12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Support/CommandLine.h"
- #include <algorithm>
- using namespace llvm;
- static cl::opt<bool>
- EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
- cl::Hidden,
- cl::desc("Convert noalias attributes to metadata during inlining."));
- static cl::opt<bool>
- PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
- cl::init(true), cl::Hidden,
- cl::desc("Convert align attributes to assumptions during inlining."));
- bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(CI), IFI, InsertLifetime);
- }
- bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(II), IFI, InsertLifetime);
- }
- namespace {
- /// A class for recording information about inlining through an invoke.
- class InvokeInliningInfo {
- BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
- BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
- LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
- PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
- SmallVector<Value*, 8> UnwindDestPHIValues;
- public:
- InvokeInliningInfo(InvokeInst *II)
- : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
- CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing
- // the edge from this block.
- llvm::BasicBlock *InvokeBB = II->getParent();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (; isa<PHINode>(I); ++I) {
- // Save the value to use for this edge.
- PHINode *PHI = cast<PHINode>(I);
- UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
- }
- CallerLPad = cast<LandingPadInst>(I);
- }
- /// getOuterResumeDest - The outer unwind destination is the target of
- /// unwind edges introduced for calls within the inlined function.
- BasicBlock *getOuterResumeDest() const {
- return OuterResumeDest;
- }
- BasicBlock *getInnerResumeDest();
- LandingPadInst *getLandingPadInst() const { return CallerLPad; }
- /// forwardResume - Forward the 'resume' instruction to the caller's landing
- /// pad block. When the landing pad block has only one predecessor, this is
- /// a simple branch. When there is more than one predecessor, we need to
- /// split the landing pad block after the landingpad instruction and jump
- /// to there.
- void forwardResume(ResumeInst *RI,
- SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
- /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
- /// destination block for the given basic block, using the values for the
- /// original invoke's source block.
- void addIncomingPHIValuesFor(BasicBlock *BB) const {
- addIncomingPHIValuesForInto(BB, OuterResumeDest);
- }
- void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
- BasicBlock::iterator I = dest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *phi = cast<PHINode>(I);
- phi->addIncoming(UnwindDestPHIValues[i], src);
- }
- }
- };
- }
- /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
- BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
- if (InnerResumeDest) return InnerResumeDest;
- // Split the landing pad.
- BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
- InnerResumeDest =
- OuterResumeDest->splitBasicBlock(SplitPoint,
- OuterResumeDest->getName() + ".body");
- // The number of incoming edges we expect to the inner landing pad.
- const unsigned PHICapacity = 2;
- // Create corresponding new PHIs for all the PHIs in the outer landing pad.
- BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *OuterPHI = cast<PHINode>(I);
- PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
- OuterPHI->getName() + ".lpad-body",
- InsertPoint);
- OuterPHI->replaceAllUsesWith(InnerPHI);
- InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
- }
- // Create a PHI for the exception values.
- InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
- "eh.lpad-body", InsertPoint);
- CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
- InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
- // All done.
- return InnerResumeDest;
- }
- /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
- /// block. When the landing pad block has only one predecessor, this is a simple
- /// branch. When there is more than one predecessor, we need to split the
- /// landing pad block after the landingpad instruction and jump to there.
- void InvokeInliningInfo::forwardResume(ResumeInst *RI,
- SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
- BasicBlock *Dest = getInnerResumeDest();
- BasicBlock *Src = RI->getParent();
- BranchInst::Create(Dest, Src);
- // Update the PHIs in the destination. They were inserted in an order which
- // makes this work.
- addIncomingPHIValuesForInto(Src, Dest);
- InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
- RI->eraseFromParent();
- }
- /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
- /// an invoke, we have to turn all of the calls that can throw into
- /// invokes. This function analyze BB to see if there are any calls, and if so,
- /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
- /// nodes in that block with the values specified in InvokeDestPHIValues.
- static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
- InvokeInliningInfo &Invoke) {
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *I = BBI++;
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- CallInst *CI = dyn_cast<CallInst>(I);
- // If this call cannot unwind, don't convert it to an invoke.
- // Inline asm calls cannot throw.
- if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
- continue;
- // Convert this function call into an invoke instruction. First, split the
- // basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- // Create the new invoke instruction.
- ImmutableCallSite CS(CI);
- SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
- InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
- Invoke.getOuterResumeDest(),
- InvokeArgs, CI->getName(), BB);
- II->setDebugLoc(CI->getDebugLoc());
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
-
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakVH.
