12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259 |
- //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the TargetInstrInfo class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCInstrItineraries.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include <cctype>
- using namespace llvm;
- static cl::opt<bool> DisableHazardRecognizer(
- "disable-sched-hazard", cl::Hidden, cl::init(false),
- cl::desc("Disable hazard detection during preRA scheduling"));
- TargetInstrInfo::~TargetInstrInfo() {
- }
- const TargetRegisterClass*
- TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
- const TargetRegisterInfo *TRI,
- const MachineFunction &MF) const {
- if (OpNum >= MCID.getNumOperands())
- return nullptr;
- short RegClass = MCID.OpInfo[OpNum].RegClass;
- if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
- return TRI->getPointerRegClass(MF, RegClass);
- // Instructions like INSERT_SUBREG do not have fixed register classes.
- if (RegClass < 0)
- return nullptr;
- // Otherwise just look it up normally.
- return TRI->getRegClass(RegClass);
- }
- /// insertNoop - Insert a noop into the instruction stream at the specified
- /// point.
- void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const {
- llvm_unreachable("Target didn't implement insertNoop!");
- }
- static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
- return strncmp(Str, MAI.getCommentString().data(),
- MAI.getCommentString().size()) == 0;
- }
- /// Measure the specified inline asm to determine an approximation of its
- /// length.
- /// Comments (which run till the next SeparatorString or newline) do not
- /// count as an instruction.
- /// Any other non-whitespace text is considered an instruction, with
- /// multiple instructions separated by SeparatorString or newlines.
- /// Variable-length instructions are not handled here; this function
- /// may be overloaded in the target code to do that.
- /// We implement a special case of the .space directive which takes only a
- /// single integer argument in base 10 that is the size in bytes. This is a
- /// restricted form of the GAS directive in that we only interpret
- /// simple--i.e. not a logical or arithmetic expression--size values without
- /// the optional fill value. This is primarily used for creating arbitrary
- /// sized inline asm blocks for testing purposes.
- unsigned TargetInstrInfo::getInlineAsmLength(
- const char *Str,
- const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
- // Count the number of instructions in the asm.
- bool AtInsnStart = true;
- unsigned Length = 0;
- const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
- for (; *Str; ++Str) {
- if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
- strlen(MAI.getSeparatorString())) == 0) {
- AtInsnStart = true;
- } else if (isAsmComment(Str, MAI)) {
- // Stop counting as an instruction after a comment until the next
- // separator.
- AtInsnStart = false;
- }
- if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
- unsigned AddLength = MaxInstLength;
- if (strncmp(Str, ".space", 6) == 0) {
- char *EStr;
- int SpaceSize;
- SpaceSize = strtol(Str + 6, &EStr, 10);
- SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
- while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
- ++EStr;
- if (*EStr == '\0' || *EStr == '\n' ||
- isAsmComment(EStr, MAI)) // Successfully parsed .space argument
- AddLength = SpaceSize;
- }
- Length += AddLength;
- AtInsnStart = false;
- }
- }
- return Length;
- }
- /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
- /// after it, replacing it with an unconditional branch to NewDest.
- void
- TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const {
- MachineBasicBlock *MBB = Tail->getParent();
- // Remove all the old successors of MBB from the CFG.
- while (!MBB->succ_empty())
- MBB->removeSuccessor(MBB->succ_begin());
- // Save off the debug loc before erasing the instruction.
- DebugLoc DL = Tail->getDebugLoc();
- // Update call site info and remove all the dead instructions
- // from the end of MBB.
- while (Tail != MBB->end()) {
- auto MI = Tail++;
- if (MI->isCall())
- MBB->getParent()->updateCallSiteInfo(&*MI);
- MBB->erase(MI);
- }
- // If MBB isn't immediately before MBB, insert a branch to it.
- if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
- insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
- MBB->addSuccessor(NewDest);
- }
- MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
- bool NewMI, unsigned Idx1,
- unsigned Idx2) const {
- const MCInstrDesc &MCID = MI.getDesc();
- bool HasDef = MCID.getNumDefs();
- if (HasDef && !MI.getOperand(0).isReg())
- // No idea how to commute this instruction. Target should implement its own.
