *ArgTy) {
- return ArgTy->isFirstClassType();
- }
- //===----------------------------------------------------------------------===//
- // StructType Implementation
- //===----------------------------------------------------------------------===//
- // Primitive Constructors.
- StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
- bool isPacked) {
- LLVMContextImpl *pImpl = Context.pImpl;
- const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
- StructType *ST;
- // Since we only want to allocate a fresh struct type in case none is found
- // and we don't want to perform two lookups (one for checking if existent and
- // one for inserting the newly allocated one), here we instead lookup based on
- // Key and update the reference to the struct type in-place to a newly
- // allocated one if not found.
- auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
- if (Insertion.second) {
- // The struct type was not found. Allocate one and update AnonStructTypes
- // in-place.
- ST = new (Context.pImpl->Alloc) StructType(Context);
- ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
- ST->setBody(ETypes, isPacked);
- *Insertion.first = ST;
- } else {
- // The struct type was found. Just return it.
- ST = *Insertion.first;
- }
- return ST;
- }
- void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
- assert(isOpaque() && "Struct body already set!");
- setSubclassData(getSubclassData() | SCDB_HasBody);
- if (isPacked)
- setSubclassData(getSubclassData() | SCDB_Packed);
- NumContainedTys = Elements.size();
- if (Elements.empty()) {
- ContainedTys = nullptr;
- return;
- }
- ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
- }
- void StructType::setName(StringRef Name) {
- if (Name == getName()) return;
- StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
- using EntryTy = StringMap<StructType *>::MapEntryTy;
- // If this struct already had a name, remove its symbol table entry. Don't
- // delete the data yet because it may be part of the new name.
- if (SymbolTableEntry)
- SymbolTable.remove((EntryTy *)SymbolTableEntry);
- // If this is just removing the name, we're done.
- if (Name.empty()) {
- if (SymbolTableEntry) {
- // Delete the old string data.
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = nullptr;
- }
- return;
- }
- // Look up the entry for the name.
- auto IterBool =
- getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
- // While we have a name collision, try a random rename.
- if (!IterBool.second) {
- SmallString<64> TempStr(Name);
- TempStr.push_back('.');
- raw_svector_ostream TmpStream(TempStr);
- unsigned NameSize = Name.size();
- do {
- TempStr.resize(NameSize + 1);
- TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
- IterBool = getContext().pImpl->NamedStructTypes.insert(
- std::make_pair(TmpStream.str(), this));
- } while (!IterBool.second);
- }
- // Delete the old string data.
- if (SymbolTableEntry)
- ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
- SymbolTableEntry = &*IterBool.first;
- }
- //===----------------------------------------------------------------------===//
- // StructType Helper functions.
- StructType *StructType::create(LLVMContext &Context, StringRef Name) {
- StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
- if (!Name.empty())
- ST->setName(Name);
- return ST;
- }
- StructType *StructType::get(LLVMContext &Context, bool isPacked) {
- return get(Context, None, isPacked);
- }
- StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
- StringRef Name, bool isPacked) {
- StructType *ST = create(Context, Name);
- ST->setBody(Elements, isPacked);
- return ST;
- }
- StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
- return create(Context, Elements, StringRef());
- }
- StructType *StructType::create(LLVMContext &Context) {
- return create(Context, StringRef());
- }
- StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
- bool isPacked) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, Name, isPacked);
- }
- StructType *StructType::create(ArrayRef<Type*> Elements) {
- assert(!Elements.empty() &&
- "This method may not be invoked with an empty list");
- return create(Elements[0]->getContext(), Elements, StringRef());
- }
- bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
- if ((getSubclassData() & SCDB_IsSized) != 0)
- return true;
- if (isOpaque())
- return false;
- if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
- return false;
- // Okay, our struct is sized if all of the elements are, but if one of the
- // elements is opaque, the struct isn't sized *yet*, but may become sized in
- // the future, so just bail out without caching.
- for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
- if (!(*I)->isSized(Visited))
- return false;
- // Here we cheat a bit and cast away const-ness. The goal is to memoize when
- // we find a sized type, as types can only move from opaque to sized, not the
- // other way.
