12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127 |
- //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the TargetLowering class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/CodeGen/CallingConvLower.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetLoweringObjectFile.h"
- #include "llvm/Target/TargetMachine.h"
- #include <cctype>
- using namespace llvm;
- /// NOTE: The TargetMachine owns TLOF.
- TargetLowering::TargetLowering(const TargetMachine &tm)
- : TargetLoweringBase(tm) {}
- const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
- return nullptr;
- }
- bool TargetLowering::isPositionIndependent() const {
- return getTargetMachine().isPositionIndependent();
- }
- /// Check whether a given call node is in tail position within its function. If
- /// so, it sets Chain to the input chain of the tail call.
- bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain) const {
- const Function &F = DAG.getMachineFunction().getFunction();
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore NoAlias and NonNull because they don't affect the
- // call sequence.
- AttributeList CallerAttrs = F.getAttributes();
- if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
- .removeAttribute(Attribute::NoAlias)
- .removeAttribute(Attribute::NonNull)
- .hasAttributes())
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
- return false;
- // Check if the only use is a function return node.
- return isUsedByReturnOnly(Node, Chain);
- }
- bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
- const uint32_t *CallerPreservedMask,
- const SmallVectorImpl<CCValAssign> &ArgLocs,
- const SmallVectorImpl<SDValue> &OutVals) const {
- for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
- const CCValAssign &ArgLoc = ArgLocs[I];
- if (!ArgLoc.isRegLoc())
- continue;
- Register Reg = ArgLoc.getLocReg();
- // Only look at callee saved registers.
- if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
- continue;
- // Check that we pass the value used for the caller.
- // (We look for a CopyFromReg reading a virtual register that is used
- // for the function live-in value of register Reg)
- SDValue Value = OutVals[I];
- if (Value->getOpcode() != ISD::CopyFromReg)
- return false;
- unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
- if (MRI.getLiveInPhysReg(ArgReg) != Reg)
- return false;
- }
- return true;
- }
- /// Set CallLoweringInfo attribute flags based on a call instruction
- /// and called function attributes.
- void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
- unsigned ArgIdx) {
- IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
- IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
- IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
- IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
- IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
- IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
- IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
- IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
- IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
- IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
- Alignment = Call->getParamAlignment(ArgIdx);
- ByValType = nullptr;
- if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
- ByValType = Call->getParamByValType(ArgIdx);
- }
- /// Generate a libcall taking the given operands as arguments and returning a
- /// result of type RetVT.
- std::pair<SDValue, SDValue>
- TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
- ArrayRef<SDValue> Ops,
- MakeLibCallOptions CallOptions,
- const SDLoc &dl) const {
- TargetLowering::ArgListTy Args;
- Args.reserve(Ops.size());
- TargetLowering::ArgListEntry Entry;
- for (unsigned i = 0; i < Ops.size(); ++i) {
- SDValue NewOp = Ops[i];
- Entry.Node = NewOp;
- Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
- Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
- CallOptions.IsSExt);
- Entry.IsZExt = !Entry.IsSExt;
- if (CallOptions.IsSoften &&
- !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
- Entry.IsSExt = Entry.IsZExt = false;
- }
- Args.push_back(Entry);
- }
- if (LC == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported library call operation!");
- SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
- getPointerTy(DAG.getDataLayout()));
- Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
- TargetLowering::CallLoweringInfo CLI(DAG);
- bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
- bool zeroExtend = !signExtend;
- if (CallOptions.IsSoften &&
- !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
- signExtend = zeroExtend = false;
- }
- CLI.setDebugLoc(dl)
- .setChain(DAG.getEntryNode())
- .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
- .setNoReturn(CallOptions.DoesNotReturn)
- .setDiscardResult(!CallOptions.IsReturnValueUsed)
- .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
- .setSExtResult(signExtend)
- .setZExtResult(zeroExtend);
- return LowerCallTo(CLI);
- }
- bool
- TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
- unsigned Limit, uint64_t Size,
- unsigned DstAlign, unsigned SrcAlign,
- bool IsMemset,
- bool ZeroMemset,
- bool MemcpyStrSrc,
- bool AllowOverlap,
- unsigned DstAS, unsigned SrcAS,
- const AttributeList &FuncAttributes) const {
- // If 'SrcAlign' is zero, that means the memory operation does not need to
- // load the value, i.e. memset or memcpy from constant string. Otherwise,
- // it's the inferred alignment of the source. 'DstAlign', on the other hand,
- // is the specified alignment of the memory operation. If it is zero, that
- // means it's possible to change the alignment of the destination.
- // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
- // not need to be loaded.
- if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
- return false;
- EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
- IsMemset, ZeroMemset, MemcpyStrSrc,
- FuncAttributes);
- if (VT == MVT::Other) {
- // Use the largest integer type whose alignment constraints are satisfied.
- // We only need to check DstAlign here as SrcAlign is always greater or
- // equal to DstAlign (or zero).
- VT = MVT::i64;
- while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
- !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
- VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
- assert(VT.isInteger());
- // Find the largest legal integer type.
- MVT LVT = MVT::i64;
- while (!isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- // If the type we've chosen is larger than the largest legal integer type
- // then use that instead.
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- while (Size != 0) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- EVT NewVT = VT;
- unsigned NewVTSize;
- bool Found = false;
- if (VT.isVector() || VT.isFloatingPoint()) {
- NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
- if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
- isSafeMemOpType(NewVT.getSimpleVT()))
- Found = true;
- else if (NewVT == MVT::i64 &&
- isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
- isSafeMemOpType(MVT::f64)) {
- // i64 is usually not legal on 32-bit targets, but f64 may be.
- NewVT = MVT::f64;
- Found = true;
- }
- }
- if (!Found) {
- do {
- NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
- if (NewVT == MVT::i8)
- break;
- } while (!isSafeMemOpType(NewVT.getSimpleVT()));
- }
- NewVTSize = NewVT.getSizeInBits() / 8;
- // If the new VT cannot cover all of the remaining bits, then consider
- // issuing a (or a pair of) unaligned and overlapping load / store.
- bool Fast;
- if (NumMemOps && AllowOverlap && NewVTSize < Size &&
- allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
- MachineMemOperand::MONone, &Fast) &&
- Fast)
- VTSize = Size;
- else {
- VT = NewVT;
- VTSize = NewVTSize;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- /// Soften the operands of a comparison. This code is shared among BR_CC,
- /// SELECT_CC, and SETCC handlers.
- void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
- SDValue &NewLHS, SDValue &NewRHS,
- ISD::CondCode &CCCode,
- const SDLoc &dl, const SDValue OldLHS,
- const SDValue OldRHS) const {
- assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
- && "Unsupported setcc type!");
- // Expand into one or more soft-fp libcall(s).
- RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
- bool ShouldInvertCC = false;
- switch (CCCode) {
- case ISD::SETEQ:
- case ISD::SETOEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- case ISD::SETNE:
- case ISD::SETUNE:
- LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
- (VT == MVT::f64) ? RTLIB::UNE_F64 :
- (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
- break;
- case ISD::SETGE:
- case ISD::SETOGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETLT:
- case ISD::SETOLT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- case ISD::SETLE:
- case ISD::SETOLE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETGT:
- case ISD::SETOGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUO:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- break;
- case ISD::SETO:
- LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
- (VT == MVT::f64) ? RTLIB::O_F64 :
- (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
- break;
- case ISD::SETONE:
- // SETONE = SETOLT | SETOGT
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- default:
- // Invert CC for unordered comparisons
- ShouldInvertCC = true;
- switch (CCCode) {
- case ISD::SETULT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETULE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETUGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- default: llvm_unreachable("Do not know how to soften this setcc!");
- }
- }
- // Use the target specific return value for comparions lib calls.
- EVT RetVT = getCmpLibcallReturnType();
- SDValue Ops[2] = {NewLHS, NewRHS};
- TargetLowering::MakeLibCallOptions CallOptions;
- EVT OpsVT[2] = { OldLHS.getValueType(),
- OldRHS.getValueType() };
- CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
- NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
- NewRHS = DAG.getConstant(0, dl, RetVT);
- CCCode = getCmpLibcallCC(LC1);
- if (ShouldInvertCC)
- CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
- if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
- SDValue Tmp = DAG.getNode(
- ISD::SETCC, dl,
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
- NewLHS, NewRHS, DAG.getCondCode(CCCode));
- NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
- NewLHS = DAG.getNode(
- ISD::SETCC, dl,
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
- NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
- NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
- NewRHS = SDValue();
- }
- }
- /// Return the entry encoding for a jump table in the current function. The
- /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
- unsigned TargetLowering::getJumpTableEncoding() const {
- // In non-pic modes, just use the address of a block.
- if (!isPositionIndependent())
- return MachineJumpTableInfo::EK_BlockAddress;
- // In PIC mode, if the target supports a GPRel32 directive, use it.
- if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
- return MachineJumpTableInfo::EK_GPRel32BlockAddress;
- // Otherwise, use a label difference.
- return MachineJumpTableInfo::EK_LabelDifference32;
- }
- SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- // If our PIC model is GP relative, use the global offset table as the base.
- unsigned JTEncoding = getJumpTableEncoding();
- if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
- (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
- return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
- return Table;
- }
- /// This returns the relocation base for the given PIC jumptable, the same as
- /// getPICJumpTableRelocBase, but as an MCExpr.
- const MCExpr *
- TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI,MCContext &Ctx) const{
- // The normal PIC reloc base is the label at the start of the jump table.
- return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
- }
- bool
- TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- const TargetMachine &TM = getTargetMachine();
- const GlobalValue *GV = GA->getGlobal();
- // If the address is not even local to this DSO we will have to load it from
- // a got and then add the offset.
- if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
- return false;
- // If the code is position independent we will have to add a base register.
- if (isPositionIndependent())
- return false;
- // Otherwise we can do it.
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Optimization Methods
- //===----------------------------------------------------------------------===//
- /// If the specified instruction has a constant integer operand and there are
- /// bits set in that constant that are not demanded, then clear those bits and
- /// return true.
- bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
- TargetLoweringOpt &TLO) const {
- SDLoc DL(Op);
- unsigned Opcode = Op.getOpcode();
- // Do target-specific constant optimization.
- if (targetShrinkDemandedConstant(Op, Demanded, TLO))
- return TLO.New.getNode();
- // FIXME: ISD::SELECT, ISD::SELECT_CC
- switch (Opcode) {
- default:
- break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR: {
- auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!Op1C)
- return false;
- // If this is a 'not' op, don't touch it because that's a canonical form.
- const APInt &C = Op1C->getAPIntValue();
- if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
- return false;
- if (!C.isSubsetOf(Demanded)) {
- EVT VT = Op.getValueType();
- SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
- SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
- return TLO.CombineTo(Op, NewOp);
- }
- break;
- }
- }
- return false;
- }
- /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
- /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
- /// generalized for targets with other types of implicit widening casts.
- bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
- const APInt &Demanded,
- TargetLoweringOpt &TLO) const {
- assert(Op.getNumOperands() == 2 &&
- "ShrinkDemandedOp only supports binary operators!");
- assert(Op.getNode()->getNumValues() == 1 &&
- "ShrinkDemandedOp only supports nodes with one result!");
- SelectionDAG &DAG = TLO.DAG;
- SDLoc dl(Op);
- // Early return, as this function cannot handle vector types.
- if (Op.getValueType().isVector())
- return false;
- // Don't do this if the node has another user, which may require the
- // full value.
- if (!Op.getNode()->hasOneUse())
- return false;
- // Search for the smallest integer type with free casts to and from
- // Op's type. For expedience, just check power-of-2 integer types.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned DemandedSize = Demanded.getActiveBits();
- unsigned SmallVTBits = DemandedSize;
- if (!isPowerOf2_32(SmallVTBits))
- SmallVTBits = NextPowerOf2(SmallVTBits);
- for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
- if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
- TLI.isZExtFree(SmallVT, Op.getValueType())) {
- // We found a type with free casts.
- SDValue X = DAG.getNode(
- Op.getOpcode(), dl, SmallVT,
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
- assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
- SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
- return TLO.CombineTo(Op, Z);
- }
- }
- return false;
- }
- bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- KnownBits Known;
- bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
- }
- bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- KnownBits &Known,
- TargetLoweringOpt &TLO,
- unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnesValue(VT.getVectorNumElements())
- : APInt(1, 1);
- return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
- AssumeSingleUse);
- }
- // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
- // TODO: Under what circumstances can we create nodes? Constant folding?
- SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- SelectionDAG &DAG, unsigned Depth) const {
- // Limit search depth.
- if (Depth >= 6)
- return SDValue();
- // Ignore UNDEFs.
- if (Op.isUndef())
- return SDValue();
- // Not demanding any bits/elts from Op.
- if (DemandedBits == 0 || DemandedElts == 0)
- return DAG.getUNDEF(Op.getValueType());
- unsigned NumElts = DemandedElts.getBitWidth();
- KnownBits LHSKnown, RHSKnown;
- switch (Op.getOpcode()) {
- case ISD::BITCAST: {
- SDValue Src = peekThroughBitcasts(Op.getOperand(0));
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Op.getValueType();
- unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
- unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
- if (NumSrcEltBits == NumDstEltBits)
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedBits, DemandedElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- // TODO - bigendian once we have test coverage.
- if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
- DAG.getDataLayout().isLittleEndian()) {
- unsigned Scale = NumDstEltBits / NumSrcEltBits;
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
- for (unsigned i = 0; i != Scale; ++i) {
- unsigned Offset = i * NumSrcEltBits;
- APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
- if (!Sub.isNullValue()) {
- DemandedSrcBits |= Sub;
- for (unsigned j = 0; j != NumElts; ++j)
- if (DemandedElts[j])
- DemandedSrcElts.setBit((j * Scale) + i);
- }
- }
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- }
- // TODO - bigendian once we have test coverage.
- if ((NumSrcEltBits % NumDstEltBits) == 0 &&
- DAG.getDataLayout().isLittleEndian()) {
- unsigned Scale = NumSrcEltBits / NumDstEltBits;
- unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Offset = (i % Scale) * NumDstEltBits;
- DemandedSrcBits.insertBits(DemandedBits, Offset);
- DemandedSrcElts.setBit(i / Scale);
- }
- if (SDValue V = SimplifyMultipleUseDemandedBits(
- Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
- return DAG.getBitcast(DstVT, V);
- }
- break;
- }
- case ISD::AND: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and' in this
- // context.
- if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
- return Op.getOperand(1);
- break;
- }
- case ISD::OR: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known zero on one side, return the
- // other. These bits cannot contribute to the result of the 'or' in this
- // context.
- if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
- return Op.getOperand(1);
- break;
- }
- case ISD::XOR: {
- LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
- RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
- // If all of the demanded bits are known zero on one side, return the
- // other.
- if (DemandedBits.isSubsetOf(RHSKnown.Zero))
- return Op.getOperand(0);
- if (DemandedBits.isSubsetOf(LHSKnown.Zero))
- return Op.getOperand(1);
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- // If none of the extended bits are demanded, eliminate the sextinreg.
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
- return Op.getOperand(0);
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- // If we don't demand the inserted element, return the base vector.
- SDValue Vec = Op.getOperand(0);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- EVT VecVT = Vec.getValueType();
- if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
- !DemandedElts[CIdx->getZExtValue()])
- return Vec;
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // If all the demanded elts are from one operand and are inline,
- // then we can use the operand directly.
- bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0 || !DemandedElts[i])
- continue;
- AllUndef = false;
- IdentityLHS &= (M == (int)i);
- IdentityRHS &= ((M - NumElts) == i);
- }
- if (AllUndef)
- return DAG.getUNDEF(Op.getValueType());
- if (IdentityLHS)
- return Op.getOperand(0);
- if (IdentityRHS)
- return Op.getOperand(1);
- break;
- }
- default:
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
- if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
- Op, DemandedBits, DemandedElts, DAG, Depth))
- return V;
- break;
- }
- return SDValue();
- }
- /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
- /// result of Op are ever used downstream. If we can use this information to
- /// simplify Op, create a new simplified DAG node and return true, returning the
- /// original and new nodes in Old and New. Otherwise, analyze the expression and
- /// return a mask of Known bits for the expression (used to simplify the
- /// caller). The Known bits may only be accurate for those bits in the
- /// OriginalDemandedBits and OriginalDemandedElts.
- bool TargetLowering::SimplifyDemandedBits(
- SDValue Op, const APInt &OriginalDemandedBits,
- const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
- unsigned Depth, bool AssumeSingleUse) const {
- unsigned BitWidth = OriginalDemandedBits.getBitWidth();
- assert(Op.getScalarValueSizeInBits() == BitWidth &&
- "Mask size mismatches value type size!");
- unsigned NumElts = OriginalDemandedElts.getBitWidth();
- assert((!Op.getValueType().isVector() ||
- NumElts == Op.getValueType().getVectorNumElements()) &&
- "Unexpected vector size");
- APInt DemandedBits = OriginalDemandedBits;
- APInt DemandedElts = OriginalDemandedElts;
- SDLoc dl(Op);
- auto &DL = TLO.DAG.getDataLayout();
- // Don't know anything.
- Known = KnownBits(BitWidth);
- // Undef operand.
- if (Op.isUndef())
- return false;
- if (Op.getOpcode() == ISD::Constant) {
- // We know all of the bits for a constant!
- Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
- Known.Zero = ~Known.One;
- return false;
- }
- // Other users may use these bits.
- EVT VT = Op.getValueType();
- if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
- if (Depth != 0) {
- // If not at the root, Just compute the Known bits to
- // simplify things downstream.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false;
- }
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the DemandedBits/Elts to all bits.
- DemandedBits = APInt::getAllOnesValue(BitWidth);
- DemandedElts = APInt::getAllOnesValue(NumElts);
- } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
- // Not demanding any bits/elts from Op.
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- } else if (Depth >= 6) { // Limit search depth.