- CI->replaceAllUsesWith(II);
- // Delete the original call
- Split->getInstList().pop_front();
- // Update any PHI nodes in the exceptional block to indicate that there is
- // now a new entry in them.
- Invoke.addIncomingPHIValuesFor(BB);
- return;
- }
- }
- /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite.
- InvokeInliningInfo Invoke(II);
- // Get all of the inlined landing pad instructions.
- SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
- for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
- if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
- InlinedLPads.insert(II->getLandingPadInst());
- // Append the clauses from the outer landing pad instruction into the inlined
- // landing pad instructions.
- LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
- for (LandingPadInst *InlinedLPad : InlinedLPads) {
- unsigned OuterNum = OuterLPad->getNumClauses();
- InlinedLPad->reserveClauses(OuterNum);
- for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
- InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
- if (OuterLPad->isCleanup())
- InlinedLPad->setCleanup(true);
- }
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
- if (InlinedCodeInfo.ContainsCalls)
- HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
- // Forward any resumes that are remaining here.
- if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
- Invoke.forwardResume(RI, InlinedLPads);
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- /// CloneAliasScopeMetadata - When inlining a function that contains noalias
- /// scope metadata, this metadata needs to be cloned so that the inlined blocks
- /// have different "unqiue scopes" at every call site. Were this not done, then
- /// aliasing scopes from a function inlined into a caller multiple times could
- /// not be differentiated (and this would lead to miscompiles because the
- /// non-aliasing property communicated by the metadata could have
- /// call-site-specific control dependencies).
- static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
- const Function *CalledFunc = CS.getCalledFunction();
- SetVector<const MDNode *> MD;
- // Note: We could only clone the metadata if it is already used in the
- // caller. I'm omitting that check here because it might confuse
- // inter-procedural alias analysis passes. We can revisit this if it becomes
- // an efficiency or overhead problem.
- for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
- I != IE; ++I)
- for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
- if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
- MD.insert(M);
- if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
- MD.insert(M);
- }
- if (MD.empty())
- return;
- // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
- // the set.
- SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
- while (!Queue.empty()) {
- const MDNode *M = cast<MDNode>(Queue.pop_back_val());
- for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
- if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
- if (MD.insert(M1))
- Queue.push_back(M1);
- }
- // Now we have a complete set of all metadata in the chains used to specify
- // the noalias scopes and the lists of those scopes.
- SmallVector<TempMDTuple, 16> DummyNodes;
- DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
- for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
- I != IE; ++I) {
- DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
- MDMap[*I].reset(DummyNodes.back().get());
- }
- // Create new metadata nodes to replace the dummy nodes, replacing old
- // metadata references with either a dummy node or an already-created new
- // node.
- for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
- I != IE; ++I) {
- SmallVector<Metadata *, 4> NewOps;
- for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
- const Metadata *V = (*I)->getOperand(i);
- if (const MDNode *M = dyn_cast<MDNode>(V))
- NewOps.push_back(MDMap[M]);
- else
- NewOps.push_back(const_cast<Metadata *>(V));
- }
- MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
- MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
- assert(TempM->isTemporary() && "Expected temporary node");
- TempM->replaceAllUsesWith(NewM);
- }
- // Now replace the metadata in the new inlined instructions with the
- // repacements from the map.
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI)
- continue;
- if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
- MDNode *NewMD = MDMap[M];
- // If the call site also had alias scope metadata (a list of scopes to
- // which instructions inside it might belong), propagate those scopes to
- // the inlined instructions.
- if (MDNode *CSM =
- CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
- NewMD = MDNode::concatenate(NewMD, CSM);
- NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
- } else if (NI->mayReadOrWriteMemory()) {
- if (MDNode *M =
- CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
- NI->setMetadata(LLVMContext::MD_alias_scope, M);
- }
- if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
- MDNode *NewMD = MDMap[M];
- // If the call site also had noalias metadata (a list of scopes with
- // which instructions inside it don't alias), propagate those scopes to
- // the inlined instructions.
- if (MDNode *CSM =
- CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
- NewMD = MDNode::concatenate(NewMD, CSM);
- NI->setMetadata(LLVMContext::MD_noalias, NewMD);
- } else if (NI->mayReadOrWriteMemory()) {
- if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
- NI->setMetadata(LLVMContext::MD_noalias, M);
- }
- }
- }
- /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then
- /// add new alias scopes for each noalias argument, tag the mapped noalias
- /// parameters with noalias metadata specifying the new scope, and tag all
- /// non-derived loads, stores and memory intrinsics with the new alias scopes.
