123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements some loop unrolling utilities. It does not define any
- // actual pass or policy, but provides a single function to perform loop
- // unrolling.
- //
- // The process of unrolling can produce extraneous basic blocks linked with
- // unconditional branches. This will be corrected in the future.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/UnrollLoop.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-unroll"
- // TODO: Should these be here or in LoopUnroll?
- STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
- STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
- /// RemapInstruction - Convert the instruction operands from referencing the
- /// current values into those specified by VMap.
- static inline void RemapInstruction(Instruction *I,
- ValueToValueMapTy &VMap) {
- for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
- Value *Op = I->getOperand(op);
- ValueToValueMapTy::iterator It = VMap.find(Op);
- if (It != VMap.end())
- I->setOperand(op, It->second);
- }
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
- if (It != VMap.end())
- PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
- }
- }
- }
- /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
- /// only has one predecessor, and that predecessor only has one successor.
- /// The LoopInfo Analysis that is passed will be kept consistent. If folding is
- /// successful references to the containing loop must be removed from
- /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
- /// references to the eliminated BB. The argument ForgottenLoops contains a set
- /// of loops that have already been forgotten to prevent redundant, expensive
- /// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
- static BasicBlock *
- FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
- SmallPtrSetImpl<Loop *> &ForgottenLoops) {
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- BasicBlock *OnlyPred = BB->getSinglePredecessor();
- if (!OnlyPred) return nullptr;
- if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
- // Resolve any PHI nodes at the start of the block. They are all
- // guaranteed to have exactly one entry if they exist, unless there are
- // multiple duplicate (but guaranteed to be equal) entries for the
- // incoming edges. This occurs when there are multiple edges from
- // OnlyPred to OnlySucc.
- FoldSingleEntryPHINodes(BB);
- // Delete the unconditional branch from the predecessor...
- OnlyPred->getInstList().pop_back();
- // Make all PHI nodes that referred to BB now refer to Pred as their
- // source...
- BB->replaceAllUsesWith(OnlyPred);
- // Move all definitions in the successor to the predecessor...
- OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
- // OldName will be valid until erased.
- StringRef OldName = BB->getName();
- // Erase basic block from the function...
- // ScalarEvolution holds references to loop exit blocks.
- if (LPM) {
- if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
- if (Loop *L = LI->getLoopFor(BB)) {
- if (ForgottenLoops.insert(L).second)
- SE->forgetLoop(L);
- }
- }
- }
- LI->removeBlock(BB);
- // Inherit predecessor's name if it exists...
- if (!OldName.empty() && !OnlyPred->hasName())
- OnlyPred->setName(OldName);
- BB->eraseFromParent();
- return OnlyPred;
- }
- /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
- /// if unrolling was successful, or false if the loop was unmodified. Unrolling
- /// can only fail when the loop's latch block is not terminated by a conditional
- /// branch instruction. However, if the trip count (and multiple) are not known,
- /// loop unrolling will mostly produce more code that is no faster.
- ///
- /// TripCount is generally defined as the number of times the loop header
- /// executes. UnrollLoop relaxes the definition to permit early exits: here
- /// TripCount is the iteration on which control exits LatchBlock if no early
- /// exits were taken. Note that UnrollLoop assumes that the loop counter test
- /// terminates LatchBlock in order to remove unnecesssary instances of the
- /// test. In other words, control may exit the loop prior to TripCount
- /// iterations via an early branch, but control may not exit the loop from the
- /// LatchBlock's terminator prior to TripCount iterations.
- ///
- /// Similarly, TripMultiple divides the number of times that the LatchBlock may
- /// execute without exiting the loop.
- ///
- /// The LoopInfo Analysis that is passed will be kept consistent.
- ///
- /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
- /// removed from the LoopPassManager as well. LPM can also be NULL.
- ///
- /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
- /// available from the Pass it must also preserve those analyses.
- bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
- bool AllowRuntime, unsigned TripMultiple, LoopInfo *LI,
- Pass *PP, LPPassManager *LPM, AssumptionCache *AC) {
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
- return false;
- }
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (!LatchBlock) {
- DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
- return false;
- }
- // Loops with indirectbr cannot be cloned.
- if (!L->isSafeToClone()) {
- DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
- return false;
- }
- BasicBlock *Header = L->getHeader();
- BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
- if (!BI || BI->isUnconditional()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(dbgs() <<
- " Can't unroll; loop not terminated by a conditional branch.\n");
- return false;
- }
- if (Header->hasAddressTaken()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(dbgs() <<
- " Won't unroll loop: address of header block is taken.\n");
- return false;
- }
- if (TripCount != 0)
- DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
- if (TripMultiple != 1)
- DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
- // Effectively "DCE" unrolled iterations that are beyond the tripcount
- // and will never be executed.
- if (TripCount != 0 && Count > TripCount)
- Count = TripCount;
- // Don't enter the unroll code if there is nothing to do. This way we don't
- // need to support "partial unrolling by 1".
- if (TripCount == 0 && Count < 2)
- return false;
- assert(Count > 0);
- assert(TripMultiple > 0);
- assert(TripCount == 0 || TripCount % TripMultiple == 0);
- // Are we eliminating the loop control altogether?
