ArrayRefTest.cpp 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. #include "llvm/ADT/ArrayRef.h"
  9. #include "llvm/Support/Allocator.h"
  10. #include "llvm/Support/raw_ostream.h"
  11. #include "gtest/gtest.h"
  12. #include <limits>
  13. #include <vector>
  14. using namespace llvm;
  15. // Check that the ArrayRef-of-pointer converting constructor only allows adding
  16. // cv qualifiers (not removing them, or otherwise changing the type)
  17. static_assert(
  18. std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
  19. "Adding const");
  20. static_assert(
  21. std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
  22. "Adding volatile");
  23. static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
  24. "Changing pointer of one type to a pointer of another");
  25. static_assert(
  26. !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
  27. "Removing const");
  28. static_assert(
  29. !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
  30. "Removing volatile");
  31. // Check that we can't accidentally assign a temporary location to an ArrayRef.
  32. // (Unfortunately we can't make use of the same thing with constructors.)
  33. //
  34. // Disable this check under MSVC; even MSVC 2015 isn't inconsistent between
  35. // std::is_assignable and actually writing such an assignment.
  36. #if !defined(_MSC_VER)
  37. static_assert(
  38. !std::is_assignable<ArrayRef<int *>&, int *>::value,
  39. "Assigning from single prvalue element");
  40. static_assert(
  41. !std::is_assignable<ArrayRef<int *>&, int * &&>::value,
  42. "Assigning from single xvalue element");
  43. static_assert(
  44. std::is_assignable<ArrayRef<int *>&, int * &>::value,
  45. "Assigning from single lvalue element");
  46. static_assert(
  47. !std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value,
  48. "Assigning from an initializer list");
  49. #endif
  50. namespace {
  51. TEST(ArrayRefTest, AllocatorCopy) {
  52. BumpPtrAllocator Alloc;
  53. static const uint16_t Words1[] = { 1, 4, 200, 37 };
  54. ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
  55. static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
  56. ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
  57. ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
  58. ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
  59. EXPECT_TRUE(Array1.equals(Array1c));
  60. EXPECT_NE(Array1.data(), Array1c.data());
  61. EXPECT_TRUE(Array2.equals(Array2c));
  62. EXPECT_NE(Array2.data(), Array2c.data());
  63. // Check that copy can cope with uninitialized memory.
  64. struct NonAssignable {
  65. const char *Ptr;
  66. NonAssignable(const char *Ptr) : Ptr(Ptr) {}
  67. NonAssignable(const NonAssignable &RHS) = default;
  68. void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
  69. bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
  70. } Array3Src[] = {"hello", "world"};
  71. ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
  72. EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
  73. EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
  74. }
  75. TEST(ArrayRefTest, SizeTSizedOperations) {
  76. ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
  77. // Check that drop_back accepts size_t-sized numbers.
  78. EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
  79. // Check that drop_front accepts size_t-sized numbers.
  80. EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
  81. // Check that slice accepts size_t-sized numbers.
