BitcodeWriter.cpp 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DerivedTypes.h"
  20. #include "llvm/IR/InlineAsm.h"
  21. #include "llvm/IR/Instructions.h"
  22. #include "llvm/IR/Module.h"
  23. #include "llvm/IR/Operator.h"
  24. #include "llvm/IR/ValueSymbolTable.h"
  25. #include "llvm/Support/CommandLine.h"
  26. #include "llvm/Support/ErrorHandling.h"
  27. #include "llvm/Support/MathExtras.h"
  28. #include "llvm/Support/Program.h"
  29. #include "llvm/Support/raw_ostream.h"
  30. #include <cctype>
  31. #include <map>
  32. using namespace llvm;
  33. static cl::opt<bool>
  34. EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
  35. cl::desc("Turn on experimental support for "
  36. "use-list order preservation."),
  37. cl::init(false), cl::Hidden);
  38. /// These are manifest constants used by the bitcode writer. They do not need to
  39. /// be kept in sync with the reader, but need to be consistent within this file.
  40. enum {
  41. // VALUE_SYMTAB_BLOCK abbrev id's.
  42. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  43. VST_ENTRY_7_ABBREV,
  44. VST_ENTRY_6_ABBREV,
  45. VST_BBENTRY_6_ABBREV,
  46. // CONSTANTS_BLOCK abbrev id's.
  47. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  48. CONSTANTS_INTEGER_ABBREV,
  49. CONSTANTS_CE_CAST_Abbrev,
  50. CONSTANTS_NULL_Abbrev,
  51. // FUNCTION_BLOCK abbrev id's.
  52. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  53. FUNCTION_INST_BINOP_ABBREV,
  54. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  55. FUNCTION_INST_CAST_ABBREV,
  56. FUNCTION_INST_RET_VOID_ABBREV,
  57. FUNCTION_INST_RET_VAL_ABBREV,
  58. FUNCTION_INST_UNREACHABLE_ABBREV
  59. };
  60. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  61. switch (Opcode) {
  62. default: llvm_unreachable("Unknown cast instruction!");
  63. case Instruction::Trunc : return bitc::CAST_TRUNC;
  64. case Instruction::ZExt : return bitc::CAST_ZEXT;
  65. case Instruction::SExt : return bitc::CAST_SEXT;
  66. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  67. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  68. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  69. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  70. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  71. case Instruction::FPExt : return bitc::CAST_FPEXT;
  72. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  73. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  74. case Instruction::BitCast : return bitc::CAST_BITCAST;
  75. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  76. }
  77. }
  78. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  79. switch (Opcode) {
  80. default: llvm_unreachable("Unknown binary instruction!");
  81. case Instruction::Add:
  82. case Instruction::FAdd: return bitc::BINOP_ADD;
  83. case Instruction::Sub:
  84. case Instruction::FSub: return bitc::BINOP_SUB;
  85. case Instruction::Mul:
  86. case Instruction::FMul: return bitc::BINOP_MUL;
  87. case Instruction::UDiv: return bitc::BINOP_UDIV;
  88. case Instruction::FDiv:
  89. case Instruction::SDiv: return bitc::BINOP_SDIV;
  90. case Instruction::URem: return bitc::BINOP_UREM;
  91. case Instruction::FRem:
  92. case Instruction::SRem: return bitc::BINOP_SREM;
  93. case Instruction::Shl: return bitc::BINOP_SHL;
  94. case Instruction::LShr: return bitc::BINOP_LSHR;
  95. case Instruction::AShr: return bitc::BINOP_ASHR;
  96. case Instruction::And: return bitc::BINOP_AND;
  97. case Instruction::Or: return bitc::BINOP_OR;
  98. case Instruction::Xor: return bitc::BINOP_XOR;
  99. }
  100. }
  101. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  102. switch (Op) {
  103. default: llvm_unreachable("Unknown RMW operation!");
  104. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  105. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  106. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  107. case AtomicRMWInst::And: return bitc::RMW_AND;
  108. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  109. case AtomicRMWInst::Or: return bitc::RMW_OR;
  110. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  111. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  112. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  113. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  114. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  115. }
  116. }
  117. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  118. switch (Ordering) {
  119. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  120. case Unordered: return bitc::ORDERING_UNORDERED;
  121. case Monotonic: return bitc::ORDERING_MONOTONIC;
  122. case Acquire: return bitc::ORDERING_ACQUIRE;
  123. case Release: return bitc::ORDERING_RELEASE;
  124. case AcquireRelease: return bitc::ORDERING_ACQREL;
  125. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  126. }
  127. llvm_unreachable("Invalid ordering");
  128. }
  129. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  130. switch (SynchScope) {
  131. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  132. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  133. }
  134. llvm_unreachable("Invalid synch scope");
  135. }
  136. static void WriteStringRecord(unsigned Code, StringRef Str,
  137. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  138. SmallVector<unsigned, 64> Vals;
  139. // Code: [strchar x N]
  140. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  141. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  142. AbbrevToUse = 0;
  143. Vals.push_back(Str[i]);
  144. }
  145. // Emit the finished record.