- static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
- const DataLayout *DL, AliasAnalysis *AA) {
- if (!EnableNoAliasConversion)
- return;
- const Function *CalledFunc = CS.getCalledFunction();
- SmallVector<const Argument *, 4> NoAliasArgs;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I) {
- if (I->hasNoAliasAttr() && !I->hasNUses(0))
- NoAliasArgs.push_back(I);
- }
- if (NoAliasArgs.empty())
- return;
- // To do a good job, if a noalias variable is captured, we need to know if
- // the capture point dominates the particular use we're considering.
- DominatorTree DT;
- DT.recalculate(const_cast<Function&>(*CalledFunc));
- // noalias indicates that pointer values based on the argument do not alias
- // pointer values which are not based on it. So we add a new "scope" for each
- // noalias function argument. Accesses using pointers based on that argument
- // become part of that alias scope, accesses using pointers not based on that
- // argument are tagged as noalias with that scope.
- DenseMap<const Argument *, MDNode *> NewScopes;
- MDBuilder MDB(CalledFunc->getContext());
- // Create a new scope domain for this function.
- MDNode *NewDomain =
- MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
- for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
- const Argument *A = NoAliasArgs[i];
- std::string Name = CalledFunc->getName();
- if (A->hasName()) {
- Name += ": %";
- Name += A->getName();
- } else {
- Name += ": argument ";
- Name += utostr(i);
- }
- // Note: We always create a new anonymous root here. This is true regardless
- // of the linkage of the callee because the aliasing "scope" is not just a
- // property of the callee, but also all control dependencies in the caller.
- MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
- NewScopes.insert(std::make_pair(A, NewScope));
- }
- // Iterate over all new instructions in the map; for all memory-access
- // instructions, add the alias scope metadata.
- for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
- VMI != VMIE; ++VMI) {
- if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
- if (!VMI->second)
- continue;
- Instruction *NI = dyn_cast<Instruction>(VMI->second);
- if (!NI)
- continue;
- bool IsArgMemOnlyCall = false, IsFuncCall = false;
- SmallVector<const Value *, 2> PtrArgs;
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- PtrArgs.push_back(LI->getPointerOperand());
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- PtrArgs.push_back(SI->getPointerOperand());
- else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
- PtrArgs.push_back(VAAI->getPointerOperand());
- else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
- PtrArgs.push_back(CXI->getPointerOperand());
- else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
- PtrArgs.push_back(RMWI->getPointerOperand());
- else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
- // If we know that the call does not access memory, then we'll still
- // know that about the inlined clone of this call site, and we don't
- // need to add metadata.
- if (ICS.doesNotAccessMemory())
- continue;
- IsFuncCall = true;
- if (AA) {
- AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
- if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
- MRB == AliasAnalysis::OnlyReadsArgumentPointees)
- IsArgMemOnlyCall = true;
- }
- for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
- AE = ICS.arg_end(); AI != AE; ++AI) {
- // We need to check the underlying objects of all arguments, not just
- // the pointer arguments, because we might be passing pointers as
- // integers, etc.
- // However, if we know that the call only accesses pointer arguments,
- // then we only need to check the pointer arguments.
- if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
- continue;
- PtrArgs.push_back(*AI);
- }
- }
- // If we found no pointers, then this instruction is not suitable for
- // pairing with an instruction to receive aliasing metadata.
- // However, if this is a call, this we might just alias with none of the
- // noalias arguments.
- if (PtrArgs.empty() && !IsFuncCall)
- continue;
- // It is possible that there is only one underlying object, but you
- // need to go through several PHIs to see it, and thus could be
- // repeated in the Objects list.
- SmallPtrSet<const Value *, 4> ObjSet;
- SmallVector<Metadata *, 4> Scopes, NoAliases;
- SmallSetVector<const Argument *, 4> NAPtrArgs;
- for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
- SmallVector<Value *, 4> Objects;
- GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
- Objects, DL, /* MaxLookup = */ 0);
- for (Value *O : Objects)
- ObjSet.insert(O);
- }
- // Figure out if we're derived from anything that is not a noalias
- // argument.
- bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
- for (const Value *V : ObjSet) {
- // Is this value a constant that cannot be derived from any pointer
- // value (we need to exclude constant expressions, for example, that
- // are formed from arithmetic on global symbols).
- bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
- isa<ConstantPointerNull>(V) ||
- isa<ConstantDataVector>(V) || isa<UndefValue>(V);
- if (IsNonPtrConst)
- continue;
- // If this is anything other than a noalias argument, then we cannot
- // completely describe the aliasing properties using alias.scope
- // metadata (and, thus, won't add any).
