123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299 |
- //===- StackColoring.cpp --------------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements the stack-coloring optimization that looks for
- // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
- // which represent the possible lifetime of stack slots. It attempts to
- // merge disjoint stack slots and reduce the used stack space.
- // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
- //
- // TODO: In the future we plan to improve stack coloring in the following ways:
- // 1. Allow merging multiple small slots into a single larger slot at different
- // offsets.
- // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
- // spill slots.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/LiveInterval.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/SlotIndexes.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/WinEHFuncInfo.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <limits>
- #include <memory>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "stack-coloring"
- static cl::opt<bool>
- DisableColoring("no-stack-coloring",
- cl::init(false), cl::Hidden,
- cl::desc("Disable stack coloring"));
- /// The user may write code that uses allocas outside of the declared lifetime
- /// zone. This can happen when the user returns a reference to a local
- /// data-structure. We can detect these cases and decide not to optimize the
- /// code. If this flag is enabled, we try to save the user. This option
- /// is treated as overriding LifetimeStartOnFirstUse below.
- static cl::opt<bool>
- ProtectFromEscapedAllocas("protect-from-escaped-allocas",
- cl::init(false), cl::Hidden,
- cl::desc("Do not optimize lifetime zones that "
- "are broken"));
- /// Enable enhanced dataflow scheme for lifetime analysis (treat first
- /// use of stack slot as start of slot lifetime, as opposed to looking
- /// for LIFETIME_START marker). See "Implementation notes" below for
- /// more info.
- static cl::opt<bool>
- LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
- cl::init(true), cl::Hidden,
- cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
- STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
- STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
- STATISTIC(StackSlotMerged, "Number of stack slot merged.");
- STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
- //===----------------------------------------------------------------------===//
- // StackColoring Pass
- //===----------------------------------------------------------------------===//
- //
- // Stack Coloring reduces stack usage by merging stack slots when they
- // can't be used together. For example, consider the following C program:
- //
- // void bar(char *, int);
- // void foo(bool var) {
- // A: {
- // char z[4096];
- // bar(z, 0);
- // }
- //
- // char *p;
- // char x[4096];
- // char y[4096];
- // if (var) {
- // p = x;
- // } else {
- // bar(y, 1);
- // p = y + 1024;
- // }
- // B:
- // bar(p, 2);
- // }
- //
- // Naively-compiled, this program would use 12k of stack space. However, the
- // stack slot corresponding to `z` is always destroyed before either of the
- // stack slots for `x` or `y` are used, and then `x` is only used if `var`
- // is true, while `y` is only used if `var` is false. So in no time are 2
- // of the stack slots used together, and therefore we can merge them,
- // compiling the function using only a single 4k alloca:
- //
- // void foo(bool var) { // equivalent
- // char x[4096];
- // char *p;
- // bar(x, 0);
- // if (var) {
- // p = x;
- // } else {
- // bar(x, 1);
- // p = x + 1024;
- // }
- // bar(p, 2);
- // }
- //
- // This is an important optimization if we want stack space to be under
- // control in large functions, both open-coded ones and ones created by
- // inlining.
- //
- // Implementation Notes:
- // ---------------------
- //
- // An important part of the above reasoning is that `z` can't be accessed
- // while the latter 2 calls to `bar` are running. This is justified because
- // `z`'s lifetime is over after we exit from block `A:`, so any further
- // accesses to it would be UB. The way we represent this information
- // in LLVM is by having frontends delimit blocks with `lifetime.start`
- // and `lifetime.end` intrinsics.
- //
- // The effect of these intrinsics seems to be as follows (maybe I should
- // specify this in the reference?):
- //
- // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
- // lifetime intrinsic refers to that stack slot, in which case
- // it is marked as *in-scope*.
- // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
- // the stack slot is overwritten with `undef`.
- // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
- // L4) on function exit, all stack slots are marked as *out-of-scope*.
- // L5) `lifetime.end` is a no-op when called on a slot that is already
- // *out-of-scope*.
- // L6) memory accesses to *out-of-scope* stack slots are UB.
- // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
- // are invalidated, unless the slot is "degenerate". This is used to
- // justify not marking slots as in-use until the pointer to them is
- // used, but feels a bit hacky in the presence of things like LICM. See
- // the "Degenerate Slots" section for more details.
- //
- // Now, let's ground stack coloring on these rules. We'll define a slot
- // as *in-use* at a (dynamic) point in execution if it either can be
- // written to at that point, or if it has a live and non-undef content
- // at that point.
- //
- // Obviously, slots that are never *in-use* together can be merged, and
- // in our example `foo`, the slots for `x`, `y` and `z` are never
- // in-use together (of course, sometimes slots that *are* in-use together
- // might still be mergable, but we don't care about that here).
- //
- // In this implementation, we successively merge pairs of slots that are
- // not *in-use* together. We could be smarter - for example, we could merge
- // a single large slot with 2 small slots, or we could construct the
- // interference graph and run a "smart" graph coloring algorithm, but with
- // that aside, how do we find out whether a pair of slots might be *in-use*
- // together?
