MIRVRegNamerUtils.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. //===---------- MIRVRegNamerUtils.cpp - MIR VReg Renaming Utilities -------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. #include "MIRVRegNamerUtils.h"
  9. using namespace llvm;
  10. #define DEBUG_TYPE "mir-vregnamer-utils"
  11. namespace {
  12. // TypedVReg and VRType are used to tell the renamer what to do at points in a
  13. // sequence of values to be renamed. A TypedVReg can either contain
  14. // an actual VReg, a FrameIndex, or it could just be a barrier for the next
  15. // candidate (side-effecting instruction). This tells the renamer to increment
  16. // to the next vreg name, or to skip modulo some skip-gap value.
  17. enum VRType { RSE_Reg = 0, RSE_FrameIndex, RSE_NewCandidate };
  18. class TypedVReg {
  19. VRType Type;
  20. Register Reg;
  21. public:
  22. TypedVReg(Register Reg) : Type(RSE_Reg), Reg(Reg) {}
  23. TypedVReg(VRType Type) : Type(Type), Reg(~0U) {
  24. assert(Type != RSE_Reg && "Expected a non-Register Type.");
  25. }
  26. bool isReg() const { return Type == RSE_Reg; }
  27. bool isFrameIndex() const { return Type == RSE_FrameIndex; }
  28. bool isCandidate() const { return Type == RSE_NewCandidate; }
  29. VRType getType() const { return Type; }
  30. Register getReg() const {
  31. assert(this->isReg() && "Expected a virtual or physical Register.");
  32. return Reg;
  33. }
  34. };
  35. /// Here we find our candidates. What makes an interesting candidate?
  36. /// A candidate for a canonicalization tree root is normally any kind of
  37. /// instruction that causes side effects such as a store to memory or a copy to
  38. /// a physical register or a return instruction. We use these as an expression
  39. /// tree root that we walk in order to build a canonical walk which should
  40. /// result in canonical vreg renaming.
  41. std::vector<MachineInstr *> populateCandidates(MachineBasicBlock *MBB) {
  42. std::vector<MachineInstr *> Candidates;
  43. MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  44. for (auto II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
  45. MachineInstr *MI = &*II;
  46. bool DoesMISideEffect = false;
  47. if (MI->getNumOperands() > 0 && MI->getOperand(0).isReg()) {
  48. const Register Dst = MI->getOperand(0).getReg();
  49. DoesMISideEffect |= !Register::isVirtualRegister(Dst);
  50. for (auto UI = MRI.use_begin(Dst); UI != MRI.use_end(); ++UI) {
  51. if (DoesMISideEffect)
  52. break;
  53. DoesMISideEffect |= (UI->getParent()->getParent() != MI->getParent());
  54. }
  55. }
  56. if (!MI->mayStore() && !MI->isBranch() && !DoesMISideEffect)
  57. continue;
  58. LLVM_DEBUG(dbgs() << "Found Candidate: "; MI->dump(););
  59. Candidates.push_back(MI);
  60. }
  61. return Candidates;
  62. }
  63. void doCandidateWalk(std::vector<TypedVReg> &VRegs,
  64. std::queue<TypedVReg> &RegQueue,
  65. std::vector<MachineInstr *> &VisitedMIs,
  66. const MachineBasicBlock *MBB) {
  67. const MachineFunction &MF = *MBB->getParent();
  68. const MachineRegisterInfo &MRI = MF.getRegInfo();
  69. while (!RegQueue.empty()) {
  70. auto TReg = RegQueue.front();
  71. RegQueue.pop();
  72. if (TReg.isFrameIndex()) {
  73. LLVM_DEBUG(dbgs() << "Popping frame index.\n";);
  74. VRegs.push_back(TypedVReg(RSE_FrameIndex));
  75. continue;
  76. }
  77. assert(TReg.isReg() && "Expected vreg or physreg.");
  78. Register Reg = TReg.getReg();
  79. if (Register::isVirtualRegister(Reg)) {
  80. LLVM_DEBUG({
  81. dbgs() << "Popping vreg ";
  82. MRI.def_begin(Reg)->dump();
  83. dbgs() << "\n";
  84. });
  85. if (!llvm::any_of(VRegs, [&](const TypedVReg &TR) {
  86. return TR.isReg() && TR.getReg() == Reg;
  87. })) {
  88. VRegs.push_back(TypedVReg(Reg));
  89. }
  90. } else {
  91. LLVM_DEBUG(dbgs() << "Popping physreg.\n";);
  92. VRegs.push_back(TypedVReg(Reg));