  146. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  147. }
  148. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  149. switch (Kind) {
  150. case Attribute::Alignment:
  151. return bitc::ATTR_KIND_ALIGNMENT;
  152. case Attribute::AlwaysInline:
  153. return bitc::ATTR_KIND_ALWAYS_INLINE;
  154. case Attribute::Builtin:
  155. return bitc::ATTR_KIND_BUILTIN;
  156. case Attribute::ByVal:
  157. return bitc::ATTR_KIND_BY_VAL;
  158. case Attribute::InAlloca:
  159. return bitc::ATTR_KIND_IN_ALLOCA;
  160. case Attribute::Cold:
  161. return bitc::ATTR_KIND_COLD;
  162. case Attribute::InlineHint:
  163. return bitc::ATTR_KIND_INLINE_HINT;
  164. case Attribute::InReg:
  165. return bitc::ATTR_KIND_IN_REG;
  166. case Attribute::JumpTable:
  167. return bitc::ATTR_KIND_JUMP_TABLE;
  168. case Attribute::MinSize:
  169. return bitc::ATTR_KIND_MIN_SIZE;
  170. case Attribute::Naked:
  171. return bitc::ATTR_KIND_NAKED;
  172. case Attribute::Nest:
  173. return bitc::ATTR_KIND_NEST;
  174. case Attribute::NoAlias:
  175. return bitc::ATTR_KIND_NO_ALIAS;
  176. case Attribute::NoBuiltin:
  177. return bitc::ATTR_KIND_NO_BUILTIN;
  178. case Attribute::NoCapture:
  179. return bitc::ATTR_KIND_NO_CAPTURE;
  180. case Attribute::NoDuplicate:
  181. return bitc::ATTR_KIND_NO_DUPLICATE;
  182. case Attribute::NoImplicitFloat:
  183. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  184. case Attribute::NoInline:
  185. return bitc::ATTR_KIND_NO_INLINE;
  186. case Attribute::NonLazyBind:
  187. return bitc::ATTR_KIND_NON_LAZY_BIND;
  188. case Attribute::NonNull:
  189. return bitc::ATTR_KIND_NON_NULL;
  190. case Attribute::NoRedZone:
  191. return bitc::ATTR_KIND_NO_RED_ZONE;
  192. case Attribute::NoReturn:
  193. return bitc::ATTR_KIND_NO_RETURN;
  194. case Attribute::NoUnwind:
  195. return bitc::ATTR_KIND_NO_UNWIND;
  196. case Attribute::OptimizeForSize:
  197. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  198. case Attribute::OptimizeNone:
  199. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  200. case Attribute::ReadNone:
  201. return bitc::ATTR_KIND_READ_NONE;
  202. case Attribute::ReadOnly:
  203. return bitc::ATTR_KIND_READ_ONLY;
  204. case Attribute::Returned:
  205. return bitc::ATTR_KIND_RETURNED;
  206. case Attribute::ReturnsTwice:
  207. return bitc::ATTR_KIND_RETURNS_TWICE;
  208. case Attribute::SExt:
  209. return bitc::ATTR_KIND_S_EXT;
  210. case Attribute::StackAlignment:
  211. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  212. case Attribute::StackProtect:
  213. return bitc::ATTR_KIND_STACK_PROTECT;
  214. case Attribute::StackProtectReq:
  215. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  216. case Attribute::StackProtectStrong:
  217. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  218. case Attribute::StructRet:
  219. return bitc::ATTR_KIND_STRUCT_RET;
  220. case Attribute::SanitizeAddress:
  221. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  222. case Attribute::SanitizeThread:
  223. return bitc::ATTR_KIND_SANITIZE_THREAD;
  224. case Attribute::SanitizeMemory:
  225. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  226. case Attribute::UWTable:
  227. return bitc::ATTR_KIND_UW_TABLE;
  228. case Attribute::ZExt:
  229. return bitc::ATTR_KIND_Z_EXT;
  230. case Attribute::EndAttrKinds:
  231. llvm_unreachable("Can not encode end-attribute kinds marker.");
  232. case Attribute::None:
  233. llvm_unreachable("Can not encode none-attribute.");
  234. }
  235. llvm_unreachable("Trying to encode unknown attribute");
  236. }
  237. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  238. BitstreamWriter &Stream) {
  239. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  240. if (AttrGrps.empty()) return;
  241. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  242. SmallVector<uint64_t, 64> Record;
  243. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  244. AttributeSet AS = AttrGrps[i];
  245. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  246. AttributeSet A = AS.getSlotAttributes(i);
  247. Record.push_back(VE.getAttributeGroupID(A));
  248. Record.push_back(AS.getSlotIndex(i));
  249. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  250. I != E; ++I) {
  251. Attribute Attr = *I;
  252. if (Attr.isEnumAttribute()) {
  253. Record.push_back(0);
  254. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  255. } else if (Attr.isAlignAttribute()) {
  256. Record.push_back(1);
  257. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  258. Record.push_back(Attr.getValueAsInt());
  259. } else {
  260. StringRef Kind = Attr.getKindAsString();
  261. StringRef Val = Attr.getValueAsString();
  262. Record.push_back(Val.empty() ? 3 : 4);
  263. Record.append(Kind.begin(), Kind.end());
  264. Record.push_back(0);
  265. if (!Val.empty()) {
  266. Record.append(Val.begin(), Val.end());
  267. Record.push_back(0);
  268. }
  269. }
  270. }
  271. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  272. Record.clear();
  273. }
  274. }
  275. Stream.ExitBlock();
  276. }
  277. static void WriteAttributeTable(const ValueEnumerator &VE,
  278. BitstreamWriter &Stream) {
