12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047 |
- //===-- Constants.cpp - Implement Constant nodes --------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Constant* classes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Constants.h"
- #include "ConstantFold.h"
- #include "LLVMContextImpl.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Constant Class
- //===----------------------------------------------------------------------===//
- bool Constant::isNegativeZeroValue() const {
- // Floating point values have an explicit -0.0 value.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isZero() && CFP->isNegative();
- // Equivalent for a vector of -0.0's.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
- if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
- if (CV->getElementAsAPFloat(0).isNegZero())
- return true;
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
- if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
- return true;
- // We've already handled true FP case; any other FP vectors can't represent -0.0.
- if (getType()->isFPOrFPVectorTy())
- return false;
- // Otherwise, just use +0.0.
- return isNullValue();
- }
- // Return true iff this constant is positive zero (floating point), negative
- // zero (floating point), or a null value.
- bool Constant::isZeroValue() const {
- // Floating point values have an explicit -0.0 value.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isZero();
- // Equivalent for a vector of -0.0's.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
- if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
- if (CV->getElementAsAPFloat(0).isZero())
- return true;
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
- if (SplatCFP && SplatCFP->isZero())
- return true;
- // Otherwise, just use +0.0.
- return isNullValue();
- }
- bool Constant::isNullValue() const {
- // 0 is null.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isZero();
- // +0.0 is null.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isZero() && !CFP->isNegative();
- // constant zero is zero for aggregates, cpnull is null for pointers, none for
- // tokens.
- return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
- isa<ConstantTokenNone>(this);
- }
- bool Constant::isAllOnesValue() const {
- // Check for -1 integers
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isMinusOne();
- // Check for FP which are bitcasted from -1 integers
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
- // Check for constant vectors which are splats of -1 values.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (Constant *Splat = CV->getSplatValue())
- return Splat->isAllOnesValue();
- // Check for constant vectors which are splats of -1 values.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
- if (CV->isSplat()) {
- if (CV->getElementType()->isFloatingPointTy())
- return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
- return CV->getElementAsAPInt(0).isAllOnesValue();
- }
- }
- return false;
- }
- bool Constant::isOneValue() const {
- // Check for 1 integers
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isOne();
- // Check for FP which are bitcasted from 1 integers
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().bitcastToAPInt().isOneValue();
- // Check for constant vectors which are splats of 1 values.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (Constant *Splat = CV->getSplatValue())
- return Splat->isOneValue();
- // Check for constant vectors which are splats of 1 values.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
- if (CV->isSplat()) {
- if (CV->getElementType()->isFloatingPointTy())
- return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
- return CV->getElementAsAPInt(0).isOneValue();
- }
- }
- return false;
- }
- bool Constant::isMinSignedValue() const {
- // Check for INT_MIN integers
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isMinValue(/*isSigned=*/true);
- // Check for FP which are bitcasted from INT_MIN integers
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
- // Check for constant vectors which are splats of INT_MIN values.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (Constant *Splat = CV->getSplatValue())
- return Splat->isMinSignedValue();
- // Check for constant vectors which are splats of INT_MIN values.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
- if (CV->isSplat()) {
- if (CV->getElementType()->isFloatingPointTy())
- return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
- return CV->getElementAsAPInt(0).isMinSignedValue();
- }
- }
- return false;
- }
- bool Constant::isNotMinSignedValue() const {
- // Check for INT_MIN integers
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return !CI->isMinValue(/*isSigned=*/true);
- // Check for FP which are bitcasted from INT_MIN integers
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
- // Check that vectors don't contain INT_MIN
- if (this->getType()->isVectorTy()) {
- unsigned NumElts = this->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = this->getAggregateElement(i);
- if (!Elt || !Elt->isNotMinSignedValue())
- return false;
- }
- return true;
- }
- // It *may* contain INT_MIN, we can't tell.
- return false;
- }
- bool Constant::isFiniteNonZeroFP() const {
- if (auto *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().isFiniteNonZero();
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
- if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
- return false;
- }
- return true;
- }
- bool Constant::isNormalFP() const {
- if (auto *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().isNormal();
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
- if (!CFP || !CFP->getValueAPF().isNormal())
- return false;
- }
- return true;
- }
- bool Constant::hasExactInverseFP() const {
- if (auto *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().getExactInverse(nullptr);
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
- if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
- return false;
- }
- return true;
- }
- bool Constant::isNaN() const {
- if (auto *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isNaN();
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
- if (!CFP || !CFP->isNaN())
- return false;
- }
- return true;
- }
- bool Constant::isElementWiseEqual(Value *Y) const {
- // Are they fully identical?
- if (this == Y)
- return true;
- // They may still be identical element-wise (if they have `undef`s).
- auto *Cy = dyn_cast<Constant>(Y);
- if (!Cy)
- return false;
- return PatternMatch::match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ,
- const_cast<Constant *>(this),
- Cy),
- PatternMatch::m_One());
- }
- bool Constant::containsUndefElement() const {
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
- if (isa<UndefValue>(getAggregateElement(i)))
- return true;
- return false;
- }
- bool Constant::containsConstantExpression() const {
- if (!getType()->isVectorTy())
- return false;
- for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
- if (isa<ConstantExpr>(getAggregateElement(i)))
- return true;
- return false;
- }
- /// Constructor to create a '0' constant of arbitrary type.
- Constant *Constant::getNullValue(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- return ConstantInt::get(Ty, 0);
- case Type::HalfTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEhalf()));
- case Type::FloatTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEsingle()));
- case Type::DoubleTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEdouble()));
- case Type::X86_FP80TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::x87DoubleExtended()));
- case Type::FP128TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEquad()));
- case Type::PPC_FP128TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat(APFloat::PPCDoubleDouble(),
- APInt::getNullValue(128)));
- case Type::PointerTyID:
- return ConstantPointerNull::get(cast<PointerType>(Ty));
- case Type::StructTyID:
- case Type::ArrayTyID:
- case Type::VectorTyID:
- return ConstantAggregateZero::get(Ty);
- case Type::TokenTyID:
- return ConstantTokenNone::get(Ty->getContext());
- default:
- // Function, Label, or Opaque type?
- llvm_unreachable("Cannot create a null constant of that type!");
- }
- }
- Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
- Type *ScalarTy = Ty->getScalarType();
- // Create the base integer constant.
- Constant *C = ConstantInt::get(Ty->getContext(), V);
- // Convert an integer to a pointer, if necessary.
- if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
- C = ConstantExpr::getIntToPtr(C, PTy);
- // Broadcast a scalar to a vector, if necessary.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- C = ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *Constant::getAllOnesValue(Type *Ty) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
- return ConstantInt::get(Ty->getContext(),
- APInt::getAllOnesValue(ITy->getBitWidth()));
- if (Ty->isFloatingPointTy()) {
- APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
- !Ty->isPPC_FP128Ty());
- return ConstantFP::get(Ty->getContext(), FL);
- }
- VectorType *VTy = cast<VectorType>(Ty);
- return ConstantVector::getSplat(VTy->getNumElements(),
- getAllOnesValue(VTy->getElementType()));
- }
- Constant *Constant::getAggregateElement(unsigned Elt) const {
- if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
- return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
- if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
- return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
- if (const UndefValue *UV = dyn_cast<UndefValue>(this))
- return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
- if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
- return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
- : nullptr;
- return nullptr;
- }
- Constant *Constant::getAggregateElement(Constant *Elt) const {
- assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
- // Check if the constant fits into an uint64_t.
- if (CI->getValue().getActiveBits() > 64)
- return nullptr;
- return getAggregateElement(CI->getZExtValue());
- }
- return nullptr;
- }
- void Constant::destroyConstant() {
- /// First call destroyConstantImpl on the subclass. This gives the subclass
- /// a chance to remove the constant from any maps/pools it's contained in.
- switch (getValueID()) {
- default:
- llvm_unreachable("Not a constant!");
- #define HANDLE_CONSTANT(Name) \
- case Value::Name##Val: \
- cast<Name>(this)->destroyConstantImpl(); \
- break;
- #include "llvm/IR/Value.def"
- }
- // When a Constant is destroyed, there may be lingering
- // references to the constant by other constants in the constant pool. These
- // constants are implicitly dependent on the module that is being deleted,
- // but they don't know that. Because we only find out when the CPV is
- // deleted, we must now notify all of our users (that should only be
- // Constants) that they are, in fact, invalid now and should be deleted.
- //
- while (!use_empty()) {
- Value *V = user_back();
- #ifndef NDEBUG // Only in -g mode...
- if (!isa<Constant>(V)) {
- dbgs() << "While deleting: " << *this
- << "\n\nUse still stuck around after Def is destroyed: " << *V
- << "\n\n";
- }
- #endif
- assert(isa<Constant>(V) && "References remain to Constant being destroyed");
- cast<Constant>(V)->destroyConstant();
- // The constant should remove itself from our use list...
- assert((use_empty() || user_back() != V) && "Constant not removed!");
- }
- // Value has no outstanding references it is safe to delete it now...
- delete this;
- }
- static bool canTrapImpl(const Constant *C,
- SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
- assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
- // The only thing that could possibly trap are constant exprs.
- const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE)
- return false;
- // ConstantExpr traps if any operands can trap.