- if (const Argument *A = dyn_cast<Argument>(V)) {
- if (!A->hasNoAliasAttr())
- UsesAliasingPtr = true;
- } else {
- UsesAliasingPtr = true;
- }
- // If this is not some identified function-local object (which cannot
- // directly alias a noalias argument), or some other argument (which,
- // by definition, also cannot alias a noalias argument), then we could
- // alias a noalias argument that has been captured).
- if (!isa<Argument>(V) &&
- !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
- CanDeriveViaCapture = true;
- }
- // A function call can always get captured noalias pointers (via other
- // parameters, globals, etc.).
- if (IsFuncCall && !IsArgMemOnlyCall)
- CanDeriveViaCapture = true;
- // First, we want to figure out all of the sets with which we definitely
- // don't alias. Iterate over all noalias set, and add those for which:
- // 1. The noalias argument is not in the set of objects from which we
- // definitely derive.
- // 2. The noalias argument has not yet been captured.
- // An arbitrary function that might load pointers could see captured
- // noalias arguments via other noalias arguments or globals, and so we
- // must always check for prior capture.
- for (const Argument *A : NoAliasArgs) {
- if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
- // It might be tempting to skip the
- // PointerMayBeCapturedBefore check if
- // A->hasNoCaptureAttr() is true, but this is
- // incorrect because nocapture only guarantees
- // that no copies outlive the function, not
- // that the value cannot be locally captured.
- !PointerMayBeCapturedBefore(A,
- /* ReturnCaptures */ false,
- /* StoreCaptures */ false, I, &DT)))
- NoAliases.push_back(NewScopes[A]);
- }
- if (!NoAliases.empty())
- NI->setMetadata(LLVMContext::MD_noalias,
- MDNode::concatenate(
- NI->getMetadata(LLVMContext::MD_noalias),
- MDNode::get(CalledFunc->getContext(), NoAliases)));
- // Next, we want to figure out all of the sets to which we might belong.
- // We might belong to a set if the noalias argument is in the set of
- // underlying objects. If there is some non-noalias argument in our list
- // of underlying objects, then we cannot add a scope because the fact
- // that some access does not alias with any set of our noalias arguments
- // cannot itself guarantee that it does not alias with this access
- // (because there is some pointer of unknown origin involved and the
- // other access might also depend on this pointer). We also cannot add
- // scopes to arbitrary functions unless we know they don't access any
- // non-parameter pointer-values.
- bool CanAddScopes = !UsesAliasingPtr;
- if (CanAddScopes && IsFuncCall)
- CanAddScopes = IsArgMemOnlyCall;
- if (CanAddScopes)
- for (const Argument *A : NoAliasArgs) {
- if (ObjSet.count(A))
- Scopes.push_back(NewScopes[A]);
- }
- if (!Scopes.empty())
- NI->setMetadata(
- LLVMContext::MD_alias_scope,
- MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
- MDNode::get(CalledFunc->getContext(), Scopes)));
- }
- }
- }
- /// If the inlined function has non-byval align arguments, then
- /// add @llvm.assume-based alignment assumptions to preserve this information.
- static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
- if (!PreserveAlignmentAssumptions)
- return;
- auto &DL = CS.getCaller()->getParent()->getDataLayout();
- // To avoid inserting redundant assumptions, we should check for assumptions
- // already in the caller. To do this, we might need a DT of the caller.
- DominatorTree DT;
- bool DTCalculated = false;
- Function *CalledFunc = CS.getCalledFunction();
- for (Function::arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end();
- I != E; ++I) {
- unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
- if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
- if (!DTCalculated) {
- DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
- ->getParent()));
- DTCalculated = true;
- }
- // If we can already prove the asserted alignment in the context of the
- // caller, then don't bother inserting the assumption.
- Value *Arg = CS.getArgument(I->getArgNo());
- if (getKnownAlignment(Arg, &DL, &IFI.ACT->getAssumptionCache(*CalledFunc),
- CS.getInstruction(), &DT) >= Align)
- continue;
- IRBuilder<>(CS.getInstruction())
- .CreateAlignmentAssumption(DL, Arg, Align);
- }
- }
- }
- /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
- /// into the caller, update the specified callgraph to reflect the changes we
- /// made. Note that it's possible that not all code was copied over, so only
- /// some edges of the callgraph may remain.