  279. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  280. if (Attrs.empty()) return;
  281. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  282. SmallVector<uint64_t, 64> Record;
  283. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  284. const AttributeSet &A = Attrs[i];
  285. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  286. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  287. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  288. Record.clear();
  289. }
  290. Stream.ExitBlock();
  291. }
  292. /// WriteTypeTable - Write out the type table for a module.
  293. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  294. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  295. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  296. SmallVector<uint64_t, 64> TypeVals;
  297. uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
  298. // Abbrev for TYPE_CODE_POINTER.
  299. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  300. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  301. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  302. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  303. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
  304. // Abbrev for TYPE_CODE_FUNCTION.
  305. Abbv = new BitCodeAbbrev();
  306. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  307. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  308. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  309. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  310. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
  311. // Abbrev for TYPE_CODE_STRUCT_ANON.
  312. Abbv = new BitCodeAbbrev();
  313. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  314. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  315. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  316. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  317. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
  318. // Abbrev for TYPE_CODE_STRUCT_NAME.
  319. Abbv = new BitCodeAbbrev();
  320. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  321. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  322. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  323. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
  324. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  325. Abbv = new BitCodeAbbrev();
  326. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  327. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  328. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  329. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  330. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
  331. // Abbrev for TYPE_CODE_ARRAY.
  332. Abbv = new BitCodeAbbrev();
  333. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  334. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  335. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  336. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
  337. // Emit an entry count so the reader can reserve space.
  338. TypeVals.push_back(TypeList.size());
  339. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  340. TypeVals.clear();
  341. // Loop over all of the types, emitting each in turn.
  342. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  343. Type *T = TypeList[i];
  344. int AbbrevToUse = 0;
  345. unsigned Code = 0;
  346. switch (T->getTypeID()) {
  347. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  348. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  349. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  350. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  351. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  352. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  353. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  354. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  355. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  356. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  357. case Type::IntegerTyID:
  358. // INTEGER: [width]
  359. Code = bitc::TYPE_CODE_INTEGER;
  360. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  361. break;
  362. case Type::PointerTyID: {
  363. PointerType *PTy = cast<PointerType>(T);
  364. // POINTER: [pointee type, address space]
  365. Code = bitc::TYPE_CODE_POINTER;
  366. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  367. unsigned AddressSpace = PTy->getAddressSpace();
  368. TypeVals.push_back(AddressSpace);
  369. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  370. break;
  371. }
  372. case Type::FunctionTyID: {
  373. FunctionType *FT = cast<FunctionType>(T);
  374. // FUNCTION: [isvararg, retty, paramty x N]
  375. Code = bitc::TYPE_CODE_FUNCTION;
  376. TypeVals.push_back(FT->isVarArg());
  377. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  378. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  379. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  380. AbbrevToUse = FunctionAbbrev;
  381. break;
  382. }
  383. case Type::StructTyID: {
  384. StructType *ST = cast<StructType>(T);
  385. // STRUCT: [ispacked, eltty x N]
  386. TypeVals.push_back(ST->isPacked());
  387. // Output all of the element types.