- for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
- if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
- if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
- return true;
- }
- }
- // Otherwise, only specific operations can trap.
- switch (CE->getOpcode()) {
- default:
- return false;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- // Div and rem can trap if the RHS is not known to be non-zero.
- if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
- return true;
- return false;
- }
- }
- bool Constant::canTrap() const {
- SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
- return canTrapImpl(this, NonTrappingOps);
- }
- /// Check if C contains a GlobalValue for which Predicate is true.
- static bool
- ConstHasGlobalValuePredicate(const Constant *C,
- bool (*Predicate)(const GlobalValue *)) {
- SmallPtrSet<const Constant *, 8> Visited;
- SmallVector<const Constant *, 8> WorkList;
- WorkList.push_back(C);
- Visited.insert(C);
- while (!WorkList.empty()) {
- const Constant *WorkItem = WorkList.pop_back_val();
- if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
- if (Predicate(GV))
- return true;
- for (const Value *Op : WorkItem->operands()) {
- const Constant *ConstOp = dyn_cast<Constant>(Op);
- if (!ConstOp)
- continue;
- if (Visited.insert(ConstOp).second)
- WorkList.push_back(ConstOp);
- }
- }
- return false;
- }
- bool Constant::isThreadDependent() const {
- auto DLLImportPredicate = [](const GlobalValue *GV) {
- return GV->isThreadLocal();
- };
- return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
- }
- bool Constant::isDLLImportDependent() const {
- auto DLLImportPredicate = [](const GlobalValue *GV) {
- return GV->hasDLLImportStorageClass();
- };
- return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
- }
- bool Constant::isConstantUsed() const {
- for (const User *U : users()) {
- const Constant *UC = dyn_cast<Constant>(U);
- if (!UC || isa<GlobalValue>(UC))
- return true;
- if (UC->isConstantUsed())
- return true;
- }
- return false;
- }
- bool Constant::needsRelocation() const {
- if (isa<GlobalValue>(this))
- return true; // Global reference.
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
- return BA->getFunction()->needsRelocation();
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
- if (CE->getOpcode() == Instruction::Sub) {
- ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
- ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
- if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
- RHS->getOpcode() == Instruction::PtrToInt) {
- Constant *LHSOp0 = LHS->getOperand(0);
- Constant *RHSOp0 = RHS->getOperand(0);
- // While raw uses of blockaddress need to be relocated, differences
- // between two of them don't when they are for labels in the same
- // function. This is a common idiom when creating a table for the
- // indirect goto extension, so we handle it efficiently here.
- if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
- cast<BlockAddress>(LHSOp0)->getFunction() ==
- cast<BlockAddress>(RHSOp0)->getFunction())
- return false;
- // Relative pointers do not need to be dynamically relocated.
- if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
- if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
- if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
- return false;
- }
- }
- }
- bool Result = false;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- Result |= cast<Constant>(getOperand(i))->needsRelocation();
- return Result;
- }
- /// If the specified constantexpr is dead, remove it. This involves recursively
- /// eliminating any dead users of the constantexpr.
- static bool removeDeadUsersOfConstant(const Constant *C) {
- if (isa<GlobalValue>(C)) return false; // Cannot remove this
- while (!C->use_empty()) {
- const Constant *User = dyn_cast<Constant>(C->user_back());
- if (!User) return false; // Non-constant usage;
- if (!removeDeadUsersOfConstant(User))
- return false; // Constant wasn't dead
- }
- const_cast<Constant*>(C)->destroyConstant();
- return true;
- }
- void Constant::removeDeadConstantUsers() const {
- Value::const_user_iterator I = user_begin(), E = user_end();
- Value::const_user_iterator LastNonDeadUser = E;
- while (I != E) {
- const Constant *User = dyn_cast<Constant>(*I);
- if (!User) {
- LastNonDeadUser = I;
- ++I;
- continue;
- }
- if (!removeDeadUsersOfConstant(User)) {
- // If the constant wasn't dead, remember that this was the last live use
- // and move on to the next constant.
- LastNonDeadUser = I;
- ++I;
- continue;
- }
- // If the constant was dead, then the iterator is invalidated.
- if (LastNonDeadUser == E)
- I = user_begin();
- else
- I = std::next(LastNonDeadUser);
- }
- }
- //===----------------------------------------------------------------------===//
- // ConstantInt
- //===----------------------------------------------------------------------===//
- ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
- : ConstantData(Ty, ConstantIntVal), Val(V) {
- assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
- }
- ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
- LLVMContextImpl *pImpl = Context.pImpl;
- if (!pImpl->TheTrueVal)
- pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
- return pImpl->TheTrueVal;
- }
- ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
- LLVMContextImpl *pImpl = Context.pImpl;
- if (!pImpl->TheFalseVal)
- pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
- return pImpl->TheFalseVal;
- }
- Constant *ConstantInt::getTrue(Type *Ty) {
- assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
- ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
- if (auto *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
- return TrueC;
- }
- Constant *ConstantInt::getFalse(Type *Ty) {
- assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
- ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
- if (auto *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
- return FalseC;
- }
- // Get a ConstantInt from an APInt.
- ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
- // get an existing value or the insertion position
- LLVMContextImpl *pImpl = Context.pImpl;
- std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
- if (!Slot) {
- // Get the corresponding integer type for the bit width of the value.
- IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
- Slot.reset(new ConstantInt(ITy, V));
- }
- assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
- return Slot.get();
- }
- Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
- Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
- return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
- }
- ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
- return get(Ty, V, true);
- }
- Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
- return get(Ty, V, true);
- }
- Constant *ConstantInt::get(Type *Ty, const APInt& V) {
- ConstantInt *C = get(Ty->getContext(), V);
- assert(C->getType() == Ty->getScalarType() &&
- "ConstantInt type doesn't match the type implied by its value!");
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
- return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
- }
- /// Remove the constant from the constant table.
- void ConstantInt::destroyConstantImpl() {
- llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
- }
- //===----------------------------------------------------------------------===//
- // ConstantFP
- //===----------------------------------------------------------------------===//
- static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
- if (Ty->isHalfTy())
- return &APFloat::IEEEhalf();
- if (Ty->isFloatTy())
- return &APFloat::IEEEsingle();
- if (Ty->isDoubleTy())
- return &APFloat::IEEEdouble();
- if (Ty->isX86_FP80Ty())
- return &APFloat::x87DoubleExtended();
- else if (Ty->isFP128Ty())
- return &APFloat::IEEEquad();
- assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
- return &APFloat::PPCDoubleDouble();
- }
- Constant *ConstantFP::get(Type *Ty, double V) {
- LLVMContext &Context = Ty->getContext();
- APFloat FV(V);
- bool ignored;
- FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
- APFloat::rmNearestTiesToEven, &ignored);
- Constant *C = get(Context, FV);
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
- ConstantFP *C = get(Ty->getContext(), V);
- assert(C->getType() == Ty->getScalarType() &&
- "ConstantFP type doesn't match the type implied by its value!");
- // For vectors, broadcast the value.
- if (auto *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *ConstantFP::get(Type *Ty, StringRef Str) {
- LLVMContext &Context = Ty->getContext();
- APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
- Constant *C = get(Context, FV);
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
- APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
- Constant *C = get(Ty->getContext(), NaN);
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
- APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
- Constant *C = get(Ty->getContext(), NaN);
-
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
- }
- Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
- APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
- Constant *C = get(Ty->getContext(), NaN);
-
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
- }
- Constant *ConstantFP::getNegativeZero(Type *Ty) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
- APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
- Constant *C = get(Ty->getContext(), NegZero);
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
- if (Ty->isFPOrFPVectorTy())
- return getNegativeZero(Ty);
- return Constant::getNullValue(Ty);
- }
- // ConstantFP accessors.
- ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
- LLVMContextImpl* pImpl = Context.pImpl;
- std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
- if (!Slot) {
- Type *Ty;
- if (&V.getSemantics() == &APFloat::IEEEhalf())
- Ty = Type::getHalfTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEsingle())
- Ty = Type::getFloatTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEdouble())
- Ty = Type::getDoubleTy(Context);
- else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
- Ty = Type::getX86_FP80Ty(Context);
- else if (&V.getSemantics() == &APFloat::IEEEquad())
- Ty = Type::getFP128Ty(Context);
- else {
- assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
- "Unknown FP format");
- Ty = Type::getPPC_FP128Ty(Context);
- }
- Slot.reset(new ConstantFP(Ty, V));
- }
- return Slot.get();
- }
- Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
- Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
- ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
- : ConstantData(Ty, ConstantFPVal), Val(V) {
- assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
- "FP type Mismatch");
- }
- bool ConstantFP::isExactlyValue(const APFloat &V) const {
- return Val.bitwiseIsEqual(V);
- }
- /// Remove the constant from the constant table.