- //
- // From our rules, we see that *out-of-scope* slots are never *in-use*,
- // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
- // until their address is taken. Therefore, we can approximate slot activity
- // using dataflow.
- //
- // A subtle point: naively, we might try to figure out which pairs of
- // stack-slots interfere by propagating `S in-use` through the CFG for every
- // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
- // which they are both *in-use*.
- //
- // That is sound, but overly conservative in some cases: in our (artificial)
- // example `foo`, either `x` or `y` might be in use at the label `B:`, but
- // as `x` is only in use if we came in from the `var` edge and `y` only
- // if we came from the `!var` edge, they still can't be in use together.
- // See PR32488 for an important real-life case.
- //
- // If we wanted to find all points of interference precisely, we could
- // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
- // would be precise, but requires propagating `O(n^2)` dataflow facts.
- //
- // However, we aren't interested in the *set* of points of interference
- // between 2 stack slots, only *whether* there *is* such a point. So we
- // can rely on a little trick: for `S` and `T` to be in-use together,
- // one of them needs to become in-use while the other is in-use (or
- // they might both become in use simultaneously). We can check this
- // by also keeping track of the points at which a stack slot might *start*
- // being in-use.
- //
- // Exact first use:
- // ----------------
- //
- // Consider the following motivating example:
- //
- // int foo() {
- // char b1[1024], b2[1024];
- // if (...) {
- // char b3[1024];
- // <uses of b1, b3>;
- // return x;
- // } else {
- // char b4[1024], b5[1024];
- // <uses of b2, b4, b5>;
- // return y;
- // }
- // }
- //
- // In the code above, "b3" and "b4" are declared in distinct lexical
- // scopes, meaning that it is easy to prove that they can share the
- // same stack slot. Variables "b1" and "b2" are declared in the same
- // scope, meaning that from a lexical point of view, their lifetimes
- // overlap. From a control flow pointer of view, however, the two
- // variables are accessed in disjoint regions of the CFG, thus it
- // should be possible for them to share the same stack slot. An ideal
- // stack allocation for the function above would look like:
- //
- // slot 0: b1, b2
- // slot 1: b3, b4
- // slot 2: b5
- //
- // Achieving this allocation is tricky, however, due to the way
- // lifetime markers are inserted. Here is a simplified view of the
- // control flow graph for the code above:
- //
- // +------ block 0 -------+
- // 0| LIFETIME_START b1, b2 |
- // 1| <test 'if' condition> |
- // +-----------------------+
- // ./ \.
- // +------ block 1 -------+ +------ block 2 -------+
- // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
- // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
- // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
- // +-----------------------+ +-----------------------+
- // \. /.
- // +------ block 3 -------+
- // 8| <cleanupcode> |
- // 9| LIFETIME_END b1, b2 |
- // 10| return |
- // +-----------------------+
- //
- // If we create live intervals for the variables above strictly based
- // on the lifetime markers, we'll get the set of intervals on the
- // left. If we ignore the lifetime start markers and instead treat a
- // variable's lifetime as beginning with the first reference to the
- // var, then we get the intervals on the right.
- //
- // LIFETIME_START First Use
- // b1: [0,9] [3,4] [8,9]
- // b2: [0,9] [6,9]
- // b3: [2,4] [3,4]
- // b4: [5,7] [6,7]
- // b5: [5,7] [6,7]
- //
- // For the intervals on the left, the best we can do is overlap two
- // variables (b3 and b4, for example); this gives us a stack size of
- // 4*1024 bytes, not ideal. When treating first-use as the start of a
- // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
- // byte stack (better).
- //
- // Degenerate Slots:
- // -----------------
- //
- // Relying entirely on first-use of stack slots is problematic,
- // however, due to the fact that optimizations can sometimes migrate
- // uses of a variable outside of its lifetime start/end region. Here
- // is an example:
- //
- // int bar() {
- // char b1[1024], b2[1024];
- // if (...) {
- // <uses of b2>
- // return y;
- // } else {
- // <uses of b1>
- // while (...) {
- // char b3[1024];
- // <uses of b3>
- // }
- // }
- // }
- //
- // Before optimization, the control flow graph for the code above
- // might look like the following:
- //
- // +------ block 0 -------+
- // 0| LIFETIME_START b1, b2 |
- // 1| <test 'if' condition> |
- // +-----------------------+
- // ./ \.
- // +------ block 1 -------+ +------- block 2 -------+
- // 2| <uses of b2> | 3| <uses of b1> |
- // +-----------------------+ +-----------------------+
- // | |
- // | +------- block 3 -------+ <-\.