- return nullptr;
- unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
- unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
- assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
- CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
- "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
- assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
- "This only knows how to commute register operands so far");
- Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
- Register Reg1 = MI.getOperand(Idx1).getReg();
- Register Reg2 = MI.getOperand(Idx2).getReg();
- unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
- unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
- unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
- bool Reg1IsKill = MI.getOperand(Idx1).isKill();
- bool Reg2IsKill = MI.getOperand(Idx2).isKill();
- bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
- bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
- bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
- bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
- // Avoid calling isRenamable for virtual registers since we assert that
- // renamable property is only queried/set for physical registers.
- bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
- ? MI.getOperand(Idx1).isRenamable()
- : false;
- bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
- ? MI.getOperand(Idx2).isRenamable()
- : false;
- // If destination is tied to either of the commuted source register, then
- // it must be updated.
- if (HasDef && Reg0 == Reg1 &&
- MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
- Reg2IsKill = false;
- Reg0 = Reg2;
- SubReg0 = SubReg2;
- } else if (HasDef && Reg0 == Reg2 &&
- MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
- Reg1IsKill = false;
- Reg0 = Reg1;
- SubReg0 = SubReg1;
- }
- MachineInstr *CommutedMI = nullptr;
- if (NewMI) {
- // Create a new instruction.
- MachineFunction &MF = *MI.getMF();
- CommutedMI = MF.CloneMachineInstr(&MI);
- } else {
- CommutedMI = &MI;
- }
- if (HasDef) {
- CommutedMI->getOperand(0).setReg(Reg0);
- CommutedMI->getOperand(0).setSubReg(SubReg0);
- }
- CommutedMI->getOperand(Idx2).setReg(Reg1);
- CommutedMI->getOperand(Idx1).setReg(Reg2);
- CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
- CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
- CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
- CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
- CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
- CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
- CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
- CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
- // Avoid calling setIsRenamable for virtual registers since we assert that
- // renamable property is only queried/set for physical registers.
- if (Register::isPhysicalRegister(Reg1))
- CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
- if (Register::isPhysicalRegister(Reg2))
- CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
- return CommutedMI;
- }
- MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
- unsigned OpIdx1,
- unsigned OpIdx2) const {
- // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
- // any commutable operand, which is done in findCommutedOpIndices() method
- // called below.
- if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
- !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
- assert(MI.isCommutable() &&
- "Precondition violation: MI must be commutable.");
- return nullptr;
- }
- return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
- }
- bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
- unsigned &ResultIdx2,
- unsigned CommutableOpIdx1,
- unsigned CommutableOpIdx2) {
- if (ResultIdx1 == CommuteAnyOperandIndex &&
- ResultIdx2 == CommuteAnyOperandIndex) {
- ResultIdx1 = CommutableOpIdx1;
- ResultIdx2 = CommutableOpIdx2;
- } else if (ResultIdx1 == CommuteAnyOperandIndex) {
- if (ResultIdx2 == CommutableOpIdx1)
- ResultIdx1 = CommutableOpIdx2;
- else if (ResultIdx2 == CommutableOpIdx2)
- ResultIdx1 = CommutableOpIdx1;
- else
- return false;
- } else if (ResultIdx2 == CommuteAnyOperandIndex) {
- if (ResultIdx1 == CommutableOpIdx1)
- ResultIdx2 = CommutableOpIdx2;
- else if (ResultIdx1 == CommutableOpIdx2)
- ResultIdx2 = CommutableOpIdx1;
- else
- return false;
- } else
- // Check that the result operand indices match the given commutable
- // operand indices.
- return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
- (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
- return true;
- }
- bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const {
- assert(!MI.isBundle() &&
- "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
- const MCInstrDesc &MCID = MI.getDesc();
- if (!MCID.isCommutable())
- return false;
- // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
- // is not true, then the target must implement this.
- unsigned CommutableOpIdx1 = MCID.getNumDefs();
- unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
- if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
- CommutableOpIdx1, CommutableOpIdx2))
- return false;
- if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
- // No idea.
- return false;
- return true;
- }
- bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
- if (!MI.isTerminator()) return false;
- // Conditional branch is a special case.