- void ConstantFP::destroyConstantImpl() {
- llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
- }
- //===----------------------------------------------------------------------===//
- // ConstantAggregateZero Implementation
- //===----------------------------------------------------------------------===//
- Constant *ConstantAggregateZero::getSequentialElement() const {
- return Constant::getNullValue(getType()->getSequentialElementType());
- }
- Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
- return Constant::getNullValue(getType()->getStructElementType(Elt));
- }
- Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(cast<ConstantInt>(C)->getZExtValue());
- }
- Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(Idx);
- }
- unsigned ConstantAggregateZero::getNumElements() const {
- Type *Ty = getType();
- if (auto *AT = dyn_cast<ArrayType>(Ty))
- return AT->getNumElements();
- if (auto *VT = dyn_cast<VectorType>(Ty))
- return VT->getNumElements();
- return Ty->getStructNumElements();
- }
- //===----------------------------------------------------------------------===//
- // UndefValue Implementation
- //===----------------------------------------------------------------------===//
- UndefValue *UndefValue::getSequentialElement() const {
- return UndefValue::get(getType()->getSequentialElementType());
- }
- UndefValue *UndefValue::getStructElement(unsigned Elt) const {
- return UndefValue::get(getType()->getStructElementType(Elt));
- }
- UndefValue *UndefValue::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(cast<ConstantInt>(C)->getZExtValue());
- }
- UndefValue *UndefValue::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(Idx);
- }
- unsigned UndefValue::getNumElements() const {
- Type *Ty = getType();
- if (auto *ST = dyn_cast<SequentialType>(Ty))
- return ST->getNumElements();
- return Ty->getStructNumElements();
- }
- //===----------------------------------------------------------------------===//
- // ConstantXXX Classes
- //===----------------------------------------------------------------------===//
- template <typename ItTy, typename EltTy>
- static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
- for (; Start != End; ++Start)
- if (*Start != Elt)
- return false;
- return true;
- }
- template <typename SequentialTy, typename ElementTy>
- static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
- assert(!V.empty() && "Cannot get empty int sequence.");
- SmallVector<ElementTy, 16> Elts;
- for (Constant *C : V)
- if (auto *CI = dyn_cast<ConstantInt>(C))
- Elts.push_back(CI->getZExtValue());
- else
- return nullptr;
- return SequentialTy::get(V[0]->getContext(), Elts);
- }
- template <typename SequentialTy, typename ElementTy>
- static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
- assert(!V.empty() && "Cannot get empty FP sequence.");
- SmallVector<ElementTy, 16> Elts;
- for (Constant *C : V)
- if (auto *CFP = dyn_cast<ConstantFP>(C))
- Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
- else
- return nullptr;
- return SequentialTy::getFP(V[0]->getContext(), Elts);
- }
- template <typename SequenceTy>
- static Constant *getSequenceIfElementsMatch(Constant *C,
- ArrayRef<Constant *> V) {
- // We speculatively build the elements here even if it turns out that there is
- // a constantexpr or something else weird, since it is so uncommon for that to
- // happen.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getType()->isIntegerTy(8))
- return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
- else if (CI->getType()->isIntegerTy(16))
- return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
- else if (CI->getType()->isIntegerTy(32))
- return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
- else if (CI->getType()->isIntegerTy(64))
- return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isHalfTy())
- return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
- else if (CFP->getType()->isFloatTy())
- return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
- else if (CFP->getType()->isDoubleTy())
- return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
- }
- return nullptr;
- }
- ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
- ArrayRef<Constant *> V)
- : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
- V.size()) {
- llvm::copy(V, op_begin());
- // Check that types match, unless this is an opaque struct.
- if (auto *ST = dyn_cast<StructType>(T))
- if (ST->isOpaque())
- return;
- for (unsigned I = 0, E = V.size(); I != E; ++I)
- assert(V[I]->getType() == T->getTypeAtIndex(I) &&
- "Initializer for composite element doesn't match!");
- }
- ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
- : ConstantAggregate(T, ConstantArrayVal, V) {
- assert(V.size() == T->getNumElements() &&
- "Invalid initializer for constant array");
- }
- Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
- if (Constant *C = getImpl(Ty, V))
- return C;
- return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
- }
- Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
- // Empty arrays are canonicalized to ConstantAggregateZero.
- if (V.empty())
- return ConstantAggregateZero::get(Ty);
- for (unsigned i = 0, e = V.size(); i != e; ++i) {
- assert(V[i]->getType() == Ty->getElementType() &&
- "Wrong type in array element initializer");
- }
- // If this is an all-zero array, return a ConstantAggregateZero object. If
- // all undef, return an UndefValue, if "all simple", then return a
- // ConstantDataArray.
- Constant *C = V[0];
- if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
- return UndefValue::get(Ty);
- if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
- return ConstantAggregateZero::get(Ty);
- // Check to see if all of the elements are ConstantFP or ConstantInt and if
- // the element type is compatible with ConstantDataVector. If so, use it.
- if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
- return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
- // Otherwise, we really do want to create a ConstantArray.
- return nullptr;
- }
- StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
- ArrayRef<Constant*> V,
- bool Packed) {
- unsigned VecSize = V.size();
- SmallVector<Type*, 16> EltTypes(VecSize);
- for (unsigned i = 0; i != VecSize; ++i)
- EltTypes[i] = V[i]->getType();
- return StructType::get(Context, EltTypes, Packed);
- }
- StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
- bool Packed) {
- assert(!V.empty() &&
- "ConstantStruct::getTypeForElements cannot be called on empty list");
- return getTypeForElements(V[0]->getContext(), V, Packed);
- }
- ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
- : ConstantAggregate(T, ConstantStructVal, V) {
- assert((T->isOpaque() || V.size() == T->getNumElements()) &&
- "Invalid initializer for constant struct");
- }
- // ConstantStruct accessors.
- Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
- assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
- "Incorrect # elements specified to ConstantStruct::get");
- // Create a ConstantAggregateZero value if all elements are zeros.
- bool isZero = true;
- bool isUndef = false;
- if (!V.empty()) {
- isUndef = isa<UndefValue>(V[0]);
- isZero = V[0]->isNullValue();
- if (isUndef || isZero) {
- for (unsigned i = 0, e = V.size(); i != e; ++i) {
- if (!V[i]->isNullValue())
- isZero = false;
- if (!isa<UndefValue>(V[i]))
- isUndef = false;
- }
- }
- }
- if (isZero)
- return ConstantAggregateZero::get(ST);
- if (isUndef)
- return UndefValue::get(ST);
- return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
- }
- ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
- : ConstantAggregate(T, ConstantVectorVal, V) {
- assert(V.size() == T->getNumElements() &&
- "Invalid initializer for constant vector");
- }
- // ConstantVector accessors.
- Constant *ConstantVector::get(ArrayRef<Constant*> V) {
- if (Constant *C = getImpl(V))
- return C;
- VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
- return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
- }
- Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
- assert(!V.empty() && "Vectors can't be empty");
- VectorType *T = VectorType::get(V.front()->getType(), V.size());
- // If this is an all-undef or all-zero vector, return a
- // ConstantAggregateZero or UndefValue.
- Constant *C = V[0];
- bool isZero = C->isNullValue();
- bool isUndef = isa<UndefValue>(C);
- if (isZero || isUndef) {
- for (unsigned i = 1, e = V.size(); i != e; ++i)
- if (V[i] != C) {
- isZero = isUndef = false;
- break;
- }
- }
- if (isZero)
- return ConstantAggregateZero::get(T);
- if (isUndef)
- return UndefValue::get(T);
- // Check to see if all of the elements are ConstantFP or ConstantInt and if
- // the element type is compatible with ConstantDataVector. If so, use it.
- if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
- return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
- // Otherwise, the element type isn't compatible with ConstantDataVector, or
- // the operand list contains a ConstantExpr or something else strange.
- return nullptr;
- }
- Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
- // If this splat is compatible with ConstantDataVector, use it instead of
- // ConstantVector.
- if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
- ConstantDataSequential::isElementTypeCompatible(V->getType()))
- return ConstantDataVector::getSplat(NumElts, V);
- SmallVector<Constant*, 32> Elts(NumElts, V);
- return get(Elts);
- }
- ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
- LLVMContextImpl *pImpl = Context.pImpl;
- if (!pImpl->TheNoneToken)
- pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
- return pImpl->TheNoneToken.get();
- }
- /// Remove the constant from the constant table.
- void ConstantTokenNone::destroyConstantImpl() {
- llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
- }
- // Utility function for determining if a ConstantExpr is a CastOp or not. This
- // can't be inline because we don't want to #include Instruction.h into
- // Constant.h
- bool ConstantExpr::isCast() const {
- return Instruction::isCast(getOpcode());
- }
- bool ConstantExpr::isCompare() const {
- return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
- }
- bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
- if (getOpcode() != Instruction::GetElementPtr) return false;
- gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
- User::const_op_iterator OI = std::next(this->op_begin());
- // The remaining indices may be compile-time known integers within the bounds
- // of the corresponding notional static array types.
- for (; GEPI != E; ++GEPI, ++OI) {
- if (isa<UndefValue>(*OI))
- continue;
- auto *CI = dyn_cast<ConstantInt>(*OI);
- if (!CI || (GEPI.isBoundedSequential() &&
- (CI->getValue().getActiveBits() > 64 ||
- CI->getZExtValue() >= GEPI.getSequentialNumElements())))
- return false;
- }
- // All the indices checked out.