- // | 4| <while condition> | |
- // | +-----------------------+ |
- // | / | |
- // | / +------- block 4 -------+
- // \ / 5| LIFETIME_START b3 | |
- // \ / 6| <uses of b3> | |
- // \ / 7| LIFETIME_END b3 | |
- // \ | +------------------------+ |
- // \ | \ /
- // +------ block 5 -----+ \---------------
- // 8| <cleanupcode> |
- // 9| LIFETIME_END b1, b2 |
- // 10| return |
- // +---------------------+
- //
- // During optimization, however, it can happen that an instruction
- // computing an address in "b3" (for example, a loop-invariant GEP) is
- // hoisted up out of the loop from block 4 to block 2. [Note that
- // this is not an actual load from the stack, only an instruction that
- // computes the address to be loaded]. If this happens, there is now a
- // path leading from the first use of b3 to the return instruction
- // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
- // now larger than if we were computing live intervals strictly based
- // on lifetime markers. In the example above, this lengthened lifetime
- // would mean that it would appear illegal to overlap b3 with b2.
- //
- // To deal with this such cases, the code in ::collectMarkers() below
- // tries to identify "degenerate" slots -- those slots where on a single
- // forward pass through the CFG we encounter a first reference to slot
- // K before we hit the slot K lifetime start marker. For such slots,
- // we fall back on using the lifetime start marker as the beginning of
- // the variable's lifetime. NB: with this implementation, slots can
- // appear degenerate in cases where there is unstructured control flow:
- //
- // if (q) goto mid;
- // if (x > 9) {
- // int b[100];
- // memcpy(&b[0], ...);
- // mid: b[k] = ...;
- // abc(&b);
- // }
- //
- // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
- // before visiting the memcpy block (which will contain the lifetime start
- // for "b" then it will appear that 'b' has a degenerate lifetime.
- //
- namespace {
- /// StackColoring - A machine pass for merging disjoint stack allocations,
- /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
- class StackColoring : public MachineFunctionPass {
- MachineFrameInfo *MFI;
- MachineFunction *MF;
- /// A class representing liveness information for a single basic block.
- /// Each bit in the BitVector represents the liveness property
- /// for a different stack slot.
- struct BlockLifetimeInfo {
- /// Which slots BEGINs in each basic block.
- BitVector Begin;
- /// Which slots ENDs in each basic block.
- BitVector End;
- /// Which slots are marked as LIVE_IN, coming into each basic block.
- BitVector LiveIn;
- /// Which slots are marked as LIVE_OUT, coming out of each basic block.
- BitVector LiveOut;
- };
- /// Maps active slots (per bit) for each basic block.
- using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
- LivenessMap BlockLiveness;
- /// Maps serial numbers to basic blocks.
- DenseMap<const MachineBasicBlock *, int> BasicBlocks;
- /// Maps basic blocks to a serial number.
- SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
- /// Maps slots to their use interval. Outside of this interval, slots
- /// values are either dead or `undef` and they will not be written to.
- SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
- /// Maps slots to the points where they can become in-use.
- SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
- /// VNInfo is used for the construction of LiveIntervals.
- VNInfo::Allocator VNInfoAllocator;
- /// SlotIndex analysis object.
- SlotIndexes *Indexes;
- /// The list of lifetime markers found. These markers are to be removed
- /// once the coloring is done.
- SmallVector<MachineInstr*, 8> Markers;
- /// Record the FI slots for which we have seen some sort of
- /// lifetime marker (either start or end).
- BitVector InterestingSlots;
- /// FI slots that need to be handled conservatively (for these
- /// slots lifetime-start-on-first-use is disabled).
- BitVector ConservativeSlots;
- /// Number of iterations taken during data flow analysis.
- unsigned NumIterations;
- public:
- static char ID;
- StackColoring() : MachineFunctionPass(ID) {
- initializeStackColoringPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnMachineFunction(MachineFunction &Func) override;
- private:
- /// Used in collectMarkers
- using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
- /// Debug.
- void dump() const;
- void dumpIntervals() const;
- void dumpBB(MachineBasicBlock *MBB) const;
- void dumpBV(const char *tag, const BitVector &BV) const;
- /// Removes all of the lifetime marker instructions from the function.
- /// \returns true if any markers were removed.
- bool removeAllMarkers();
- /// Scan the machine function and find all of the lifetime markers.
- /// Record the findings in the BEGIN and END vectors.
- /// \returns the number of markers found.
- unsigned collectMarkers(unsigned NumSlot);
- /// Perform the dataflow calculation and calculate the lifetime for each of
- /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
- /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
- /// in and out blocks.
- void calculateLocalLiveness();
- /// Returns TRUE if we're using the first-use-begins-lifetime method for
- /// this slot (if FALSE, then the start marker is treated as start of lifetime).
- bool applyFirstUse(int Slot) {
- if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
- return false;
- if (ConservativeSlots.test(Slot))
- return false;
- return true;
- }
- /// Examines the specified instruction and returns TRUE if the instruction
- /// represents the start or end of an interesting lifetime. The slot or slots
- /// starting or ending are added to the vector "slots" and "isStart" is set
- /// accordingly.