- if (MI.isBranch() && !MI.isBarrier())
- return true;
- if (!MI.isPredicable())
- return true;
- return !isPredicated(MI);
- }
- bool TargetInstrInfo::PredicateInstruction(
- MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
- bool MadeChange = false;
- assert(!MI.isBundle() &&
- "TargetInstrInfo::PredicateInstruction() can't handle bundles");
- const MCInstrDesc &MCID = MI.getDesc();
- if (!MI.isPredicable())
- return false;
- for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
- if (MCID.OpInfo[i].isPredicate()) {
- MachineOperand &MO = MI.getOperand(i);
- if (MO.isReg()) {
- MO.setReg(Pred[j].getReg());
- MadeChange = true;
- } else if (MO.isImm()) {
- MO.setImm(Pred[j].getImm());
- MadeChange = true;
- } else if (MO.isMBB()) {
- MO.setMBB(Pred[j].getMBB());
- MadeChange = true;
- }
- ++j;
- }
- }
- return MadeChange;
- }
- bool TargetInstrInfo::hasLoadFromStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
- size_t StartSize = Accesses.size();
- for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
- oe = MI.memoperands_end();
- o != oe; ++o) {
- if ((*o)->isLoad() &&
- dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
- Accesses.push_back(*o);
- }
- return Accesses.size() != StartSize;
- }
- bool TargetInstrInfo::hasStoreToStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
- size_t StartSize = Accesses.size();
- for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
- oe = MI.memoperands_end();
- o != oe; ++o) {
- if ((*o)->isStore() &&
- dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
- Accesses.push_back(*o);
- }
- return Accesses.size() != StartSize;
- }
- bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
- unsigned SubIdx, unsigned &Size,
- unsigned &Offset,
- const MachineFunction &MF) const {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!SubIdx) {
- Size = TRI->getSpillSize(*RC);
- Offset = 0;
- return true;
- }
- unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
- // Convert bit size to byte size.
- if (BitSize % 8)
- return false;
- int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
- if (BitOffset < 0 || BitOffset % 8)
- return false;
- Size = BitSize /= 8;
- Offset = (unsigned)BitOffset / 8;
- assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
- if (!MF.getDataLayout().isLittleEndian()) {
- Offset = TRI->getSpillSize(*RC) - (Offset + Size);
- }
- return true;
- }
- void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg, unsigned SubIdx,
- const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const {
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
- MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
- MBB.insert(I, MI);
- }
- bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
- const MachineInstr &MI1,
- const MachineRegisterInfo *MRI) const {
- return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
- }
- MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
- assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
- MachineFunction &MF = *MBB.getParent();
- return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
- }
- // If the COPY instruction in MI can be folded to a stack operation, return
- // the register class to use.
- static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
- unsigned FoldIdx) {
- assert(MI.isCopy() && "MI must be a COPY instruction");
- if (MI.getNumOperands() != 2)
- return nullptr;
- assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
- const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
- const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
- if (FoldOp.getSubReg() || LiveOp.getSubReg())
- return nullptr;
- Register FoldReg = FoldOp.getReg();
- Register LiveReg = LiveOp.getReg();
- assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
- const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
- if (Register::isPhysicalRegister(LiveOp.getReg()))
- return RC->contains(LiveOp.getReg()) ? RC : nullptr;
- if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
- return RC;
- // FIXME: Allow folding when register classes are memory compatible.
- return nullptr;
- }
- void TargetInstrInfo::getNoop(MCInst &NopInst) const {
- llvm_unreachable("Not implemented");
- }
- static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops, int FrameIndex,
- const TargetInstrInfo &TII) {
- unsigned StartIdx = 0;
- switch (MI.getOpcode()) {
- case TargetOpcode::STACKMAP: {
- // StackMapLiveValues are foldable
- StartIdx = StackMapOpers(&MI).getVarIdx();
- break;
- }
- case TargetOpcode::PATCHPOINT: {
- // For PatchPoint, the call args are not foldable (even if reported in the
- // stackmap e.g. via anyregcc).
- StartIdx = PatchPointOpers(&MI).getVarIdx();
- break;
- }
- case TargetOpcode::STATEPOINT: {
- // For statepoints, fold deopt and gc arguments, but not call arguments.
- StartIdx = StatepointOpers(&MI).getVarIdx();
- break;
- }
- default:
- llvm_unreachable("unexpected stackmap opcode");
- }
- // Return false if any operands requested for folding are not foldable (not
- // part of the stackmap's live values).