- return true;
- }
- bool ConstantExpr::hasIndices() const {
- return getOpcode() == Instruction::ExtractValue ||
- getOpcode() == Instruction::InsertValue;
- }
- ArrayRef<unsigned> ConstantExpr::getIndices() const {
- if (const ExtractValueConstantExpr *EVCE =
- dyn_cast<ExtractValueConstantExpr>(this))
- return EVCE->Indices;
- return cast<InsertValueConstantExpr>(this)->Indices;
- }
- unsigned ConstantExpr::getPredicate() const {
- return cast<CompareConstantExpr>(this)->predicate;
- }
- Constant *
- ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
- assert(Op->getType() == getOperand(OpNo)->getType() &&
- "Replacing operand with value of different type!");
- if (getOperand(OpNo) == Op)
- return const_cast<ConstantExpr*>(this);
- SmallVector<Constant*, 8> NewOps;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- NewOps.push_back(i == OpNo ? Op : getOperand(i));
- return getWithOperands(NewOps);
- }
- Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
- bool OnlyIfReduced, Type *SrcTy) const {
- assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
- // If no operands changed return self.
- if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
- return const_cast<ConstantExpr*>(this);
- Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
- switch (getOpcode()) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
- case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
- case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
- OnlyIfReducedTy);
- case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
- case Instruction::InsertValue:
- return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
- OnlyIfReducedTy);
- case Instruction::ExtractValue:
- return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
- case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
- OnlyIfReducedTy);
- case Instruction::GetElementPtr: {
- auto *GEPO = cast<GEPOperator>(this);
- assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
- return ConstantExpr::getGetElementPtr(
- SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
- GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
- }
- case Instruction::ICmp:
- case Instruction::FCmp:
- return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
- OnlyIfReducedTy);
- default:
- assert(getNumOperands() == 2 && "Must be binary operator?");
- return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
- OnlyIfReducedTy);
- }
- }
- //===----------------------------------------------------------------------===//
- // isValueValidForType implementations
- bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
- unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
- if (Ty->isIntegerTy(1))
- return Val == 0 || Val == 1;
- return isUIntN(NumBits, Val);
- }
- bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
- unsigned NumBits = Ty->getIntegerBitWidth();
- if (Ty->isIntegerTy(1))
- return Val == 0 || Val == 1 || Val == -1;
- return isIntN(NumBits, Val);
- }
- bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- switch (Ty->getTypeID()) {
- default:
- return false; // These can't be represented as floating point!
- // FIXME rounding mode needs to be more flexible
- case Type::HalfTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEhalf())
- return true;
- Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
- return !losesInfo;
- }
- case Type::FloatTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEsingle())
- return true;
- Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
- return !losesInfo;
- }
- case Type::DoubleTyID: {
- if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
- &Val2.getSemantics() == &APFloat::IEEEsingle() ||
- &Val2.getSemantics() == &APFloat::IEEEdouble())
- return true;
- Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
- return !losesInfo;
- }
- case Type::X86_FP80TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
- &Val2.getSemantics() == &APFloat::IEEEsingle() ||
- &Val2.getSemantics() == &APFloat::IEEEdouble() ||
- &Val2.getSemantics() == &APFloat::x87DoubleExtended();
- case Type::FP128TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
- &Val2.getSemantics() == &APFloat::IEEEsingle() ||
- &Val2.getSemantics() == &APFloat::IEEEdouble() ||
- &Val2.getSemantics() == &APFloat::IEEEquad();
- case Type::PPC_FP128TyID:
- return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
- &Val2.getSemantics() == &APFloat::IEEEsingle() ||
- &Val2.getSemantics() == &APFloat::IEEEdouble() ||
- &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
- }
- }
- //===----------------------------------------------------------------------===//
- // Factory Function Implementation
- ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
- assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
- "Cannot create an aggregate zero of non-aggregate type!");
- std::unique_ptr<ConstantAggregateZero> &Entry =
- Ty->getContext().pImpl->CAZConstants[Ty];
- if (!Entry)
- Entry.reset(new ConstantAggregateZero(Ty));
- return Entry.get();
- }
- /// Remove the constant from the constant table.
- void ConstantAggregateZero::destroyConstantImpl() {
- getContext().pImpl->CAZConstants.erase(getType());
- }
- /// Remove the constant from the constant table.
- void ConstantArray::destroyConstantImpl() {
- getType()->getContext().pImpl->ArrayConstants.remove(this);
- }
- //---- ConstantStruct::get() implementation...
- //
- /// Remove the constant from the constant table.
- void ConstantStruct::destroyConstantImpl() {
- getType()->getContext().pImpl->StructConstants.remove(this);
- }
- /// Remove the constant from the constant table.
- void ConstantVector::destroyConstantImpl() {
- getType()->getContext().pImpl->VectorConstants.remove(this);
- }
- Constant *Constant::getSplatValue() const {
- assert(this->getType()->isVectorTy() && "Only valid for vectors!");
- if (isa<ConstantAggregateZero>(this))
- return getNullValue(this->getType()->getVectorElementType());
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
- return CV->getSplatValue();
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- return CV->getSplatValue();
- return nullptr;
- }
- Constant *ConstantVector::getSplatValue() const {
- // Check out first element.
- Constant *Elt = getOperand(0);
- // Then make sure all remaining elements point to the same value.
- for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
- if (getOperand(I) != Elt)
- return nullptr;
- return Elt;
- }
- const APInt &Constant::getUniqueInteger() const {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->getValue();
- assert(this->getSplatValue() && "Doesn't contain a unique integer!");
- const Constant *C = this->getAggregateElement(0U);
- assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
- return cast<ConstantInt>(C)->getValue();
- }
- //---- ConstantPointerNull::get() implementation.
- //
- ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
- std::unique_ptr<ConstantPointerNull> &Entry =
- Ty->getContext().pImpl->CPNConstants[Ty];
- if (!Entry)
- Entry.reset(new ConstantPointerNull(Ty));
- return Entry.get();
- }
- /// Remove the constant from the constant table.
- void ConstantPointerNull::destroyConstantImpl() {
- getContext().pImpl->CPNConstants.erase(getType());
- }
- UndefValue *UndefValue::get(Type *Ty) {
- std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
- if (!Entry)
- Entry.reset(new UndefValue(Ty));
- return Entry.get();
- }
- /// Remove the constant from the constant table.
- void UndefValue::destroyConstantImpl() {
- // Free the constant and any dangling references to it.
- getContext().pImpl->UVConstants.erase(getType());
- }
- BlockAddress *BlockAddress::get(BasicBlock *BB) {
- assert(BB->getParent() && "Block must have a parent");
- return get(BB->getParent(), BB);
- }
- BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
- BlockAddress *&BA =
- F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
- if (!BA)
- BA = new BlockAddress(F, BB);
- assert(BA->getFunction() == F && "Basic block moved between functions");
- return BA;
- }
- BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
- : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
- &Op<0>(), 2) {
- setOperand(0, F);
- setOperand(1, BB);
- BB->AdjustBlockAddressRefCount(1);
- }
- BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
- if (!BB->hasAddressTaken())
- return nullptr;
- const Function *F = BB->getParent();
- assert(F && "Block must have a parent");
- BlockAddress *BA =
- F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
- assert(BA && "Refcount and block address map disagree!");
- return BA;
- }
- /// Remove the constant from the constant table.
- void BlockAddress::destroyConstantImpl() {
- getFunction()->getType()->getContext().pImpl
- ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
- getBasicBlock()->AdjustBlockAddressRefCount(-1);
- }
- Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
- // This could be replacing either the Basic Block or the Function. In either
- // case, we have to remove the map entry.
- Function *NewF = getFunction();
- BasicBlock *NewBB = getBasicBlock();
- if (From == NewF)
- NewF = cast<Function>(To->stripPointerCasts());
- else {
- assert(From == NewBB && "From does not match any operand");
- NewBB = cast<BasicBlock>(To);
- }
- // See if the 'new' entry already exists, if not, just update this in place
- // and return early.
- BlockAddress *&NewBA =
- getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
- if (NewBA)
- return NewBA;
- getBasicBlock()->AdjustBlockAddressRefCount(-1);
- // Remove the old entry, this can't cause the map to rehash (just a
- // tombstone will get added).
- getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
- getBasicBlock()));
- NewBA = this;
- setOperand(0, NewF);
- setOperand(1, NewBB);
- getBasicBlock()->AdjustBlockAddressRefCount(1);
- // If we just want to keep the existing value, then return null.
- // Callers know that this means we shouldn't delete this value.
- return nullptr;
- }
- //---- ConstantExpr::get() implementations.
- //
- /// This is a utility function to handle folding of casts and lookup of the
- /// cast in the ExprConstants map. It is used by the various get* methods below.
- static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
- bool OnlyIfReduced = false) {
- assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
- // Fold a few common cases
- if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
- return FC;
- if (OnlyIfReduced)
- return nullptr;
- LLVMContextImpl *pImpl = Ty->getContext().pImpl;
- // Look up the constant in the table first to ensure uniqueness.