  93. continue;
  94. }
  95. for (auto RI = MRI.def_begin(Reg), RE = MRI.def_end(); RI != RE; ++RI) {
  96. MachineInstr *Def = RI->getParent();
  97. if (Def->getParent() != MBB)
  98. continue;
  99. if (llvm::any_of(VisitedMIs,
  100. [&](const MachineInstr *VMI) { return Def == VMI; })) {
  101. break;
  102. }
  103. LLVM_DEBUG({
  104. dbgs() << "\n========================\n";
  105. dbgs() << "Visited MI: ";
  106. Def->dump();
  107. dbgs() << "BB Name: " << Def->getParent()->getName() << "\n";
  108. dbgs() << "\n========================\n";
  109. });
  110. VisitedMIs.push_back(Def);
  111. for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
  112. MachineOperand &MO = Def->getOperand(I);
  113. if (MO.isFI()) {
  114. LLVM_DEBUG(dbgs() << "Pushing frame index.\n";);
  115. RegQueue.push(TypedVReg(RSE_FrameIndex));
  116. }
  117. if (!MO.isReg())
  118. continue;
  119. RegQueue.push(TypedVReg(MO.getReg()));
  120. }
  121. }
  122. }
  123. }
  124. std::map<unsigned, unsigned>
  125. getVRegRenameMap(const std::vector<TypedVReg> &VRegs,
  126. const std::vector<Register> &renamedInOtherBB,
  127. MachineRegisterInfo &MRI, NamedVRegCursor &NVC) {
  128. std::map<unsigned, unsigned> VRegRenameMap;
  129. bool FirstCandidate = true;
  130. for (auto &vreg : VRegs) {
  131. if (vreg.isFrameIndex()) {
  132. // We skip one vreg for any frame index because there is a good chance
  133. // (especially when comparing SelectionDAG to GlobalISel generated MIR)
  134. // that in the other file we are just getting an incoming vreg that comes
  135. // from a copy from a frame index. So it's safe to skip by one.
  136. unsigned LastRenameReg = NVC.incrementVirtualVReg();
  137. (void)LastRenameReg;
  138. LLVM_DEBUG(dbgs() << "Skipping rename for FI " << LastRenameReg << "\n";);
  139. continue;
  140. } else if (vreg.isCandidate()) {
  141. // After the first candidate, for every subsequent candidate, we skip mod
  142. // 10 registers so that the candidates are more likely to start at the
  143. // same vreg number making it more likely that the canonical walk from the
  144. // candidate insruction. We don't need to skip from the first candidate of
  145. // the BasicBlock because we already skip ahead several vregs for each BB.
  146. unsigned LastRenameReg = NVC.getVirtualVReg();
  147. if (FirstCandidate)
  148. NVC.incrementVirtualVReg(LastRenameReg % 10);
  149. FirstCandidate = false;
  150. continue;
  151. } else if (!Register::isVirtualRegister(vreg.getReg())) {
  152. unsigned LastRenameReg = NVC.incrementVirtualVReg();
  153. (void)LastRenameReg;
  154. LLVM_DEBUG({
  155. dbgs() << "Skipping rename for Phys Reg " << LastRenameReg << "\n";
  156. });
  157. continue;
  158. }
  159. auto Reg = vreg.getReg();
  160. if (llvm::find(renamedInOtherBB, Reg) != renamedInOtherBB.end()) {
  161. LLVM_DEBUG(dbgs() << "Vreg " << Reg
  162. << " already renamed in other BB.\n";);
  163. continue;
  164. }
  165. auto Rename = NVC.createVirtualRegister(Reg);
  166. if (VRegRenameMap.find(Reg) == VRegRenameMap.end()) {
  167. LLVM_DEBUG(dbgs() << "Mapping vreg ";);
  168. if (MRI.reg_begin(Reg) != MRI.reg_end()) {
  169. LLVM_DEBUG(auto foo = &*MRI.reg_begin(Reg); foo->dump(););
  170. } else {
  171. LLVM_DEBUG(dbgs() << Reg;);
  172. }
  173. LLVM_DEBUG(dbgs() << " to ";);
  174. if (MRI.reg_begin(Rename) != MRI.reg_end()) {
  175. LLVM_DEBUG(auto foo = &*MRI.reg_begin(Rename); foo->dump(););
  176. } else {
  177. LLVM_DEBUG(dbgs() << Rename;);
  178. }
  179. LLVM_DEBUG(dbgs() << "\n";);
  180. VRegRenameMap.insert(std::pair<unsigned, unsigned>(Reg, Rename));
  181. }
  182. }
  183. return VRegRenameMap;
  184. }
  185. bool doVRegRenaming(std::vector<Register> &renamedInOtherBB,
  186. const std::map<unsigned, unsigned> &VRegRenameMap,
  187. MachineRegisterInfo &MRI) {
  188. bool Changed = false;