- for (unsigned Op : Ops) {
- if (Op < StartIdx)
- return nullptr;
- }
- MachineInstr *NewMI =
- MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
- MachineInstrBuilder MIB(MF, NewMI);
- // No need to fold return, the meta data, and function arguments
- for (unsigned i = 0; i < StartIdx; ++i)
- MIB.add(MI.getOperand(i));
- for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (is_contained(Ops, i)) {
- unsigned SpillSize;
- unsigned SpillOffset;
- // Compute the spill slot size and offset.
- const TargetRegisterClass *RC =
- MF.getRegInfo().getRegClass(MO.getReg());
- bool Valid =
- TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
- if (!Valid)
- report_fatal_error("cannot spill patchpoint subregister operand");
- MIB.addImm(StackMaps::IndirectMemRefOp);
- MIB.addImm(SpillSize);
- MIB.addFrameIndex(FrameIndex);
- MIB.addImm(SpillOffset);
- }
- else
- MIB.add(MO);
- }
- return NewMI;
- }
- MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
- ArrayRef<unsigned> Ops, int FI,
- LiveIntervals *LIS,
- VirtRegMap *VRM) const {
- auto Flags = MachineMemOperand::MONone;
- for (unsigned OpIdx : Ops)
- Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
- : MachineMemOperand::MOLoad;
- MachineBasicBlock *MBB = MI.getParent();
- assert(MBB && "foldMemoryOperand needs an inserted instruction");
- MachineFunction &MF = *MBB->getParent();
- // If we're not folding a load into a subreg, the size of the load is the
- // size of the spill slot. But if we are, we need to figure out what the
- // actual load size is.
- int64_t MemSize = 0;
- const MachineFrameInfo &MFI = MF.getFrameInfo();
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (Flags & MachineMemOperand::MOStore) {
- MemSize = MFI.getObjectSize(FI);
- } else {
- for (unsigned OpIdx : Ops) {
- int64_t OpSize = MFI.getObjectSize(FI);
- if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
- unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
- if (SubRegSize > 0 && !(SubRegSize % 8))
- OpSize = SubRegSize / 8;
- }
- MemSize = std::max(MemSize, OpSize);
- }
- }
- assert(MemSize && "Did not expect a zero-sized stack slot");
- MachineInstr *NewMI = nullptr;
- if (MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STATEPOINT) {
- // Fold stackmap/patchpoint.
- NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
- if (NewMI)
- MBB->insert(MI, NewMI);
- } else {
- // Ask the target to do the actual folding.
- NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
- }
- if (NewMI) {
- NewMI->setMemRefs(MF, MI.memoperands());
- // Add a memory operand, foldMemoryOperandImpl doesn't do that.
- assert((!(Flags & MachineMemOperand::MOStore) ||
- NewMI->mayStore()) &&
- "Folded a def to a non-store!");
- assert((!(Flags & MachineMemOperand::MOLoad) ||
- NewMI->mayLoad()) &&
- "Folded a use to a non-load!");
- assert(MFI.getObjectOffset(FI) != -1);
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
- MFI.getObjectAlignment(FI));
- NewMI->addMemOperand(MF, MMO);
- return NewMI;
- }
- // Straight COPY may fold as load/store.
- if (!MI.isCopy() || Ops.size() != 1)
- return nullptr;
- const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
- if (!RC)
- return nullptr;
- const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
- MachineBasicBlock::iterator Pos = MI;
- if (Flags == MachineMemOperand::MOStore)
- storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
- else
- loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
- return &*--Pos;
- }
- MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineInstr &LoadMI,
- LiveIntervals *LIS) const {
- assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
- #ifndef NDEBUG
- for (unsigned OpIdx : Ops)
- assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
- #endif
- MachineBasicBlock &MBB = *MI.getParent();
- MachineFunction &MF = *MBB.getParent();
- // Ask the target to do the actual folding.
- MachineInstr *NewMI = nullptr;
- int FrameIndex = 0;
- if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
- MI.getOpcode() == TargetOpcode::PATCHPOINT ||
- MI.getOpcode() == TargetOpcode::STATEPOINT) &&
- isLoadFromStackSlot(LoadMI, FrameIndex)) {
- // Fold stackmap/patchpoint.
- NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
- if (NewMI)
- NewMI = &*MBB.insert(MI, NewMI);
- } else {
- // Ask the target to do the actual folding.
- NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
- }
- if (!NewMI)
- return nullptr;
- // Copy the memoperands from the load to the folded instruction.
- if (MI.memoperands_empty()) {
- NewMI->setMemRefs(MF, LoadMI.memoperands());
- } else {
- // Handle the rare case of folding multiple loads.
- NewMI->setMemRefs(MF, MI.memoperands());
- for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
- E = LoadMI.memoperands_end();
- I != E; ++I) {
- NewMI->addMemOperand(MF, *I);
- }
- }
- return NewMI;
- }
- bool TargetInstrInfo::hasReassociableOperands(
- const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
- const MachineOperand &Op1 = Inst.getOperand(1);
- const MachineOperand &Op2 = Inst.getOperand(2);
- const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
- // We need virtual register definitions for the operands that we will
- // reassociate.
- MachineInstr *MI1 = nullptr;
- MachineInstr *MI2 = nullptr;
- if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
- MI1 = MRI.getUniqueVRegDef(Op1.getReg());
- if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
- MI2 = MRI.getUniqueVRegDef(Op2.getReg());
- // And they need to be in the trace (otherwise, they won't have a depth).
- return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
- }
- bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
- bool &Commuted) const {
- const MachineBasicBlock *MBB = Inst.getParent();
- const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
- MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
- MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
- unsigned AssocOpcode = Inst.getOpcode();
- // If only one operand has the same opcode and it's the second source operand,
- // the operands must be commuted.
- Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
- if (Commuted)
- std::swap(MI1, MI2);
- // 1. The previous instruction must be the same type as Inst.
- // 2. The previous instruction must have virtual register definitions for its
- // operands in the same basic block as Inst.
- // 3. The previous instruction's result must only be used by Inst.
- return MI1->getOpcode() == AssocOpcode &&
- hasReassociableOperands(*MI1, MBB) &&
- MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
- }
- // 1. The operation must be associative and commutative.
- // 2. The instruction must have virtual register definitions for its
- // operands in the same basic block.
- // 3. The instruction must have a reassociable sibling.
- bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
- bool &Commuted) const {
- return isAssociativeAndCommutative(Inst) &&
- hasReassociableOperands(Inst, Inst.getParent()) &&
- hasReassociableSibling(Inst, Commuted);
- }
- // The concept of the reassociation pass is that these operations can benefit
- // from this kind of transformation:
- //
- // A = ? op ?
- // B = A op X (Prev)
- // C = B op Y (Root)
- // -->
- // A = ? op ?
- // B = X op Y
- // C = A op B
- //
- // breaking the dependency between A and B, allowing them to be executed in
- // parallel (or back-to-back in a pipeline) instead of depending on each other.
- // FIXME: This has the potential to be expensive (compile time) while not
- // improving the code at all. Some ways to limit the overhead:
- // 1. Track successful transforms; bail out if hit rate gets too low.
- // 2. Only enable at -O3 or some other non-default optimization level.
- // 3. Pre-screen pattern candidates here: if an operand of the previous
- // instruction is known to not increase the critical path, then don't match
- // that pattern.
- bool TargetInstrInfo::getMachineCombinerPatterns(
- MachineInstr &Root,
- SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
- bool Commute;
- if (isReassociationCandidate(Root, Commute)) {
- // We found a sequence of instructions that may be suitable for a
- // reassociation of operands to increase ILP. Specify each commutation
- // possibility for the Prev instruction in the sequence and let the
- // machine combiner decide if changing the operands is worthwhile.
- if (Commute) {
- Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
- Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
- } else {
- Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
- Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
- }
- return true;
- }
- return false;
- }
- /// Return true when a code sequence can improve loop throughput.
- bool
- TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
- return false;
- }
- /// Attempt the reassociation transformation to reduce critical path length.
- /// See the above comments before getMachineCombinerPatterns().
- void TargetInstrInfo::reassociateOps(
- MachineInstr &Root, MachineInstr &Prev,
- MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
- MachineFunction *MF = Root.getMF();
- MachineRegisterInfo &MRI = MF->getRegInfo();
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
- const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
- // This array encodes the operand index for each parameter because the
- // operands may be commuted. Each row corresponds to a pattern value,
- // and each column specifies the index of A, B, X, Y.