- /// \returns True if inst contains a lifetime start or end
- bool isLifetimeStartOrEnd(const MachineInstr &MI,
- SmallVector<int, 4> &slots,
- bool &isStart);
- /// Construct the LiveIntervals for the slots.
- void calculateLiveIntervals(unsigned NumSlots);
- /// Go over the machine function and change instructions which use stack
- /// slots to use the joint slots.
- void remapInstructions(DenseMap<int, int> &SlotRemap);
- /// The input program may contain instructions which are not inside lifetime
- /// markers. This can happen due to a bug in the compiler or due to a bug in
- /// user code (for example, returning a reference to a local variable).
- /// This procedure checks all of the instructions in the function and
- /// invalidates lifetime ranges which do not contain all of the instructions
- /// which access that frame slot.
- void removeInvalidSlotRanges();
- /// Map entries which point to other entries to their destination.
- /// A->B->C becomes A->C.
- void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
- };
- } // end anonymous namespace
- char StackColoring::ID = 0;
- char &llvm::StackColoringID = StackColoring::ID;
- INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
- "Merge disjoint stack slots", false, false)
- INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
- INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
- "Merge disjoint stack slots", false, false)
- void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<SlotIndexes>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
- const BitVector &BV) const {
- dbgs() << tag << " : { ";
- for (unsigned I = 0, E = BV.size(); I != E; ++I)
- dbgs() << BV.test(I) << " ";
- dbgs() << "}\n";
- }
- LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
- LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
- assert(BI != BlockLiveness.end() && "Block not found");
- const BlockLifetimeInfo &BlockInfo = BI->second;
- dumpBV("BEGIN", BlockInfo.Begin);
- dumpBV("END", BlockInfo.End);
- dumpBV("LIVE_IN", BlockInfo.LiveIn);
- dumpBV("LIVE_OUT", BlockInfo.LiveOut);
- }
- LLVM_DUMP_METHOD void StackColoring::dump() const {
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
- << MBB->getName() << "]\n";
- dumpBB(MBB);
- }
- }
- LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
- for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
- dbgs() << "Interval[" << I << "]:\n";
- Intervals[I]->dump();
- }
- }
- #endif
- static inline int getStartOrEndSlot(const MachineInstr &MI)
- {
- assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
- "Expected LIFETIME_START or LIFETIME_END op");
- const MachineOperand &MO = MI.getOperand(0);
- int Slot = MO.getIndex();
- if (Slot >= 0)
- return Slot;
- return -1;
- }
- // At the moment the only way to end a variable lifetime is with
- // a VARIABLE_LIFETIME op (which can't contain a start). If things
- // change and the IR allows for a single inst that both begins
- // and ends lifetime(s), this interface will need to be reworked.
- bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
- SmallVector<int, 4> &slots,
- bool &isStart) {
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- int Slot = getStartOrEndSlot(MI);
- if (Slot < 0)
- return false;
- if (!InterestingSlots.test(Slot))
- return false;
- slots.push_back(Slot);
- if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- isStart = false;
- return true;
- }
- if (!applyFirstUse(Slot)) {
- isStart = true;
- return true;
- }
- } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
- if (!MI.isDebugInstr()) {
- bool found = false;
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isFI())
- continue;
- int Slot = MO.getIndex();
- if (Slot<0)
- continue;
- if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
- slots.push_back(Slot);
- found = true;
- }
- }
- if (found) {
- isStart = true;
- return true;
- }
- }
- }
- return false;
- }
- unsigned StackColoring::collectMarkers(unsigned NumSlot) {
- unsigned MarkersFound = 0;
- BlockBitVecMap SeenStartMap;
- InterestingSlots.clear();
- InterestingSlots.resize(NumSlot);
- ConservativeSlots.clear();
- ConservativeSlots.resize(NumSlot);
- // number of start and end lifetime ops for each slot
- SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
- SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
- // Step 1: collect markers and populate the "InterestingSlots"
- // and "ConservativeSlots" sets.
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- // Compute the set of slots for which we've seen a START marker but have
- // not yet seen an END marker at this point in the walk (e.g. on entry
- // to this bb).
- BitVector BetweenStartEnd;
- BetweenStartEnd.resize(NumSlot);
- for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
- PE = MBB->pred_end(); PI != PE; ++PI) {
- BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
- if (I != SeenStartMap.end()) {
- BetweenStartEnd |= I->second;
- }
- }
- // Walk the instructions in the block to look for start/end ops.