  388. for (StructType::element_iterator I = ST->element_begin(),
  389. E = ST->element_end(); I != E; ++I)
  390. TypeVals.push_back(VE.getTypeID(*I));
  391. if (ST->isLiteral()) {
  392. Code = bitc::TYPE_CODE_STRUCT_ANON;
  393. AbbrevToUse = StructAnonAbbrev;
  394. } else {
  395. if (ST->isOpaque()) {
  396. Code = bitc::TYPE_CODE_OPAQUE;
  397. } else {
  398. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  399. AbbrevToUse = StructNamedAbbrev;
  400. }
  401. // Emit the name if it is present.
  402. if (!ST->getName().empty())
  403. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  404. StructNameAbbrev, Stream);
  405. }
  406. break;
  407. }
  408. case Type::ArrayTyID: {
  409. ArrayType *AT = cast<ArrayType>(T);
  410. // ARRAY: [numelts, eltty]
  411. Code = bitc::TYPE_CODE_ARRAY;
  412. TypeVals.push_back(AT->getNumElements());
  413. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  414. AbbrevToUse = ArrayAbbrev;
  415. break;
  416. }
  417. case Type::VectorTyID: {
  418. VectorType *VT = cast<VectorType>(T);
  419. // VECTOR [numelts, eltty]
  420. Code = bitc::TYPE_CODE_VECTOR;
  421. TypeVals.push_back(VT->getNumElements());
  422. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  423. break;
  424. }
  425. }
  426. // Emit the finished record.
  427. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  428. TypeVals.clear();
  429. }
  430. Stream.ExitBlock();
  431. }
  432. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  433. switch (GV.getLinkage()) {
  434. case GlobalValue::ExternalLinkage: return 0;
  435. case GlobalValue::WeakAnyLinkage: return 1;
  436. case GlobalValue::AppendingLinkage: return 2;
  437. case GlobalValue::InternalLinkage: return 3;
  438. case GlobalValue::LinkOnceAnyLinkage: return 4;
  439. case GlobalValue::ExternalWeakLinkage: return 7;
  440. case GlobalValue::CommonLinkage: return 8;
  441. case GlobalValue::PrivateLinkage: return 9;
  442. case GlobalValue::WeakODRLinkage: return 10;
  443. case GlobalValue::LinkOnceODRLinkage: return 11;
  444. case GlobalValue::AvailableExternallyLinkage: return 12;
  445. }
  446. llvm_unreachable("Invalid linkage");
  447. }
  448. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  449. switch (GV.getVisibility()) {
  450. case GlobalValue::DefaultVisibility: return 0;
  451. case GlobalValue::HiddenVisibility: return 1;
  452. case GlobalValue::ProtectedVisibility: return 2;
  453. }
  454. llvm_unreachable("Invalid visibility");
  455. }
  456. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  457. switch (GV.getDLLStorageClass()) {
  458. case GlobalValue::DefaultStorageClass: return 0;
  459. case GlobalValue::DLLImportStorageClass: return 1;
  460. case GlobalValue::DLLExportStorageClass: return 2;
  461. }
  462. llvm_unreachable("Invalid DLL storage class");
  463. }
  464. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  465. switch (GV.getThreadLocalMode()) {
  466. case GlobalVariable::NotThreadLocal: return 0;
  467. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  468. case GlobalVariable::LocalDynamicTLSModel: return 2;
  469. case GlobalVariable::InitialExecTLSModel: return 3;
  470. case GlobalVariable::LocalExecTLSModel: return 4;
  471. }
  472. llvm_unreachable("Invalid TLS model");
  473. }
  474. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  475. switch (C.getSelectionKind()) {
  476. case Comdat::Any:
  477. return bitc::COMDAT_SELECTION_KIND_ANY;
  478. case Comdat::ExactMatch:
  479. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  480. case Comdat::Largest:
  481. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  482. case Comdat::NoDuplicates:
  483. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  484. case Comdat::SameSize:
  485. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  486. }
  487. llvm_unreachable("Invalid selection kind");
  488. }
  489. static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  490. SmallVector<uint8_t, 64> Vals;
  491. for (const Comdat *C : VE.getComdats()) {
  492. // COMDAT: [selection_kind, name]
  493. Vals.push_back(getEncodedComdatSelectionKind(*C));
  494. Vals.push_back(C->getName().size());
  495. for (char Chr : C->getName())
  496. Vals.push_back((unsigned char)Chr);
  497. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  498. Vals.clear();
  499. }
  500. }
  501. // Emit top-level description of module, including target triple, inline asm,
  502. // descriptors for global variables, and function prototype info.