- unsigned OpIdx[4][4] = {
- { 1, 1, 2, 2 },
- { 1, 2, 2, 1 },
- { 2, 1, 1, 2 },
- { 2, 2, 1, 1 }
- };
- int Row;
- switch (Pattern) {
- case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
- case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
- case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
- case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
- default: llvm_unreachable("unexpected MachineCombinerPattern");
- }
- MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
- MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
- MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
- MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
- MachineOperand &OpC = Root.getOperand(0);
- Register RegA = OpA.getReg();
- Register RegB = OpB.getReg();
- Register RegX = OpX.getReg();
- Register RegY = OpY.getReg();
- Register RegC = OpC.getReg();
- if (Register::isVirtualRegister(RegA))
- MRI.constrainRegClass(RegA, RC);
- if (Register::isVirtualRegister(RegB))
- MRI.constrainRegClass(RegB, RC);
- if (Register::isVirtualRegister(RegX))
- MRI.constrainRegClass(RegX, RC);
- if (Register::isVirtualRegister(RegY))
- MRI.constrainRegClass(RegY, RC);
- if (Register::isVirtualRegister(RegC))
- MRI.constrainRegClass(RegC, RC);
- // Create a new virtual register for the result of (X op Y) instead of
- // recycling RegB because the MachineCombiner's computation of the critical
- // path requires a new register definition rather than an existing one.
- Register NewVR = MRI.createVirtualRegister(RC);
- InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
- unsigned Opcode = Root.getOpcode();
- bool KillA = OpA.isKill();
- bool KillX = OpX.isKill();
- bool KillY = OpY.isKill();
- // Create new instructions for insertion.
- MachineInstrBuilder MIB1 =
- BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
- .addReg(RegX, getKillRegState(KillX))
- .addReg(RegY, getKillRegState(KillY));
- MachineInstrBuilder MIB2 =
- BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
- .addReg(RegA, getKillRegState(KillA))
- .addReg(NewVR, getKillRegState(true));
- setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
- // Record new instructions for insertion and old instructions for deletion.
- InsInstrs.push_back(MIB1);
- InsInstrs.push_back(MIB2);
- DelInstrs.push_back(&Prev);
- DelInstrs.push_back(&Root);
- }
- void TargetInstrInfo::genAlternativeCodeSequence(
- MachineInstr &Root, MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
- MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
- // Select the previous instruction in the sequence based on the input pattern.
- MachineInstr *Prev = nullptr;
- switch (Pattern) {
- case MachineCombinerPattern::REASSOC_AX_BY:
- case MachineCombinerPattern::REASSOC_XA_BY:
- Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
- break;
- case MachineCombinerPattern::REASSOC_AX_YB:
- case MachineCombinerPattern::REASSOC_XA_YB:
- Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
- break;
- default:
- break;
- }
- assert(Prev && "Unknown pattern for machine combiner");
- reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
- }
- bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
- const MachineInstr &MI, AliasAnalysis *AA) const {
- const MachineFunction &MF = *MI.getMF();
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- // Remat clients assume operand 0 is the defined register.
- if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
- return false;
- Register DefReg = MI.getOperand(0).getReg();
- // A sub-register definition can only be rematerialized if the instruction
- // doesn't read the other parts of the register. Otherwise it is really a
- // read-modify-write operation on the full virtual register which cannot be
- // moved safely.
- if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
- MI.readsVirtualRegister(DefReg))
- return false;
- // A load from a fixed stack slot can be rematerialized. This may be
- // redundant with subsequent checks, but it's target-independent,
- // simple, and a common case.
- int FrameIdx = 0;
- if (isLoadFromStackSlot(MI, FrameIdx) &&
- MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
- return true;
- // Avoid instructions obviously unsafe for remat.
- if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
- MI.hasUnmodeledSideEffects())
- return false;
- // Don't remat inline asm. We have no idea how expensive it is
- // even if it's side effect free.
- if (MI.isInlineAsm())
- return false;
- // Avoid instructions which load from potentially varying memory.
- if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
- return false;
- // If any of the registers accessed are non-constant, conservatively assume
- // the instruction is not rematerializable.
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg()) continue;
- Register Reg = MO.getReg();
- if (Reg == 0)
- continue;
- // Check for a well-behaved physical register.