- for (MachineInstr &MI : *MBB) {
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
- MI.getOpcode() == TargetOpcode::LIFETIME_END) {
- int Slot = getStartOrEndSlot(MI);
- if (Slot < 0)
- continue;
- InterestingSlots.set(Slot);
- if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
- BetweenStartEnd.set(Slot);
- NumStartLifetimes[Slot] += 1;
- } else {
- BetweenStartEnd.reset(Slot);
- NumEndLifetimes[Slot] += 1;
- }
- const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
- if (Allocation) {
- LLVM_DEBUG(dbgs() << "Found a lifetime ");
- LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
- ? "start"
- : "end"));
- LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
- LLVM_DEBUG(dbgs()
- << " with allocation: " << Allocation->getName() << "\n");
- }
- Markers.push_back(&MI);
- MarkersFound += 1;
- } else {
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isFI())
- continue;
- int Slot = MO.getIndex();
- if (Slot < 0)
- continue;
- if (! BetweenStartEnd.test(Slot)) {
- ConservativeSlots.set(Slot);
- }
- }
- }
- }
- BitVector &SeenStart = SeenStartMap[MBB];
- SeenStart |= BetweenStartEnd;
- }
- if (!MarkersFound) {
- return 0;
- }
- // PR27903: slots with multiple start or end lifetime ops are not
- // safe to enable for "lifetime-start-on-first-use".
- for (unsigned slot = 0; slot < NumSlot; ++slot)
- if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
- ConservativeSlots.set(slot);
- LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
- // Step 2: compute begin/end sets for each block
- // NOTE: We use a depth-first iteration to ensure that we obtain a
- // deterministic numbering.
- for (MachineBasicBlock *MBB : depth_first(MF)) {
- // Assign a serial number to this basic block.
- BasicBlocks[MBB] = BasicBlockNumbering.size();
- BasicBlockNumbering.push_back(MBB);
- // Keep a reference to avoid repeated lookups.
- BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
- BlockInfo.Begin.resize(NumSlot);
- BlockInfo.End.resize(NumSlot);
- SmallVector<int, 4> slots;
- for (MachineInstr &MI : *MBB) {
- bool isStart = false;
- slots.clear();
- if (isLifetimeStartOrEnd(MI, slots, isStart)) {
- if (!isStart) {
- assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
- int Slot = slots[0];
- if (BlockInfo.Begin.test(Slot)) {
- BlockInfo.Begin.reset(Slot);
- }
- BlockInfo.End.set(Slot);
- } else {
- for (auto Slot : slots) {
- LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
- LLVM_DEBUG(dbgs()
- << " at " << printMBBReference(*MBB) << " index ");
- LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
- const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
- if (Allocation) {
- LLVM_DEBUG(dbgs()
- << " with allocation: " << Allocation->getName());
- }
- LLVM_DEBUG(dbgs() << "\n");
- if (BlockInfo.End.test(Slot)) {
- BlockInfo.End.reset(Slot);
- }
- BlockInfo.Begin.set(Slot);
- }
- }
- }
- }
- }
- // Update statistics.
- NumMarkerSeen += MarkersFound;
- return MarkersFound;
- }
- void StackColoring::calculateLocalLiveness() {
- unsigned NumIters = 0;
- bool changed = true;
- while (changed) {
- changed = false;
- ++NumIters;
- for (const MachineBasicBlock *BB : BasicBlockNumbering) {
- // Use an iterator to avoid repeated lookups.
- LivenessMap::iterator BI = BlockLiveness.find(BB);
- assert(BI != BlockLiveness.end() && "Block not found");
- BlockLifetimeInfo &BlockInfo = BI->second;
- // Compute LiveIn by unioning together the LiveOut sets of all preds.
- BitVector LocalLiveIn;
- for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
- PE = BB->pred_end(); PI != PE; ++PI) {
- LivenessMap::const_iterator I = BlockLiveness.find(*PI);
- // PR37130: transformations prior to stack coloring can
- // sometimes leave behind statically unreachable blocks; these
- // can be safely skipped here.
- if (I != BlockLiveness.end())
- LocalLiveIn |= I->second.LiveOut;
- }
- // Compute LiveOut by subtracting out lifetimes that end in this
- // block, then adding in lifetimes that begin in this block. If
- // we have both BEGIN and END markers in the same basic block
- // then we know that the BEGIN marker comes after the END,
- // because we already handle the case where the BEGIN comes
- // before the END when collecting the markers (and building the
- // BEGIN/END vectors).
- BitVector LocalLiveOut = LocalLiveIn;
- LocalLiveOut.reset(BlockInfo.End);
- LocalLiveOut |= BlockInfo.Begin;
- // Update block LiveIn set, noting whether it has changed.
- if (LocalLiveIn.test(BlockInfo.LiveIn)) {
- changed = true;
- BlockInfo.LiveIn |= LocalLiveIn;
- }
- // Update block LiveOut set, noting whether it has changed.
- if (LocalLiveOut.test(BlockInfo.LiveOut)) {
- changed = true;
- BlockInfo.LiveOut |= LocalLiveOut;
- }
- }
- } // while changed.
- NumIterations = NumIters;
- }
- void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
- SmallVector<SlotIndex, 16> Starts;
- SmallVector<bool, 16> DefinitelyInUse;
- // For each block, find which slots are active within this block
- // and update the live intervals.