  189. for (auto I = VRegRenameMap.begin(), E = VRegRenameMap.end(); I != E; ++I) {
  190. auto VReg = I->first;
  191. auto Rename = I->second;
  192. renamedInOtherBB.push_back(Rename);
  193. std::vector<MachineOperand *> RenameMOs;
  194. for (auto &MO : MRI.reg_operands(VReg)) {
  195. RenameMOs.push_back(&MO);
  196. }
  197. for (auto *MO : RenameMOs) {
  198. Changed = true;
  199. MO->setReg(Rename);
  200. if (!MO->isDef())
  201. MO->setIsKill(false);
  202. }
  203. }
  204. return Changed;
  205. }
  206. bool renameVRegs(MachineBasicBlock *MBB,
  207. std::vector<Register> &renamedInOtherBB,
  208. NamedVRegCursor &NVC) {
  209. bool Changed = false;
  210. MachineFunction &MF = *MBB->getParent();
  211. MachineRegisterInfo &MRI = MF.getRegInfo();
  212. std::vector<MachineInstr *> Candidates = populateCandidates(MBB);
  213. std::vector<MachineInstr *> VisitedMIs;
  214. llvm::copy(Candidates, std::back_inserter(VisitedMIs));
  215. std::vector<TypedVReg> VRegs;
  216. for (auto candidate : Candidates) {
  217. VRegs.push_back(TypedVReg(RSE_NewCandidate));
  218. std::queue<TypedVReg> RegQueue;
  219. // Here we walk the vreg operands of a non-root node along our walk.
  220. // The root nodes are the original candidates (stores normally).
  221. // These are normally not the root nodes (except for the case of copies to
  222. // physical registers).
  223. for (unsigned i = 1; i < candidate->getNumOperands(); i++) {
  224. if (candidate->mayStore() || candidate->isBranch())
  225. break;
  226. MachineOperand &MO = candidate->getOperand(i);
  227. if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
  228. continue;
  229. LLVM_DEBUG(dbgs() << "Enqueue register"; MO.dump(); dbgs() << "\n";);
  230. RegQueue.push(TypedVReg(MO.getReg()));
  231. }
  232. // Here we walk the root candidates. We start from the 0th operand because
  233. // the root is normally a store to a vreg.
  234. for (unsigned i = 0; i < candidate->getNumOperands(); i++) {
  235. if (!candidate->mayStore() && !candidate->isBranch())
  236. break;
  237. MachineOperand &MO = candidate->getOperand(i);
  238. // TODO: Do we want to only add vregs here?
  239. if (!MO.isReg() && !MO.isFI())
  240. continue;
  241. LLVM_DEBUG(dbgs() << "Enqueue Reg/FI"; MO.dump(); dbgs() << "\n";);
  242. RegQueue.push(MO.isReg() ? TypedVReg(MO.getReg())
  243. : TypedVReg(RSE_FrameIndex));
  244. }
  245. doCandidateWalk(VRegs, RegQueue, VisitedMIs, MBB);
  246. }
  247. // If we have populated no vregs to rename then bail.
  248. // The rest of this function does the vreg remaping.
  249. if (VRegs.size() == 0)
  250. return Changed;
  251. auto VRegRenameMap = getVRegRenameMap(VRegs, renamedInOtherBB, MRI, NVC);
  252. Changed |= doVRegRenaming(renamedInOtherBB, VRegRenameMap, MRI);
  253. return Changed;
  254. }
  255. } // anonymous namespace
  256. void NamedVRegCursor::skipVRegs() {
  257. unsigned VRegGapIndex = 1;
  258. if (!virtualVRegNumber) {
  259. VRegGapIndex = 0;
  260. virtualVRegNumber = MRI.createIncompleteVirtualRegister();
  261. }
  262. const unsigned VR_GAP = (++VRegGapIndex * SkipGapSize);
  263. unsigned I = virtualVRegNumber;
  264. const unsigned E = (((I + VR_GAP) / VR_GAP) + 1) * VR_GAP;
  265. virtualVRegNumber = E;
  266. }
  267. unsigned NamedVRegCursor::createVirtualRegister(unsigned VReg) {
  268. if (!virtualVRegNumber)
  269. skipVRegs();
  270. std::string S;
  271. raw_string_ostream OS(S);
  272. OS << "namedVReg" << (virtualVRegNumber & ~0x80000000);
  273. OS.flush();
  274. virtualVRegNumber++;
  275. if (auto RC = MRI.getRegClassOrNull(VReg))
  276. return MRI.createVirtualRegister(RC, OS.str());
  277. return MRI.createGenericVirtualRegister(MRI.getType(VReg), OS.str());
  278. }
  279. bool NamedVRegCursor::renameVRegs(MachineBasicBlock *MBB) {
  280. return ::renameVRegs(MBB, RenamedInOtherBB, *this);
  281. }