- static void UpdateCallGraphAfterInlining(CallSite CS,
- Function::iterator FirstNewBlock,
- ValueToValueMapTy &VMap,
- InlineFunctionInfo &IFI) {
- CallGraph &CG = *IFI.CG;
- const Function *Caller = CS.getInstruction()->getParent()->getParent();
- const Function *Callee = CS.getCalledFunction();
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
- // Consider the case where CalleeNode == CallerNode.
- CallGraphNode::CalledFunctionsVector CallCache;
- if (CalleeNode == CallerNode) {
- CallCache.assign(I, E);
- I = CallCache.begin();
- E = CallCache.end();
- }
- for (; I != E; ++I) {
- const Value *OrigCall = I->first;
- ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI == VMap.end() || VMI->second == nullptr)
- continue;
-
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
- if (!NewCall) continue;
- // Remember that this call site got inlined for the client of
- // InlineFunction.
- IFI.InlinedCalls.push_back(NewCall);
- // It's possible that inlining the callsite will cause it to go from an
- // indirect to a direct call by resolving a function pointer. If this
- // happens, set the callee of the new call site to a more precise
- // destination. This can also happen if the call graph node of the caller
- // was just unnecessarily imprecise.
- if (!I->second->getFunction())
- if (Function *F = CallSite(NewCall).getCalledFunction()) {
- // Indirect call site resolved to direct call.
- CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
- continue;
- }
- CallerNode->addCalledFunction(CallSite(NewCall), I->second);
- }
-
- // Update the call graph by deleting the edge from Callee to Caller. We must
- // do this after the loop above in case Caller and Callee are the same.
- CallerNode->removeCallEdgeFor(CS);
- }
- static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
- BasicBlock *InsertBlock,
- InlineFunctionInfo &IFI) {
- Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
- IRBuilder<> Builder(InsertBlock->begin());
- Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
- }
- /// HandleByValArgument - When inlining a call site that has a byval argument,
- /// we have to make the implicit memcpy explicit by adding it.
- static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
- const Function *CalledFunc,
- InlineFunctionInfo &IFI,
- unsigned ByValAlignment) {
- PointerType *ArgTy = cast<PointerType>(Arg->getType());
- Type *AggTy = ArgTy->getElementType();
- Function *Caller = TheCall->getParent()->getParent();
- // If the called function is readonly, then it could not mutate the caller's
- // copy of the byval'd memory. In this case, it is safe to elide the copy and
- // temporary.
- if (CalledFunc->onlyReadsMemory()) {
- // If the byval argument has a specified alignment that is greater than the
- // passed in pointer, then we either have to round up the input pointer or
- // give up on this transformation.
- if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
- return Arg;
- // If the pointer is already known to be sufficiently aligned, or if we can
- // round it up to a larger alignment, then we don't need a temporary.
- auto &DL = Caller->getParent()->getDataLayout();
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment, &DL,
- &IFI.ACT->getAssumptionCache(*Caller),
- TheCall) >= ByValAlignment)
- return Arg;
-
- // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
- // for code quality, but rarely happens and is required for correctness.
- }
- // Create the alloca. If we have DataLayout, use nice alignment.
- unsigned Align =
- Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
- // If the byval had an alignment specified, we *must* use at least that
- // alignment, as it is required by the byval argument (and uses of the
- // pointer inside the callee).
- Align = std::max(Align, ByValAlignment);
-
- Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
- &*Caller->begin()->begin());
- IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
-
- // Uses of the argument in the function should use our new alloca
- // instead.
- return NewAlloca;
- }
- // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
- // intrinsic.
- static bool isUsedByLifetimeMarker(Value *V) {
- for (User *U : V->users()) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return true;
- }
- }
- }
- return false;
- }
- // hasLifetimeMarkers - Check whether the given alloca already has
- // lifetime.start or lifetime.end intrinsics.
- static bool hasLifetimeMarkers(AllocaInst *AI) {
- Type *Ty = AI->getType();
- Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
- Ty->getPointerAddressSpace());
- if (Ty == Int8PtrTy)
- return isUsedByLifetimeMarker(AI);
- // Do a scan to find all the casts to i8*.
- for (User *U : AI->users()) {
- if (U->getType() != Int8PtrTy) continue;
- if (U->stripPointerCasts() != AI) continue;
- if (isUsedByLifetimeMarker(U))
- return true;
- }
- return false;
- }
- /// Rebuild the entire inlined-at chain for this instruction so that the top of
- /// the chain now is inlined-at the new call site.