- return false;
- }
- KnownBits Known2, KnownOut;
- switch (Op.getOpcode()) {
- case ISD::SCALAR_TO_VECTOR: {
- if (!DemandedElts[0])
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- KnownBits SrcKnown;
- SDValue Src = Op.getOperand(0);
- unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
- APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
- if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
- return true;
- Known = SrcKnown.zextOrTrunc(BitWidth, false);
- break;
- }
- case ISD::BUILD_VECTOR:
- // Collect the known bits that are shared by every demanded element.
- // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false; // Don't fall through, will infinitely loop.
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- if (getTargetConstantFromLoad(LD)) {
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false; // Don't fall through, will infinitely loop.
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue Vec = Op.getOperand(0);
- SDValue Scl = Op.getOperand(1);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- EVT VecVT = Vec.getValueType();
- // If index isn't constant, assume we need all vector elements AND the
- // inserted element.
- APInt DemandedVecElts(DemandedElts);
- if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
- unsigned Idx = CIdx->getZExtValue();
- DemandedVecElts.clearBit(Idx);
- // Inserted element is not required.
- if (!DemandedElts[Idx])
- return TLO.CombineTo(Op, Vec);
- }
- KnownBits KnownScl;
- unsigned NumSclBits = Scl.getScalarValueSizeInBits();
- APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
- if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
- return true;
- Known = KnownScl.zextOrTrunc(BitWidth, false);
- KnownBits KnownVec;
- if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
- Depth + 1))
- return true;
- if (!!DemandedVecElts) {
- Known.One &= KnownVec.One;
- Known.Zero &= KnownVec.Zero;
- }
- return false;
- }
- case ISD::INSERT_SUBVECTOR: {
- SDValue Base = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- EVT SubVT = Sub.getValueType();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- // If index isn't constant, assume we need the original demanded base
- // elements and ALL the inserted subvector elements.
- APInt BaseElts = DemandedElts;
- APInt SubElts = APInt::getAllOnesValue(NumSubElts);
- if (isa<ConstantSDNode>(Op.getOperand(2))) {
- const APInt &Idx = Op.getConstantOperandAPInt(2);
- if (Idx.ule(NumElts - NumSubElts)) {
- unsigned SubIdx = Idx.getZExtValue();
- SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
- BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
- }
- }
- KnownBits KnownSub, KnownBase;
- if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
- Depth + 1))
- return true;
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- if (!!SubElts) {
- Known.One &= KnownSub.One;
- Known.Zero &= KnownSub.Zero;
- }
- if (!!BaseElts) {
- Known.One &= KnownBase.One;
- Known.Zero &= KnownBase.Zero;
- }
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- // If index isn't constant, assume we need all the source vector elements.
- SDValue Src = Op.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- }
- if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
- return true;
- break;
- }
- case ISD::CONCAT_VECTORS: {
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- APInt DemandedSubElts =
- DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
- Known2, TLO, Depth + 1))
- return true;
- // Known bits are shared by every demanded subvector element.
- if (!!DemandedSubElts) {
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- }
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS(NumElts, 0);
- APInt DemandedRHS(NumElts, 0);
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- int M = ShuffleMask[i];
- if (M < 0) {
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- DemandedLHS.clearAllBits();
- DemandedRHS.clearAllBits();
- break;
- }
- assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
- if (M < (int)NumElts)
- DemandedLHS.setBit(M);
- else
- DemandedRHS.setBit(M - NumElts);
- }
- if (!!DemandedLHS || !!DemandedRHS) {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- if (!!DemandedLHS) {
- if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
- Depth + 1))
- return true;
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- if (!!DemandedRHS) {
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
- Depth + 1))
- return true;
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- // Attempt to avoid multi-use ops if we don't need anything from them.
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- break;
- }
- case ISD::AND: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- // If the RHS is a constant, check to see if the LHS would be zero without
- // using the bits from the RHS. Below, we use knowledge about the RHS to
- // simplify the LHS, here we're using information from the LHS to simplify
- // the RHS.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
- // Do not increment Depth here; that can cause an infinite loop.
- KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
- // If the LHS already has zeros where RHSC does, this 'and' is dead.
- if ((LHSKnown.Zero & DemandedBits) ==
- (~RHSC->getAPIntValue() & DemandedBits))
- return TLO.CombineTo(Op, Op0);
- // If any of the set bits in the RHS are known zero on the LHS, shrink
- // the constant.
- if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
- return true;
- // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
- // constant, but if this 'and' is only clearing bits that were just set by
- // the xor, then this 'and' can be eliminated by shrinking the mask of
- // the xor. For example, for a 32-bit X:
- // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
- if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
- LHSKnown.One == ~RHSC->getAPIntValue()) {
- SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
- return TLO.CombineTo(Op, Xor);
- }
- }
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // If all of the demanded bits are known one on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
- return TLO.CombineTo(Op, Op1);
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // Output known-1 bits are only known if set in both the LHS & RHS.
- Known.One &= Known2.One;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- Known.Zero |= Known2.Zero;
- break;
- }
- case ISD::OR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
- Known2, TLO, Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- Known.Zero &= Known2.Zero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- Known.One |= Known2.One;
- break;
- }
- case ISD::XOR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if (DemandedBits.isSubsetOf(Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // If all of the unknown bits are known to be zero on one side or the other
- // (but not both) turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
- if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
- // If one side is a constant, and all of the known set bits on the other
- // side are also set in the constant, turn this into an AND, as we know
- // the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- // NB: it is okay if more bits are known than are requested
- if (C->getAPIntValue() == Known2.One) {
- SDValue ANDC =
- TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
- }
- // If the RHS is a constant, see if we can change it. Don't alter a -1
- // constant because that's a 'not' op, and that is better for combining
- // and codegen.
- if (!C->isAllOnesValue()) {
- if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
- // We're flipping all demanded bits. Flip the undemanded bits too.
- SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
- return TLO.CombineTo(Op, New);
- }
- // If we can't turn this into a 'not', try to shrink the constant.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- }
- }
- Known = std::move(KnownOut);
- break;
- }
- case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SETCC: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- // If (1) we only need the sign-bit, (2) the setcc operands are the same
- // width as the setcc result, and (3) the result of a setcc conforms to 0 or
- // -1, we may be able to bypass the setcc.
- if (DemandedBits.isSignMask() &&
- Op0.getScalarValueSizeInBits() == BitWidth &&
- getBooleanContents(VT) ==
- BooleanContent::ZeroOrNegativeOneBooleanContent) {
- // If we're testing X < 0, then this compare isn't needed - just use X!
- // FIXME: We're limiting to integer types here, but this should also work
- // if we don't care about FP signed-zero. The use of SETLT with FP means
- // that we don't care about NaNs.
- if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
- (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
- return TLO.CombineTo(Op, Op0);
- // TODO: Should we check for other forms of sign-bit comparisons?
- // Examples: X <= -1, X >= 0
- }
- if (getBooleanContents(Op0.getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- case ISD::SHL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
- // single shift. We can do this if the bottom bits (which are shifted
- // out) are never demanded.
- // TODO - support non-uniform vector amounts.
- if (Op0.getOpcode() == ISD::SRL) {
- if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
- if (ConstantSDNode *SA2 =
- isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
- if (SA2->getAPIntValue().ult(BitWidth)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SHL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SRL;
- }
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- }
- if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
- Known, TLO, Depth + 1))
- return true;
- // Try shrinking the operation as long as the shift amount will still be
- // in range.
- if ((ShAmt < DemandedBits.getActiveBits()) &&
- ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
- // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
- // are not demanded. This will likely allow the anyext to be folded away.
- if (Op0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue InnerOp = Op0.getOperand(0);
- EVT InnerVT = InnerOp.getValueType();
- unsigned InnerBits = InnerVT.getScalarSizeInBits();
- if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
- isTypeDesirableForOp(ISD::SHL, InnerVT)) {
- EVT ShTy = getShiftAmountTy(InnerVT, DL);
- if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
- ShTy = InnerVT;
- SDValue NarrowShl =
- TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
- TLO.DAG.getConstant(ShAmt, dl, ShTy));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
- }
- // Repeat the SHL optimization above in cases where an extension
- // intervenes: (shl (anyext (shr x, c1)), c2) to
- // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
- // aren't demanded (as above) and that the shifted upper c1 bits of
- // x aren't demanded.
- if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
- InnerOp.hasOneUse()) {
- if (ConstantSDNode *SA2 =
- isConstOrConstSplat(InnerOp.getOperand(1))) {
- unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
- if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
- DemandedBits.getActiveBits() <=
- (InnerBits - InnerShAmt + ShAmt) &&
- DemandedBits.countTrailingZeros() >= ShAmt) {
- SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
- Op1.getValueType());
- SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
- InnerOp.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
- }
- }
- }
- }
- Known.Zero <<= ShAmt;
- Known.One <<= ShAmt;
- // low bits known zero.
- Known.Zero.setLowBits(ShAmt);
- }
- break;
- }
- case ISD::SRL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- EVT ShiftVT = Op1.getValueType();
- APInt InDemandedMask = (DemandedBits << ShAmt);
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
- // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
- // single shift. We can do this if the top bits (which are shifted out)
- // are never demanded.
- // TODO - support non-uniform vector amounts.
- if (Op0.getOpcode() == ISD::SHL) {
- if (ConstantSDNode *SA2 =
- isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
- if (!DemandedBits.intersects(
- APInt::getHighBitsSet(BitWidth, ShAmt))) {
- if (SA2->getAPIntValue().ult(BitWidth)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SRL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SHL;
- }
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- }
- // Compute the new bits that are at the top now.
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
- Known.Zero.setHighBits(ShAmt); // High bits known zero.
- }
- break;
- }
- case ISD::SRA: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedBits.isOneValue())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
- unsigned ShAmt = SA->getZExtValue();
- if (ShAmt == 0)
- return TLO.CombineTo(Op, Op0);
- APInt InDemandedMask = (DemandedBits << ShAmt);
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- if (DemandedBits.countLeadingZeros() < ShAmt)
- InDemandedMask.setSignBit();
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (Known.Zero[BitWidth - ShAmt - 1] ||
- DemandedBits.countLeadingZeros() >= ShAmt) {
- SDNodeFlags Flags;
- Flags.setExact(Op->getFlags().hasExact());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
- }
- int Log2 = DemandedBits.exactLogBase2();
- if (Log2 >= 0) {
- // The bit must come from the sign.
- SDValue NewSA =
- TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
- }
- if (Known.One[BitWidth - ShAmt - 1])
- // New bits are known one.
- Known.One.setHighBits(ShAmt);
- }
- break;
- }
- case ISD::FSHL:
- case ISD::FSHR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- SDValue Op2 = Op.getOperand(2);
- bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
- if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
- unsigned Amt = SA->getAPIntValue().urem(BitWidth);
- // For fshl, 0-shift returns the 1st arg.
- // For fshr, 0-shift returns the 2nd arg.
- if (Amt == 0) {
- if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
- Known, TLO, Depth + 1))
- return true;
- break;
- }
- // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
- // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
- APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
- APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
- if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
- Depth + 1))
- return true;
- Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
- Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
- Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
- Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
- Known.One |= Known2.One;
- Known.Zero |= Known2.Zero;
- }
- break;
- }
- case ISD::BITREVERSE: {
- SDValue Src = Op.getOperand(0);
- APInt DemandedSrcBits = DemandedBits.reverseBits();
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- Known.One = Known2.One.reverseBits();
- Known.Zero = Known2.Zero.reverseBits();
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- SDValue Op0 = Op.getOperand(0);
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned ExVTBits = ExVT.getScalarSizeInBits();
- // If we only care about the highest bit, don't bother shifting right.
- if (DemandedBits.isSignMask()) {
- unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
- bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
- // However if the input is already sign extended we expect the sign
- // extension to be dropped altogether later and do not simplify.
- if (!AlreadySignExtended) {
- // Compute the correct shift amount type, which must be getShiftAmountTy
- // for scalar types after legalization.
- EVT ShiftAmtTy = VT;
- if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
- ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
- SDValue ShiftAmt =
- TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
- }
- }
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if (DemandedBits.getActiveBits() <= ExVTBits)
- return TLO.CombineTo(Op, Op0);
- APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
- // Since the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InputDemandedBits.setBit(ExVTBits - 1);
- if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- // If the input sign bit is known zero, convert this into a zero extension.
- if (Known.Zero[ExVTBits - 1])
- return TLO.CombineTo(
- Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
- APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
- if (Known.One[ExVTBits - 1]) { // Input sign bit known set
- Known.One.setBitsFrom(ExVTBits);
- Known.Zero &= Mask;
- } else { // Input sign bit unknown
- Known.Zero &= Mask;
- Known.One &= Mask;
- }
- break;
- }
- case ISD::BUILD_PAIR: {
- EVT HalfVT = Op.getOperand(0).getValueType();
- unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
- APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
- APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
- KnownBits KnownLo, KnownHi;
- if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
- return true;
- Known.Zero = KnownLo.Zero.zext(BitWidth) |
- KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
- Known.One = KnownLo.One.zext(BitWidth) |
- KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
- break;
- }
- case ISD::ZERO_EXTEND:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits) {
- // If we only need the non-extended bits of the bottom element
- // then we can just bitcast to the result.
- if (IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits() &&
- TLO.DAG.getDataLayout().isLittleEndian())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- unsigned Opc =
- IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
- break;
- }
- case ISD::SIGN_EXTEND:
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits) {
- // If we only need the non-extended bits of the bottom element
- // then we can just bitcast to the result.
- if (IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits() &&
- TLO.DAG.getDataLayout().isLittleEndian())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- unsigned Opc =
- IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
- // Since some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InDemandedBits.setBit(InBits - 1);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- // If the sign bit is known one, the top bits match.
- Known = Known.sext(BitWidth);
- // If the sign bit is known zero, convert this to a zero extend.
- if (Known.isNonNegative()) {
- unsigned Opc =
- IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
- if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
- }
- break;
- }
- case ISD::ANY_EXTEND:
- case ISD::ANY_EXTEND_VECTOR_INREG: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned InBits = SrcVT.getScalarSizeInBits();
- unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
- // If we only need the bottom element then we can just bitcast.
- // TODO: Handle ANY_EXTEND?
- if (IsVecInReg && DemandedElts == 1 &&
- VT.getSizeInBits() == SrcVT.getSizeInBits() &&
- TLO.DAG.getDataLayout().isLittleEndian())
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
- if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(Known.getBitWidth() == InBits && "Src width has changed?");
- Known = Known.zext(BitWidth, false /* => any extend */);
- break;
- }
- case ISD::TRUNCATE: {
- SDValue Src = Op.getOperand(0);
- // Simplify the input, using demanded bit information, and compute the known
- // zero/one bits live out.
- unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
- APInt TruncMask = DemandedBits.zext(OperandBitWidth);
- if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
- return true;
- Known = Known.trunc(BitWidth);
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
- Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
- // If the input is only used by this truncate, see if we can shrink it based
- // on the known demanded bits.
- if (Src.getNode()->hasOneUse()) {
- switch (Src.getOpcode()) {
- default:
- break;
- case ISD::SRL:
- // Shrink SRL by a constant if none of the high bits shifted in are
- // demanded.
- if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
- // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
- // undesirable.
- break;
- auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
- if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
- break;
- SDValue Shift = Src.getOperand(1);
- uint64_t ShVal = ShAmt->getZExtValue();
- if (TLO.LegalTypes())
- Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
- APInt HighBits =
- APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
- HighBits.lshrInPlace(ShVal);
- HighBits = HighBits.trunc(BitWidth);
- if (!(HighBits & DemandedBits)) {
- // None of the shifted in bits are needed. Add a truncate of the
- // shift input, then shift it.
- SDValue NewTrunc =
- TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
- }
- break;
- }
- }
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case ISD::AssertZext: {
- // AssertZext demands all of the high bits, plus any of the low bits
- // demanded by its users.
- EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
- TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero |= ~InMask;
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue Src = Op.getOperand(0);
- SDValue Idx = Op.getOperand(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- unsigned EltBitWidth = Src.getScalarValueSizeInBits();
- // Demand the bits from every vector element without a constant index.
- APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
- if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
- if (CIdx->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
- // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
- // anything about the extended bits.
- APInt DemandedSrcBits = DemandedBits;
- if (BitWidth > EltBitWidth)
- DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
- Depth + 1))
- return true;
- Known = Known2;
- if (BitWidth > EltBitWidth)
- Known = Known.zext(BitWidth, false /* => any extend */);
- break;
- }
- case ISD::BITCAST: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
- // If this is an FP->Int bitcast and if the sign bit is the only
- // thing demanded, turn this into a FGETSIGN.
- if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
- DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
- SrcVT.isFloatingPoint()) {
- bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
- bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
- if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
- SrcVT != MVT::f128) {
- // Cannot eliminate/lower SHL for f128 yet.
- EVT Ty = OpVTLegal ? VT : MVT::i32;
- // Make a FGETSIGN + SHL to move the sign bit into the appropriate
- // place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
- unsigned OpVTSizeInBits = Op.getValueSizeInBits();
- if (!OpVTLegal && OpVTSizeInBits > 32)
- Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
- unsigned ShVal = Op.getValueSizeInBits() - 1;
- SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
- }
- }
- // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
- // Demand the elt/bit if any of the original elts/bits are demanded.
- // TODO - bigendian once we have test coverage.
- if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
- TLO.DAG.getDataLayout().isLittleEndian()) {
- unsigned Scale = BitWidth / NumSrcEltBits;
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
- for (unsigned i = 0; i != Scale; ++i) {
- unsigned Offset = i * NumSrcEltBits;
- APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
- if (!Sub.isNullValue()) {
- DemandedSrcBits |= Sub;
- for (unsigned j = 0; j != NumElts; ++j)
- if (DemandedElts[j])
- DemandedSrcElts.setBit((j * Scale) + i);
- }
- }
- APInt KnownSrcUndef, KnownSrcZero;
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
- KnownSrcZero, TLO, Depth + 1))
- return true;
- KnownBits KnownSrcBits;
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
- KnownSrcBits, TLO, Depth + 1))
- return true;
- } else if ((NumSrcEltBits % BitWidth) == 0 &&
- TLO.DAG.getDataLayout().isLittleEndian()) {
- unsigned Scale = NumSrcEltBits / BitWidth;
- unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
- APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
- APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Offset = (i % Scale) * BitWidth;
- DemandedSrcBits.insertBits(DemandedBits, Offset);
- DemandedSrcElts.setBit(i / Scale);
- }
- if (SrcVT.isVector()) {
- APInt KnownSrcUndef, KnownSrcZero;
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
- KnownSrcZero, TLO, Depth + 1))
- return true;
- }
- KnownBits KnownSrcBits;
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
- KnownSrcBits, TLO, Depth + 1))
- return true;
- }
- // If this is a bitcast, let computeKnownBits handle it. Only do this on a
- // recursive call where Known may be useful to the caller.