- bool CompletelyUnroll = Count == TripCount;
- // We assume a run-time trip count if the compiler cannot
- // figure out the loop trip count and the unroll-runtime
- // flag is specified.
- bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
- if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
- return false;
- // Notify ScalarEvolution that the loop will be substantially changed,
- // if not outright eliminated.
- ScalarEvolution *SE =
- PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr;
- if (SE)
- SE->forgetLoop(L);
- // If we know the trip count, we know the multiple...
- unsigned BreakoutTrip = 0;
- if (TripCount != 0) {
- BreakoutTrip = TripCount % Count;
- TripMultiple = 0;
- } else {
- // Figure out what multiple to use.
- BreakoutTrip = TripMultiple =
- (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
- }
- // Report the unrolling decision.
- DebugLoc LoopLoc = L->getStartLoc();
- Function *F = Header->getParent();
- LLVMContext &Ctx = F->getContext();
- if (CompletelyUnroll) {
- DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << TripCount << "!\n");
- emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
- Twine("completely unrolled loop with ") +
- Twine(TripCount) + " iterations");
- } else {
- auto EmitDiag = [&](const Twine &T) {
- emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
- "unrolled loop by a factor of " + Twine(Count) +
- T);
- };
- DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
- << " by " << Count);
- if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
- DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
- EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
- } else if (TripMultiple != 1) {
- DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
- EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
- } else if (RuntimeTripCount) {
- DEBUG(dbgs() << " with run-time trip count");
- EmitDiag(" with run-time trip count");
- }
- DEBUG(dbgs() << "!\n");
- }
- bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
- BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
- // For the first iteration of the loop, we should use the precloned values for
- // PHI nodes. Insert associations now.
- ValueToValueMapTy LastValueMap;
- std::vector<PHINode*> OrigPHINode;
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- OrigPHINode.push_back(cast<PHINode>(I));
- }
- std::vector<BasicBlock*> Headers;
- std::vector<BasicBlock*> Latches;
- Headers.push_back(Header);
- Latches.push_back(LatchBlock);
- // The current on-the-fly SSA update requires blocks to be processed in
- // reverse postorder so that LastValueMap contains the correct value at each
- // exit.
- LoopBlocksDFS DFS(L);
- DFS.perform(LI);
- // Stash the DFS iterators before adding blocks to the loop.
- LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
- for (unsigned It = 1; It != Count; ++It) {
- std::vector<BasicBlock*> NewBlocks;
- SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
- NewLoops[L] = L;
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- ValueToValueMapTy VMap;
- BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
- Header->getParent()->getBasicBlockList().push_back(New);
- // Tell LI about New.
- if (*BB == Header) {
- assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
- L->addBasicBlockToLoop(New, *LI);
- } else {
- // Figure out which loop New is in.
- const Loop *OldLoop = LI->getLoopFor(*BB);
- assert(OldLoop && "Should (at least) be in the loop being unrolled!");
- Loop *&NewLoop = NewLoops[OldLoop];
- if (!NewLoop) {
- // Found a new sub-loop.
- assert(*BB == OldLoop->getHeader() &&
- "Header should be first in RPO");
- Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
- assert(NewLoopParent &&
- "Expected parent loop before sub-loop in RPO");
- NewLoop = new Loop;
- NewLoopParent->addChildLoop(NewLoop);
- // Forget the old loop, since its inputs may have changed.
- if (SE)
- SE->forgetLoop(OldLoop);
- }
- NewLoop->addBasicBlockToLoop(New, *LI);
- }
- if (*BB == Header)
- // Loop over all of the PHI nodes in the block, changing them to use
- // the incoming values from the previous block.
- for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
- PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
- Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
- if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI))
- InVal = LastValueMap[InValI];
- VMap[OrigPHINode[i]] = InVal;
- New->getInstList().erase(NewPHI);
- }
- // Update our running map of newest clones
- LastValueMap[*BB] = New;
- for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
- VI != VE; ++VI)
- LastValueMap[VI->first] = VI->second;
- // Add phi entries for newly created values to all exit blocks.
- for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
- SI != SE; ++SI) {
- if (L->contains(*SI))
- continue;
- for (BasicBlock::iterator BBI = (*SI)->begin();
- PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
- Value *Incoming = phi->getIncomingValueForBlock(*BB);
- ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
- if (It != LastValueMap.end())
- Incoming = It->second;
- phi->addIncoming(Incoming, New);
- }
- }
- // Keep track of new headers and latches as we create them, so that
- // we can insert the proper branches later.
- if (*BB == Header)
- Headers.push_back(New);
- if (*BB == LatchBlock)
- Latches.push_back(New);
- NewBlocks.push_back(New);
- }
- // Remap all instructions in the most recent iteration
- for (unsigned i = 0; i < NewBlocks.size(); ++i)
- for (BasicBlock::iterator I = NewBlocks[i]->begin(),
- E = NewBlocks[i]->end(); I != E; ++I)
- ::RemapInstruction(I, LastValueMap);
- }
- // Loop over the PHI nodes in the original block, setting incoming values.