- const_cast<StructType*>(this)->setSubclassData(
- getSubclassData() | SCDB_IsSized);
- return true;
- }
- StringRef StructType::getName() const {
- assert(!isLiteral() && "Literal structs never have names");
- if (!SymbolTableEntry) return StringRef();
- return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
- }
- bool StructType::isValidElementType(Type *ElemTy) {
- if (auto *VTy = dyn_cast<VectorType>(ElemTy))
- return !VTy->isScalable();
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
- !ElemTy->isTokenTy();
- }
- bool StructType::isLayoutIdentical(StructType *Other) const {
- if (this == Other) return true;
- if (isPacked() != Other->isPacked())
- return false;
- return elements() == Other->elements();
- }
- StructType *Module::getTypeByName(StringRef Name) const {
- return getContext().pImpl->NamedStructTypes.lookup(Name);
- }
- //===----------------------------------------------------------------------===//
- // CompositeType Implementation
- //===----------------------------------------------------------------------===//
- Type *CompositeType::getTypeAtIndex(const Value *V) const {
- if (auto *STy = dyn_cast<StructType>(this)) {
- unsigned Idx =
- (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
- return cast<SequentialType>(this)->getElementType();
- }
- Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
- if (auto *STy = dyn_cast<StructType>(this)) {
- assert(indexValid(Idx) && "Invalid structure index!");
- return STy->getElementType(Idx);
- }
- return cast<SequentialType>(this)->getElementType();
- }
- bool CompositeType::indexValid(const Value *V) const {
- if (auto *STy = dyn_cast<StructType>(this)) {
- // Structure indexes require (vectors of) 32-bit integer constants. In the
- // vector case all of the indices must be equal.
- if (!V->getType()->isIntOrIntVectorTy(32))
- return false;
- const Constant *C = dyn_cast<Constant>(V);
- if (C && V->getType()->isVectorTy())
- C = C->getSplatValue();
- const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
- return CU && CU->getZExtValue() < STy->getNumElements();
- }
- // Sequential types can be indexed by any integer.
- return V->getType()->isIntOrIntVectorTy();
- }
- bool CompositeType::indexValid(unsigned Idx) const {
- if (auto *STy = dyn_cast<StructType>(this))
- return Idx < STy->getNumElements();
- // Sequential types can be indexed by any integer.
- return true;
- }
- //===----------------------------------------------------------------------===//
- // ArrayType Implementation
- //===----------------------------------------------------------------------===//
- ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
- : SequentialType(ArrayTyID, ElType, NumEl) {}
- ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
- assert(isValidElementType(ElementType) && "Invalid type for array element!");
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- ArrayType *&Entry =
- pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
- if (!Entry)
- Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
- return Entry;
- }
- bool ArrayType::isValidElementType(Type *ElemTy) {
- if (auto *VTy = dyn_cast<VectorType>(ElemTy))
- return !VTy->isScalable();
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
- !ElemTy->isTokenTy();
- }
- //===----------------------------------------------------------------------===//
- // VectorType Implementation
- //===----------------------------------------------------------------------===//
- VectorType::VectorType(Type *ElType, ElementCount EC)
- : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
- VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
- assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
- assert(isValidElementType(ElementType) && "Element type of a VectorType must "
- "be an integer, floating point, or "
- "pointer type.");
- LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- VectorType *&Entry = ElementType->getContext().pImpl
- ->VectorTypes[std::make_pair(ElementType, EC)];
- if (!Entry)
- Entry = new (pImpl->Alloc) VectorType(ElementType, EC);
- return Entry;
- }
- bool VectorType::isValidElementType(Type *ElemTy) {
- return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
- ElemTy->isPointerTy();
- }
- //===----------------------------------------------------------------------===//
- // PointerType Implementation
- //===----------------------------------------------------------------------===//
- PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
- assert(EltTy && "Can't get a pointer to <null> type!");
- assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
- LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
- // Since AddressSpace #0 is the common case, we special case it.
- PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
- : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
- if (!Entry)
- Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
- return Entry;
- }
- PointerType::PointerType(Type *E, unsigned AddrSpace)
- : Type(E->getContext(), PointerTyID), PointeeTy(E) {
- ContainedTys = &PointeeTy;
- NumContainedTys = 1;
- setSubclassData(AddrSpace);
- }
- PointerType *Type::getPointerTo(unsigned addrs) const {
- return PointerType::get(const_cast<Type*>(this), addrs);
- }
- bool PointerType::isValidElementType(Type *ElemTy) {
- return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
- !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
- }
- bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
- return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
- }
|