  503. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  504. BitstreamWriter &Stream) {
  505. // Emit various pieces of data attached to a module.
  506. if (!M->getTargetTriple().empty())
  507. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  508. 0/*TODO*/, Stream);
  509. const std::string &DL = M->getDataLayoutStr();
  510. if (!DL.empty())
  511. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  512. if (!M->getModuleInlineAsm().empty())
  513. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  514. 0/*TODO*/, Stream);
  515. // Emit information about sections and GC, computing how many there are. Also
  516. // compute the maximum alignment value.
  517. std::map<std::string, unsigned> SectionMap;
  518. std::map<std::string, unsigned> GCMap;
  519. unsigned MaxAlignment = 0;
  520. unsigned MaxGlobalType = 0;
  521. for (const GlobalValue &GV : M->globals()) {
  522. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  523. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
  524. if (GV.hasSection()) {
  525. // Give section names unique ID's.
  526. unsigned &Entry = SectionMap[GV.getSection()];
  527. if (!Entry) {
  528. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  529. 0/*TODO*/, Stream);
  530. Entry = SectionMap.size();
  531. }
  532. }
  533. }
  534. for (const Function &F : *M) {
  535. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  536. if (F.hasSection()) {
  537. // Give section names unique ID's.
  538. unsigned &Entry = SectionMap[F.getSection()];
  539. if (!Entry) {
  540. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  541. 0/*TODO*/, Stream);
  542. Entry = SectionMap.size();
  543. }
  544. }
  545. if (F.hasGC()) {
  546. // Same for GC names.
  547. unsigned &Entry = GCMap[F.getGC()];
  548. if (!Entry) {
  549. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
  550. 0/*TODO*/, Stream);
  551. Entry = GCMap.size();
  552. }
  553. }
  554. }
  555. // Emit abbrev for globals, now that we know # sections and max alignment.
  556. unsigned SimpleGVarAbbrev = 0;
  557. if (!M->global_empty()) {
  558. // Add an abbrev for common globals with no visibility or thread localness.
  559. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  560. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  561. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  562. Log2_32_Ceil(MaxGlobalType+1)));
  563. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
  564. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  565. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
  566. if (MaxAlignment == 0) // Alignment.
  567. Abbv->Add(BitCodeAbbrevOp(0));
  568. else {
  569. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  570. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  571. Log2_32_Ceil(MaxEncAlignment+1)));
  572. }
  573. if (SectionMap.empty()) // Section.
  574. Abbv->Add(BitCodeAbbrevOp(0));
  575. else
  576. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  577. Log2_32_Ceil(SectionMap.size()+1)));
  578. // Don't bother emitting vis + thread local.
  579. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
  580. }
  581. // Emit the global variable information.
  582. SmallVector<unsigned, 64> Vals;
  583. for (const GlobalVariable &GV : M->globals()) {
  584. unsigned AbbrevToUse = 0;
  585. // GLOBALVAR: [type, isconst, initid,
  586. // linkage, alignment, section, visibility, threadlocal,
  587. // unnamed_addr, externally_initialized, dllstorageclass]
  588. Vals.push_back(VE.getTypeID(GV.getType()));
  589. Vals.push_back(GV.isConstant());
  590. Vals.push_back(GV.isDeclaration() ? 0 :
  591. (VE.getValueID(GV.getInitializer()) + 1));
  592. Vals.push_back(getEncodedLinkage(GV));
  593. Vals.push_back(Log2_32(GV.getAlignment())+1);
  594. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  595. if (GV.isThreadLocal() ||
  596. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  597. GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
  598. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  599. GV.hasComdat()) {
  600. Vals.push_back(getEncodedVisibility(GV));
  601. Vals.push_back(getEncodedThreadLocalMode(GV));
  602. Vals.push_back(GV.hasUnnamedAddr());
  603. Vals.push_back(GV.isExternallyInitialized());
  604. Vals.push_back(getEncodedDLLStorageClass(GV));
  605. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  606. } else {
  607. AbbrevToUse = SimpleGVarAbbrev;
  608. }
  609. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  610. Vals.clear();
  611. }
  612. // Emit the function proto information.
  613. for (const Function &F : *M) {
  614. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  615. // section, visibility, gc, unnamed_addr, prefix]
  616. Vals.push_back(VE.getTypeID(F.getType()));
  617. Vals.push_back(F.getCallingConv());
  618. Vals.push_back(F.isDeclaration());
  619. Vals.push_back(getEncodedLinkage(F));
  620. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  621. Vals.push_back(Log2_32(F.getAlignment())+1);
  622. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  623. Vals.push_back(getEncodedVisibility(F));
  624. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  625. Vals.push_back(F.hasUnnamedAddr());
  626. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  627. : 0);
  628. Vals.push_back(getEncodedDLLStorageClass(F));
  629. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  630. unsigned AbbrevToUse = 0;
  631. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  632. Vals.clear();
  633. }
  634. // Emit the alias information.