- for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
- PHINode *PN = OrigPHINode[i];
- if (CompletelyUnroll) {
- PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
- Header->getInstList().erase(PN);
- }
- else if (Count > 1) {
- Value *InVal = PN->removeIncomingValue(LatchBlock, false);
- // If this value was defined in the loop, take the value defined by the
- // last iteration of the loop.
- if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI))
- InVal = LastValueMap[InVal];
- }
- assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
- PN->addIncoming(InVal, Latches.back());
- }
- }
- // Now that all the basic blocks for the unrolled iterations are in place,
- // set up the branches to connect them.
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- // The original branch was replicated in each unrolled iteration.
- BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = Headers[j];
- bool NeedConditional = true;
- if (RuntimeTripCount && j != 0) {
- NeedConditional = false;
- }
- // For a complete unroll, make the last iteration end with a branch
- // to the exit block.
- if (CompletelyUnroll && j == 0) {
- Dest = LoopExit;
- NeedConditional = false;
- }
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
- NeedConditional = false;
- }
- if (NeedConditional) {
- // Update the conditional branch's successor for the following
- // iteration.
- Term->setSuccessor(!ContinueOnTrue, Dest);
- } else {
- // Remove phi operands at this loop exit
- if (Dest != LoopExit) {
- BasicBlock *BB = Latches[i];
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
- SI != SE; ++SI) {
- if (*SI == Headers[i])
- continue;
- for (BasicBlock::iterator BBI = (*SI)->begin();
- PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
- Phi->removeIncomingValue(BB, false);
- }
- }
- }
- // Replace the conditional branch with an unconditional one.
- BranchInst::Create(Dest, Term);
- Term->eraseFromParent();
- }
- }
- // Merge adjacent basic blocks, if possible.
- SmallPtrSet<Loop *, 4> ForgottenLoops;
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
- if (Term->isUnconditional()) {
- BasicBlock *Dest = Term->getSuccessor(0);
- if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
- ForgottenLoops))
- std::replace(Latches.begin(), Latches.end(), Dest, Fold);
- }
- }
- // FIXME: We could register any cloned assumptions instead of clearing the
- // whole function's cache.
- AC->clear();
- DominatorTree *DT = nullptr;
- if (PP) {
- // FIXME: Reconstruct dom info, because it is not preserved properly.
- // Incrementally updating domtree after loop unrolling would be easy.
- if (DominatorTreeWrapperPass *DTWP =
- PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
- DT = &DTWP->getDomTree();
- DT->recalculate(*L->getHeader()->getParent());
- }
- // Simplify any new induction variables in the partially unrolled loop.
- if (SE && !CompletelyUnroll) {
- SmallVector<WeakVH, 16> DeadInsts;
- simplifyLoopIVs(L, SE, LPM, DeadInsts);
- // Aggressively clean up dead instructions that simplifyLoopIVs already
- // identified. Any remaining should be cleaned up below.
- while (!DeadInsts.empty())
- if (Instruction *Inst =
- dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
- RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
- }
- // At this point, the code is well formed. We now do a quick sweep over the
- // inserted code, doing constant propagation and dead code elimination as we
- // go.
- const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
- for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
- BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
- for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
- Instruction *Inst = I++;
- if (isInstructionTriviallyDead(Inst))
- (*BB)->getInstList().erase(Inst);
- else if (Value *V = SimplifyInstruction(Inst))
- if (LI->replacementPreservesLCSSAForm(Inst, V)) {
- Inst->replaceAllUsesWith(V);
- (*BB)->getInstList().erase(Inst);
- }
- }
- NumCompletelyUnrolled += CompletelyUnroll;
- ++NumUnrolled;
- Loop *OuterL = L->getParentLoop();
- // Remove the loop from the LoopPassManager if it's completely removed.
- if (CompletelyUnroll && LPM != nullptr)
- LPM->deleteLoopFromQueue(L);
- // If we have a pass and a DominatorTree we should re-simplify impacted loops
- // to ensure subsequent analyses can rely on this form. We want to simplify
- // at least one layer outside of the loop that was unrolled so that any
- // changes to the parent loop exposed by the unrolling are considered.
- if (PP && DT) {
- if (!OuterL && !CompletelyUnroll)
- OuterL = L;
- if (OuterL) {
- const DataLayout &DL = F->getParent()->getDataLayout();
- simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, &DL, AC);
- // LCSSA must be performed on the outermost affected loop. The unrolled
- // loop's last loop latch is guaranteed to be in the outermost loop after
- // deleteLoopFromQueue updates LoopInfo.
- Loop *LatchLoop = LI->getLoopFor(Latches.back());
- if (!OuterL->contains(LatchLoop))
- while (OuterL->getParentLoop() != LatchLoop)
- OuterL = OuterL->getParentLoop();
- formLCSSARecursively(*OuterL, *DT, LI, SE);
- }
- }
- return true;
- }
- /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
- /// node with the given name (for example, "llvm.loop.unroll.count"). If no
- /// such metadata node exists, then nullptr is returned.
- MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
- if (Name.equals(S->getString()))
- return MD;
- }
- return nullptr;
- }
|