- if (Register::isPhysicalRegister(Reg)) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI.isConstantPhysReg(Reg))
- return false;
- } else {
- // A physreg def. We can't remat it.
- return false;
- }
- continue;
- }
- // Only allow one virtual-register def. There may be multiple defs of the
- // same virtual register, though.
- if (MO.isDef() && Reg != DefReg)
- return false;
- // Don't allow any virtual-register uses. Rematting an instruction with
- // virtual register uses would length the live ranges of the uses, which
- // is not necessarily a good idea, certainly not "trivial".
- if (MO.isUse())
- return false;
- }
- // Everything checked out.
- return true;
- }
- int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
- const MachineFunction *MF = MI.getMF();
- const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
- bool StackGrowsDown =
- TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
- unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
- unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
- if (!isFrameInstr(MI))
- return 0;
- int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
- if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
- (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
- SPAdj = -SPAdj;
- return SPAdj;
- }
- /// isSchedulingBoundary - Test if the given instruction should be
- /// considered a scheduling boundary. This primarily includes labels
- /// and terminators.
- bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const {
- // Terminators and labels can't be scheduled around.
- if (MI.isTerminator() || MI.isPosition())
- return true;
- // Don't attempt to schedule around any instruction that defines
- // a stack-oriented pointer, as it's unlikely to be profitable. This
- // saves compile time, because it doesn't require every single
- // stack slot reference to depend on the instruction that does the
- // modification.
- const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
- }
- // Provide a global flag for disabling the PreRA hazard recognizer that targets
- // may choose to honor.
- bool TargetInstrInfo::usePreRAHazardRecognizer() const {
- return !DisableHazardRecognizer;
- }
- // Default implementation of CreateTargetRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::
- CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
- const ScheduleDAG *DAG) const {
- // Dummy hazard recognizer allows all instructions to issue.
- return new ScheduleHazardRecognizer();
- }
- // Default implementation of CreateTargetMIHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::
- CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
- }
- // Default implementation of CreateTargetPostRAHazardRecognizer.
- ScheduleHazardRecognizer *TargetInstrInfo::
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
- const ScheduleDAG *DAG) const {
- return (ScheduleHazardRecognizer *)
- new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG latency interface.
- //===----------------------------------------------------------------------===//
- int
- TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const {
- if (!ItinData || ItinData->isEmpty())
- return -1;
- if (!DefNode->isMachineOpcode())
- return -1;
- unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
- if (!UseNode->isMachineOpcode())
- return ItinData->getOperandCycle(DefClass, DefIdx);
- unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *N) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- if (!N->isMachineOpcode())
- return 1;
- return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
- }
- //===----------------------------------------------------------------------===//
- // MachineInstr latency interface.
- //===----------------------------------------------------------------------===//
- unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr &MI) const {
- if (!ItinData || ItinData->isEmpty())
- return 1;
- unsigned Class = MI.getDesc().getSchedClass();
- int UOps = ItinData->Itineraries[Class].NumMicroOps;
- if (UOps >= 0)
- return UOps;
- // The # of u-ops is dynamically determined. The specific target should
- // override this function to return the right number.
- return 1;
- }
- /// Return the default expected latency for a def based on it's opcode.
- unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
- const MachineInstr &DefMI) const {
- if (DefMI.isTransient())
- return 0;
- if (DefMI.mayLoad())
- return SchedModel.LoadLatency;
- if (isHighLatencyDef(DefMI.getOpcode()))
- return SchedModel.HighLatency;
- return 1;
- }
- unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
- return 0;
- }
- unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr &MI,
- unsigned *PredCost) const {
- // Default to one cycle for no itinerary. However, an "empty" itinerary may
- // still have a MinLatency property, which getStageLatency checks.