  635. for (const GlobalAlias &A : M->aliases()) {
  636. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  637. Vals.push_back(VE.getTypeID(A.getType()));
  638. Vals.push_back(VE.getValueID(A.getAliasee()));
  639. Vals.push_back(getEncodedLinkage(A));
  640. Vals.push_back(getEncodedVisibility(A));
  641. Vals.push_back(getEncodedDLLStorageClass(A));
  642. Vals.push_back(getEncodedThreadLocalMode(A));
  643. Vals.push_back(A.hasUnnamedAddr());
  644. unsigned AbbrevToUse = 0;
  645. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  646. Vals.clear();
  647. }
  648. }
  649. static uint64_t GetOptimizationFlags(const Value *V) {
  650. uint64_t Flags = 0;
  651. if (const OverflowingBinaryOperator *OBO =
  652. dyn_cast<OverflowingBinaryOperator>(V)) {
  653. if (OBO->hasNoSignedWrap())
  654. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  655. if (OBO->hasNoUnsignedWrap())
  656. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  657. } else if (const PossiblyExactOperator *PEO =
  658. dyn_cast<PossiblyExactOperator>(V)) {
  659. if (PEO->isExact())
  660. Flags |= 1 << bitc::PEO_EXACT;
  661. } else if (const FPMathOperator *FPMO =
  662. dyn_cast<const FPMathOperator>(V)) {
  663. if (FPMO->hasUnsafeAlgebra())
  664. Flags |= FastMathFlags::UnsafeAlgebra;
  665. if (FPMO->hasNoNaNs())
  666. Flags |= FastMathFlags::NoNaNs;
  667. if (FPMO->hasNoInfs())
  668. Flags |= FastMathFlags::NoInfs;
  669. if (FPMO->hasNoSignedZeros())
  670. Flags |= FastMathFlags::NoSignedZeros;
  671. if (FPMO->hasAllowReciprocal())
  672. Flags |= FastMathFlags::AllowReciprocal;
  673. }
  674. return Flags;
  675. }
  676. static void WriteMDNode(const MDNode *N,
  677. const ValueEnumerator &VE,
  678. BitstreamWriter &Stream,
  679. SmallVectorImpl<uint64_t> &Record) {
  680. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  681. if (N->getOperand(i)) {
  682. Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
  683. Record.push_back(VE.getValueID(N->getOperand(i)));
  684. } else {
  685. Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
  686. Record.push_back(0);
  687. }
  688. }
  689. unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
  690. bitc::METADATA_NODE;
  691. Stream.EmitRecord(MDCode, Record, 0);
  692. Record.clear();
  693. }
  694. static void WriteModuleMetadata(const Module *M,
  695. const ValueEnumerator &VE,
  696. BitstreamWriter &Stream) {
  697. const ValueEnumerator::ValueList &Vals = VE.getMDValues();
  698. bool StartedMetadataBlock = false;
  699. unsigned MDSAbbrev = 0;
  700. SmallVector<uint64_t, 64> Record;
  701. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  702. if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
  703. if (!N->isFunctionLocal() || !N->getFunction()) {
  704. if (!StartedMetadataBlock) {
  705. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  706. StartedMetadataBlock = true;
  707. }
  708. WriteMDNode(N, VE, Stream, Record);
  709. }
  710. } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
  711. if (!StartedMetadataBlock) {
  712. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  713. // Abbrev for METADATA_STRING.
  714. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  715. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  716. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  717. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  718. MDSAbbrev = Stream.EmitAbbrev(Abbv);
  719. StartedMetadataBlock = true;
  720. }
  721. // Code: [strchar x N]
  722. Record.append(MDS->begin(), MDS->end());
  723. // Emit the finished record.
  724. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  725. Record.clear();
  726. }
  727. }
  728. // Write named metadata.
  729. for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
  730. E = M->named_metadata_end(); I != E; ++I) {
  731. const NamedMDNode *NMD = I;
  732. if (!StartedMetadataBlock) {
  733. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  734. StartedMetadataBlock = true;
  735. }
  736. // Write name.
  737. StringRef Str = NMD->getName();
  738. for (unsigned i = 0, e = Str.size(); i != e; ++i)
  739. Record.push_back(Str[i]);
  740. Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
  741. Record.clear();
  742. // Write named metadata operands.