- static DebugLoc
- updateInlinedAtInfo(DebugLoc DL, MDLocation *InlinedAtNode,
- LLVMContext &Ctx,
- DenseMap<const MDLocation *, MDLocation *> &IANodes) {
- SmallVector<MDLocation*, 3> InlinedAtLocations;
- MDLocation *Last = InlinedAtNode;
- DebugLoc CurInlinedAt = DL;
- // Gather all the inlined-at nodes
- while (MDLocation *IA =
- cast_or_null<MDLocation>(CurInlinedAt.getInlinedAt(Ctx))) {
- // Skip any we've already built nodes for
- if (MDLocation *Found = IANodes[IA]) {
- Last = Found;
- break;
- }
- InlinedAtLocations.push_back(IA);
- CurInlinedAt = DebugLoc::getFromDILocation(IA);
- }
- // Starting from the top, rebuild the nodes to point to the new inlined-at
- // location (then rebuilding the rest of the chain behind it) and update the
- // map of already-constructed inlined-at nodes.
- for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend();
- I != E; ++I) {
- const MDLocation *MD = *I;
- Last = IANodes[MD] = MDLocation::getDistinct(
- Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
- }
- // And finally create the normal location for this instruction, referring to
- // the new inlined-at chain.
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), Last);
- }
- /// fixupLineNumbers - Update inlined instructions' line numbers to
- /// to encode location where these instructions are inlined.
- static void fixupLineNumbers(Function *Fn, Function::iterator FI,
- Instruction *TheCall) {
- DebugLoc TheCallDL = TheCall->getDebugLoc();
- if (TheCallDL.isUnknown())
- return;
- auto &Ctx = Fn->getContext();
- auto *InlinedAtNode = cast<MDLocation>(TheCallDL.getAsMDNode(Ctx));
- // Create a unique call site, not to be confused with any other call from the
- // same location.
- InlinedAtNode = MDLocation::getDistinct(
- Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
- InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
- // Cache the inlined-at nodes as they're built so they are reused, without
- // this every instruction's inlined-at chain would become distinct from each
- // other.
- DenseMap<const MDLocation *, MDLocation *> IANodes;
- for (; FI != Fn->end(); ++FI) {
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
- BI != BE; ++BI) {
- DebugLoc DL = BI->getDebugLoc();
- if (DL.isUnknown()) {
- // If the inlined instruction has no line number, make it look as if it
- // originates from the call location. This is important for
- // ((__always_inline__, __nodebug__)) functions which must use caller
- // location for all instructions in their function body.
- // Don't update static allocas, as they may get moved later.
- if (auto *AI = dyn_cast<AllocaInst>(BI))
- if (isa<Constant>(AI->getArraySize()))
- continue;
- BI->setDebugLoc(TheCallDL);
- } else {
- BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
- LLVMContext &Ctx = BI->getContext();
- MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DVI->setOperand(2, MetadataAsValue::get(
- Ctx, createInlinedVariable(DVI->getVariable(),
- InlinedAt, Ctx)));
- } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) {
- LLVMContext &Ctx = BI->getContext();
- MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DDI->setOperand(1, MetadataAsValue::get(
- Ctx, createInlinedVariable(DDI->getVariable(),
- InlinedAt, Ctx)));
- }
- }
- }
- }
- }
- /// InlineFunction - This function inlines the called function into the basic
- /// block of the caller. This returns false if it is not possible to inline
- /// this call. The program is still in a well defined state if this occurs
- /// though.
- ///
- /// Note that this only does one level of inlining. For example, if the
- /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- /// exists in the instruction stream. Similarly this will inline a recursive
- /// function by one level.
- bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- Instruction *TheCall = CS.getInstruction();
- assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
- "Instruction not in function!");
- // If IFI has any state in it, zap it before we fill it in.
- IFI.reset();
-
- const Function *CalledFunc = CS.getCalledFunction();
- if (!CalledFunc || // Can't inline external function or indirect
- CalledFunc->isDeclaration() || // call, or call to a vararg function!
- CalledFunc->getFunctionType()->isVarArg()) return false;
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CS.doesNotThrow();
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasGC()) {
- if (!Caller->hasGC())
- Caller->setGC(CalledFunc->getGC());
- else if (CalledFunc->getGC() != Caller->getGC())
- return false;
- }
- // Get the personality function from the callee if it contains a landing pad.
- Value *CalleePersonality = nullptr;
- for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
- I != E; ++I)
- if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
- const BasicBlock *BB = II->getUnwindDest();
- const LandingPadInst *LP = BB->getLandingPadInst();
- CalleePersonality = LP->getPersonalityFn();
- break;
- }
- // Find the personality function used by the landing pads of the caller. If it
- // exists, then check to see that it matches the personality function used in
- // the callee.