  82. EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
  83. EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
  84. }
  85. TEST(ArrayRefTest, DropBack) {
  86. static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
  87. ArrayRef<int> AR1(TheNumbers);
  88. ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
  89. EXPECT_TRUE(AR1.drop_back().equals(AR2));
  90. }
  91. TEST(ArrayRefTest, DropFront) {
  92. static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
  93. ArrayRef<int> AR1(TheNumbers);
  94. ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
  95. EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
  96. }
  97. TEST(ArrayRefTest, DropWhile) {
  98. static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
  99. ArrayRef<int> AR1(TheNumbers);
  100. ArrayRef<int> Expected = AR1.drop_front(3);
  101. EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
  102. EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
  103. EXPECT_EQ(ArrayRef<int>(),
  104. AR1.drop_while([](const int &N) { return N > 0; }));
  105. }
  106. TEST(ArrayRefTest, DropUntil) {
  107. static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
  108. ArrayRef<int> AR1(TheNumbers);
  109. ArrayRef<int> Expected = AR1.drop_front(3);
  110. EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
  111. EXPECT_EQ(ArrayRef<int>(),
  112. AR1.drop_until([](const int &N) { return N < 0; }));
  113. EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
  114. }
  115. TEST(ArrayRefTest, TakeBack) {
  116. static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
  117. ArrayRef<int> AR1(TheNumbers);
  118. ArrayRef<int> AR2(AR1.end() - 1, 1);
  119. EXPECT_TRUE(AR1.take_back().equals(AR2));
  120. }
  121. TEST(ArrayRefTest, TakeFront) {
  122. static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
  123. ArrayRef<int> AR1(TheNumbers);
  124. ArrayRef<int> AR2(AR1.data(), 2);
  125. EXPECT_TRUE(AR1.take_front(2).equals(AR2));
  126. }
  127. TEST(ArrayRefTest, TakeWhile) {
  128. static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
  129. ArrayRef<int> AR1(TheNumbers);
  130. ArrayRef<int> Expected = AR1.take_front(3);
  131. EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
  132. EXPECT_EQ(ArrayRef<int>(),
  133. AR1.take_while([](const int &N) { return N < 0; }));
  134. EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
  135. }
  136. TEST(ArrayRefTest, TakeUntil) {
  137. static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
  138. ArrayRef<int> AR1(TheNumbers);
  139. ArrayRef<int> Expected = AR1.take_front(3);
  140. EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
  141. EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
  142. EXPECT_EQ(ArrayRef<int>(),
  143. AR1.take_until([](const int &N) { return N > 0; }));
  144. }
  145. TEST(ArrayRefTest, Equals) {
  146. static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
  147. ArrayRef<int> AR1(A1);
  148. EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
  149. EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
  150. EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
  151. EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
  152. EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
  153. EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
  154. EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
  155. EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
  156. EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
  157. ArrayRef<int> AR1a = AR1.drop_back();
  158. EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
  159. EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
  160. ArrayRef<int> AR1b = AR1a.slice(2, 4);
  161. EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
  162. EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
  163. EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
  164. }
  165. TEST(ArrayRefTest, EmptyEquals) {
  166. EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
  167. }
  168. TEST(ArrayRefTest, ConstConvert) {
  169. int buf[4];
  170. for (int i = 0; i < 4; ++i)
  171. buf[i] = i;
  172. static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
  173. ArrayRef<const int *> a((ArrayRef<int *>(A)));
  174. a = ArrayRef<int *>(A);
  175. }
  176. static std::vector<int> ReturnTest12() { return {1, 2}; }
  177. static void ArgTest12(ArrayRef<int> A) {
  178. EXPECT_EQ(2U, A.size());
  179. EXPECT_EQ(1, A[0]);
  180. EXPECT_EQ(2, A[1]);
  181. }
  182. TEST(ArrayRefTest, InitializerList) {
  183. std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
  184. ArrayRef<int> A = init_list;
  185. for (int i = 0; i < 5; ++i)
  186. EXPECT_EQ(i, A[i]);
  187. std::vector<int> B = ReturnTest12();
  188. A = B;
  189. EXPECT_EQ(1, A[0]);
  190. EXPECT_EQ(2, A[1]);
  191. ArgTest12({1, 2});
  192. }
  193. TEST(ArrayRefTest, EmptyInitializerList) {
  194. ArrayRef<int> A = {};
  195. EXPECT_TRUE(A.empty());
  196. A = {};
  197. EXPECT_TRUE(A.empty());
  198. }
  199. // Test that makeArrayRef works on ArrayRef (no-op)
  200. TEST(ArrayRefTest, makeArrayRef) {
  201. static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
  202. // No copy expected for non-const ArrayRef (true no-op)
  203. ArrayRef<int> AR1(A1);
  204. ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
  205. EXPECT_EQ(&AR1, &AR1Ref);
  206. // A copy is expected for non-const ArrayRef (thin copy)
  207. const ArrayRef<int> AR2(A1);
  208. const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
  209. EXPECT_NE(&AR2Ref, &AR2);
  210. EXPECT_TRUE(AR2.equals(AR2Ref));
  211. }
  212. static_assert(is_trivially_copyable<ArrayRef<int>>::value,
  213. "trivially copyable");
  214. } // end anonymous namespace