- if (!ItinData)
- return MI.mayLoad() ? 2 : 1;
- return ItinData->getStageLatency(MI.getDesc().getSchedClass());
- }
- bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
- const MachineInstr &DefMI,
- unsigned DefIdx) const {
- const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
- if (!ItinData || ItinData->isEmpty())
- return false;
- unsigned DefClass = DefMI.getDesc().getSchedClass();
- int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
- return (DefCycle != -1 && DefCycle <= 1);
- }
- Optional<ParamLoadedValue>
- TargetInstrInfo::describeLoadedValue(const MachineInstr &MI) const {
- const MachineFunction *MF = MI.getMF();
- const MachineOperand *Op = nullptr;
- DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});;
- const MachineOperand *SrcRegOp, *DestRegOp;
- if (isCopyInstr(MI, SrcRegOp, DestRegOp)) {
- Op = SrcRegOp;
- return ParamLoadedValue(*Op, Expr);
- } else if (MI.isMoveImmediate()) {
- Op = &MI.getOperand(1);
- return ParamLoadedValue(*Op, Expr);
- } else if (MI.hasOneMemOperand()) {
- int64_t Offset;
- const auto &TRI = MF->getSubtarget().getRegisterInfo();
- const auto &TII = MF->getSubtarget().getInstrInfo();
- const MachineOperand *BaseOp;
- if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
- return None;
- Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, Offset);
- Op = BaseOp;
- return ParamLoadedValue(*Op, Expr);
- }
- return None;
- }
- /// Both DefMI and UseMI must be valid. By default, call directly to the
- /// itinerary. This may be overriden by the target.
- int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr &DefMI,
- unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const {
- unsigned DefClass = DefMI.getDesc().getSchedClass();
- unsigned UseClass = UseMI.getDesc().getSchedClass();
- return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
- }
- /// If we can determine the operand latency from the def only, without itinerary
- /// lookup, do so. Otherwise return -1.
- int TargetInstrInfo::computeDefOperandLatency(
- const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
- // Let the target hook getInstrLatency handle missing itineraries.
- if (!ItinData)
- return getInstrLatency(ItinData, DefMI);
- if(ItinData->isEmpty())
- return defaultDefLatency(ItinData->SchedModel, DefMI);
- // ...operand lookup required
- return -1;
- }
- bool TargetInstrInfo::getRegSequenceInputs(
- const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
- assert((MI.isRegSequence() ||
- MI.isRegSequenceLike()) && "Instruction do not have the proper type");
- if (!MI.isRegSequence())
- return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
- // We are looking at:
- // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
- assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
- for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
- OpIdx += 2) {
- const MachineOperand &MOReg = MI.getOperand(OpIdx);
- if (MOReg.isUndef())
- continue;
- const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
- assert(MOSubIdx.isImm() &&
- "One of the subindex of the reg_sequence is not an immediate");
- // Record Reg:SubReg, SubIdx.
- InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
- (unsigned)MOSubIdx.getImm()));
- }
- return true;
- }
- bool TargetInstrInfo::getExtractSubregInputs(
- const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const {
- assert((MI.isExtractSubreg() ||
- MI.isExtractSubregLike()) && "Instruction do not have the proper type");
- if (!MI.isExtractSubreg())
- return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
- // We are looking at:
- // Def = EXTRACT_SUBREG v0.sub1, sub0.
- assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
- const MachineOperand &MOReg = MI.getOperand(1);
- if (MOReg.isUndef())
- return false;
- const MachineOperand &MOSubIdx = MI.getOperand(2);
- assert(MOSubIdx.isImm() &&
- "The subindex of the extract_subreg is not an immediate");
- InputReg.Reg = MOReg.getReg();
- InputReg.SubReg = MOReg.getSubReg();
- InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
- return true;
- }
- bool TargetInstrInfo::getInsertSubregInputs(
- const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
- assert((MI.isInsertSubreg() ||
- MI.isInsertSubregLike()) && "Instruction do not have the proper type");
- if (!MI.isInsertSubreg())
- return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
- // We are looking at:
- // Def = INSERT_SEQUENCE v0, v1, sub0.
- assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
- const MachineOperand &MOBaseReg = MI.getOperand(1);
- const MachineOperand &MOInsertedReg = MI.getOperand(2);
- if (MOInsertedReg.isUndef())
- return false;
- const MachineOperand &MOSubIdx = MI.getOperand(3);
- assert(MOSubIdx.isImm() &&
- "One of the subindex of the reg_sequence is not an immediate");
- BaseReg.Reg = MOBaseReg.getReg();
- BaseReg.SubReg = MOBaseReg.getSubReg();
- InsertedReg.Reg = MOInsertedReg.getReg();
- InsertedReg.SubReg = MOInsertedReg.getSubReg();
- InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
- return true;
- }
|