- if (CalleePersonality) {
- for (Function::const_iterator I = Caller->begin(), E = Caller->end();
- I != E; ++I)
- if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
- const BasicBlock *BB = II->getUnwindDest();
- const LandingPadInst *LP = BB->getLandingPadInst();
- // If the personality functions match, then we can perform the
- // inlining. Otherwise, we can't inline.
- // TODO: This isn't 100% true. Some personality functions are proper
- // supersets of others and can be used in place of the other.
- if (LP->getPersonalityFn() != CalleePersonality)
- return false;
- break;
- }
- }
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- Function::iterator LastBlock = &Caller->back();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- SmallVector<ReturnInst*, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
- { // Scope to destroy VMap after cloning.
- ValueToValueMapTy VMap;
- // Keep a list of pair (dst, src) to emit byval initializations.
- SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
- auto &DL = Caller->getParent()->getDataLayout();
- assert(CalledFunc->arg_size() == CS.arg_size() &&
- "No varargs calls can be inlined!");
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- CallSite::arg_iterator AI = CS.arg_begin();
- unsigned ArgNo = 0;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CS.isByValArgument(ArgNo)) {
- ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
- CalledFunc->getParamAlignment(ArgNo+1));
- if (ActualArg != *AI)
- ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
- }
- VMap[I] = ActualArg;
- }
- // Add alignment assumptions if necessary. We do this before the inlined
- // instructions are actually cloned into the caller so that we can easily
- // check what will be known at the start of the inlined code.
- AddAlignmentAssumptions(CS, IFI);
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
- /*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, &DL, TheCall);
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
- // Inject byval arguments initialization.
- for (std::pair<Value*, Value*> &Init : ByValInit)
- HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
- FirstNewBlock, IFI);
- // Update the callgraph if requested.
- if (IFI.CG)
- UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
- // Update inlined instructions' line number information.
- fixupLineNumbers(Caller, FirstNewBlock, TheCall);
- // Clone existing noalias metadata if necessary.
- CloneAliasScopeMetadata(CS, VMap);
- // Add noalias metadata if necessary.
- AddAliasScopeMetadata(CS, VMap, &DL, IFI.AA);
- // FIXME: We could register any cloned assumptions instead of clearing the
- // whole function's cache.
- if (IFI.ACT)
- IFI.ACT->getAssumptionCache(*Caller).clear();
- }
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; ) {
- AllocaInst *AI = dyn_cast<AllocaInst>(I++);
- if (!AI) continue;
-
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
- if (!isa<Constant>(AI->getArraySize()))
- continue;
-
- // Keep track of the static allocas that we inline into the caller.
- IFI.StaticAllocas.push_back(AI);
-
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
- IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
- ++I;
- }
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
- // Move any dbg.declares describing the allocas into the entry basic block.
- DIBuilder DIB(*Caller->getParent());
- for (auto &AI : IFI.StaticAllocas)
- replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
- }
- bool InlinedMustTailCalls = false;
- if (InlinedFunctionInfo.ContainsCalls) {
- CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
- if (CallInst *CI = dyn_cast<CallInst>(TheCall))
- CallSiteTailKind = CI->getTailCallKind();
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
- ++BB) {
- for (Instruction &I : *BB) {
- CallInst *CI = dyn_cast<CallInst>(&I);
- if (!CI)
- continue;
- // We need to reduce the strength of any inlined tail calls. For
- // musttail, we have to avoid introducing potential unbounded stack
- // growth. For example, if functions 'f' and 'g' are mutually recursive
- // with musttail, we can inline 'g' into 'f' so long as we preserve
- // musttail on the cloned call to 'f'. If either the inlined call site
- // or the cloned call site is *not* musttail, the program already has
- // one frame of stack growth, so it's safe to remove musttail. Here is
- // a table of example transformations:
- //
- // f -> musttail g -> musttail f ==> f -> musttail f
- // f -> musttail g -> tail f ==> f -> tail f
- // f -> g -> musttail f ==> f -> f
- // f -> g -> tail f ==> f -> f
- CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
- ChildTCK = std::min(CallSiteTailKind, ChildTCK);
- CI->setTailCallKind(ChildTCK);
- InlinedMustTailCalls |= CI->isMustTailCall();
- // Calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
- }
- // Leave lifetime markers for the static alloca's, scoping them to the
- // function we just inlined.