- if (Depth > 0) {
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false;
- }
- break;
- }
- case ISD::ADD:
- case ISD::MUL:
- case ISD::SUB: {
- // Add, Sub, and Mul don't demand any bits in positions beyond that
- // of the highest bit demanded of them.
- SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
- SDNodeFlags Flags = Op.getNode()->getFlags();
- unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
- APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
- if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
- Depth + 1) ||
- SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
- Depth + 1) ||
- // See if the operation should be performed at a smaller bit width.
- ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
- if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- SDValue NewOp =
- TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- return true;
- }
- // Attempt to avoid multi-use ops if we don't need anything from them.
- if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
- SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
- Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
- SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
- Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
- if (DemandedOp0 || DemandedOp1) {
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- Op0 = DemandedOp0 ? DemandedOp0 : Op0;
- Op1 = DemandedOp1 ? DemandedOp1 : Op1;
- SDValue NewOp =
- TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- }
- // If we have a constant operand, we may be able to turn it into -1 if we
- // do not demand the high bits. This can make the constant smaller to
- // encode, allow more general folding, or match specialized instruction
- // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
- // is probably not useful (and could be detrimental).
- ConstantSDNode *C = isConstOrConstSplat(Op1);
- APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
- if (C && !C->isAllOnesValue() && !C->isOne() &&
- (C->getAPIntValue() | HighMask).isAllOnesValue()) {
- SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- LLVM_FALLTHROUGH;
- }
- default:
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
- Known, TLO, Depth))
- return true;
- break;
- }
- // Just use computeKnownBits to compute output bits.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- break;
- }
- // If we know the value of all of the demanded bits, return this as a
- // constant.
- if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
- // Avoid folding to a constant if any OpaqueConstant is involved.
- const SDNode *N = Op.getNode();
- for (SDNodeIterator I = SDNodeIterator::begin(N),
- E = SDNodeIterator::end(N);
- I != E; ++I) {
- SDNode *Op = *I;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
- if (C->isOpaque())
- return false;
- }
- // TODO: Handle float bits as well.
- if (VT.isInteger())
- return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
- }
- return false;
- }
- bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
- const APInt &DemandedElts,
- APInt &KnownUndef,
- APInt &KnownZero,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- bool Simplified =
- SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
- }
- /// Given a vector binary operation and known undefined elements for each input
- /// operand, compute whether each element of the output is undefined.
- static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
- const APInt &UndefOp0,
- const APInt &UndefOp1) {
- EVT VT = BO.getValueType();
- assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
- "Vector binop only");
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElts = VT.getVectorNumElements();
- assert(UndefOp0.getBitWidth() == NumElts &&
- UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
- auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
- const APInt &UndefVals) {
- if (UndefVals[Index])
- return DAG.getUNDEF(EltVT);
- if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
- // Try hard to make sure that the getNode() call is not creating temporary
- // nodes. Ignore opaque integers because they do not constant fold.
- SDValue Elt = BV->getOperand(Index);
- auto *C = dyn_cast<ConstantSDNode>(Elt);
- if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
- return Elt;
- }
- return SDValue();
- };
- APInt KnownUndef = APInt::getNullValue(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- // If both inputs for this element are either constant or undef and match
- // the element type, compute the constant/undef result for this element of
- // the vector.
- // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
- // not handle FP constants. The code within getNode() should be refactored
- // to avoid the danger of creating a bogus temporary node here.
- SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
- SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
- if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
- if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
- KnownUndef.setBit(i);
- }
- return KnownUndef;
- }
- bool TargetLowering::SimplifyDemandedVectorElts(
- SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
- APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = OriginalDemandedElts;
- unsigned NumElts = DemandedElts.getBitWidth();
- assert(VT.isVector() && "Expected vector op");
- assert(VT.getVectorNumElements() == NumElts &&
- "Mask size mismatches value type element count!");
- KnownUndef = KnownZero = APInt::getNullValue(NumElts);
- // Undef operand.
- if (Op.isUndef()) {
- KnownUndef.setAllBits();
- return false;
- }
- // If Op has other users, assume that all elements are needed.
- if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
- DemandedElts.setAllBits();
- // Not demanding any elements from Op.
- if (DemandedElts == 0) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
- // Limit search depth.
- if (Depth >= 6)
- return false;
- SDLoc DL(Op);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- switch (Op.getOpcode()) {
- case ISD::SCALAR_TO_VECTOR: {
- if (!DemandedElts[0]) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
- KnownUndef.setHighBits(NumElts - 1);
- break;
- }
- case ISD::BITCAST: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- // We only handle vectors here.
- // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
- if (!SrcVT.isVector())
- break;
- // Fast handling of 'identity' bitcasts.
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- if (NumSrcElts == NumElts)
- return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1);
- APInt SrcZero, SrcUndef;
- APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
- // Bitcast from 'large element' src vector to 'small element' vector, we
- // must demand a source element if any DemandedElt maps to it.
- if ((NumElts % NumSrcElts) == 0) {
- unsigned Scale = NumElts / NumSrcElts;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SrcDemandedElts.setBit(i / Scale);
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
- // Try calling SimplifyDemandedBits, converting demanded elts to the bits
- // of the large element.
- // TODO - bigendian once we have test coverage.
- if (TLO.DAG.getDataLayout().isLittleEndian()) {
- unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
- APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Ofs = (i % Scale) * EltSizeInBits;
- SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
- }
- KnownBits Known;
- if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
- return true;
- }
- // If the src element is zero/undef then all the output elements will be -
- // only demanded elements are guaranteed to be correct.
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- if (SrcDemandedElts[i]) {
- if (SrcZero[i])
- KnownZero.setBits(i * Scale, (i + 1) * Scale);
- if (SrcUndef[i])
- KnownUndef.setBits(i * Scale, (i + 1) * Scale);
- }
- }
- }
- // Bitcast from 'small element' src vector to 'large element' vector, we
- // demand all smaller source elements covered by the larger demanded element
- // of this vector.
- if ((NumSrcElts % NumElts) == 0) {
- unsigned Scale = NumSrcElts / NumElts;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
- // If all the src elements covering an output element are zero/undef, then
- // the output element will be as well, assuming it was demanded.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (DemandedElts[i]) {
- if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
- KnownZero.setBit(i);
- if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
- KnownUndef.setBit(i);
- }
- }
- }
- break;
- }
- case ISD::BUILD_VECTOR: {
- // Check all elements and simplify any unused elements with UNDEF.
- if (!DemandedElts.isAllOnesValue()) {
- // Don't simplify BROADCASTS.
- if (llvm::any_of(Op->op_values(),
- [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
- SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
- bool Updated = false;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i] && !Ops[i].isUndef()) {
- Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
- KnownUndef.setBit(i);
- Updated = true;
- }
- }
- if (Updated)
- return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
- }
- }
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue SrcOp = Op.getOperand(i);
- if (SrcOp.isUndef()) {
- KnownUndef.setBit(i);
- } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
- (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- SDValue SubOp = Op.getOperand(i);
- APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, i * NumSubElts);
- KnownZero.insertBits(SubZero, i * NumSubElts);
- }
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- if (!isa<ConstantSDNode>(Op.getOperand(2)))
- break;
- SDValue Base = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- EVT SubVT = Sub.getValueType();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- const APInt &Idx = Op.getConstantOperandAPInt(2);
- if (Idx.ugt(NumElts - NumSubElts))
- break;
- unsigned SubIdx = Idx.getZExtValue();
- APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- APInt BaseElts = DemandedElts;
- BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
- // If none of the base operand elements are demanded, replace it with undef.
- if (!BaseElts && !Base.isUndef())
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
- TLO.DAG.getUNDEF(VT),
- Op.getOperand(1),
- Op.getOperand(2)));
- if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
- Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, SubIdx);
- KnownZero.insertBits(SubZero, SubIdx);
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- SDValue Src = Op.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- KnownUndef = SrcUndef.extractBits(NumElts, Idx);
- KnownZero = SrcZero.extractBits(NumElts, Idx);
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue Vec = Op.getOperand(0);
- SDValue Scl = Op.getOperand(1);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
- // For a legal, constant insertion index, if we don't need this insertion
- // then strip it, else remove it from the demanded elts.
- if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
- unsigned Idx = CIdx->getZExtValue();
- if (!DemandedElts[Idx])
- return TLO.CombineTo(Op, Vec);
- APInt DemandedVecElts(DemandedElts);
- DemandedVecElts.clearBit(Idx);
- if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- KnownUndef.clearBit(Idx);
- if (Scl.isUndef())
- KnownUndef.setBit(Idx);
- KnownZero.clearBit(Idx);
- if (isNullConstant(Scl) || isNullFPConstant(Scl))
- KnownZero.setBit(Idx);
- break;
- }
- APInt VecUndef, VecZero;
- if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
- Depth + 1))
- return true;
- // Without knowing the insertion index we can't set KnownUndef/KnownZero.
- break;
- }
- case ISD::VSELECT: {
- // Try to transform the select condition based on the current demanded
- // elements.
- // TODO: If a condition element is undef, we can choose from one arm of the
- // select (and if one arm is undef, then we can propagate that to the
- // result).
- // TODO - add support for constant vselect masks (see IR version of this).
- APInt UnusedUndef, UnusedZero;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
- UnusedZero, TLO, Depth + 1))
- return true;
- // See if we can simplify either vselect operand.
- APInt DemandedLHS(DemandedElts);
- APInt DemandedRHS(DemandedElts);
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
- KnownUndef = UndefLHS & UndefRHS;
- KnownZero = ZeroLHS & ZeroRHS;
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS(NumElts, 0);
- APInt DemandedRHS(NumElts, 0);
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0 || !DemandedElts[i])
- continue;
- assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
- if (M < (int)NumElts)
- DemandedLHS.setBit(M);
- else
- DemandedRHS.setBit(M - NumElts);
- }
- // See if we can simplify either shuffle operand.
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
- // Simplify mask using undef elements from LHS/RHS.
- bool Updated = false;
- bool IdentityLHS = true, IdentityRHS = true;
- SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
- for (unsigned i = 0; i != NumElts; ++i) {
- int &M = NewMask[i];
- if (M < 0)
- continue;
- if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
- (M >= (int)NumElts && UndefRHS[M - NumElts])) {
- Updated = true;
- M = -1;
- }
- IdentityLHS &= (M < 0) || (M == (int)i);
- IdentityRHS &= (M < 0) || ((M - NumElts) == i);
- }
- // Update legal shuffle masks based on demanded elements if it won't reduce
- // to Identity which can cause premature removal of the shuffle mask.
- if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
- SDValue LegalShuffle =
- buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
- NewMask, TLO.DAG);
- if (LegalShuffle)
- return TLO.CombineTo(Op, LegalShuffle);
- }
- // Propagate undef/zero elements from LHS/RHS.
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0) {
- KnownUndef.setBit(i);
- } else if (M < (int)NumElts) {
- if (UndefLHS[M])
- KnownUndef.setBit(i);
- if (ZeroLHS[M])
- KnownZero.setBit(i);
- } else {
- if (UndefRHS[M - NumElts])
- KnownUndef.setBit(i);
- if (ZeroRHS[M - NumElts])
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- APInt SrcUndef, SrcZero;
- SDValue Src = Op.getOperand(0);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- KnownZero = SrcZero.zextOrTrunc(NumElts);
- KnownUndef = SrcUndef.zextOrTrunc(NumElts);
- if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
- Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
- DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
- // aext - if we just need the bottom element then we can bitcast.
- return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
- }
- if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- }
- break;
- }
- // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
- // MAX, saturated math, etc.
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM: {
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
- APInt UndefLHS, ZeroLHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- KnownZero = ZeroLHS & ZeroRHS;
- KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
- break;
- }
- case ISD::SHL:
- case ISD::SRL:
- case ISD::SRA:
- case ISD::ROTL:
- case ISD::ROTR: {
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
- APInt UndefLHS, ZeroLHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- KnownZero = ZeroLHS;
- KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
- break;
- }
- case ISD::MUL:
- case ISD::AND: {
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
- SrcZero, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- // If either side has a zero element, then the result element is zero, even
- // if the other is an UNDEF.
- // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
- // and then handle 'and' nodes with the rest of the binop opcodes.
- KnownZero |= SrcZero;
- KnownUndef &= SrcUndef;
- KnownUndef &= ~KnownZero;
- break;
- }
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- if (Op.getOpcode() == ISD::ZERO_EXTEND) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- }
- break;
- default: {
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth))
- return true;
- } else {
- KnownBits Known;
- APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
- if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
- TLO, Depth, AssumeSingleUse))
- return true;
- }
- break;
- }
- }
- assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
- // Constant fold all undef cases.
- // TODO: Handle zero cases as well.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- return false;
- }
- /// Determine which of the bits specified in Mask are known to be either zero or
- /// one and return them in the Known.
- void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use MaskedValueIsZero if you don't know whether Op"
- " is a target node!");
- Known.resetAll();
- }
- void TargetLowering::computeKnownBitsForTargetInstr(
- Register R, KnownBits &Known, const APInt &DemandedElts,
- const MachineRegisterInfo &MRI, unsigned Depth) const {
- Known.resetAll();
- }
- void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
- if (unsigned Align = DAG.InferPtrAlignment(Op)) {
- // The low bits are known zero if the pointer is aligned.
- Known.Zero.setLowBits(Log2_32(Align));
- }
- }
- /// This method can be implemented by targets that want to expose additional
- /// information about sign bits to the DAG Combiner.
- unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
- const APInt &,
- const SelectionDAG &,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use ComputeNumSignBits if you don't know whether Op"
- " is a target node!");
- return 1;
- }
- bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
- SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
- TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedVectorElts if you don't know whether Op"
- " is a target node!");
- return false;
- }
- bool TargetLowering::SimplifyDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedBits if you don't know whether Op"
- " is a target node!");
- computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
- return false;
- }
- SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- SelectionDAG &DAG, unsigned Depth) const {
- assert(
- (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
- " is a target node!");
- return SDValue();
- }
- SDValue
- TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
- SDValue N1, MutableArrayRef<int> Mask,
- SelectionDAG &DAG) const {
- bool LegalMask = isShuffleMaskLegal(Mask, VT);
- if (!LegalMask) {
- std::swap(N0, N1);
- ShuffleVectorSDNode::commuteMask(Mask);
- LegalMask = isShuffleMaskLegal(Mask, VT);
- }
- if (!LegalMask)
- return SDValue();
- return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
- }
- const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
- return nullptr;
- }
- bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
- const SelectionDAG &DAG,
- bool SNaN,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use isKnownNeverNaN if you don't know whether Op"
- " is a target node!");
- return false;
- }
- // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
- // work with truncating build vectors and vectors with elements of less than
- // 8 bits.
- bool TargetLowering::isConstTrueVal(const SDNode *N) const {
- if (!N)
- return false;
- APInt CVal;
- if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
- CVal = CN->getAPIntValue();
- } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
- auto *CN = BV->getConstantSplatNode();
- if (!CN)
- return false;
- // If this is a truncating build vector, truncate the splat value.
- // Otherwise, we may fail to match the expected values below.
- unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
- CVal = CN->getAPIntValue();
- if (BVEltWidth < CVal.getBitWidth())
- CVal = CVal.trunc(BVEltWidth);
- } else {
- return false;
- }
- switch (getBooleanContents(N->getValueType(0))) {
- case UndefinedBooleanContent:
- return CVal[0];
- case ZeroOrOneBooleanContent:
- return CVal.isOneValue();
- case ZeroOrNegativeOneBooleanContent:
- return CVal.isAllOnesValue();
- }
- llvm_unreachable("Invalid boolean contents");
- }
- bool TargetLowering::isConstFalseVal(const SDNode *N) const {
- if (!N)
- return false;
- const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN) {
- const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
- if (!BV)
- return false;
- // Only interested in constant splats, we don't care about undef
- // elements in identifying boolean constants and getConstantSplatNode
- // returns NULL if all ops are undef;
- CN = BV->getConstantSplatNode();
- if (!CN)
- return false;
- }
- if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
- return !CN->getAPIntValue()[0];
- return CN->isNullValue();
- }
- bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
- bool SExt) const {
- if (VT == MVT::i1)
- return N->isOne();
- TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
- switch (Cnt) {
- case TargetLowering::ZeroOrOneBooleanContent:
- // An extended value of 1 is always true, unless its original type is i1,
- // in which case it will be sign extended to -1.
- return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
- case TargetLowering::UndefinedBooleanContent:
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return N->isAllOnesValue() && SExt;
- }
- llvm_unreachable("Unexpected enumeration.");
- }
- /// This helper function of SimplifySetCC tries to optimize the comparison when
- /// either operand of the SetCC node is a bitwise-and instruction.
- SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- DAGCombinerInfo &DCI) const {
- // Match these patterns in any of their permutations:
- // (X & Y) == Y
- // (X & Y) != Y
- if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
- std::swap(N0, N1);
- EVT OpVT = N0.getValueType();
- if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
- (Cond != ISD::SETEQ && Cond != ISD::SETNE))
- return SDValue();
- SDValue X, Y;
- if (N0.getOperand(0) == N1) {
- X = N0.getOperand(1);
- Y = N0.getOperand(0);
- } else if (N0.getOperand(1) == N1) {
- X = N0.getOperand(0);
- Y = N0.getOperand(1);
- } else {
- return SDValue();
- }
- SelectionDAG &DAG = DCI.DAG;
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- if (DAG.isKnownToBeAPowerOfTwo(Y)) {
- // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
- // Note that where Y is variable and is known to have at most one bit set
- // (for example, if it is Z & 1) we cannot do this; the expressions are not
- // equivalent when Y == 0.