- for (const MachineBasicBlock &MBB : *MF) {
- Starts.clear();
- Starts.resize(NumSlots);
- DefinitelyInUse.clear();
- DefinitelyInUse.resize(NumSlots);
- // Start the interval of the slots that we previously found to be 'in-use'.
- BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
- for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
- pos = MBBLiveness.LiveIn.find_next(pos)) {
- Starts[pos] = Indexes->getMBBStartIdx(&MBB);
- }
- // Create the interval for the basic blocks containing lifetime begin/end.
- for (const MachineInstr &MI : MBB) {
- SmallVector<int, 4> slots;
- bool IsStart = false;
- if (!isLifetimeStartOrEnd(MI, slots, IsStart))
- continue;
- SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
- for (auto Slot : slots) {
- if (IsStart) {
- // If a slot is already definitely in use, we don't have to emit
- // a new start marker because there is already a pre-existing
- // one.
- if (!DefinitelyInUse[Slot]) {
- LiveStarts[Slot].push_back(ThisIndex);
- DefinitelyInUse[Slot] = true;
- }
- if (!Starts[Slot].isValid())
- Starts[Slot] = ThisIndex;
- } else {
- if (Starts[Slot].isValid()) {
- VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
- Intervals[Slot]->addSegment(
- LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
- Starts[Slot] = SlotIndex(); // Invalidate the start index
- DefinitelyInUse[Slot] = false;
- }
- }
- }
- }
- // Finish up started segments
- for (unsigned i = 0; i < NumSlots; ++i) {
- if (!Starts[i].isValid())
- continue;
- SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
- VNInfo *VNI = Intervals[i]->getValNumInfo(0);
- Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
- }
- }
- }
- bool StackColoring::removeAllMarkers() {
- unsigned Count = 0;
- for (MachineInstr *MI : Markers) {
- MI->eraseFromParent();
- Count++;
- }
- Markers.clear();
- LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
- return Count;
- }
- void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
- unsigned FixedInstr = 0;
- unsigned FixedMemOp = 0;
- unsigned FixedDbg = 0;
- // Remap debug information that refers to stack slots.
- for (auto &VI : MF->getVariableDbgInfo()) {
- if (!VI.Var)
- continue;
- if (SlotRemap.count(VI.Slot)) {
- LLVM_DEBUG(dbgs() << "Remapping debug info for ["
- << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
- VI.Slot = SlotRemap[VI.Slot];
- FixedDbg++;
- }
- }
- // Keep a list of *allocas* which need to be remapped.
- DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
- // Keep a list of allocas which has been affected by the remap.
- SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
- for (const std::pair<int, int> &SI : SlotRemap) {
- const AllocaInst *From = MFI->getObjectAllocation(SI.first);
- const AllocaInst *To = MFI->getObjectAllocation(SI.second);
- assert(To && From && "Invalid allocation object");
- Allocas[From] = To;
- // AA might be used later for instruction scheduling, and we need it to be
- // able to deduce the correct aliasing releationships between pointers
- // derived from the alloca being remapped and the target of that remapping.
- // The only safe way, without directly informing AA about the remapping
- // somehow, is to directly update the IR to reflect the change being made
- // here.
- Instruction *Inst = const_cast<AllocaInst *>(To);
- if (From->getType() != To->getType()) {
- BitCastInst *Cast = new BitCastInst(Inst, From->getType());
- Cast->insertAfter(Inst);
- Inst = Cast;
- }
- // We keep both slots to maintain AliasAnalysis metadata later.
- MergedAllocas.insert(From);
- MergedAllocas.insert(To);
- // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
- // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
- // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
- MachineFrameInfo::SSPLayoutKind FromKind
- = MFI->getObjectSSPLayout(SI.first);
- MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
- if (FromKind != MachineFrameInfo::SSPLK_None &&
- (ToKind == MachineFrameInfo::SSPLK_None ||
- (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
- FromKind != MachineFrameInfo::SSPLK_AddrOf)))
- MFI->setObjectSSPLayout(SI.second, FromKind);
- // The new alloca might not be valid in a llvm.dbg.declare for this
- // variable, so undef out the use to make the verifier happy.
- AllocaInst *FromAI = const_cast<AllocaInst *>(From);
- if (FromAI->isUsedByMetadata())
- ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
- for (auto &Use : FromAI->uses()) {
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
- if (BCI->isUsedByMetadata())
- ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
- }
- // Note that this will not replace uses in MMOs (which we'll update below),
- // or anywhere else (which is why we won't delete the original
- // instruction).
- FromAI->replaceAllUsesWith(Inst);
- }
- // Remap all instructions to the new stack slots.
- for (MachineBasicBlock &BB : *MF)
- for (MachineInstr &I : BB) {
- // Skip lifetime markers. We'll remove them soon.
- if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
- I.getOpcode() == TargetOpcode::LIFETIME_END)
- continue;
- // Update the MachineMemOperand to use the new alloca.
- for (MachineMemOperand *MMO : I.memoperands()) {
- // We've replaced IR-level uses of the remapped allocas, so we only
- // need to replace direct uses here.