  743. for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
  744. Record.push_back(VE.getValueID(NMD->getOperand(i)));
  745. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  746. Record.clear();
  747. }
  748. if (StartedMetadataBlock)
  749. Stream.ExitBlock();
  750. }
  751. static void WriteFunctionLocalMetadata(const Function &F,
  752. const ValueEnumerator &VE,
  753. BitstreamWriter &Stream) {
  754. bool StartedMetadataBlock = false;
  755. SmallVector<uint64_t, 64> Record;
  756. const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
  757. for (unsigned i = 0, e = Vals.size(); i != e; ++i)
  758. if (const MDNode *N = Vals[i])
  759. if (N->isFunctionLocal() && N->getFunction() == &F) {
  760. if (!StartedMetadataBlock) {
  761. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  762. StartedMetadataBlock = true;
  763. }
  764. WriteMDNode(N, VE, Stream, Record);
  765. }
  766. if (StartedMetadataBlock)
  767. Stream.ExitBlock();
  768. }
  769. static void WriteMetadataAttachment(const Function &F,
  770. const ValueEnumerator &VE,
  771. BitstreamWriter &Stream) {
  772. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  773. SmallVector<uint64_t, 64> Record;
  774. // Write metadata attachments
  775. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  776. SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
  777. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  778. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  779. I != E; ++I) {
  780. MDs.clear();
  781. I->getAllMetadataOtherThanDebugLoc(MDs);
  782. // If no metadata, ignore instruction.
  783. if (MDs.empty()) continue;
  784. Record.push_back(VE.getInstructionID(I));
  785. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  786. Record.push_back(MDs[i].first);
  787. Record.push_back(VE.getValueID(MDs[i].second));
  788. }
  789. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  790. Record.clear();
  791. }
  792. Stream.ExitBlock();
  793. }
  794. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  795. SmallVector<uint64_t, 64> Record;
  796. // Write metadata kinds
  797. // METADATA_KIND - [n x [id, name]]
  798. SmallVector<StringRef, 8> Names;
  799. M->getMDKindNames(Names);
  800. if (Names.empty()) return;
  801. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  802. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  803. Record.push_back(MDKindID);
  804. StringRef KName = Names[MDKindID];
  805. Record.append(KName.begin(), KName.end());
  806. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  807. Record.clear();
  808. }
  809. Stream.ExitBlock();
  810. }
  811. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  812. if ((int64_t)V >= 0)
  813. Vals.push_back(V << 1);
  814. else
  815. Vals.push_back((-V << 1) | 1);
  816. }
  817. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  818. const ValueEnumerator &VE,
  819. BitstreamWriter &Stream, bool isGlobal) {
  820. if (FirstVal == LastVal) return;
  821. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  822. unsigned AggregateAbbrev = 0;
  823. unsigned String8Abbrev = 0;
  824. unsigned CString7Abbrev = 0;
  825. unsigned CString6Abbrev = 0;
  826. // If this is a constant pool for the module, emit module-specific abbrevs.
  827. if (isGlobal) {
  828. // Abbrev for CST_CODE_AGGREGATE.
  829. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  830. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  831. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  832. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  833. AggregateAbbrev = Stream.EmitAbbrev(Abbv);
  834. // Abbrev for CST_CODE_STRING.
  835. Abbv = new BitCodeAbbrev();
  836. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  837. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  838. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  839. String8Abbrev = Stream.EmitAbbrev(Abbv);
  840. // Abbrev for CST_CODE_CSTRING.
  841. Abbv = new BitCodeAbbrev();
  842. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  843. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  844. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  845. CString7Abbrev = Stream.EmitAbbrev(Abbv);
  846. // Abbrev for CST_CODE_CSTRING.
  847. Abbv = new BitCodeAbbrev();
  848. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  849. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  850. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  851. CString6Abbrev = Stream.EmitAbbrev(Abbv);
  852. }
  853. SmallVector<uint64_t, 64> Record;
  854. const ValueEnumerator::ValueList &Vals = VE.getValues();
  855. Type *LastTy = nullptr;
  856. for (unsigned i = FirstVal; i != LastVal; ++i) {
  857. const Value *V = Vals[i].first;
  858. // If we need to switch types, do so now.
  859. if (V->getType() != LastTy) {
  860. LastTy = V->getType();
  861. Record.push_back(VE.getTypeID(LastTy));
  862. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  863. CONSTANTS_SETTYPE_ABBREV);
  864. Record.clear();
  865. }
  866. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  867. Record.push_back(unsigned(IA->hasSideEffects()) |
  868. unsigned(IA->isAlignStack()) << 1 |
  869. unsigned(IA->getDialect()&1) << 2);
  870. // Add the asm string.