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(Cond, N0.getSimpleValueType()))
- return DAG.getSetCC(DL, VT, N0, Zero, Cond);
- } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
- // If the target supports an 'and-not' or 'and-complement' logic operation,
- // try to use that to make a comparison operation more efficient.
- // But don't do this transform if the mask is a single bit because there are
- // more efficient ways to deal with that case (for example, 'bt' on x86 or
- // 'rlwinm' on PPC).
- // Bail out if the compare operand that we want to turn into a zero is
- // already a zero (otherwise, infinite loop).
- auto *YConst = dyn_cast<ConstantSDNode>(Y);
- if (YConst && YConst->isNullValue())
- return SDValue();
- // Transform this into: ~X & Y == 0.
- SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
- SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
- return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
- }
- return SDValue();
- }
- /// There are multiple IR patterns that could be checking whether certain
- /// truncation of a signed number would be lossy or not. The pattern which is
- /// best at IR level, may not lower optimally. Thus, we want to unfold it.
- /// We are looking for the following pattern: (KeptBits is a constant)
- /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
- /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
- /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
- /// We will unfold it into the natural trunc+sext pattern:
- /// ((%x << C) a>> C) dstcond %x
- /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
- SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
- EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- // We must be comparing with a constant.
- ConstantSDNode *C1;
- if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
- return SDValue();
- // N0 should be: add %x, (1 << (KeptBits-1))
- if (N0->getOpcode() != ISD::ADD)
- return SDValue();
- // And we must be 'add'ing a constant.
- ConstantSDNode *C01;
- if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
- return SDValue();
- SDValue X = N0->getOperand(0);
- EVT XVT = X.getValueType();
- // Validate constants ...
- APInt I1 = C1->getAPIntValue();
- ISD::CondCode NewCond;
- if (Cond == ISD::CondCode::SETULT) {
- NewCond = ISD::CondCode::SETEQ;
- } else if (Cond == ISD::CondCode::SETULE) {
- NewCond = ISD::CondCode::SETEQ;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGT) {
- NewCond = ISD::CondCode::SETNE;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGE) {
- NewCond = ISD::CondCode::SETNE;
- } else
- return SDValue();
- APInt I01 = C01->getAPIntValue();
- auto checkConstants = [&I1, &I01]() -> bool {
- // Both of them must be power-of-two, and the constant from setcc is bigger.
- return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
- };
- if (checkConstants()) {
- // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
- } else {
- // What if we invert constants? (and the target predicate)
- I1.negate();
- I01.negate();
- NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
- if (!checkConstants())
- return SDValue();
- // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
- }
- // They are power-of-two, so which bit is set?
- const unsigned KeptBits = I1.logBase2();
- const unsigned KeptBitsMinusOne = I01.logBase2();
- // Magic!
- if (KeptBits != (KeptBitsMinusOne + 1))
- return SDValue();
- assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
- // We don't want to do this in every single case.
- SelectionDAG &DAG = DCI.DAG;
- if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
- XVT, KeptBits))
- return SDValue();
- const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
- assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
- // Unfold into: ((%x << C) a>> C) cond %x
- // Where 'cond' will be either 'eq' or 'ne'.
- SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
- SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
- SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
- SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
- return T2;
- }
- // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
- SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
- EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL) const {
- assert(isConstOrConstSplat(N1C) &&
- isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
- "Should be a comparison with 0.");
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Valid only for [in]equality comparisons.");
- unsigned NewShiftOpcode;
- SDValue X, C, Y;
- SelectionDAG &DAG = DCI.DAG;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Look for '(C l>>/<< Y)'.
- auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
- // The shift should be one-use.
- if (!V.hasOneUse())
- return false;
- unsigned OldShiftOpcode = V.getOpcode();
- switch (OldShiftOpcode) {
- case ISD::SHL:
- NewShiftOpcode = ISD::SRL;
- break;
- case ISD::SRL:
- NewShiftOpcode = ISD::SHL;
- break;
- default:
- return false; // must be a logical shift.
- }
- // We should be shifting a constant.
- // FIXME: best to use isConstantOrConstantVector().
- C = V.getOperand(0);
- ConstantSDNode *CC =
- isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
- if (!CC)
- return false;
- Y = V.getOperand(1);
- ConstantSDNode *XC =
- isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
- return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
- X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
- };
- // LHS of comparison should be an one-use 'and'.
- if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
- return SDValue();
- X = N0.getOperand(0);
- SDValue Mask = N0.getOperand(1);
- // 'and' is commutative!
- if (!Match(Mask)) {
- std::swap(X, Mask);
- if (!Match(Mask))
- return SDValue();
- }
- EVT VT = X.getValueType();
- // Produce:
- // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
- SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
- SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
- SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
- return T2;
- }
- /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
- /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
- /// handle the commuted versions of these patterns.
- SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, const SDLoc &DL,
- DAGCombinerInfo &DCI) const {
- unsigned BOpcode = N0.getOpcode();
- assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
- "Unexpected binop");
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
- // (X + Y) == X --> Y == 0
- // (X - Y) == X --> Y == 0
- // (X ^ Y) == X --> Y == 0
- SelectionDAG &DAG = DCI.DAG;
- EVT OpVT = N0.getValueType();
- SDValue X = N0.getOperand(0);
- SDValue Y = N0.getOperand(1);
- if (X == N1)
- return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
- if (Y != N1)
- return SDValue();
- // (X + Y) == Y --> X == 0
- // (X ^ Y) == Y --> X == 0
- if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
- return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
- // The shift would not be valid if the operands are boolean (i1).
- if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
- return SDValue();
- // (X - Y) == Y --> X == Y << 1
- EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
- !DCI.isBeforeLegalize());
- SDValue One = DAG.getConstant(1, DL, ShiftVT);
- SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(YShl1.getNode());
- return DAG.getSetCC(DL, VT, X, YShl1, Cond);
- }
- /// Try to simplify a setcc built with the specified operands and cc. If it is
- /// unable to simplify it, return a null SDValue.
- SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI,
- const SDLoc &dl) const {
- SelectionDAG &DAG = DCI.DAG;
- EVT OpVT = N0.getValueType();
- // Constant fold or commute setcc.
- if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
- return Fold;
- // Ensure that the constant occurs on the RHS and fold constant comparisons.
- // TODO: Handle non-splat vector constants. All undef causes trouble.
- ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
- if (isConstOrConstSplat(N0) &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
- // If we have a subtract with the same 2 non-constant operands as this setcc
- // -- but in reverse order -- then try to commute the operands of this setcc
- // to match. A matching pair of setcc (cmp) and sub may be combined into 1
- // instruction on some targets.
- if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
- DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
- !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
- return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- N0.getOperand(1).getOpcode() == ISD::Constant) {
- const APInt &ShAmt = N0.getConstantOperandAPInt(1);
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
- Zero, Cond);
- }
- }
- SDValue CTPOP = N0;
- // Look through truncs that don't change the value of a ctpop.
- if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
- CTPOP = N0.getOperand(0);
- if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
- (N0 == CTPOP ||
- N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
- EVT CTVT = CTPOP.getValueType();
- SDValue CTOp = CTPOP.getOperand(0);
- // (ctpop x) u< 2 -> (x & x-1) == 0
- // (ctpop x) u> 1 -> (x & x-1) != 0
- if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
- SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
- SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
- SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
- ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
- return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
- }
- // If ctpop is not supported, expand a power-of-2 comparison based on it.
- if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
- // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
- SDValue Zero = DAG.getConstant(0, dl, CTVT);
- SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
- ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
- SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
- SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
- SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
- SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
- unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
- return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
- }
- }
- // (zext x) == C --> x == (trunc C)
- // (sext x) == C --> x == (trunc C)
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- DCI.isBeforeLegalize() && N0->hasOneUse()) {
- unsigned MinBits = N0.getValueSizeInBits();
- SDValue PreExt;
- bool Signed = false;
- if (N0->getOpcode() == ISD::ZERO_EXTEND) {
- // ZExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- } else if (N0->getOpcode() == ISD::AND) {
- // DAGCombine turns costly ZExts into ANDs
- if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
- if ((C->getAPIntValue()+1).isPowerOf2()) {
- MinBits = C->getAPIntValue().countTrailingOnes();
- PreExt = N0->getOperand(0);
- }
- } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
- // SExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- Signed = true;
- } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
- // ZEXTLOAD / SEXTLOAD
- if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
- Signed = true;
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- }
- }
- // Figure out how many bits we need to preserve this constant.
- unsigned ReqdBits = Signed ?
- C1.getBitWidth() - C1.getNumSignBits() + 1 :
- C1.getActiveBits();
- // Make sure we're not losing bits from the constant.
- if (MinBits > 0 &&
- MinBits < C1.getBitWidth() &&
- MinBits >= ReqdBits) {
- EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
- if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
- // Will get folded away.
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
- if (MinBits == 1 && C1 == 1)
- // Invert the condition.
- return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
- return DAG.getSetCC(dl, VT, Trunc, C, Cond);
- }
- // If truncating the setcc operands is not desirable, we can still
- // simplify the expression in some cases:
- // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
- // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
- // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
- // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
- SDValue TopSetCC = N0->getOperand(0);
- unsigned N0Opc = N0->getOpcode();
- bool SExt = (N0Opc == ISD::SIGN_EXTEND);
- if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
- TopSetCC.getOpcode() == ISD::SETCC &&
- (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
- (isConstFalseVal(N1C) ||
- isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
- bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
- (!N1C->isNullValue() && Cond == ISD::SETNE);
- if (!Inverse)
- return TopSetCC;
- ISD::CondCode InvCond = ISD::getSetCCInverse(
- cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
- TopSetCC.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
- TopSetCC.getOperand(1),
- InvCond);
- }
- }
- }
- // If the LHS is '(and load, const)', the RHS is 0, the test is for
- // equality or unsigned, and all 1 bits of the const are in the same
- // partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- !ISD::isSignedIntSetCC(Cond) &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- APInt bestMask;
- unsigned bestWidth = 0, bestOffset = 0;
- if (Lod->isSimple() && Lod->isUnindexed()) {
- unsigned origWidth = N0.getValueSizeInBits();
- unsigned maskWidth = origWidth;
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- const APInt &Mask = N0.getConstantOperandAPInt(1);
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- APInt newMask = APInt::getLowBitsSet(maskWidth, width);
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if (Mask.isSubsetOf(newMask)) {
- if (DAG.getDataLayout().isLittleEndian())
- bestOffset = (uint64_t)offset * (width/8);
- else
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- bestMask = Mask.lshr(offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask <<= width;
- }
- }
- }
- if (bestWidth) {
- EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
- if (newVT.isRound() &&
- shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
- EVT PtrType = Lod->getOperand(1).getValueType();
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
- DAG.getConstant(bestOffset, dl, PtrType));
- unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
- SDValue NewLoad = DAG.getLoad(
- newVT, dl, Lod->getChain(), Ptr,
- Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask.trunc(bestWidth),
- dl, newVT)),
- DAG.getConstant(0LL, dl, newVT), Cond);
- }
- }
- }
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueSizeInBits();
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ:
- return DAG.getConstant(0, dl, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE:
- return DAG.getConstant(1, dl, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), dl, VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), dl, VT);
- default:
- break;
- }
- }
- // Otherwise, we can perform the comparison with the low bits.
- switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE: {
- EVT newVT = N0.getOperand(0).getValueType();
- if (DCI.isBeforeLegalizeOps() ||
- (isOperationLegal(ISD::SETCC, newVT) &&
- isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
- EVT NewSetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
- SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
- SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
- NewConst, Cond);
- return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
- }
- break;
- }
- default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- EVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
- // If the constant doesn't fit into the number of bits for the source of
- // the sign extension, it is impossible for both sides to be equal.
- if (C1.getMinSignedBits() > ExtSrcTyBits)
- return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
- SDValue ZextOp;
- EVT Op0Ty = N0.getOperand(0).getValueType();
- if (Op0Ty == ExtSrcTy) {
- ZextOp = N0.getOperand(0);
- } else {
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
- DAG.getConstant(Imm, dl, Op0Ty));
- }
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & APInt::getLowBitsSet(
- ExtDstTyBits,
- ExtSrcTyBits),
- dl, ExtDstTy),
- Cond);
- } else if ((N1C->isNullValue() || N1C->isOne()) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC &&
- isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
- if (TrueWhenTrue)
- return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
- N0.getOperand(0).getValueType().isInteger());
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR) {
- Val = N0.getOperand(0);
- } else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- } else if (N1C->isOne() &&
- (VT == MVT::i1 ||
- getBooleanContents(N0->getValueType(0)) ==
- ZeroOrOneBooleanContent)) {
- SDValue Op0 = N0;
- if (Op0.getOpcode() == ISD::TRUNCATE)
- Op0 = Op0.getOperand(0);
- if ((Op0.getOpcode() == ISD::XOR) &&
- Op0.getOperand(0).getOpcode() == ISD::SETCC &&
- Op0.getOperand(1).getOpcode() == ISD::SETCC) {
- // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
- Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
- return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
- Cond);
- }
- if (Op0.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(Op0.getOperand(1)) &&
- cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
- // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
- if (Op0.getValueType().bitsGT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
- else if (Op0.getValueType().bitsLT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- if (Op0.getOpcode() == ISD::AssertZext &&
- cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- }
- // Given:
- // icmp eq/ne (urem %x, %y), 0
- // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
- // icmp eq/ne %x, 0
- if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
- KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
- if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
- }
- if (SDValue V =
- optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
- return V;
- }
- // These simplifications apply to splat vectors as well.
- // TODO: Handle more splat vector cases.
- if (auto *N1C = isConstOrConstSplat(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
- } else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
- }
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- // X >= MIN --> true
- if (C1 == MinVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
- if (!VT.isVector()) { // TODO: Support this for vectors.
- // X >= C0 --> X > (C0 - 1)
- APInt C = C1 - 1;
- ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- // X <= MAX --> true
- if (C1 == MaxVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
- // X <= C0 --> X < (C0 + 1)
- if (!VT.isVector()) { // TODO: Support this for vectors.
- APInt C = C1 + 1;
- ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
- if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
- if (C1 == MinVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setlt X, Max --> setne X, Max
- if (C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setult X, 1, turn it into seteq X, 0
- if (C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
- if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
- if (C1 == MaxVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setgt X, Min --> setne X, Min
- if (C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setugt X, Max-1, turn it into seteq X, Max
- if (C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
- if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
- // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
- if (C1.isNullValue())
- if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
- VT, N0, N1, Cond, DCI, dl))
- return CC;
- }
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
- C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, dl, N1.getValueType()),
- ISD::SETLT);
- // SETULT X, SINTMIN -> SETGT X, -1
- if (Cond == ISD::SETULT &&
- C1 == APInt::getSignedMinValue(OperandBitSize)) {
- SDValue ConstMinusOne =
- DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
- N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
- }
- }
- }
- // Back to non-vector simplifications.
- // TODO: Can we do these for vector splats?
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- // Fold bit comparisons when we can.
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- (VT == N0.getValueType() ||
- (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
- N0.getOpcode() == ISD::AND) {
- auto &DL = DAG.getDataLayout();
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- if (AndRHS->getAPIntValue().isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
- ShiftTy)));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(C1.logBase2(), dl,
- ShiftTy)));
- }
- }
- }
- }
- if (C1.getMinSignedBits() <= 64 &&
- !isLegalICmpImmediate(C1.getSExtValue())) {
- // (X & -256) == 256 -> (X >> 8) == 1
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- const APInt &AndRHSC = AndRHS->getAPIntValue();
- if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
- unsigned ShiftBits = AndRHSC.countTrailingZeros();
- auto &DL = DAG.getDataLayout();
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
- DAG.getConstant(ShiftBits, dl,
- ShiftTy));
- SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
- }
- }
- } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
- Cond == ISD::SETULE || Cond == ISD::SETUGT) {
- bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
- // X < 0x100000000 -> (X >> 32) < 1
- // X >= 0x100000000 -> (X >> 32) >= 1
- // X <= 0x0ffffffff -> (X >> 32) < 1
- // X > 0x0ffffffff -> (X >> 32) >= 1
- unsigned ShiftBits;
- APInt NewC = C1;
- ISD::CondCode NewCond = Cond;
- if (AdjOne) {
- ShiftBits = C1.countTrailingOnes();
- NewC = NewC + 1;
- NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- } else {
- ShiftBits = C1.countTrailingZeros();
- }
- NewC.lshrInPlace(ShiftBits);
- if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
- isLegalICmpImmediate(NewC.getSExtValue())) {
- auto &DL = DAG.getDataLayout();
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
- DAG.getConstant(ShiftBits, dl, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
- }
- }
- }
- }
- if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
- auto *CFP = cast<ConstantFPSDNode>(N1);
- assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
- // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
- // constant if knowing that the operand is non-nan is enough. We prefer to
- // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
- // materialize 0.0.
- if (Cond == ISD::SETO || Cond == ISD::SETUO)
- return DAG.getSetCC(dl, VT, N0, N0, Cond);
- // setcc (fneg x), C -> setcc swap(pred) x, -C
- if (N0.getOpcode() == ISD::FNEG) {
- ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
- SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
- return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
- }
- }
- // If the condition is not legal, see if we can find an equivalent one
- // which is legal.
- if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
- // If the comparison was an awkward floating-point == or != and one of
- // the comparison operands is infinity or negative infinity, convert the
- // condition to a less-awkward <= or >=.
- if (CFP->getValueAPF().isInfinity()) {
- if (CFP->getValueAPF().isNegative()) {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
- } else {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
- }
- }
- }
- }
- if (N0 == N1) {
- // The sext(setcc()) => setcc() optimization relies on the appropriate
- // constant being emitted.
- assert(!N0.getValueType().isInteger() &&
- "Integer types should be handled by FoldSetCC");
- bool EqTrue = ISD::isTrueWhenEqual(Cond);
- unsigned UOF = ISD::getUnorderedFlavor(Cond);
- if (UOF == 2) // FP operators that are undefined on NaNs.