- const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
- if (!AI)
- continue;
- if (!Allocas.count(AI))
- continue;
- MMO->setValue(Allocas[AI]);
- FixedMemOp++;
- }
- // Update all of the machine instruction operands.
- for (MachineOperand &MO : I.operands()) {
- if (!MO.isFI())
- continue;
- int FromSlot = MO.getIndex();
- // Don't touch arguments.
- if (FromSlot<0)
- continue;
- // Only look at mapped slots.
- if (!SlotRemap.count(FromSlot))
- continue;
- // In a debug build, check that the instruction that we are modifying is
- // inside the expected live range. If the instruction is not inside
- // the calculated range then it means that the alloca usage moved
- // outside of the lifetime markers, or that the user has a bug.
- // NOTE: Alloca address calculations which happen outside the lifetime
- // zone are okay, despite the fact that we don't have a good way
- // for validating all of the usages of the calculation.
- #ifndef NDEBUG
- bool TouchesMemory = I.mayLoad() || I.mayStore();
- // If we *don't* protect the user from escaped allocas, don't bother
- // validating the instructions.
- if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
- SlotIndex Index = Indexes->getInstructionIndex(I);
- const LiveInterval *Interval = &*Intervals[FromSlot];
- assert(Interval->find(Index) != Interval->end() &&
- "Found instruction usage outside of live range.");
- }
- #endif
- // Fix the machine instructions.
- int ToSlot = SlotRemap[FromSlot];
- MO.setIndex(ToSlot);
- FixedInstr++;
- }
- // We adjust AliasAnalysis information for merged stack slots.
- SmallVector<MachineMemOperand *, 2> NewMMOs;
- bool ReplaceMemOps = false;
- for (MachineMemOperand *MMO : I.memoperands()) {
- // If this memory location can be a slot remapped here,
- // we remove AA information.
- bool MayHaveConflictingAAMD = false;
- if (MMO->getAAInfo()) {
- if (const Value *MMOV = MMO->getValue()) {
- SmallVector<Value *, 4> Objs;
- getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
- if (Objs.empty())
- MayHaveConflictingAAMD = true;
- else
- for (Value *V : Objs) {
- // If this memory location comes from a known stack slot
- // that is not remapped, we continue checking.
- // Otherwise, we need to invalidate AA infomation.
- const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
- if (AI && MergedAllocas.count(AI)) {
- MayHaveConflictingAAMD = true;
- break;
- }
- }
- }
- }
- if (MayHaveConflictingAAMD) {
- NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
- ReplaceMemOps = true;
- } else {
- NewMMOs.push_back(MMO);
- }
- }
- // If any memory operand is updated, set memory references of
- // this instruction.
- if (ReplaceMemOps)
- I.setMemRefs(*MF, NewMMOs);
- }
- // Update the location of C++ catch objects for the MSVC personality routine.
- if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
- for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
- for (WinEHHandlerType &H : TBME.HandlerArray)
- if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
- SlotRemap.count(H.CatchObj.FrameIndex))
- H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
- LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
- LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
- LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
- }
- void StackColoring::removeInvalidSlotRanges() {
- for (MachineBasicBlock &BB : *MF)
- for (MachineInstr &I : BB) {
- if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
- I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
- continue;
- // Some intervals are suspicious! In some cases we find address
- // calculations outside of the lifetime zone, but not actual memory
- // read or write. Memory accesses outside of the lifetime zone are a clear
- // violation, but address calculations are okay. This can happen when
- // GEPs are hoisted outside of the lifetime zone.
- // So, in here we only check instructions which can read or write memory.
- if (!I.mayLoad() && !I.mayStore())
- continue;
- // Check all of the machine operands.
- for (const MachineOperand &MO : I.operands()) {
- if (!MO.isFI())
- continue;
- int Slot = MO.getIndex();
- if (Slot<0)
- continue;
- if (Intervals[Slot]->empty())
- continue;
- // Check that the used slot is inside the calculated lifetime range.
- // If it is not, warn about it and invalidate the range.
- LiveInterval *Interval = &*Intervals[Slot];
- SlotIndex Index = Indexes->getInstructionIndex(I);
- if (Interval->find(Index) == Interval->end()) {
- Interval->clear();
- LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
- EscapedAllocas++;
- }
- }
- }
- }
- void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
- unsigned NumSlots) {
- // Expunge slot remap map.
- for (unsigned i=0; i < NumSlots; ++i) {
- // If we are remapping i
- if (SlotRemap.count(i)) {
- int Target = SlotRemap[i];
- // As long as our target is mapped to something else, follow it.
- while (SlotRemap.count(Target)) {
- Target = SlotRemap[Target];
- SlotRemap[i] = Target;
- }
- }
- }
- }
- bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
- LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
- << "********** Function: " << Func.getName() << '\n');
- MF = &Func;
- MFI = &MF->getFrameInfo();
- Indexes = &getAnalysis<SlotIndexes>();
- BlockLiveness.clear();
- BasicBlocks.clear();
- BasicBlockNumbering.clear();
- Markers.clear();
- Intervals.clear();
- LiveStarts.clear();
- VNInfoAllocator.Reset();
- unsigned NumSlots = MFI->getObjectIndexEnd();
- // If there are no stack slots then there are no markers to remove.