- ConstantExprKeyType Key(opc, C);
- return pImpl->ExprConstants.getOrCreate(Ty, Key);
- }
- Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
- bool OnlyIfReduced) {
- Instruction::CastOps opc = Instruction::CastOps(oc);
- assert(Instruction::isCast(opc) && "opcode out of range");
- assert(C && Ty && "Null arguments to getCast");
- assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
- switch (opc) {
- default:
- llvm_unreachable("Invalid cast opcode");
- case Instruction::Trunc:
- return getTrunc(C, Ty, OnlyIfReduced);
- case Instruction::ZExt:
- return getZExt(C, Ty, OnlyIfReduced);
- case Instruction::SExt:
- return getSExt(C, Ty, OnlyIfReduced);
- case Instruction::FPTrunc:
- return getFPTrunc(C, Ty, OnlyIfReduced);
- case Instruction::FPExt:
- return getFPExtend(C, Ty, OnlyIfReduced);
- case Instruction::UIToFP:
- return getUIToFP(C, Ty, OnlyIfReduced);
- case Instruction::SIToFP:
- return getSIToFP(C, Ty, OnlyIfReduced);
- case Instruction::FPToUI:
- return getFPToUI(C, Ty, OnlyIfReduced);
- case Instruction::FPToSI:
- return getFPToSI(C, Ty, OnlyIfReduced);
- case Instruction::PtrToInt:
- return getPtrToInt(C, Ty, OnlyIfReduced);
- case Instruction::IntToPtr:
- return getIntToPtr(C, Ty, OnlyIfReduced);
- case Instruction::BitCast:
- return getBitCast(C, Ty, OnlyIfReduced);
- case Instruction::AddrSpaceCast:
- return getAddrSpaceCast(C, Ty, OnlyIfReduced);
- }
- }
- Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
- if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
- return getBitCast(C, Ty);
- return getZExt(C, Ty);
- }
- Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
- if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
- return getBitCast(C, Ty);
- return getSExt(C, Ty);
- }
- Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
- if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
- return getBitCast(C, Ty);
- return getTrunc(C, Ty);
- }
- Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
- assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
- assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
- "Invalid cast");
- if (Ty->isIntOrIntVectorTy())
- return getPtrToInt(S, Ty);
- unsigned SrcAS = S->getType()->getPointerAddressSpace();
- if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
- return getAddrSpaceCast(S, Ty);
- return getBitCast(S, Ty);
- }
- Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
- Type *Ty) {
- assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
- assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
- if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
- return getAddrSpaceCast(S, Ty);
- return getBitCast(S, Ty);
- }
- Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
- assert(C->getType()->isIntOrIntVectorTy() &&
- Ty->isIntOrIntVectorTy() && "Invalid cast");
- unsigned SrcBits = C->getType()->getScalarSizeInBits();
- unsigned DstBits = Ty->getScalarSizeInBits();
- Instruction::CastOps opcode =
- (SrcBits == DstBits ? Instruction::BitCast :
- (SrcBits > DstBits ? Instruction::Trunc :
- (isSigned ? Instruction::SExt : Instruction::ZExt)));
- return getCast(opcode, C, Ty);
- }
- Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
- assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
- "Invalid cast");
- unsigned SrcBits = C->getType()->getScalarSizeInBits();
- unsigned DstBits = Ty->getScalarSizeInBits();
- if (SrcBits == DstBits)
- return C; // Avoid a useless cast
- Instruction::CastOps opcode =
- (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
- return getCast(opcode, C, Ty);
- }
- Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
- assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
- assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
- "SrcTy must be larger than DestTy for Trunc!");
- return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
- assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
- assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
- "SrcTy must be smaller than DestTy for SExt!");
- return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
- assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
- assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
- "SrcTy must be smaller than DestTy for ZExt!");
- return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
- C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
- "This is an illegal floating point truncation!");
- return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
- C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
- "This is an illegal floating point extension!");
- return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
- "This is an illegal uint to floating point cast!");
- return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
- "This is an illegal sint to floating point cast!");
- return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
- "This is an illegal floating point to uint cast!");
- return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
- #ifndef NDEBUG
- bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
- bool toVec = Ty->getTypeID() == Type::VectorTyID;
- #endif
- assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
- assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
- "This is an illegal floating point to sint cast!");
- return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
- }
- Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
- bool OnlyIfReduced) {
- assert(C->getType()->isPtrOrPtrVectorTy() &&
- "PtrToInt source must be pointer or pointer vector");
- assert(DstTy->isIntOrIntVectorTy() &&
- "PtrToInt destination must be integer or integer vector");
- assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
- if (isa<VectorType>(C->getType()))
- assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
- "Invalid cast between a different number of vector elements");
- return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
- }
- Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
- bool OnlyIfReduced) {
- assert(C->getType()->isIntOrIntVectorTy() &&
- "IntToPtr source must be integer or integer vector");
- assert(DstTy->isPtrOrPtrVectorTy() &&
- "IntToPtr destination must be a pointer or pointer vector");
- assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
- if (isa<VectorType>(C->getType()))
- assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
- "Invalid cast between a different number of vector elements");
- return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
- }
- Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
- bool OnlyIfReduced) {
- assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
- "Invalid constantexpr bitcast!");
- // It is common to ask for a bitcast of a value to its own type, handle this
- // speedily.
- if (C->getType() == DstTy) return C;
- return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
- }
- Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
- bool OnlyIfReduced) {
- assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
- "Invalid constantexpr addrspacecast!");
- // Canonicalize addrspacecasts between different pointer types by first
- // bitcasting the pointer type and then converting the address space.
- PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
- PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
- Type *DstElemTy = DstScalarTy->getElementType();
- if (SrcScalarTy->getElementType() != DstElemTy) {
- Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
- // Handle vectors of pointers.
- MidTy = VectorType::get(MidTy, VT->getNumElements());
- }
- C = getBitCast(C, MidTy);
- }
- return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
- }
- Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
- Type *OnlyIfReducedTy) {
- // Check the operands for consistency first.
- assert(Instruction::isUnaryOp(Opcode) &&
- "Invalid opcode in unary constant expression");
- #ifndef NDEBUG
- switch (Opcode) {
- case Instruction::FNeg:
- assert(C->getType()->isFPOrFPVectorTy() &&
- "Tried to create a floating-point operation on a "
- "non-floating-point type!");
- break;
- default:
- break;
- }
- #endif
- if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
- return FC;
- if (OnlyIfReducedTy == C->getType())
- return nullptr;
- Constant *ArgVec[] = { C };
- ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
- LLVMContextImpl *pImpl = C->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
- }
- Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
- unsigned Flags, Type *OnlyIfReducedTy) {
- // Check the operands for consistency first.
- assert(Instruction::isBinaryOp(Opcode) &&
- "Invalid opcode in binary constant expression");
- assert(C1->getType() == C2->getType() &&
- "Operand types in binary constant expression should match");
- #ifndef NDEBUG
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- assert(C1->getType()->isIntOrIntVectorTy() &&
- "Tried to create an integer operation on a non-integer type!");
- break;
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- assert(C1->getType()->isFPOrFPVectorTy() &&
- "Tried to create a floating-point operation on a "
- "non-floating-point type!");
- break;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- assert(C1->getType()->isIntOrIntVectorTy() &&
- "Tried to create a logical operation on a non-integral type!");
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- assert(C1->getType()->isIntOrIntVectorTy() &&
- "Tried to create a shift operation on a non-integer type!");
- break;
- default:
- break;
- }
- #endif
- if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
- return FC;
- if (OnlyIfReducedTy == C1->getType())
- return nullptr;
- Constant *ArgVec[] = { C1, C2 };
- ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
- LLVMContextImpl *pImpl = C1->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
- }
- Constant *ConstantExpr::getSizeOf(Type* Ty) {
- // sizeof is implemented as: (i64) gep (Ty*)null, 1
- // Note that a non-inbounds gep is used, as null isn't within any object.
- Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
- Constant *GEP = getGetElementPtr(
- Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
- return getPtrToInt(GEP,
- Type::getInt64Ty(Ty->getContext()));
- }
- Constant *ConstantExpr::getAlignOf(Type* Ty) {
- // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
- // Note that a non-inbounds gep is used, as null isn't within any object.
- Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
- Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
- Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
- Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
- Constant *Indices[2] = { Zero, One };
- Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
- return getPtrToInt(GEP,
- Type::getInt64Ty(Ty->getContext()));
- }
- Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
- return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
- FieldNo));
- }
- Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
- // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
- // Note that a non-inbounds gep is used, as null isn't within any object.
- Constant *GEPIdx[] = {
- ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
- FieldNo
- };
- Constant *GEP = getGetElementPtr(
- Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
- return getPtrToInt(GEP,
- Type::getInt64Ty(Ty->getContext()));
- }
- Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
- Constant *C2, bool OnlyIfReduced) {
- assert(C1->getType() == C2->getType() && "Op types should be identical!");
- switch (Predicate) {
- default: llvm_unreachable("Invalid CmpInst predicate");
- case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
- case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
- case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
- case CmpInst::FCMP_TRUE:
- return getFCmp(Predicate, C1, C2, OnlyIfReduced);
- case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
- case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
- case CmpInst::ICMP_SLE:
- return getICmp(Predicate, C1, C2, OnlyIfReduced);
- }
- }
- Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
- Type *OnlyIfReducedTy) {
- assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
- if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
- return SC; // Fold common cases
- if (OnlyIfReducedTy == V1->getType())
- return nullptr;
- Constant *ArgVec[] = { C, V1, V2 };
- ConstantExprKeyType Key(Instruction::Select, ArgVec);
- LLVMContextImpl *pImpl = C->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
- }
- Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
- ArrayRef<Value *> Idxs, bool InBounds,
- Optional<unsigned> InRangeIndex,
- Type *OnlyIfReducedTy) {
- if (!Ty)
- Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
- else
- assert(Ty ==
- cast<PointerType>(C->getType()->getScalarType())->getElementType());
- if (Constant *FC =
- ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
- return FC; // Fold a few common cases.