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- if (UOF == unsigned(EqTrue))
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
- // if it is not already.
- ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
- if (NewCond != Cond &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCond, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getValueType().isInteger()) {
- if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
- N0.getOpcode() == ISD::XOR) {
- // Simplify (X+Y) == (X+Z) --> Y == Z
- if (N0.getOpcode() == N1.getOpcode()) {
- if (N0.getOperand(0) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
- if (N0.getOperand(1) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
- if (isCommutativeBinOp(N0.getOpcode())) {
- // If X op Y == Y op X, try other combinations.
- if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
- Cond);
- if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
- Cond);
- }
- }
- // If RHS is a legal immediate value for a compare instruction, we need
- // to be careful about increasing register pressure needlessly.
- bool LegalRHSImm = false;
- if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
- if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- // Turn (X+C1) == C2 --> X == C2-C1
- if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(RHSC->getAPIntValue()-
- LHSR->getAPIntValue(),
- dl, N0.getValueType()), Cond);
- }
- // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
- if (N0.getOpcode() == ISD::XOR)
- // If we know that all of the inverted bits are zero, don't bother
- // performing the inversion.
- if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
- return
- DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(LHSR->getAPIntValue() ^
- RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- }
- // Turn (C1-X) == C2 --> X == C1-C2
- if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
- if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
- return
- DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(SUBC->getAPIntValue() -
- RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- }
- }
- // Could RHSC fold directly into a compare?
- if (RHSC->getValueType(0).getSizeInBits() <= 64)
- LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
- }
- // (X+Y) == X --> Y == 0 and similar folds.
- // Don't do this if X is an immediate that can fold into a cmp
- // instruction and X+Y has other uses. It could be an induction variable
- // chain, and the transform would increase register pressure.
- if (!LegalRHSImm || N0.hasOneUse())
- if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
- return V;
- }
- if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
- N1.getOpcode() == ISD::XOR)
- if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
- return V;
- if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
- return V;
- }
- // Fold remainder of division by a constant.
- if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
- N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- // When division is cheap or optimizing for minimum size,
- // fall through to DIVREM creation by skipping this fold.
- if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
- if (N0.getOpcode() == ISD::UREM) {
- if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
- return Folded;
- } else if (N0.getOpcode() == ISD::SREM) {
- if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
- return Folded;
- }
- }
- }
- // Fold away ALL boolean setcc's.
- if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
- SDValue Temp;
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: // X == Y -> ~(X^Y)
- Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- N0 = DAG.getNOT(dl, Temp, OpVT);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETNE: // X != Y --> (X^Y)
- N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- break;
- case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
- case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
- case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
- case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
- case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
- break;
- }
- if (VT.getScalarType() != MVT::i1) {
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(N0.getNode());
- // FIXME: If running after legalize, we probably can't do this.
- ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
- N0 = DAG.getNode(ExtendCode, dl, VT, N0);
- }
- return N0;
- }
- // Could not fold it.
- return SDValue();
- }
- /// Returns true (and the GlobalValue and the offset) if the node is a
- /// GlobalAddress + offset.
- bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
- int64_t &Offset) const {
- SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
- if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
- GA = GASD->getGlobal();
- Offset += GASD->getOffset();
- return true;
- }
- if (N->getOpcode() == ISD::ADD) {
- SDValue N1 = N->getOperand(0);
- SDValue N2 = N->getOperand(1);
- if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
- Offset += V->getSExtValue();
- return true;
- }
- } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
- Offset += V->getSExtValue();
- return true;
- }
- }
- }
- return false;
- }
- SDValue TargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- // Default implementation: no optimization.
- return SDValue();
- }
- //===----------------------------------------------------------------------===//
- // Inline Assembler Implementation Methods
- //===----------------------------------------------------------------------===//
- TargetLowering::ConstraintType
- TargetLowering::getConstraintType(StringRef Constraint) const {
- unsigned S = Constraint.size();
- if (S == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'r':
- return C_RegisterClass;
- case 'm': // memory
- case 'o': // offsetable
- case 'V': // not offsetable
- return C_Memory;
- case 'n': // Simple Integer
- case 'E': // Floating Point Constant
- case 'F': // Floating Point Constant
- return C_Immediate;
- case 'i': // Simple Integer or Relocatable Constant
- case 's': // Relocatable Constant
- case 'p': // Address.
- case 'X': // Allow ANY value.
- case 'I': // Target registers.
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- case '<':
- case '>':
- return C_Other;
- }
- }
- if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
- if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
- return C_Memory;
- return C_Register;
- }
- return C_Unknown;
- }
- /// Try to replace an X constraint, which matches anything, with another that
- /// has more specific requirements based on the type of the corresponding
- /// operand.
- const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
- if (ConstraintVT.isInteger())
- return "r";
- if (ConstraintVT.isFloatingPoint())
- return "f"; // works for many targets
- return nullptr;
- }
- SDValue TargetLowering::LowerAsmOutputForConstraint(
- SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
- SelectionDAG &DAG) const {
- return SDValue();
- }
- /// Lower the specified operand into the Ops vector.
- /// If it is invalid, don't add anything to Ops.
- void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- if (Constraint.length() > 1) return;
- char ConstraintLetter = Constraint[0];
- switch (ConstraintLetter) {
- default: break;
- case 'X': // Allows any operand; labels (basic block) use this.
- if (Op.getOpcode() == ISD::BasicBlock ||
- Op.getOpcode() == ISD::TargetBlockAddress) {
- Ops.push_back(Op);
- return;
- }
- LLVM_FALLTHROUGH;
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': { // Relocatable Constant
- GlobalAddressSDNode *GA;
- ConstantSDNode *C;
- BlockAddressSDNode *BA;
- uint64_t Offset = 0;
- // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
- // etc., since getelementpointer is variadic. We can't use
- // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
- // while in this case the GA may be furthest from the root node which is
- // likely an ISD::ADD.
- while (1) {
- if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
- GA->getValueType(0),
- Offset + GA->getOffset()));
- return;
- } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
- ConstraintLetter != 's') {
- // gcc prints these as sign extended. Sign extend value to 64 bits
- // now; without this it would get ZExt'd later in
- // ScheduleDAGSDNodes::EmitNode, which is very generic.
- bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
- BooleanContent BCont = getBooleanContents(MVT::i64);
- ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
- : ISD::SIGN_EXTEND;
- int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
- : C->getSExtValue();
- Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
- SDLoc(C), MVT::i64));
- return;
- } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
- ConstraintLetter != 'n') {
- Ops.push_back(DAG.getTargetBlockAddress(
- BA->getBlockAddress(), BA->getValueType(0),
- Offset + BA->getOffset(), BA->getTargetFlags()));
- return;
- } else {
- const unsigned OpCode = Op.getOpcode();
- if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
- if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
- Op = Op.getOperand(1);
- // Subtraction is not commutative.
- else if (OpCode == ISD::ADD &&
- (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
- Op = Op.getOperand(0);
- else
- return;
- Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
- continue;
- }
- }
- return;
- }
- break;
- }
- }
- }
- std::pair<unsigned, const TargetRegisterClass *>
- TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
- StringRef Constraint,
- MVT VT) const {
- if (Constraint.empty() || Constraint[0] != '{')
- return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
- assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
- // Remove the braces from around the name.
- StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
- std::pair<unsigned, const TargetRegisterClass *> R =
- std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
- // Figure out which register class contains this reg.
- for (const TargetRegisterClass *RC : RI->regclasses()) {
- // If none of the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- if (!isLegalRC(*RI, *RC))
- continue;
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
- I != E; ++I) {
- if (RegName.equals_lower(RI->getRegAsmName(*I))) {
- std::pair<unsigned, const TargetRegisterClass *> S =
- std::make_pair(*I, RC);
- // If this register class has the requested value type, return it,
- // otherwise keep searching and return the first class found
- // if no other is found which explicitly has the requested type.
- if (RI->isTypeLegalForClass(*RC, VT))
- return S;
- if (!R.second)
- R = S;
- }
- }
- }
- return R;
- }
- //===----------------------------------------------------------------------===//
- // Constraint Selection.
- /// Return true of this is an input operand that is a matching constraint like
- /// "4".
- bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
- }
- /// If this is an input matching constraint, this method returns the output
- /// operand it matches.
- unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return atoi(ConstraintCode.c_str());
- }
- /// Split up the constraint string from the inline assembly value into the
- /// specific constraints and their prefixes, and also tie in the associated
- /// operand values.
- /// If this returns an empty vector, and if the constraint string itself
- /// isn't empty, there was an error parsing.
- TargetLowering::AsmOperandInfoVector
- TargetLowering::ParseConstraints(const DataLayout &DL,
- const TargetRegisterInfo *TRI,
- ImmutableCallSite CS) const {
- /// Information about all of the constraints.
- AsmOperandInfoVector ConstraintOperands;
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- unsigned maCount = 0; // Largest number of multiple alternative constraints.
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
- ConstraintOperands.emplace_back(std::move(CI));
- AsmOperandInfo &OpInfo = ConstraintOperands.back();
- // Update multiple alternative constraint count.
- if (OpInfo.multipleAlternatives.size() > maCount)
- maCount = OpInfo.multipleAlternatives.size();
- OpInfo.ConstraintVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() &&
- "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpInfo.ConstraintVT =
- getSimpleValueType(DL, STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- if (OpInfo.CallOperandVal) {
- llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
- if (OpInfo.isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = DL.getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpInfo.ConstraintVT =
- MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
- break;
- }
- } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
- unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
- OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
- } else {
- OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
- }
- }
- }
- // If we have multiple alternative constraints, select the best alternative.
- if (!ConstraintOperands.empty()) {
- if (maCount) {
- unsigned bestMAIndex = 0;
- int bestWeight = -1;
- // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
- int weight = -1;
- unsigned maIndex;
- // Compute the sums of the weights for each alternative, keeping track
- // of the best (highest weight) one so far.
- for (maIndex = 0; maIndex < maCount; ++maIndex) {
- int weightSum = 0;
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
- if (OpInfo.Type == InlineAsm::isClobber)
- continue;
- // If this is an output operand with a matching input operand,
- // look up the matching input. If their types mismatch, e.g. one
- // is an integer, the other is floating point, or their sizes are
- // different, flag it as an maCantMatch.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- weightSum = -1; // Can't match.
- break;
- }
- }
- }
- weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
- if (weight == -1) {
- weightSum = -1;
- break;
- }
- weightSum += weight;
- }
- // Update best.
- if (weightSum > bestWeight) {
- bestWeight = weightSum;
- bestMAIndex = maIndex;
- }
- }
- // Now select chosen alternative in each constraint.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
- if (cInfo.Type == InlineAsm::isClobber)
- continue;
- cInfo.selectAlternative(bestMAIndex);
- }
- }
- }
- // Check and hook up tied operands, choose constraint code to use.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- }
- }
- }
- return ConstraintOperands;
- }
- /// Return an integer indicating how general CT is.
- static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
- switch (CT) {
- case TargetLowering::C_Immediate:
- case TargetLowering::C_Other:
- case TargetLowering::C_Unknown:
- return 0;
- case TargetLowering::C_Register:
- return 1;
- case TargetLowering::C_RegisterClass:
- return 2;
- case TargetLowering::C_Memory:
- return 3;
- }
- llvm_unreachable("Invalid constraint type");
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const {
- InlineAsm::ConstraintCodeVector *rCodes;
- if (maIndex >= (int)info.multipleAlternatives.size())
- rCodes = &info.Codes;
- else
- rCodes = &info.multipleAlternatives[maIndex].Codes;
- ConstraintWeight BestWeight = CW_Invalid;
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
- ConstraintWeight weight =
- getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
- if (weight > BestWeight)
- BestWeight = weight;
- }
- return BestWeight;
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (!CallOperandVal)
- return CW_Default;
- // Look at the constraint type.
- switch (*constraint) {
- case 'i': // immediate integer.
- case 'n': // immediate integer with a known value.
- if (isa<ConstantInt>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 's': // non-explicit intregal immediate.
- if (isa<GlobalValue>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 'E': // immediate float if host format.
- case 'F': // immediate float.
- if (isa<ConstantFP>(CallOperandVal))
- weight = CW_Constant;
- break;
- case '<': // memory operand with autodecrement.
- case '>': // memory operand with autoincrement.
- case 'm': // memory operand.
- case 'o': // offsettable memory operand
- case 'V': // non-offsettable memory operand
- weight = CW_Memory;
- break;
- case 'r': // general register.
- case 'g': // general register, memory operand or immediate integer.
- // note: Clang converts "g" to "imr".
- if (CallOperandVal->getType()->isIntegerTy())
- weight = CW_Register;
- break;
- case 'X': // any operand.
- default:
- weight = CW_Default;
- break;
- }
- return weight;
- }
- /// If there are multiple different constraints that we could pick for this
- /// operand (e.g. "imr") try to pick the 'best' one.
- /// This is somewhat tricky: constraints fall into four classes:
- /// Other -> immediates and magic values
- /// Register -> one specific register
- /// RegisterClass -> a group of regs
- /// Memory -> memory
- /// Ideally, we would pick the most specific constraint possible: if we have
- /// something that fits into a register, we would pick it. The problem here
- /// is that if we have something that could either be in a register or in
- /// memory that use of the register could cause selection of *other*
- /// operands to fail: they might only succeed if we pick memory. Because of
- /// this the heuristic we use is:
- ///
- /// 1) If there is an 'other' constraint, and if the operand is valid for
- /// that constraint, use it. This makes us take advantage of 'i'
- /// constraints when available.
- /// 2) Otherwise, pick the most general constraint present. This prefers
- /// 'm' over 'r', for example.
- ///
- static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
- const TargetLowering &TLI,
- SDValue Op, SelectionDAG *DAG) {
- assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
- unsigned BestIdx = 0;
- TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
- int BestGenerality = -1;
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
- TargetLowering::ConstraintType CType =
- TLI.getConstraintType(OpInfo.Codes[i]);
- // If this is an 'other' or 'immediate' constraint, see if the operand is
- // valid for it. For example, on X86 we might have an 'rI' constraint. If
- // the operand is an integer in the range [0..31] we want to use I (saving a
- // load of a register), otherwise we must use 'r'.
- if ((CType == TargetLowering::C_Other ||
- CType == TargetLowering::C_Immediate) && Op.getNode()) {
- assert(OpInfo.Codes[i].size() == 1 &&
- "Unhandled multi-letter 'other' constraint");
- std::vector<SDValue> ResultOps;
- TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
- ResultOps, *DAG);
- if (!ResultOps.empty()) {
- BestType = CType;
- BestIdx = i;
- break;
- }
- }
- // Things with matching constraints can only be registers, per gcc
- // documentation. This mainly affects "g" constraints.
- if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
- continue;
- // This constraint letter is more general than the previous one, use it.
- int Generality = getConstraintGenerality(CType);
- if (Generality > BestGenerality) {
- BestType = CType;
- BestIdx = i;
- BestGenerality = Generality;
- }
- }
- OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
- OpInfo.ConstraintType = BestType;
- }
- /// Determines the constraint code and constraint type to use for the specific
- /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
- void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG) const {
- assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
- // Single-letter constraints ('r') are very common.
- if (OpInfo.Codes.size() == 1) {
- OpInfo.ConstraintCode = OpInfo.Codes[0];
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- } else {
- ChooseConstraint(OpInfo, *this, Op, DAG);
- }
- // 'X' matches anything.
- if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
- // Labels and constants are handled elsewhere ('X' is the only thing
- // that matches labels). For Functions, the type here is the type of
- // the result, which is not what we want to look at; leave them alone.
- Value *v = OpInfo.CallOperandVal;
- if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
- OpInfo.CallOperandVal = v;
- return;
- }
- if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
- return;
- // Otherwise, try to resolve it to something we know about by looking at
- // the actual operand type.
- if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
- OpInfo.ConstraintCode = Repl;
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- }
- }
- }
- /// Given an exact SDIV by a constant, create a multiplication
- /// with the multiplicative inverse of the constant.
- static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
- const SDLoc &dl, SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) {
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- bool UseSRA = false;
- SmallVector<SDValue, 16> Shifts, Factors;
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
- APInt Divisor = C->getAPIntValue();
- unsigned Shift = Divisor.countTrailingZeros();
- if (Shift) {
- Divisor.ashrInPlace(Shift);
- UseSRA = true;
- }
- // Calculate the multiplicative inverse, using Newton's method.
- APInt t;
- APInt Factor = Divisor;
- while ((t = Divisor * Factor) != 1)
- Factor *= APInt(Divisor.getBitWidth(), 2) - t;
- Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
- Factors.push_back(DAG.getConstant(Factor, dl, SVT));
- return true;
- };
- // Collect all magic values from the build vector.
- if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
- return SDValue();
- SDValue Shift, Factor;
- if (VT.isVector()) {
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- } else {
- Shift = Shifts[0];
- Factor = Factors[0];
- }
- SDValue Res = Op0;
- // Shift the value upfront if it is even, so the LSB is one.
- if (UseSRA) {
- // TODO: For UDIV use SRL instead of SRA.
- SDNodeFlags Flags;
- Flags.setExact(true);
- Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
- Created.push_back(Res.getNode());
- }
- return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
- }
- SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const {
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.isIntDivCheap(N->getValueType(0), Attr))
- return SDValue(N, 0); // Lower SDIV as SDIV
- return SDValue();
- }
- /// Given an ISD::SDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
- // If the sdiv has an 'exact' bit we can use a simpler lowering.
- if (N->getFlags().hasExact())
- return BuildExactSDIV(*this, N, dl, DAG, Created);
- SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
- const APInt &Divisor = C->getAPIntValue();
- APInt::ms magics = Divisor.magic();
- int NumeratorFactor = 0;
- int ShiftMask = -1;
- if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
- // If d is +1/-1, we just multiply the numerator by +1/-1.
- NumeratorFactor = Divisor.getSExtValue();
- magics.m = 0;
- magics.s = 0;
- ShiftMask = 0;
- } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
- // If d > 0 and m < 0, add the numerator.