- if (!NumSlots)
- return false;
- SmallVector<int, 8> SortedSlots;
- SortedSlots.reserve(NumSlots);
- Intervals.reserve(NumSlots);
- LiveStarts.resize(NumSlots);
- unsigned NumMarkers = collectMarkers(NumSlots);
- unsigned TotalSize = 0;
- LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
- << " slots\n");
- LLVM_DEBUG(dbgs() << "Slot structure:\n");
- for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
- LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
- << " bytes.\n");
- TotalSize += MFI->getObjectSize(i);
- }
- LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
- // Don't continue because there are not enough lifetime markers, or the
- // stack is too small, or we are told not to optimize the slots.
- if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
- skipFunction(Func.getFunction())) {
- LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
- return removeAllMarkers();
- }
- for (unsigned i=0; i < NumSlots; ++i) {
- std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
- LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
- Intervals.push_back(std::move(LI));
- SortedSlots.push_back(i);
- }
- // Calculate the liveness of each block.
- calculateLocalLiveness();
- LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
- LLVM_DEBUG(dump());
- // Propagate the liveness information.
- calculateLiveIntervals(NumSlots);
- LLVM_DEBUG(dumpIntervals());
- // Search for allocas which are used outside of the declared lifetime
- // markers.
- if (ProtectFromEscapedAllocas)
- removeInvalidSlotRanges();
- // Maps old slots to new slots.
- DenseMap<int, int> SlotRemap;
- unsigned RemovedSlots = 0;
- unsigned ReducedSize = 0;
- // Do not bother looking at empty intervals.
- for (unsigned I = 0; I < NumSlots; ++I) {
- if (Intervals[SortedSlots[I]]->empty())
- SortedSlots[I] = -1;
- }
- // This is a simple greedy algorithm for merging allocas. First, sort the
- // slots, placing the largest slots first. Next, perform an n^2 scan and look
- // for disjoint slots. When you find disjoint slots, merge the samller one
- // into the bigger one and update the live interval. Remove the small alloca
- // and continue.
- // Sort the slots according to their size. Place unused slots at the end.
- // Use stable sort to guarantee deterministic code generation.
- llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
- // We use -1 to denote a uninteresting slot. Place these slots at the end.
- if (LHS == -1)
- return false;
- if (RHS == -1)
- return true;
- // Sort according to size.
- return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
- });
- for (auto &s : LiveStarts)
- llvm::sort(s);
- bool Changed = true;
- while (Changed) {
- Changed = false;
- for (unsigned I = 0; I < NumSlots; ++I) {
- if (SortedSlots[I] == -1)
- continue;
- for (unsigned J=I+1; J < NumSlots; ++J) {
- if (SortedSlots[J] == -1)
- continue;
- int FirstSlot = SortedSlots[I];
- int SecondSlot = SortedSlots[J];
- LiveInterval *First = &*Intervals[FirstSlot];
- LiveInterval *Second = &*Intervals[SecondSlot];
- auto &FirstS = LiveStarts[FirstSlot];
- auto &SecondS = LiveStarts[SecondSlot];
- assert(!First->empty() && !Second->empty() && "Found an empty range");
- // Merge disjoint slots. This is a little bit tricky - see the
- // Implementation Notes section for an explanation.
- if (!First->isLiveAtIndexes(SecondS) &&
- !Second->isLiveAtIndexes(FirstS)) {
- Changed = true;
- First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
- int OldSize = FirstS.size();
- FirstS.append(SecondS.begin(), SecondS.end());
- auto Mid = FirstS.begin() + OldSize;
- std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
- SlotRemap[SecondSlot] = FirstSlot;
- SortedSlots[J] = -1;
- LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
- << SecondSlot << " together.\n");
- unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
- MFI->getObjectAlignment(SecondSlot));
- assert(MFI->getObjectSize(FirstSlot) >=
- MFI->getObjectSize(SecondSlot) &&
- "Merging a small object into a larger one");
- RemovedSlots+=1;
- ReducedSize += MFI->getObjectSize(SecondSlot);
- MFI->setObjectAlignment(FirstSlot, MaxAlignment);
- MFI->RemoveStackObject(SecondSlot);
- }
- }
- }
- }// While changed.
- // Record statistics.
- StackSpaceSaved += ReducedSize;
- StackSlotMerged += RemovedSlots;
- LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
- << ReducedSize << " bytes\n");
- // Scan the entire function and update all machine operands that use frame
- // indices to use the remapped frame index.
- expungeSlotMap(SlotRemap, NumSlots);
- remapInstructions(SlotRemap);
- return removeAllMarkers();
- }
|