- if (InsertLifetime && !IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(FirstNewBlock->begin());
- for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
- AllocaInst *AI = IFI.StaticAllocas[ai];
- // If the alloca is already scoped to something smaller than the whole
- // function then there's no need to add redundant, less accurate markers.
- if (hasLifetimeMarkers(AI))
- continue;
- // Try to determine the size of the allocation.
- ConstantInt *AllocaSize = nullptr;
- if (ConstantInt *AIArraySize =
- dyn_cast<ConstantInt>(AI->getArraySize())) {
- auto &DL = Caller->getParent()->getDataLayout();
- Type *AllocaType = AI->getAllocatedType();
- uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
- uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
- assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
- // Check that array size doesn't saturate uint64_t and doesn't
- // overflow when it's multiplied by type size.
- if (AllocaArraySize != ~0ULL &&
- UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
- AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
- AllocaArraySize * AllocaTypeSize);
- }
- }
- builder.CreateLifetimeStart(AI, AllocaSize);
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.lifetime.end calls between a musttail call and a
- // return. The return kills all local allocas.
- if (InlinedMustTailCalls &&
- RI->getParent()->getTerminatingMustTailCall())
- continue;
- IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
- }
- }
- }
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, "savedstack");
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (ReturnInst *RI : Returns) {
- // Don't insert llvm.stackrestore calls between a musttail call and a
- // return. The return will restore the stack pointer.
- if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
- continue;
- IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
- }
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
- // Handle any inlined musttail call sites. In order for a new call site to be
- // musttail, the source of the clone and the inlined call site must have been
- // musttail. Therefore it's safe to return without merging control into the
- // phi below.
- if (InlinedMustTailCalls) {
- // Check if we need to bitcast the result of any musttail calls.
- Type *NewRetTy = Caller->getReturnType();
- bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
- // Handle the returns preceded by musttail calls separately.
- SmallVector<ReturnInst *, 8> NormalReturns;
- for (ReturnInst *RI : Returns) {
- CallInst *ReturnedMustTail =
- RI->getParent()->getTerminatingMustTailCall();
- if (!ReturnedMustTail) {
- NormalReturns.push_back(RI);
- continue;
- }
- if (!NeedBitCast)
- continue;
- // Delete the old return and any preceding bitcast.
- BasicBlock *CurBB = RI->getParent();
- auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
- RI->eraseFromParent();
- if (OldCast)
- OldCast->eraseFromParent();
- // Insert a new bitcast and return with the right type.
- IRBuilder<> Builder(CurBB);
- Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
- }
- // Leave behind the normal returns so we can merge control flow.
- std::swap(Returns, NormalReturns);
- }
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
- NewBr->setDebugLoc(Returns[0]->getDebugLoc());
- }
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty()) {
- ReturnInst *R = Returns[0];
- if (TheCall == R->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->eraseFromParent();
- // We are now done with the inlining.
- return true;
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- BranchInst *CreatedBranchToNormalDest = nullptr;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- // Add an unconditional branch to make this look like the CallInst case...
- CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
- CalledFunc->getName()+".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- TerminatorInst *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- Type *RTy = CalledFunc->getReturnType();
- PHINode *PHI = nullptr;
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- if (!TheCall->use_empty()) {
- PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
- AfterCallBB->begin());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- TheCall->replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions adding entries to the PHI node
- // as appropriate.
- if (PHI) {
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- }
- // Add a branch to the merge points and remove return instructions.
- DebugLoc Loc;
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
- Loc = RI->getDebugLoc();
- BI->setDebugLoc(Loc);
- RI->eraseFromParent();
- }
- // We need to set the debug location to *somewhere* inside the
- // inlined function. The line number may be nonsensical, but the
- // instruction will at least be associated with the right
- // function.
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Loc);
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty()) {
- if (TheCall == Returns[0]->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- }
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- if (CreatedBranchToNormalDest)
- CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // If we inlined any musttail calls and the original return is now
- // unreachable, delete it. It can only contain a bitcast and ret.
- if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
- AfterCallBB->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- // If we inserted a phi node, check to see if it has a single value (e.g. all
- // the entries are the same or undef). If so, remove the PHI so it doesn't
- // block other optimizations.
- if (PHI) {
- auto &DL = Caller->getParent()->getDataLayout();
- if (Value *V = SimplifyInstruction(PHI, &DL, nullptr, nullptr,
- &IFI.ACT->getAssumptionCache(*Caller))) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
- }
- return true;
- }
|