- NumeratorFactor = 1;
- } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
- // If d < 0 and m > 0, subtract the numerator.
- NumeratorFactor = -1;
- }
- MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
- Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
- Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
- ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
- return true;
- };
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Collect the shifts / magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
- return SDValue();
- SDValue MagicFactor, Factor, Shift, ShiftMask;
- if (VT.isVector()) {
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
- } else {
- MagicFactor = MagicFactors[0];
- Factor = Factors[0];
- Shift = Shifts[0];
- ShiftMask = ShiftMasks[0];
- }
- // Multiply the numerator (operand 0) by the magic value.
- // FIXME: We should support doing a MUL in a wider type.
- SDValue Q;
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
- : isOperationLegalOrCustom(ISD::MULHS, VT))
- Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
- else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
- : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
- SDValue LoHi =
- DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
- Q = SDValue(LoHi.getNode(), 1);
- } else
- return SDValue(); // No mulhs or equivalent.
- Created.push_back(Q.getNode());
- // (Optionally) Add/subtract the numerator using Factor.
- Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
- Created.push_back(Factor.getNode());
- Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
- Created.push_back(Q.getNode());
- // Shift right algebraic by shift value.
- Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
- Created.push_back(Q.getNode());
- // Extract the sign bit, mask it and add it to the quotient.
- SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
- SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
- Created.push_back(T.getNode());
- T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
- Created.push_back(T.getNode());
- return DAG.getNode(ISD::ADD, dl, VT, Q, T);
- }
- /// Given an ISD::UDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number.
- /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
- SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
- bool UseNPQ = false;
- SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
- auto BuildUDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
- // FIXME: We should use a narrower constant when the upper
- // bits are known to be zero.
- APInt Divisor = C->getAPIntValue();
- APInt::mu magics = Divisor.magicu();
- unsigned PreShift = 0, PostShift = 0;
- // If the divisor is even, we can avoid using the expensive fixup by
- // shifting the divided value upfront.
- if (magics.a != 0 && !Divisor[0]) {
- PreShift = Divisor.countTrailingZeros();
- // Get magic number for the shifted divisor.
- magics = Divisor.lshr(PreShift).magicu(PreShift);
- assert(magics.a == 0 && "Should use cheap fixup now");
- }
- APInt Magic = magics.m;
- unsigned SelNPQ;
- if (magics.a == 0 || Divisor.isOneValue()) {
- assert(magics.s < Divisor.getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- PostShift = magics.s;
- SelNPQ = false;
- } else {
- PostShift = magics.s - 1;
- SelNPQ = true;
- }
- PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
- MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
- NPQFactors.push_back(
- DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
- : APInt::getNullValue(EltBits),
- dl, SVT));
- PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
- UseNPQ |= SelNPQ;
- return true;
- };
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- // Collect the shifts/magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
- return SDValue();
- SDValue PreShift, PostShift, MagicFactor, NPQFactor;
- if (VT.isVector()) {
- PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
- PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
- } else {
- PreShift = PreShifts[0];
- MagicFactor = MagicFactors[0];
- PostShift = PostShifts[0];
- }
- SDValue Q = N0;
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
- Created.push_back(Q.getNode());
- // FIXME: We should support doing a MUL in a wider type.
- auto GetMULHU = [&](SDValue X, SDValue Y) {
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
- : isOperationLegalOrCustom(ISD::MULHU, VT))
- return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
- if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
- : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
- SDValue LoHi =
- DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
- return SDValue(LoHi.getNode(), 1);
- }
- return SDValue(); // No mulhu or equivalent
- };
- // Multiply the numerator (operand 0) by the magic value.
- Q = GetMULHU(Q, MagicFactor);
- if (!Q)
- return SDValue();
- Created.push_back(Q.getNode());
- if (UseNPQ) {
- SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
- Created.push_back(NPQ.getNode());
- // For vectors we might have a mix of non-NPQ/NPQ paths, so use
- // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
- if (VT.isVector())
- NPQ = GetMULHU(NPQ, NPQFactor);
- else
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
- Created.push_back(NPQ.getNode());
- Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- Created.push_back(Q.getNode());
- }
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
- Created.push_back(Q.getNode());
- SDValue One = DAG.getConstant(1, dl, VT);
- SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
- return DAG.getSelect(dl, VT, IsOne, N0, Q);
- }
- /// If all values in Values that *don't* match the predicate are same 'splat'
- /// value, then replace all values with that splat value.
- /// Else, if AlternativeReplacement was provided, then replace all values that
- /// do match predicate with AlternativeReplacement value.
- static void
- turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
- std::function<bool(SDValue)> Predicate,
- SDValue AlternativeReplacement = SDValue()) {
- SDValue Replacement;
- // Is there a value for which the Predicate does *NOT* match? What is it?
- auto SplatValue = llvm::find_if_not(Values, Predicate);
- if (SplatValue != Values.end()) {
- // Does Values consist only of SplatValue's and values matching Predicate?
- if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
- return Value == *SplatValue || Predicate(Value);
- })) // Then we shall replace values matching predicate with SplatValue.
- Replacement = *SplatValue;
- }
- if (!Replacement) {
- // Oops, we did not find the "baseline" splat value.
- if (!AlternativeReplacement)
- return; // Nothing to do.
- // Let's replace with provided value then.
- Replacement = AlternativeReplacement;
- }
- std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
- }
- /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
- /// where the divisor is constant and the comparison target is zero,
- /// return a DAG expression that will generate the same comparison result
- /// using only multiplications, additions and shifts/rotations.
- /// Ref: "Hacker's Delight" 10-17.
- SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode,
- ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- SmallVector<SDNode *, 2> Built;
- if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
- DCI, DL, Built)) {
- for (SDNode *N : Built)
- DCI.AddToWorklist(N);
- return Folded;
- }
- return SDValue();
- }
- SDValue
- TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const {
- // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
- // - D must be constant, with D = D0 * 2^K where D0 is odd
- // - P is the multiplicative inverse of D0 modulo 2^W
- // - Q = floor(((2^W) - 1) / D)
- // where W is the width of the common type of N and D.
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Only applicable for (in)equality comparisons.");
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = REMNode.getValueType();
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- // If MUL is unavailable, we cannot proceed in any case.
- if (!isOperationLegalOrCustom(ISD::MUL, VT))
- return SDValue();
- // TODO: Could support comparing with non-zero too.
- ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
- if (!CompTarget || !CompTarget->isNullValue())
- return SDValue();
- bool HadOneDivisor = false;
- bool AllDivisorsAreOnes = true;
- bool HadEvenDivisor = false;
- bool AllDivisorsArePowerOfTwo = true;
- SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
- auto BuildUREMPattern = [&](ConstantSDNode *C) {
- // Division by 0 is UB. Leave it to be constant-folded elsewhere.
- if (C->isNullValue())
- return false;
- const APInt &D = C->getAPIntValue();
- // If all divisors are ones, we will prefer to avoid the fold.
- HadOneDivisor |= D.isOneValue();
- AllDivisorsAreOnes &= D.isOneValue();
- // Decompose D into D0 * 2^K
- unsigned K = D.countTrailingZeros();
- assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
- APInt D0 = D.lshr(K);
- // D is even if it has trailing zeros.
- HadEvenDivisor |= (K != 0);
- // D is a power-of-two if D0 is one.
- // If all divisors are power-of-two, we will prefer to avoid the fold.
- AllDivisorsArePowerOfTwo &= D0.isOneValue();
- // P = inv(D0, 2^W)
- // 2^W requires W + 1 bits, so we have to extend and then truncate.
- unsigned W = D.getBitWidth();
- APInt P = D0.zext(W + 1)
- .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
- .trunc(W);
- assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
- assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
- // Q = floor((2^W - 1) / D)
- APInt Q = APInt::getAllOnesValue(W).udiv(D);
- assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
- "We are expecting that K is always less than all-ones for ShSVT");
- // If the divisor is 1 the result can be constant-folded.
- if (D.isOneValue()) {
- // Set P and K amount to a bogus values so we can try to splat them.
- P = 0;
- K = -1;
- assert(Q.isAllOnesValue() &&
- "Expecting all-ones comparison for one divisor");
- }
- PAmts.push_back(DAG.getConstant(P, DL, SVT));
- KAmts.push_back(
- DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
- QAmts.push_back(DAG.getConstant(Q, DL, SVT));
- return true;
- };
- SDValue N = REMNode.getOperand(0);
- SDValue D = REMNode.getOperand(1);
- // Collect the values from each element.
- if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
- return SDValue();
- // If this is a urem by a one, avoid the fold since it can be constant-folded.
- if (AllDivisorsAreOnes)
- return SDValue();
- // If this is a urem by a powers-of-two, avoid the fold since it can be
- // best implemented as a bit test.
- if (AllDivisorsArePowerOfTwo)
- return SDValue();
- SDValue PVal, KVal, QVal;
- if (VT.isVector()) {
- if (HadOneDivisor) {
- // Try to turn PAmts into a splat, since we don't care about the values
- // that are currently '0'. If we can't, just keep '0'`s.
- turnVectorIntoSplatVector(PAmts, isNullConstant);
- // Try to turn KAmts into a splat, since we don't care about the values
- // that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, ShSVT));
- }
- PVal = DAG.getBuildVector(VT, DL, PAmts);
- KVal = DAG.getBuildVector(ShVT, DL, KAmts);
- QVal = DAG.getBuildVector(VT, DL, QAmts);
- } else {
- PVal = PAmts[0];
- KVal = KAmts[0];
- QVal = QAmts[0];
- }
- // (mul N, P)
- SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
- Created.push_back(Op0.getNode());
- // Rotate right only if any divisor was even. We avoid rotates for all-odd
- // divisors as a performance improvement, since rotating by 0 is a no-op.
- if (HadEvenDivisor) {
- // We need ROTR to do this.
- if (!isOperationLegalOrCustom(ISD::ROTR, VT))
- return SDValue();
- SDNodeFlags Flags;
- Flags.setExact(true);
- // UREM: (rotr (mul N, P), K)
- Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
- Created.push_back(Op0.getNode());
- }
- // UREM: (setule/setugt (rotr (mul N, P), K), Q)
- return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
- ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
- }
- /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
- /// where the divisor is constant and the comparison target is zero,
- /// return a DAG expression that will generate the same comparison result
- /// using only multiplications, additions and shifts/rotations.
- /// Ref: "Hacker's Delight" 10-17.
- SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode,
- ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- SmallVector<SDNode *, 7> Built;
- if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
- DCI, DL, Built)) {
- assert(Built.size() <= 7 && "Max size prediction failed.");
- for (SDNode *N : Built)
- DCI.AddToWorklist(N);
- return Folded;
- }
- return SDValue();
- }
- SDValue
- TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const {
- // Fold:
- // (seteq/ne (srem N, D), 0)
- // To:
- // (setule/ugt (rotr (add (mul N, P), A), K), Q)
- //
- // - D must be constant, with D = D0 * 2^K where D0 is odd
- // - P is the multiplicative inverse of D0 modulo 2^W
- // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
- // - Q = floor((2 * A) / (2^K))
- // where W is the width of the common type of N and D.
- assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- "Only applicable for (in)equality comparisons.");
- SelectionDAG &DAG = DCI.DAG;
- EVT VT = REMNode.getValueType();
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- // If MUL is unavailable, we cannot proceed in any case.
- if (!isOperationLegalOrCustom(ISD::MUL, VT))
- return SDValue();
- // TODO: Could support comparing with non-zero too.
- ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
- if (!CompTarget || !CompTarget->isNullValue())
- return SDValue();
- bool HadIntMinDivisor = false;
- bool HadOneDivisor = false;
- bool AllDivisorsAreOnes = true;
- bool HadEvenDivisor = false;
- bool NeedToApplyOffset = false;
- bool AllDivisorsArePowerOfTwo = true;
- SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
- auto BuildSREMPattern = [&](ConstantSDNode *C) {
- // Division by 0 is UB. Leave it to be constant-folded elsewhere.
- if (C->isNullValue())
- return false;
- // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
- // WARNING: this fold is only valid for positive divisors!
- APInt D = C->getAPIntValue();
- if (D.isNegative())
- D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
- HadIntMinDivisor |= D.isMinSignedValue();
- // If all divisors are ones, we will prefer to avoid the fold.
- HadOneDivisor |= D.isOneValue();
- AllDivisorsAreOnes &= D.isOneValue();
- // Decompose D into D0 * 2^K
- unsigned K = D.countTrailingZeros();
- assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
- APInt D0 = D.lshr(K);
- if (!D.isMinSignedValue()) {
- // D is even if it has trailing zeros; unless it's INT_MIN, in which case
- // we don't care about this lane in this fold, we'll special-handle it.
- HadEvenDivisor |= (K != 0);
- }
- // D is a power-of-two if D0 is one. This includes INT_MIN.
- // If all divisors are power-of-two, we will prefer to avoid the fold.
- AllDivisorsArePowerOfTwo &= D0.isOneValue();
- // P = inv(D0, 2^W)
- // 2^W requires W + 1 bits, so we have to extend and then truncate.
- unsigned W = D.getBitWidth();
- APInt P = D0.zext(W + 1)
- .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
- .trunc(W);
- assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
- assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
- // A = floor((2^(W - 1) - 1) / D0) & -2^K
- APInt A = APInt::getSignedMaxValue(W).udiv(D0);
- A.clearLowBits(K);
- if (!D.isMinSignedValue()) {
- // If divisor INT_MIN, then we don't care about this lane in this fold,
- // we'll special-handle it.
- NeedToApplyOffset |= A != 0;
- }
- // Q = floor((2 * A) / (2^K))
- APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
- assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
- "We are expecting that A is always less than all-ones for SVT");
- assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
- "We are expecting that K is always less than all-ones for ShSVT");
- // If the divisor is 1 the result can be constant-folded. Likewise, we
- // don't care about INT_MIN lanes, those can be set to undef if appropriate.
- if (D.isOneValue()) {
- // Set P, A and K to a bogus values so we can try to splat them.
- P = 0;
- A = -1;
- K = -1;
- // x ?% 1 == 0 <--> true <--> x u<= -1
- Q = -1;
- }
- PAmts.push_back(DAG.getConstant(P, DL, SVT));
- AAmts.push_back(DAG.getConstant(A, DL, SVT));
- KAmts.push_back(
- DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
- QAmts.push_back(DAG.getConstant(Q, DL, SVT));
- return true;
- };
- SDValue N = REMNode.getOperand(0);
- SDValue D = REMNode.getOperand(1);
- // Collect the values from each element.
- if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
- return SDValue();
- // If this is a srem by a one, avoid the fold since it can be constant-folded.
- if (AllDivisorsAreOnes)
- return SDValue();
- // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
- // since it can be best implemented as a bit test.
- if (AllDivisorsArePowerOfTwo)
- return SDValue();
- SDValue PVal, AVal, KVal, QVal;
- if (VT.isVector()) {
- if (HadOneDivisor) {
- // Try to turn PAmts into a splat, since we don't care about the values
- // that are currently '0'. If we can't, just keep '0'`s.
- turnVectorIntoSplatVector(PAmts, isNullConstant);
- // Try to turn AAmts into a splat, since we don't care about the
- // values that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, SVT));
- // Try to turn KAmts into a splat, since we don't care about the values
- // that are currently '-1'. If we can't, change them to '0'`s.
- turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
- DAG.getConstant(0, DL, ShSVT));
- }
- PVal = DAG.getBuildVector(VT, DL, PAmts);
- AVal = DAG.getBuildVector(VT, DL, AAmts);
- KVal = DAG.getBuildVector(ShVT, DL, KAmts);
- QVal = DAG.getBuildVector(VT, DL, QAmts);
- } else {
- PVal = PAmts[0];
- AVal = AAmts[0];
- KVal = KAmts[0];
- QVal = QAmts[0];
- }
- // (mul N, P)
- SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
- Created.push_back(Op0.getNode());
- if (NeedToApplyOffset) {
- // We need ADD to do this.
- if (!isOperationLegalOrCustom(ISD::ADD, VT))
- return SDValue();
- // (add (mul N, P), A)
- Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
- Created.push_back(Op0.getNode());
- }
- // Rotate right only if any divisor was even. We avoid rotates for all-odd
- // divisors as a performance improvement, since rotating by 0 is a no-op.
- if (HadEvenDivisor) {
- // We need ROTR to do this.
- if (!isOperationLegalOrCustom(ISD::ROTR, VT))
- return SDValue();
- SDNodeFlags Flags;
- Flags.setExact(true);
- // SREM: (rotr (add (mul N, P), A), K)
- Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
- Created.push_back(Op0.getNode());
- }
- // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
- SDValue Fold =
- DAG.getSetCC(DL, SETCCVT, Op0, QVal,
- ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
- // If we didn't have lanes with INT_MIN divisor, then we're done.
- if (!HadIntMinDivisor)
- return Fold;
- // That fold is only valid for positive divisors. Which effectively means,
- // it is invalid for INT_MIN divisors. So if we have such a lane,
- // we must fix-up results for said lanes.
- assert(VT.isVector() && "Can/should only get here for vectors.");
- if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
- !isOperationLegalOrCustom(ISD::AND, VT) ||
- !isOperationLegalOrCustom(Cond, VT) ||
- !isOperationLegalOrCustom(ISD::VSELECT, VT))
- return SDValue();
- Created.push_back(Fold.getNode());
- SDValue IntMin = DAG.getConstant(
- APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
- SDValue IntMax = DAG.getConstant(
- APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
- SDValue Zero =
- DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
- // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
- SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
- Created.push_back(DivisorIsIntMin.getNode());
- // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
- SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
- Created.push_back(Masked.getNode());
- SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
- Created.push_back(MaskedIsZero.getNode());
- // To produce final result we need to blend 2 vectors: 'SetCC' and
- // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
- // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
- // constant-folded, select can get lowered to a shuffle with constant mask.