- // Get the result type of the getelementptr!
- Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
- assert(DestTy && "GEP indices invalid!");
- unsigned AS = C->getType()->getPointerAddressSpace();
- Type *ReqTy = DestTy->getPointerTo(AS);
- unsigned NumVecElts = 0;
- if (C->getType()->isVectorTy())
- NumVecElts = C->getType()->getVectorNumElements();
- else for (auto Idx : Idxs)
- if (Idx->getType()->isVectorTy())
- NumVecElts = Idx->getType()->getVectorNumElements();
- if (NumVecElts)
- ReqTy = VectorType::get(ReqTy, NumVecElts);
- if (OnlyIfReducedTy == ReqTy)
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- std::vector<Constant*> ArgVec;
- ArgVec.reserve(1 + Idxs.size());
- ArgVec.push_back(C);
- for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
- assert((!Idxs[i]->getType()->isVectorTy() ||
- Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
- "getelementptr index type missmatch");
- Constant *Idx = cast<Constant>(Idxs[i]);
- if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
- Idx = ConstantVector::getSplat(NumVecElts, Idx);
- ArgVec.push_back(Idx);
- }
- unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
- if (InRangeIndex && *InRangeIndex < 63)
- SubClassOptionalData |= (*InRangeIndex + 1) << 1;
- const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
- SubClassOptionalData, None, Ty);
- LLVMContextImpl *pImpl = C->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
- }
- Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
- Constant *RHS, bool OnlyIfReduced) {
- assert(LHS->getType() == RHS->getType());
- assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
- "Invalid ICmp Predicate");
- if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
- return FC; // Fold a few common cases...
- if (OnlyIfReduced)
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- Constant *ArgVec[] = { LHS, RHS };
- // Get the key type with both the opcode and predicate
- const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
- Type *ResultTy = Type::getInt1Ty(LHS->getContext());
- if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
- ResultTy = VectorType::get(ResultTy, VT->getNumElements());
- LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
- }
- Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
- Constant *RHS, bool OnlyIfReduced) {
- assert(LHS->getType() == RHS->getType());
- assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
- "Invalid FCmp Predicate");
- if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
- return FC; // Fold a few common cases...
- if (OnlyIfReduced)
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- Constant *ArgVec[] = { LHS, RHS };
- // Get the key type with both the opcode and predicate
- const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
- Type *ResultTy = Type::getInt1Ty(LHS->getContext());
- if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
- ResultTy = VectorType::get(ResultTy, VT->getNumElements());
- LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
- }
- Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
- Type *OnlyIfReducedTy) {
- assert(Val->getType()->isVectorTy() &&
- "Tried to create extractelement operation on non-vector type!");
- assert(Idx->getType()->isIntegerTy() &&
- "Extractelement index must be an integer type!");
- if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
- return FC; // Fold a few common cases.
- Type *ReqTy = Val->getType()->getVectorElementType();
- if (OnlyIfReducedTy == ReqTy)
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- Constant *ArgVec[] = { Val, Idx };
- const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
- LLVMContextImpl *pImpl = Val->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
- }
- Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
- Constant *Idx, Type *OnlyIfReducedTy) {
- assert(Val->getType()->isVectorTy() &&
- "Tried to create insertelement operation on non-vector type!");
- assert(Elt->getType() == Val->getType()->getVectorElementType() &&
- "Insertelement types must match!");
- assert(Idx->getType()->isIntegerTy() &&
- "Insertelement index must be i32 type!");
- if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
- return FC; // Fold a few common cases.
- if (OnlyIfReducedTy == Val->getType())
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- Constant *ArgVec[] = { Val, Elt, Idx };
- const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
- LLVMContextImpl *pImpl = Val->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
- }
- Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
- Constant *Mask, Type *OnlyIfReducedTy) {
- assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
- "Invalid shuffle vector constant expr operands!");
- if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
- return FC; // Fold a few common cases.
- unsigned NElts = Mask->getType()->getVectorNumElements();
- Type *EltTy = V1->getType()->getVectorElementType();
- Type *ShufTy = VectorType::get(EltTy, NElts);
- if (OnlyIfReducedTy == ShufTy)
- return nullptr;
- // Look up the constant in the table first to ensure uniqueness
- Constant *ArgVec[] = { V1, V2, Mask };
- const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
- LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
- }
- Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
- ArrayRef<unsigned> Idxs,
- Type *OnlyIfReducedTy) {
- assert(Agg->getType()->isFirstClassType() &&
- "Non-first-class type for constant insertvalue expression");
- assert(ExtractValueInst::getIndexedType(Agg->getType(),
- Idxs) == Val->getType() &&
- "insertvalue indices invalid!");
- Type *ReqTy = Val->getType();
- if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
- return FC;
- if (OnlyIfReducedTy == ReqTy)
- return nullptr;
- Constant *ArgVec[] = { Agg, Val };
- const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
- LLVMContextImpl *pImpl = Agg->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
- }
- Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
- Type *OnlyIfReducedTy) {
- assert(Agg->getType()->isFirstClassType() &&
- "Tried to create extractelement operation on non-first-class type!");
- Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
- (void)ReqTy;
- assert(ReqTy && "extractvalue indices invalid!");
- assert(Agg->getType()->isFirstClassType() &&
- "Non-first-class type for constant extractvalue expression");
- if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
- return FC;
- if (OnlyIfReducedTy == ReqTy)
- return nullptr;
- Constant *ArgVec[] = { Agg };
- const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
- LLVMContextImpl *pImpl = Agg->getContext().pImpl;
- return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
- }
- Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
- assert(C->getType()->isIntOrIntVectorTy() &&
- "Cannot NEG a nonintegral value!");
- return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
- C, HasNUW, HasNSW);
- }
- Constant *ConstantExpr::getFNeg(Constant *C) {
- assert(C->getType()->isFPOrFPVectorTy() &&
- "Cannot FNEG a non-floating-point value!");
- return get(Instruction::FNeg, C);
- }
- Constant *ConstantExpr::getNot(Constant *C) {
- assert(C->getType()->isIntOrIntVectorTy() &&
- "Cannot NOT a nonintegral value!");
- return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
- }
- Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
- bool HasNUW, bool HasNSW) {
- unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
- (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
- return get(Instruction::Add, C1, C2, Flags);
- }
- Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
- return get(Instruction::FAdd, C1, C2);
- }
- Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
- bool HasNUW, bool HasNSW) {
- unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
- (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
- return get(Instruction::Sub, C1, C2, Flags);
- }
- Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
- return get(Instruction::FSub, C1, C2);
- }
- Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
- bool HasNUW, bool HasNSW) {
- unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
- (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
- return get(Instruction::Mul, C1, C2, Flags);
- }
- Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
- return get(Instruction::FMul, C1, C2);
- }
- Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
- return get(Instruction::UDiv, C1, C2,
- isExact ? PossiblyExactOperator::IsExact : 0);
- }
- Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
- return get(Instruction::SDiv, C1, C2,
- isExact ? PossiblyExactOperator::IsExact : 0);
- }
- Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
- return get(Instruction::FDiv, C1, C2);
- }
- Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
- return get(Instruction::URem, C1, C2);
- }
- Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
- return get(Instruction::SRem, C1, C2);
- }
- Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
- return get(Instruction::FRem, C1, C2);
- }
- Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
- return get(Instruction::And, C1, C2);
- }
- Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
- return get(Instruction::Or, C1, C2);
- }
- Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
- return get(Instruction::Xor, C1, C2);
- }
- Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
- bool HasNUW, bool HasNSW) {
- unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
- (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
- return get(Instruction::Shl, C1, C2, Flags);
- }
- Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
- return get(Instruction::LShr, C1, C2,
- isExact ? PossiblyExactOperator::IsExact : 0);
- }
- Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
- return get(Instruction::AShr, C1, C2,
- isExact ? PossiblyExactOperator::IsExact : 0);
- }
- Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
- bool AllowRHSConstant) {
- assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
- // Commutative opcodes: it does not matter if AllowRHSConstant is set.
- if (Instruction::isCommutative(Opcode)) {
- switch (Opcode) {
- case Instruction::Add: // X + 0 = X
- case Instruction::Or: // X | 0 = X
- case Instruction::Xor: // X ^ 0 = X
- return Constant::getNullValue(Ty);
- case Instruction::Mul: // X * 1 = X
- return ConstantInt::get(Ty, 1);
- case Instruction::And: // X & -1 = X
- return Constant::getAllOnesValue(Ty);
- case Instruction::FAdd: // X + -0.0 = X
- // TODO: If the fadd has 'nsz', should we return +0.0?
- return ConstantFP::getNegativeZero(Ty);
- case Instruction::FMul: // X * 1.0 = X
- return ConstantFP::get(Ty, 1.0);
- default:
- llvm_unreachable("Every commutative binop has an identity constant");
- }
- }
- // Non-commutative opcodes: AllowRHSConstant must be set.