- SDValue Blended =
- DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
- return Blended;
- }
- bool TargetLowering::
- verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
- if (!isa<ConstantSDNode>(Op.getOperand(0))) {
- DAG.getContext()->emitError("argument to '__builtin_return_address' must "
- "be a constant integer");
- return true;
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Legalization Utilities
- //===----------------------------------------------------------------------===//
- bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
- SDValue LHS, SDValue RHS,
- SmallVectorImpl<SDValue> &Result,
- EVT HiLoVT, SelectionDAG &DAG,
- MulExpansionKind Kind, SDValue LL,
- SDValue LH, SDValue RL, SDValue RH) const {
- assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
- Opcode == ISD::SMUL_LOHI);
- bool HasMULHS = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
- bool HasMULHU = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
- bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
- bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
- if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
- return false;
- unsigned OuterBitSize = VT.getScalarSizeInBits();
- unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
- unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
- unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
- // LL, LH, RL, and RH must be either all NULL or all set to a value.
- assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
- (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
- SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
- auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
- bool Signed) -> bool {
- if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
- Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
- Hi = SDValue(Lo.getNode(), 1);
- return true;
- }
- if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
- Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
- return true;
- }
- return false;
- };
- SDValue Lo, Hi;
- if (!LL.getNode() && !RL.getNode() &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
- RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
- }
- if (!LL.getNode())
- return false;
- APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
- if (DAG.MaskedValueIsZero(LHS, HighMask) &&
- DAG.MaskedValueIsZero(RHS, HighMask)) {
- // The inputs are both zero-extended.
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- if (Opcode != ISD::MUL) {
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- Result.push_back(Zero);
- Result.push_back(Zero);
- }
- return true;
- }
- }
- if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
- RHSSB > InnerBitSize) {
- // The input values are both sign-extended.
- // TODO non-MUL case?
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- return true;
- }
- }
- unsigned ShiftAmount = OuterBitSize - InnerBitSize;
- EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
- if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
- // FIXME getShiftAmountTy does not always return a sensible result when VT
- // is an illegal type, and so the type may be too small to fit the shift
- // amount. Override it with i32. The shift will have to be legalized.
- ShiftAmountTy = MVT::i32;
- }
- SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
- if (!LH.getNode() && !RH.getNode() &&
- isOperationLegalOrCustom(ISD::SRL, VT) &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
- LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
- RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
- RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
- }
- if (!LH.getNode())
- return false;
- if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
- return false;
- Result.push_back(Lo);
- if (Opcode == ISD::MUL) {
- RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
- LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
- Result.push_back(Hi);
- return true;
- }
- // Compute the full width result.
- auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
- Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
- Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
- return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
- };
- SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
- return false;
- // This is effectively the add part of a multiply-add of half-sized operands,
- // so it cannot overflow.
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
- if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
- return false;
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
- isOperationLegalOrCustom(ISD::ADDE, VT));
- if (UseGlue)
- Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
- Merge(Lo, Hi));
- else
- Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
- Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
- SDValue Carry = Next.getValue(1);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
- if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
- return false;
- if (UseGlue)
- Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
- Carry);
- else
- Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
- Zero, Carry);
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
- if (Opcode == ISD::SMUL_LOHI) {
- SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
- Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
- NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
- Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
- }
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- return true;
- }
- bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, MulExpansionKind Kind,
- SDValue LL, SDValue LH, SDValue RL,
- SDValue RH) const {
- SmallVector<SDValue, 2> Result;
- bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
- N->getOperand(0), N->getOperand(1), Result, HiLoVT,
- DAG, Kind, LL, LH, RL, RH);
- if (Ok) {
- assert(Result.size() == 2);
- Lo = Result[0];
- Hi = Result[1];
- }
- return Ok;
- }
- bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return false;
- // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- SDValue X = Node->getOperand(0);
- SDValue Y = Node->getOperand(1);
- SDValue Z = Node->getOperand(2);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsFSHL = Node->getOpcode() == ISD::FSHL;
- SDLoc DL(SDValue(Node, 0));
- EVT ShVT = Z.getValueType();
- SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
- SDValue Zero = DAG.getConstant(0, DL, ShVT);
- SDValue ShAmt;
- if (isPowerOf2_32(EltSizeInBits)) {
- SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
- ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
- } else {
- ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
- }
- SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
- SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
- SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
- // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
- // and that is undefined. We must compare and select to avoid UB.
- EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
- // For fshl, 0-shift returns the 1st arg (X).
- // For fshr, 0-shift returns the 2nd arg (Y).
- SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
- Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
- return true;
- }
- // TODO: Merge with expandFunnelShift.
- bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsLeft = Node->getOpcode() == ISD::ROTL;
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDLoc DL(SDValue(Node, 0));
- EVT ShVT = Op1.getValueType();
- SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
- // If a rotate in the other direction is legal, use it.
- unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
- if (isOperationLegal(RevRot, VT)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
- Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
- return true;
- }
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
- return false;
- // Otherwise,
- // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
- // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
- //
- assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
- "Expecting the type bitwidth to be a power of 2");
- unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
- unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
- SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
- SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
- SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
- SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
- Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
- DAG.getNode(HsOpc, DL, VT, Op0, And1));
- return true;
- }
- bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- SDLoc dl(SDValue(Node, 0));
- // FIXME: Only f32 to i64 conversions are supported.
- if (SrcVT != MVT::f32 || DstVT != MVT::i64)
- return false;
- if (Node->isStrictFPOpcode())
- // When a NaN is converted to an integer a trap is allowed. We can't
- // use this expansion here because it would eliminate that trap. Other
- // traps are also allowed and cannot be eliminated. See
- // IEEE 754-2008 sec 5.8.
- return false;
- // Expand f32 -> i64 conversion
- // This algorithm comes from compiler-rt's implementation of fixsfdi:
- // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
- unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
- EVT IntVT = SrcVT.changeTypeToInteger();
- EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
- SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
- SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
- SDValue Bias = DAG.getConstant(127, dl, IntVT);
- SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
- SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
- SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
- SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
- SDValue ExponentBits = DAG.getNode(
- ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
- DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
- SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
- SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
- DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
- Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
- SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
- DAG.getConstant(0x00800000, dl, IntVT));
- R = DAG.getZExtOrTrunc(R, dl, DstVT);
- R = DAG.getSelectCC(
- dl, Exponent, ExponentLoBit,
- DAG.getNode(ISD::SHL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
- dl, IntShVT)),
- DAG.getNode(ISD::SRL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
- dl, IntShVT)),
- ISD::SETGT);
- SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
- DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
- Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
- DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
- return true;
- }
- bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
- SDValue &Chain,
- SelectionDAG &DAG) const {
- SDLoc dl(SDValue(Node, 0));
- unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
- SDValue Src = Node->getOperand(OpNo);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
- // Only expand vector types if we have the appropriate vector bit operations.
- unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
- ISD::FP_TO_SINT;
- if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
- return false;
- // If the maximum float value is smaller then the signed integer range,
- // the destination signmask can't be represented by the float, so we can
- // just use FP_TO_SINT directly.
- const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
- APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
- APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
- if (APFloat::opOverflow &
- APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
- if (Node->isStrictFPOpcode()) {
- Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
- { Node->getOperand(0), Src });
- Chain = Result.getValue(1);
- } else
- Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- return true;
- }
- SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
- SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
- bool Strict = Node->isStrictFPOpcode() ||
- shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
- if (Strict) {
- // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
- // signmask then offset (the result of which should be fully representable).
- // Sel = Src < 0x8000000000000000
- // Val = select Sel, Src, Src - 0x8000000000000000
- // Ofs = select Sel, 0, 0x8000000000000000
- // Result = fp_to_sint(Val) ^ Ofs
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue SrcBiased;
- if (Node->isStrictFPOpcode())
- SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
- { Node->getOperand(0), Src, Cst });
- else
- SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
- SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
- SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
- DAG.getConstant(SignMask, dl, DstVT));
- SDValue SInt;
- if (Node->isStrictFPOpcode()) {
- SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
- { SrcBiased.getValue(1), Val });
- Chain = SInt.getValue(1);
- } else
- SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
- Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
- } else {
- // Expand based on maximum range of FP_TO_SINT:
- // True = fp_to_sint(Src)
- // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
- // Result = select (Src < 0x8000000000000000), True, False
- SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
- DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
- False = DAG.getNode(ISD::XOR, dl, DstVT, False,
- DAG.getConstant(SignMask, dl, DstVT));
- Result = DAG.getSelect(dl, DstVT, Sel, True, False);
- }
- return true;
- }
- bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- if (SrcVT.getScalarType() != MVT::i64)
- return false;
- SDLoc dl(SDValue(Node, 0));
- EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
- if (DstVT.getScalarType() == MVT::f32) {
- // Only expand vector types if we have the appropriate vector bit
- // operations.
- if (SrcVT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
- !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
- !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
- return false;
- // For unsigned conversions, convert them to signed conversions using the
- // algorithm from the x86_64 __floatundidf in compiler_rt.
- SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
- SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
- SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
- SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
- SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
- SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
- SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
- SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
- // TODO: This really should be implemented using a branch rather than a
- // select. We happen to get lucky and machinesink does the right
- // thing most of the time. This would be a good candidate for a
- // pseudo-op, or, even better, for whole-function isel.
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
- SDValue SignBitTest = DAG.getSetCC(
- dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
- Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
- return true;
- }
- if (DstVT.getScalarType() == MVT::f64) {
- // Only expand vector types if we have the appropriate vector bit
- // operations.
- if (SrcVT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
- !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
- !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
- return false;
- // Implementation of unsigned i64 to f64 following the algorithm in
- // __floatundidf in compiler_rt. This implementation has the advantage
- // of performing rounding correctly, both in the default rounding mode
- // and in all alternate rounding modes.
- SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
- SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
- BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
- SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
- SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
- SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
- SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
- SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
- SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
- SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
- SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
- SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
- SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
- Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
- return true;
- }
- return false;
- }
- SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
- ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
- EVT VT = Node->getValueType(0);
- if (isOperationLegalOrCustom(NewOp, VT)) {
- SDValue Quiet0 = Node->getOperand(0);
- SDValue Quiet1 = Node->getOperand(1);
- if (!Node->getFlags().hasNoNaNs()) {
- // Insert canonicalizes if it's possible we need to quiet to get correct
- // sNaN behavior.
- if (!DAG.isKnownNeverSNaN(Quiet0)) {
- Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
- Node->getFlags());
- }
- if (!DAG.isKnownNeverSNaN(Quiet1)) {
- Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
- Node->getFlags());
- }
- }
- return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
- }
- // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
- // instead if there are no NaNs.
- if (Node->getFlags().hasNoNaNs()) {
- unsigned IEEE2018Op =
- Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
- if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
- return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
- Node->getOperand(1), Node->getFlags());
- }
- }
- return SDValue();
- }
- bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned Len = VT.getScalarSizeInBits();
- assert(VT.isInteger() && "CTPOP not implemented for this type.");
- // TODO: Add support for irregular type lengths.
- if (!(Len <= 128 && Len % 8 == 0))
- return false;
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
- return false;
- // This is the "best" algorithm from
- // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- SDValue Mask55 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
- SDValue Mask33 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
- SDValue Mask0F =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
- SDValue Mask01 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
- // v = v - ((v >> 1) & 0x55555555...)
- Op = DAG.getNode(ISD::SUB, dl, VT, Op,
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(1, dl, ShVT)),
- Mask55));
- // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
- Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(2, dl, ShVT)),
- Mask33));
- // v = (v + (v >> 4)) & 0x0F0F0F0F...
- Op = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ADD, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(4, dl, ShVT))),
- Mask0F);
- // v = (v * 0x01010101...) >> (Len - 8)
- if (Len > 8)
- Op =
- DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
- DAG.getConstant(Len - 8, dl, ShVT));
- Result = Op;
- return true;
- }
- bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTLZ, VT)) {
- Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
- return true;
- }
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
- return true;
- }
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return false;
- // for now, we do this:
- // x = x | (x >> 1);
- // x = x | (x >> 2);
- // ...
- // x = x | (x >>16);
- // x = x | (x >>32); // for 64-bit input
- // return popcount(~x);
- //
- // Ref: "Hacker's Delight" by Henry Warren
- for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
- SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
- Op = DAG.getNode(ISD::OR, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
- }
- Op = DAG.getNOT(dl, Op, VT);
- Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
- return true;
- }
- bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTTZ, VT)) {
- Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
- return true;
- }
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
- return true;
- }
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
- !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return false;
- // for now, we use: { return popcount(~x & (x - 1)); }
- // unless the target has ctlz but not ctpop, in which case we use:
- // { return 32 - nlz(~x & (x-1)); }
- // Ref: "Hacker's Delight" by Henry Warren
- SDValue Tmp = DAG.getNode(
- ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
- DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
- // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
- if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
- Result =
- DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
- DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
- return true;
- }
- Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
- return true;
- }
- bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = N->getOperand(0);
- // Only expand vector types if we have the appropriate vector operations.
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
- !isOperationLegalOrCustom(ISD::ADD, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return false;
- SDValue Shift =
- DAG.getNode(ISD::SRA, dl, VT, Op,
- DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
- SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
- Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
- return true;
- }
- SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
- SelectionDAG &DAG) const {
- SDLoc SL(LD);
- SDValue Chain = LD->getChain();
- SDValue BasePTR = LD->getBasePtr();
- EVT SrcVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = LD->getExtensionType();
- unsigned NumElem = SrcVT.getVectorNumElements();
- EVT SrcEltVT = SrcVT.getScalarType();
- EVT DstEltVT = LD->getValueType(0).getScalarType();
- unsigned Stride = SrcEltVT.getSizeInBits() / 8;
- assert(SrcEltVT.isByteSized());
- SmallVector<SDValue, 8> Vals;
- SmallVector<SDValue, 8> LoadChains;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue ScalarLoad =
- DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
- LD->getPointerInfo().getWithOffset(Idx * Stride),
- SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
- Vals.push_back(ScalarLoad.getValue(0));
- LoadChains.push_back(ScalarLoad.getValue(1));
- }
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
- SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
- return DAG.getMergeValues({Value, NewChain}, SL);
- }
- SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- SDLoc SL(ST);
- SDValue Chain = ST->getChain();
- SDValue BasePtr = ST->getBasePtr();
- SDValue Value = ST->getValue();
- EVT StVT = ST->getMemoryVT();
- // The type of the data we want to save
- EVT RegVT = Value.getValueType();
- EVT RegSclVT = RegVT.getScalarType();
- // The type of data as saved in memory.
- EVT MemSclVT = StVT.getScalarType();
- EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
- unsigned NumElem = StVT.getVectorNumElements();
- // A vector must always be stored in memory as-is, i.e. without any padding
- // between the elements, since various code depend on it, e.g. in the
- // handling of a bitcast of a vector type to int, which may be done with a
- // vector store followed by an integer load. A vector that does not have
- // elements that are byte-sized must therefore be stored as an integer
- // built out of the extracted vector elements.
- if (!MemSclVT.isByteSized()) {
- unsigned NumBits = StVT.getSizeInBits();
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
- SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getConstant(Idx, SL, IdxVT));
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
- SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
- unsigned ShiftIntoIdx =
- (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
- SDValue ShiftAmount =
- DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
- SDValue ShiftedElt =
- DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
- CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
- }
- return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
- ST->getAlignment(), ST->getMemOperand()->getFlags(),
- ST->getAAInfo());
- }
- // Store Stride in bytes
- unsigned Stride = MemSclVT.getSizeInBits() / 8;
- assert(Stride && "Zero stride!");
- // Extract each of the elements from the original vector and save them into
- // memory individually.
- SmallVector<SDValue, 8> Stores;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getConstant(Idx, SL, IdxVT));
- SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
- // This scalar TruncStore may be illegal, but we legalize it later.
- SDValue Store = DAG.getTruncStore(
- Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
- MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- Stores.push_back(Store);
- }
- return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
- }
- std::pair<SDValue, SDValue>
- TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
- assert(LD->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed loads not implemented!");
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
- EVT VT = LD->getValueType(0);
- EVT LoadedVT = LD->getMemoryVT();
- SDLoc dl(LD);
- auto &MF = DAG.getMachineFunction();
- if (VT.isFloatingPoint() || VT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
- if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
- if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
- LoadedVT.isVector()) {
- // Scalarize the load and let the individual components be handled.
- SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
- if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
- return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
- return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
- }
- // Expand to a (misaligned) integer load of the same size,
- // then bitconvert to floating point or vector.
- SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
- LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
- if (LoadedVT != VT)
- Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
- ISD::ANY_EXTEND, dl, VT, Result);
- return std::make_pair(Result, newLoad.getValue(1));
- }
- // Copy the value to a (aligned) stack slot using (unaligned) integer
- // loads and stores, then do a (aligned) load from the stack slot.
- MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
- unsigned LoadedBytes = LoadedVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
- SmallVector<SDValue, 8> Stores;
- SDValue StackPtr = StackBase;
- unsigned Offset = 0;
- EVT PtrVT = Ptr.getValueType();
- EVT StackPtrVT = StackPtr.getValueType();
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the original location.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
- MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- Stores.push_back(DAG.getStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
- // Increment the pointers.
- Offset += RegBytes;
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- }
- // The last copy may be partial. Do an extending load.
- EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
- 8 * (LoadedBytes - Offset));
- SDValue Load =
- DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(Offset), MemVT,
- MinAlign(LD->getAlignment(), Offset),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- // On big-endian machines this requires a truncating store to ensure
- // that the bits end up in the right place.
- Stores.push_back(DAG.getTruncStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- // Finally, perform the original load only redirected to the stack slot.
- Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
- LoadedVT);
- // Callers expect a MERGE_VALUES node.
- return std::make_pair(Load, TF);
- }
- assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
- "Unaligned load of unsupported type.");
- // Compute the new VT that is half the size of the old one. This is an
- // integer MVT.
- unsigned NumBits = LoadedVT.getSizeInBits();
- EVT NewLoadedVT;
- NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
- NumBits >>= 1;
- unsigned Alignment = LD->getAlignment();
- unsigned IncrementSize = NumBits / 8;
- ISD::LoadExtType HiExtType = LD->getExtensionType();
- // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
- if (HiExtType == ISD::NON_EXTLOAD)
- HiExtType = ISD::ZEXTLOAD;
- // Load the value in two parts
- SDValue Lo, Hi;
- if (DAG.getDataLayout().isLittleEndian()) {
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, MinAlign(Alignment, IncrementSize),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- } else {
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, MinAlign(Alignment, IncrementSize),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- }
- // aggregate the two parts
- SDValue ShiftAmount =
- DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
- DAG.getDataLayout()));
- SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
- Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
- Hi.getValue(1));
- return std::make_pair(Result, TF);
- }
- SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- assert(ST->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed stores not implemented!");
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- SDValue Val = ST->getValue();
- EVT VT = Val.getValueType();
- int Alignment = ST->getAlignment();
- auto &MF = DAG.getMachineFunction();
- EVT StoreMemVT = ST->getMemoryVT();
- SDLoc dl(ST);
- if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
- if (isTypeLegal(intVT)) {
- if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
- StoreMemVT.isVector()) {
- // Scalarize the store and let the individual components be handled.
- SDValue Result = scalarizeVectorStore(ST, DAG);
- return Result;
- }
- // Expand to a bitconvert of the value to the integer type of the
- // same size, then a (misaligned) int store.
- // FIXME: Does not handle truncating floating point stores!
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
- Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
- Alignment, ST->getMemOperand()->getFlags());
- return Result;
- }
- // Do a (aligned) store to a stack slot, then copy from the stack slot
- // to the final destination using (unaligned) integer loads and stores.
- MVT RegVT = getRegisterType(
- *DAG.getContext(),
- EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
- EVT PtrVT = Ptr.getValueType();
- unsigned StoredBytes = StoreMemVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
- // Perform the original store, only redirected to the stack slot.
- SDValue Store = DAG.getTruncStore(
- Chain, dl, Val, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
- EVT StackPtrVT = StackPtr.getValueType();
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
- SmallVector<SDValue, 8> Stores;
- unsigned Offset = 0;
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the stack slot.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
- // Store it to the final location. Remember the store.
- Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset),
- MinAlign(ST->getAlignment(), Offset),
- ST->getMemOperand()->getFlags()));
- // Increment the pointers.
- Offset += RegBytes;
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- }
- // The last store may be partial. Do a truncating store. On big-endian
- // machines this requires an extending load from the stack slot to ensure
- // that the bits are in the right place.
- EVT LoadMemVT =
- EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
- // Load from the stack slot.
- SDValue Load = DAG.getExtLoad(
- ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
- Stores.push_back(
- DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
- MinAlign(ST->getAlignment(), Offset),
- ST->getMemOperand()->getFlags(), ST->getAAInfo()));
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- return Result;
- }
- assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
- "Unaligned store of unknown type.");
- // Get the half-size VT
- EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
- int NumBits = NewStoredVT.getSizeInBits();
- int IncrementSize = NumBits / 8;
- // Divide the stored value in two parts.
- SDValue ShiftAmount = DAG.getConstant(
- NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
- SDValue Lo = Val;
- SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
- // Store the two parts
- SDValue Store1, Store2;
- Store1 = DAG.getTruncStore(Chain, dl,
- DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
- Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags());
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Alignment = MinAlign(Alignment, IncrementSize);
- Store2 = DAG.getTruncStore(
- Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
- ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
- SDValue Result =
- DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
- return Result;
- }
- SDValue
- TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
- const SDLoc &DL, EVT DataVT,
- SelectionDAG &DAG,
- bool IsCompressedMemory) const {
- SDValue Increment;
- EVT AddrVT = Addr.getValueType();
- EVT MaskVT = Mask.getValueType();
- assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
- "Incompatible types of Data and Mask");
- if (IsCompressedMemory) {
- // Incrementing the pointer according to number of '1's in the mask.
- EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
- SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
- if (MaskIntVT.getSizeInBits() < 32) {
- MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
- MaskIntVT = MVT::i32;
- }
- // Count '1's with POPCNT.
- Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
- Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
- // Scale is an element size in bytes.
- SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
- AddrVT);
- Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
- } else
- Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
- return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
- }
- static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
- SDValue Idx,
- EVT VecVT,
- const SDLoc &dl) {
- if (isa<ConstantSDNode>(Idx))
- return Idx;
- EVT IdxVT = Idx.getValueType();
- unsigned NElts = VecVT.getVectorNumElements();
- if (isPowerOf2_32(NElts)) {
- APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
- Log2_32(NElts));
- return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
- DAG.getConstant(Imm, dl, IdxVT));
- }
- return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
- DAG.getConstant(NElts - 1, dl, IdxVT));
- }
- SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
- SDValue VecPtr, EVT VecVT,
- SDValue Index) const {
- SDLoc dl(Index);
- // Make sure the index type is big enough to compute in.
- Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
- EVT EltVT = VecVT.getVectorElementType();
- // Calculate the element offset and add it to the pointer.
- unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
- assert(EltSize * 8 == EltVT.getSizeInBits() &&
- "Converting bits to bytes lost precision");
- Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
- EVT IdxVT = Index.getValueType();
- Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
- DAG.getConstant(EltSize, dl, IdxVT));
- return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
- }
- //===----------------------------------------------------------------------===//
- // Implementation of Emulated TLS Model
- //===----------------------------------------------------------------------===//
- SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
- SelectionDAG &DAG) const {
- // Access to address of TLS varialbe xyz is lowered to a function call:
- // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
- SDLoc dl(GA);
- ArgListTy Args;
- ArgListEntry Entry;
- std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
- Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
- StringRef EmuTlsVarName(NameString);
- GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
- assert(EmuTlsVar && "Cannot find EmuTlsVar ");
- Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
- Entry.Ty = VoidPtrType;
- Args.push_back(Entry);
- SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
- CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
- // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
- // At last for X86 targets, maybe good for other targets too?
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- MFI.setAdjustsStack(true); // Is this only for X86 target?
- MFI.setHasCalls(true);
- assert((GA->getOffset() == 0) &&
- "Emulated TLS must have zero offset in GlobalAddressSDNode");
- return CallResult.first;
- }
- SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
- SelectionDAG &DAG) const {
- assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
- if (!isCtlzFast())
- return SDValue();
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDLoc dl(Op);
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- if (C->isNullValue() && CC == ISD::SETEQ) {
- EVT VT = Op.getOperand(0).getValueType();
- SDValue Zext = Op.getOperand(0);
- if (VT.bitsLT(MVT::i32)) {
- VT = MVT::i32;
- Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
- }
- unsigned Log2b = Log2_32(VT.getSizeInBits());
- SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
- SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
- DAG.getConstant(Log2b, dl, MVT::i32));
- return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
- }
- }
- return SDValue();
- }
- SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
- unsigned Opcode = Node->getOpcode();
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- SDLoc dl(Node);
- assert(VT == RHS.getValueType() && "Expected operands to be the same type");
- assert(VT.isInteger() && "Expected operands to be integers");
- // usub.sat(a, b) -> umax(a, b) - b
- if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
- SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
- return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
- }
- if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
- SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
- SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
- return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
- }
- unsigned OverflowOp;
- switch (Opcode) {
- case ISD::SADDSAT:
- OverflowOp = ISD::SADDO;
- break;
- case ISD::UADDSAT:
- OverflowOp = ISD::UADDO;
- break;
- case ISD::SSUBSAT:
- OverflowOp = ISD::SSUBO;
- break;
- case ISD::USUBSAT:
- OverflowOp = ISD::USUBO;
- break;
- default:
- llvm_unreachable("Expected method to receive signed or unsigned saturation "
- "addition or subtraction node.");
- }
- unsigned BitWidth = LHS.getScalarValueSizeInBits();
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
- LHS, RHS);
- SDValue SumDiff = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
- if (Opcode == ISD::UADDSAT) {
- if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
- // (LHS + RHS) | OverflowMask
- SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
- return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
- }
- // Overflow ? 0xffff.... : (LHS + RHS)
- return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
- } else if (Opcode == ISD::USUBSAT) {
- if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
- // (LHS - RHS) & ~OverflowMask
- SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
- SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
- return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
- }
- // Overflow ? 0 : (LHS - RHS)
- return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
- } else {
- // SatMax -> Overflow && SumDiff < 0
- // SatMin -> Overflow && SumDiff >= 0
- APInt MinVal = APInt::getSignedMinValue(BitWidth);
- APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
- SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
- SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
- Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
- return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
- }
- }
- SDValue
- TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
- assert((Node->getOpcode() == ISD::SMULFIX ||
- Node->getOpcode() == ISD::UMULFIX ||
- Node->getOpcode() == ISD::SMULFIXSAT ||
- Node->getOpcode() == ISD::UMULFIXSAT) &&
- "Expected a fixed point multiplication opcode");
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- unsigned Scale = Node->getConstantOperandVal(2);
- bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
- Node->getOpcode() == ISD::UMULFIXSAT);
- bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
- Node->getOpcode() == ISD::SMULFIXSAT);
- EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- unsigned VTSize = VT.getScalarSizeInBits();
- if (!Scale) {
- // [us]mul.fix(a, b, 0) -> mul(a, b)
- if (!Saturating) {
- if (isOperationLegalOrCustom(ISD::MUL, VT))
- return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
- SDValue Result =
- DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
- SDValue Product = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- APInt MinVal = APInt::getSignedMinValue(VTSize);
- APInt MaxVal = APInt::getSignedMaxValue(VTSize);
- SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
- SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
- Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
- return DAG.getSelect(dl, VT, Overflow, Result, Product);
- } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
- SDValue Result =
- DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
- SDValue Product = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- APInt MaxVal = APInt::getMaxValue(VTSize);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
- return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
- }
- }
- assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
- "Expected scale to be less than the number of bits if signed or at "
- "most the number of bits if unsigned.");
- assert(LHS.getValueType() == RHS.getValueType() &&
- "Expected both operands to be the same type");
- // Get the upper and lower bits of the result.
- SDValue Lo, Hi;
- unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
- unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
- if (isOperationLegalOrCustom(LoHiOp, VT)) {
- SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
- Lo = Result.getValue(0);
- Hi = Result.getValue(1);
- } else if (isOperationLegalOrCustom(HiOp, VT)) {
- Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
- } else if (VT.isVector()) {
- return SDValue();
- } else {
- report_fatal_error("Unable to expand fixed point multiplication.");
- }
- if (Scale == VTSize)
- // Result is just the top half since we'd be shifting by the width of the
- // operand. Overflow impossible so this works for both UMULFIX and
- // UMULFIXSAT.
- return Hi;
- // The result will need to be shifted right by the scale since both operands
- // are scaled. The result is given to us in 2 halves, so we only want part of
- // both in the result.
- EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
- DAG.getConstant(Scale, dl, ShiftTy));
- if (!Saturating)
- return Result;
- if (!Signed) {
- // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
- // widened multiplication) aren't all zeroes.
- // Saturate to max if ((Hi >> Scale) != 0),
- // which is the same as if (Hi > ((1 << Scale) - 1))
- APInt MaxVal = APInt::getMaxValue(VTSize);
- SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, LowMask,
- DAG.getConstant(MaxVal, dl, VT), Result,
- ISD::SETUGT);
- return Result;
- }
- // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
- // widened multiplication) aren't all ones or all zeroes.
- SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
- SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
- if (Scale == 0) {
- SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
- DAG.getConstant(VTSize - 1, dl, ShiftTy));
- SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
- // Saturated to SatMin if wide product is negative, and SatMax if wide
- // product is positive ...
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
- ISD::SETLT);
- // ... but only if we overflowed.
- return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
- }
- // We handled Scale==0 above so all the bits to examine is in Hi.
- // Saturate to max if ((Hi >> (Scale - 1)) > 0),
- // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
- SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
- // Saturate to min if (Hi >> (Scale - 1)) < -1),
- // which is the same as if (HI < (-1 << (Scale - 1))
- SDValue HighMask =
- DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
- dl, VT);
- Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
- return Result;
- }
- void TargetLowering::expandUADDSUBO(
- SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool IsAdd = Node->getOpcode() == ISD::UADDO;
- // If ADD/SUBCARRY is legal, use that instead.
- unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
- if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
- SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
- SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
- { LHS, RHS, CarryIn });
- Result = SDValue(NodeCarry.getNode(), 0);
- Overflow = SDValue(NodeCarry.getNode(), 1);
- return;
- }
- Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
- LHS.getValueType(), LHS, RHS);
- EVT ResultType = Node->getValueType(1);
- EVT SetCCType = getSetCCResultType(
- DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
- ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
- SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
- Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
- }
- void TargetLowering::expandSADDSUBO(
- SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool IsAdd = Node->getOpcode() == ISD::SADDO;
- Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
- LHS.getValueType(), LHS, RHS);
- EVT ResultType = Node->getValueType(1);
- EVT OType = getSetCCResultType(
- DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
- // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
- unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
- if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
- SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
- SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
- Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
- return;
- }
- SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
- // LHSSign -> LHS >= 0
- // RHSSign -> RHS >= 0
- // SumSign -> Result >= 0
- //
- // Add:
- // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
- // Sub:
- // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
- SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
- SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
- SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
- IsAdd ? ISD::SETEQ : ISD::SETNE);
- SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
- SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
- SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
- Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
- }
- bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
- SDValue &Overflow, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- bool isSigned = Node->getOpcode() == ISD::SMULO;
- // For power-of-two multiplications we can use a simpler shift expansion.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
- const APInt &C = RHSC->getAPIntValue();
- // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
- if (C.isPowerOf2()) {
- // smulo(x, signed_min) is same as umulo(x, signed_min).
- bool UseArithShift = isSigned && !C.isMinSignedValue();
- EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
- Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
- Overflow = DAG.getSetCC(dl, SetCCVT,
- DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
- dl, VT, Result, ShiftAmt),
- LHS, ISD::SETNE);
- return true;
- }
- }
- EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
- if (VT.isVector())
- WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
- VT.getVectorNumElements());
- SDValue BottomHalf;
- SDValue TopHalf;
- static const unsigned Ops[2][3] =
- { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
- { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
- if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
- BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
- } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
- BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
- RHS);
- TopHalf = BottomHalf.getValue(1);
- } else if (isTypeLegal(WideVT)) {
- LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
- RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
- SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
- BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
- SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
- getShiftAmountTy(WideVT, DAG.getDataLayout()));
- TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
- } else {
- if (VT.isVector())
- return false;
- // We can fall back to a libcall with an illegal type for the MUL if we
- // have a libcall big enough.
- // Also, we can fall back to a division in some cases, but that's a big
- // performance hit in the general case.
- RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
- if (WideVT == MVT::i16)
- LC = RTLIB::MUL_I16;
- else if (WideVT == MVT::i32)
- LC = RTLIB::MUL_I32;
- else if (WideVT == MVT::i64)
- LC = RTLIB::MUL_I64;
- else if (WideVT == MVT::i128)
- LC = RTLIB::MUL_I128;
- assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
- SDValue HiLHS;
- SDValue HiRHS;
- if (isSigned) {
- // The high part is obtained by SRA'ing all but one of the bits of low
- // part.
- unsigned LoSize = VT.getSizeInBits();
- HiLHS =
- DAG.getNode(ISD::SRA, dl, VT, LHS,
- DAG.getConstant(LoSize - 1, dl,
- getPointerTy(DAG.getDataLayout())));
- HiRHS =
- DAG.getNode(ISD::SRA, dl, VT, RHS,
- DAG.getConstant(LoSize - 1, dl,
- getPointerTy(DAG.getDataLayout())));
- } else {
- HiLHS = DAG.getConstant(0, dl, VT);
- HiRHS = DAG.getConstant(0, dl, VT);
- }
- // Here we're passing the 2 arguments explicitly as 4 arguments that are
- // pre-lowered to the correct types. This all depends upon WideVT not
- // being a legal type for the architecture and thus has to be split to
- // two arguments.
- SDValue Ret;
- TargetLowering::MakeLibCallOptions CallOptions;
- CallOptions.setSExt(isSigned);
- CallOptions.setIsPostTypeLegalization(true);
- if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
- // Halves of WideVT are packed into registers in different order
- // depending on platform endianness. This is usually handled by
- // the C calling convention, but we can't defer to it in
- // the legalizer.
- SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
- Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
- } else {
- SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
- Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
- }
- assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
- "Ret value is a collection of constituent nodes holding result.");
- if (DAG.getDataLayout().isLittleEndian()) {
- // Same as above.
- BottomHalf = Ret.getOperand(0);
- TopHalf = Ret.getOperand(1);
- } else {
- BottomHalf = Ret.getOperand(1);
- TopHalf = Ret.getOperand(0);
- }
- }
- Result = BottomHalf;
- if (isSigned) {
- SDValue ShiftAmt = DAG.getConstant(
- VT.getScalarSizeInBits() - 1, dl,
- getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
- SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
- Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
- } else {
- Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
- DAG.getConstant(0, dl, VT), ISD::SETNE);
- }
- // Truncate the result if SetCC returns a larger type than needed.
- EVT RType = Node->getValueType(1);
- if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
- Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
- assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
- "Unexpected result type for S/UMULO legalization");
- return true;
- }
- SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
- SDLoc dl(Node);
- bool NoNaN = Node->getFlags().hasNoNaNs();
- unsigned BaseOpcode = 0;
- switch (Node->getOpcode()) {
- default: llvm_unreachable("Expected VECREDUCE opcode");
- case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
- case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
- case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
- case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
- case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
- case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
- case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
- case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
- case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
- case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
- case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
- case ISD::VECREDUCE_FMAX:
- BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
- break;
- case ISD::VECREDUCE_FMIN:
- BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
- break;
- }
- SDValue Op = Node->getOperand(0);
- EVT VT = Op.getValueType();
- // Try to use a shuffle reduction for power of two vectors.
- if (VT.isPow2VectorType()) {
- while (VT.getVectorNumElements() > 1) {
- EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
- if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
- break;
- SDValue Lo, Hi;
- std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
- Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
- VT = HalfVT;
- }
- }
- EVT EltVT = VT.getVectorElementType();
- unsigned NumElts = VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops;
- DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
- SDValue Res = Ops[0];
- for (unsigned i = 1; i < NumElts; i++)
- Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
- // Result type may be wider than element type.
- if (EltVT != Node->getValueType(0))
- Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
- return Res;
- }
|