- if (!AllowRHSConstant)
- return nullptr;
- switch (Opcode) {
- case Instruction::Sub: // X - 0 = X
- case Instruction::Shl: // X << 0 = X
- case Instruction::LShr: // X >>u 0 = X
- case Instruction::AShr: // X >> 0 = X
- case Instruction::FSub: // X - 0.0 = X
- return Constant::getNullValue(Ty);
- case Instruction::SDiv: // X / 1 = X
- case Instruction::UDiv: // X /u 1 = X
- return ConstantInt::get(Ty, 1);
- case Instruction::FDiv: // X / 1.0 = X
- return ConstantFP::get(Ty, 1.0);
- default:
- return nullptr;
- }
- }
- Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
- switch (Opcode) {
- default:
- // Doesn't have an absorber.
- return nullptr;
- case Instruction::Or:
- return Constant::getAllOnesValue(Ty);
- case Instruction::And:
- case Instruction::Mul:
- return Constant::getNullValue(Ty);
- }
- }
- /// Remove the constant from the constant table.
- void ConstantExpr::destroyConstantImpl() {
- getType()->getContext().pImpl->ExprConstants.remove(this);
- }
- const char *ConstantExpr::getOpcodeName() const {
- return Instruction::getOpcodeName(getOpcode());
- }
- GetElementPtrConstantExpr::GetElementPtrConstantExpr(
- Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
- : ConstantExpr(DestTy, Instruction::GetElementPtr,
- OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
- (IdxList.size() + 1),
- IdxList.size() + 1),
- SrcElementTy(SrcElementTy),
- ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
- Op<0>() = C;
- Use *OperandList = getOperandList();
- for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
- OperandList[i+1] = IdxList[i];
- }
- Type *GetElementPtrConstantExpr::getSourceElementType() const {
- return SrcElementTy;
- }
- Type *GetElementPtrConstantExpr::getResultElementType() const {
- return ResElementTy;
- }
- //===----------------------------------------------------------------------===//
- // ConstantData* implementations
- Type *ConstantDataSequential::getElementType() const {
- return getType()->getElementType();
- }
- StringRef ConstantDataSequential::getRawDataValues() const {
- return StringRef(DataElements, getNumElements()*getElementByteSize());
- }
- bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
- if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
- if (auto *IT = dyn_cast<IntegerType>(Ty)) {
- switch (IT->getBitWidth()) {
- case 8:
- case 16:
- case 32:
- case 64:
- return true;
- default: break;
- }
- }
- return false;
- }
- unsigned ConstantDataSequential::getNumElements() const {
- if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
- return AT->getNumElements();
- return getType()->getVectorNumElements();
- }
- uint64_t ConstantDataSequential::getElementByteSize() const {
- return getElementType()->getPrimitiveSizeInBits()/8;
- }
- /// Return the start of the specified element.
- const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
- assert(Elt < getNumElements() && "Invalid Elt");
- return DataElements+Elt*getElementByteSize();
- }
- /// Return true if the array is empty or all zeros.
- static bool isAllZeros(StringRef Arr) {
- for (char I : Arr)
- if (I != 0)
- return false;
- return true;
- }
- /// This is the underlying implementation of all of the
- /// ConstantDataSequential::get methods. They all thunk down to here, providing
- /// the correct element type. We take the bytes in as a StringRef because
- /// we *want* an underlying "char*" to avoid TBAA type punning violations.
- Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
- assert(isElementTypeCompatible(Ty->getSequentialElementType()));
- // If the elements are all zero or there are no elements, return a CAZ, which
- // is more dense and canonical.
- if (isAllZeros(Elements))
- return ConstantAggregateZero::get(Ty);
- // Do a lookup to see if we have already formed one of these.
- auto &Slot =
- *Ty->getContext()
- .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
- .first;
- // The bucket can point to a linked list of different CDS's that have the same
- // body but different types. For example, 0,0,0,1 could be a 4 element array
- // of i8, or a 1-element array of i32. They'll both end up in the same
- /// StringMap bucket, linked up by their Next pointers. Walk the list.
- ConstantDataSequential **Entry = &Slot.second;
- for (ConstantDataSequential *Node = *Entry; Node;
- Entry = &Node->Next, Node = *Entry)
- if (Node->getType() == Ty)
- return Node;
- // Okay, we didn't get a hit. Create a node of the right class, link it in,
- // and return it.
- if (isa<ArrayType>(Ty))
- return *Entry = new ConstantDataArray(Ty, Slot.first().data());
- assert(isa<VectorType>(Ty));
- return *Entry = new ConstantDataVector(Ty, Slot.first().data());
- }
- void ConstantDataSequential::destroyConstantImpl() {
- // Remove the constant from the StringMap.
- StringMap<ConstantDataSequential*> &CDSConstants =
- getType()->getContext().pImpl->CDSConstants;
- StringMap<ConstantDataSequential*>::iterator Slot =
- CDSConstants.find(getRawDataValues());
- assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
- ConstantDataSequential **Entry = &Slot->getValue();
- // Remove the entry from the hash table.
- if (!(*Entry)->Next) {
- // If there is only one value in the bucket (common case) it must be this
- // entry, and removing the entry should remove the bucket completely.
- assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
- getContext().pImpl->CDSConstants.erase(Slot);
- } else {
- // Otherwise, there are multiple entries linked off the bucket, unlink the
- // node we care about but keep the bucket around.
- for (ConstantDataSequential *Node = *Entry; ;
- Entry = &Node->Next, Node = *Entry) {
- assert(Node && "Didn't find entry in its uniquing hash table!");
- // If we found our entry, unlink it from the list and we're done.
- if (Node == this) {
- *Entry = Node->Next;
- break;
- }
- }
- }
- // If we were part of a list, make sure that we don't delete the list that is
- // still owned by the uniquing map.
- Next = nullptr;
- }
- /// getFP() constructors - Return a constant with array type with an element
- /// count and element type of float with precision matching the number of
- /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
- /// double for 64bits) Note that this can return a ConstantAggregateZero
- /// object.
- Constant *ConstantDataArray::getFP(LLVMContext &Context,
- ArrayRef<uint16_t> Elts) {
- Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 2), Ty);
- }
- Constant *ConstantDataArray::getFP(LLVMContext &Context,
- ArrayRef<uint32_t> Elts) {
- Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 4), Ty);
- }
- Constant *ConstantDataArray::getFP(LLVMContext &Context,
- ArrayRef<uint64_t> Elts) {
- Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 8), Ty);
- }
- Constant *ConstantDataArray::getString(LLVMContext &Context,
- StringRef Str, bool AddNull) {
- if (!AddNull) {
- const uint8_t *Data = Str.bytes_begin();
- return get(Context, makeArrayRef(Data, Str.size()));
- }
- SmallVector<uint8_t, 64> ElementVals;
- ElementVals.append(Str.begin(), Str.end());
- ElementVals.push_back(0);
- return get(Context, ElementVals);
- }
- /// get() constructors - Return a constant with vector type with an element
- /// count and element type matching the ArrayRef passed in. Note that this
- /// can return a ConstantAggregateZero object.
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
- Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 1), Ty);
- }
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
- Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 2), Ty);
- }
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
- Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 4), Ty);
- }
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
- Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 8), Ty);
- }
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
- Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 4), Ty);
- }
- Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
- Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 8), Ty);
- }
- /// getFP() constructors - Return a constant with vector type with an element
- /// count and element type of float with the precision matching the number of
- /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
- /// double for 64bits) Note that this can return a ConstantAggregateZero
- /// object.
- Constant *ConstantDataVector::getFP(LLVMContext &Context,
- ArrayRef<uint16_t> Elts) {
- Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 2), Ty);
- }
- Constant *ConstantDataVector::getFP(LLVMContext &Context,
- ArrayRef<uint32_t> Elts) {
- Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 4), Ty);
- }
- Constant *ConstantDataVector::getFP(LLVMContext &Context,
- ArrayRef<uint64_t> Elts) {
- Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
- const char *Data = reinterpret_cast<const char *>(Elts.data());
- return getImpl(StringRef(Data, Elts.size() * 8), Ty);
- }
- Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
- assert(isElementTypeCompatible(V->getType()) &&
- "Element type not compatible with ConstantData");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- if (CI->getType()->isIntegerTy(8)) {
- SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
- return get(V->getContext(), Elts);
- }
- if (CI->getType()->isIntegerTy(16)) {
- SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
- return get(V->getContext(), Elts);
- }
- if (CI->getType()->isIntegerTy(32)) {
- SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
- return get(V->getContext(), Elts);
- }
- assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
- SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
- return get(V->getContext(), Elts);
- }
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType()->isHalfTy()) {
- SmallVector<uint16_t, 16> Elts(
- NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
- return getFP(V->getContext(), Elts);
- }
- if (CFP->getType()->isFloatTy()) {
- SmallVector<uint32_t, 16> Elts(
- NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
- return getFP(V->getContext(), Elts);
- }
- if (CFP->getType()->isDoubleTy()) {
- SmallVector<uint64_t, 16> Elts(
- NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
- return getFP(V->getContext(), Elts);
- }
- }
- return ConstantVector::getSplat(NumElts, V);
- }
- uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
- assert(isa<IntegerType>(getElementType()) &&
- "Accessor can only be used when element is an integer");
- const char *EltPtr = getElementPointer(Elt);
- // The data is stored in host byte order, make sure to cast back to the right
- // type to load with the right endianness.
- switch (getElementType()->getIntegerBitWidth()) {
- default: llvm_unreachable("Invalid bitwidth for CDS");
- case 8:
- return *reinterpret_cast<const uint8_t *>(EltPtr);
- case 16:
- return *reinterpret_cast<const uint16_t *>(EltPtr);
- case 32:
- return *reinterpret_cast<const uint32_t *>(EltPtr);
- case 64:
- return *reinterpret_cast<const uint64_t *>(EltPtr);
- }
- }
- APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
- assert(isa<IntegerType>(getElementType()) &&
- "Accessor can only be used when element is an integer");
- const char *EltPtr = getElementPointer(Elt);
- // The data is stored in host byte order, make sure to cast back to the right
- // type to load with the right endianness.
- switch (getElementType()->getIntegerBitWidth()) {
- default: llvm_unreachable("Invalid bitwidth for CDS");
- case 8: {
- auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
- return APInt(8, EltVal);
- }
- case 16: {
- auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
- return APInt(16, EltVal);
- }
- case 32: {
- auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
- return APInt(32, EltVal);
- }
- case 64: {
- auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
- return APInt(64, EltVal);
- }
- }
- }
- APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
- const char *EltPtr = getElementPointer(Elt);
- switch (getElementType()->getTypeID()) {
- default:
- llvm_unreachable("Accessor can only be used when element is float/double!");
- case Type::HalfTyID: {
- auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
- return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
- }
- case Type::FloatTyID: {
- auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
- return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
- }
- case Type::DoubleTyID: {
- auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
- return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
- }
- }
- }
- float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
- assert(getElementType()->isFloatTy() &&
- "Accessor can only be used when element is a 'float'");
- return *reinterpret_cast<const float *>(getElementPointer(Elt));
- }
- double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
- assert(getElementType()->isDoubleTy() &&
- "Accessor can only be used when element is a 'float'");
- return *reinterpret_cast<const double *>(getElementPointer(Elt));
- }
- Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
- if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
- getElementType()->isDoubleTy())
- return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
- return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
- }
- bool ConstantDataSequential::isString(unsigned CharSize) const {
- return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
- }
- bool ConstantDataSequential::isCString() const {
- if (!isString())
- return false;
- StringRef Str = getAsString();
- // The last value must be nul.
- if (Str.back() != 0) return false;
- // Other elements must be non-nul.
- return Str.drop_back().find(0) == StringRef::npos;
- }
- bool ConstantDataVector::isSplat() const {
- const char *Base = getRawDataValues().data();
- // Compare elements 1+ to the 0'th element.
- unsigned EltSize = getElementByteSize();
- for (unsigned i = 1, e = getNumElements(); i != e; ++i)
- if (memcmp(Base, Base+i*EltSize, EltSize))
- return false;
- return true;
- }
- Constant *ConstantDataVector::getSplatValue() const {
- // If they're all the same, return the 0th one as a representative.
- return isSplat() ? getElementAsConstant(0) : nullptr;
- }
- //===----------------------------------------------------------------------===//
- // handleOperandChange implementations
- /// Update this constant array to change uses of
- /// 'From' to be uses of 'To'. This must update the uniquing data structures
- /// etc.
- ///
- /// Note that we intentionally replace all uses of From with To here. Consider
- /// a large array that uses 'From' 1000 times. By handling this case all here,
- /// ConstantArray::handleOperandChange is only invoked once, and that
- /// single invocation handles all 1000 uses. Handling them one at a time would
- /// work, but would be really slow because it would have to unique each updated
- /// array instance.
- ///
- void Constant::handleOperandChange(Value *From, Value *To) {
- Value *Replacement = nullptr;
- switch (getValueID()) {
- default:
- llvm_unreachable("Not a constant!");
- #define HANDLE_CONSTANT(Name) \
- case Value::Name##Val: \
- Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
- break;
- #include "llvm/IR/Value.def"
- }
- // If handleOperandChangeImpl returned nullptr, then it handled
- // replacing itself and we don't want to delete or replace anything else here.
- if (!Replacement)
- return;
- // I do need to replace this with an existing value.
- assert(Replacement != this && "I didn't contain From!");
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
- // Delete the old constant!
- destroyConstant();
- }
- Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
- assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
- Constant *ToC = cast<Constant>(To);
- SmallVector<Constant*, 8> Values;
- Values.reserve(getNumOperands()); // Build replacement array.
- // Fill values with the modified operands of the constant array. Also,
- // compute whether this turns into an all-zeros array.
- unsigned NumUpdated = 0;
- // Keep track of whether all the values in the array are "ToC".
- bool AllSame = true;
- Use *OperandList = getOperandList();
- unsigned OperandNo = 0;
- for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
- Constant *Val = cast<Constant>(O->get());
- if (Val == From) {
- OperandNo = (O - OperandList);
- Val = ToC;
- ++NumUpdated;
- }
- Values.push_back(Val);
- AllSame &= Val == ToC;
- }
- if (AllSame && ToC->isNullValue())
- return ConstantAggregateZero::get(getType());
- if (AllSame && isa<UndefValue>(ToC))
- return UndefValue::get(getType());
- // Check for any other type of constant-folding.
- if (Constant *C = getImpl(getType(), Values))
- return C;
- // Update to the new value.
- return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
- Values, this, From, ToC, NumUpdated, OperandNo);
- }
- Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
- assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
- Constant *ToC = cast<Constant>(To);
- Use *OperandList = getOperandList();
- SmallVector<Constant*, 8> Values;
- Values.reserve(getNumOperands()); // Build replacement struct.
- // Fill values with the modified operands of the constant struct. Also,
- // compute whether this turns into an all-zeros struct.
- unsigned NumUpdated = 0;
- bool AllSame = true;
- unsigned OperandNo = 0;
- for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
- Constant *Val = cast<Constant>(O->get());
- if (Val == From) {
- OperandNo = (O - OperandList);
- Val = ToC;
- ++NumUpdated;
- }
- Values.push_back(Val);
- AllSame &= Val == ToC;
- }
- if (AllSame && ToC->isNullValue())
- return ConstantAggregateZero::get(getType());
- if (AllSame && isa<UndefValue>(ToC))
- return UndefValue::get(getType());
- // Update to the new value.
- return getContext().pImpl->StructConstants.replaceOperandsInPlace(
- Values, this, From, ToC, NumUpdated, OperandNo);
- }
- Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
- assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
- Constant *ToC = cast<Constant>(To);
- SmallVector<Constant*, 8> Values;
- Values.reserve(getNumOperands()); // Build replacement array...
- unsigned NumUpdated = 0;
- unsigned OperandNo = 0;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- Constant *Val = getOperand(i);
- if (Val == From) {
- OperandNo = i;
- ++NumUpdated;
- Val = ToC;
- }
- Values.push_back(Val);
- }
- if (Constant *C = getImpl(Values))
- return C;
- // Update to the new value.
- return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
- Values, this, From, ToC, NumUpdated, OperandNo);
- }
- Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
- assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
- Constant *To = cast<Constant>(ToV);
- SmallVector<Constant*, 8> NewOps;
- unsigned NumUpdated = 0;
- unsigned OperandNo = 0;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- Constant *Op = getOperand(i);
- if (Op == From) {
- OperandNo = i;
- ++NumUpdated;
- Op = To;
- }
- NewOps.push_back(Op);
- }
- assert(NumUpdated && "I didn't contain From!");
- if (Constant *C = getWithOperands(NewOps, getType(), true))
- return C;
- // Update to the new value.
- return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
- NewOps, this, From, To, NumUpdated, OperandNo);
- }
- Instruction *ConstantExpr::getAsInstruction() {
- SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
- ArrayRef<Value*> Ops(ValueOperands);
- switch (getOpcode()) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- return CastInst::Create((Instruction::CastOps)getOpcode(),
- Ops[0], getType());
- case Instruction::Select:
- return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
- case Instruction::InsertElement:
- return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return ExtractElementInst::Create(Ops[0], Ops[1]);
- case Instruction::InsertValue:
- return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
- case Instruction::ExtractValue:
- return ExtractValueInst::Create(Ops[0], getIndices());
- case Instruction::ShuffleVector:
- return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
- case Instruction::GetElementPtr: {
- const auto *GO = cast<GEPOperator>(this);
- if (GO->isInBounds())
- return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
- Ops[0], Ops.slice(1));
- return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
- Ops.slice(1));
- }
- case Instruction::ICmp:
- case Instruction::FCmp:
- return CmpInst::Create((Instruction::OtherOps)getOpcode(),
- (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
- case Instruction::FNeg:
- return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
- default:
- assert(getNumOperands() == 2 && "Must be binary operator?");
- BinaryOperator *BO =
- BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
- Ops[0], Ops[1]);
- if (isa<OverflowingBinaryOperator>(BO)) {
- BO->setHasNoUnsignedWrap(SubclassOptionalData &
- OverflowingBinaryOperator::NoUnsignedWrap);
- BO->setHasNoSignedWrap(SubclassOptionalData &
- OverflowingBinaryOperator::NoSignedWrap);
- }
- if (isa<PossiblyExactOperator>(BO))
- BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
- return BO;
- }
- }
|