  871. const std::string &AsmStr = IA->getAsmString();
  872. Record.push_back(AsmStr.size());
  873. for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
  874. Record.push_back(AsmStr[i]);
  875. // Add the constraint string.
  876. const std::string &ConstraintStr = IA->getConstraintString();
  877. Record.push_back(ConstraintStr.size());
  878. for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
  879. Record.push_back(ConstraintStr[i]);
  880. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  881. Record.clear();
  882. continue;
  883. }
  884. const Constant *C = cast<Constant>(V);
  885. unsigned Code = -1U;
  886. unsigned AbbrevToUse = 0;
  887. if (C->isNullValue()) {
  888. Code = bitc::CST_CODE_NULL;
  889. } else if (isa<UndefValue>(C)) {
  890. Code = bitc::CST_CODE_UNDEF;
  891. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  892. if (IV->getBitWidth() <= 64) {
  893. uint64_t V = IV->getSExtValue();
  894. emitSignedInt64(Record, V);
  895. Code = bitc::CST_CODE_INTEGER;
  896. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  897. } else { // Wide integers, > 64 bits in size.
  898. // We have an arbitrary precision integer value to write whose
  899. // bit width is > 64. However, in canonical unsigned integer
  900. // format it is likely that the high bits are going to be zero.
  901. // So, we only write the number of active words.
  902. unsigned NWords = IV->getValue().getActiveWords();
  903. const uint64_t *RawWords = IV->getValue().getRawData();
  904. for (unsigned i = 0; i != NWords; ++i) {
  905. emitSignedInt64(Record, RawWords[i]);
  906. }
  907. Code = bitc::CST_CODE_WIDE_INTEGER;
  908. }
  909. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  910. Code = bitc::CST_CODE_FLOAT;
  911. Type *Ty = CFP->getType();
  912. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  913. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  914. } else if (Ty->isX86_FP80Ty()) {
  915. // api needed to prevent premature destruction
  916. // bits are not in the same order as a normal i80 APInt, compensate.
  917. APInt api = CFP->getValueAPF().bitcastToAPInt();
  918. const uint64_t *p = api.getRawData();
  919. Record.push_back((p[1] << 48) | (p[0] >> 16));
  920. Record.push_back(p[0] & 0xffffLL);
  921. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  922. APInt api = CFP->getValueAPF().bitcastToAPInt();
  923. const uint64_t *p = api.getRawData();
  924. Record.push_back(p[0]);
  925. Record.push_back(p[1]);
  926. } else {
  927. assert (0 && "Unknown FP type!");
  928. }
  929. } else if (isa<ConstantDataSequential>(C) &&
  930. cast<ConstantDataSequential>(C)->isString()) {
  931. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  932. // Emit constant strings specially.
  933. unsigned NumElts = Str->getNumElements();
  934. // If this is a null-terminated string, use the denser CSTRING encoding.
  935. if (Str->isCString()) {
  936. Code = bitc::CST_CODE_CSTRING;
  937. --NumElts; // Don't encode the null, which isn't allowed by char6.
  938. } else {
  939. Code = bitc::CST_CODE_STRING;
  940. AbbrevToUse = String8Abbrev;
  941. }
  942. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  943. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  944. for (unsigned i = 0; i != NumElts; ++i) {
  945. unsigned char V = Str->getElementAsInteger(i);
  946. Record.push_back(V);
  947. isCStr7 &= (V & 128) == 0;
  948. if (isCStrChar6)
  949. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  950. }
  951. if (isCStrChar6)
  952. AbbrevToUse = CString6Abbrev;
  953. else if (isCStr7)
  954. AbbrevToUse = CString7Abbrev;
  955. } else if (const ConstantDataSequential *CDS =
  956. dyn_cast<ConstantDataSequential>(C)) {
  957. Code = bitc::CST_CODE_DATA;
  958. Type *EltTy = CDS->getType()->getElementType();
  959. if (isa<IntegerType>(EltTy)) {
  960. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  961. Record.push_back(CDS->getElementAsInteger(i));
  962. } else if (EltTy->isFloatTy()) {
  963. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  964. union { float F; uint32_t I; };
  965. F = CDS->getElementAsFloat(i);
  966. Record.push_back(I);
  967. }
  968. } else {
  969. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  970. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  971. union { double F; uint64_t I; };
  972. F = CDS->getElementAsDouble(i);
  973. Record.push_back(I);
  974. }
  975. }
  976. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  977. isa<ConstantVector>(C)) {
  978. Code = bitc::CST_CODE_AGGREGATE;
  979. for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
  980. Record.push_back(VE.getValueID(C->getOperand(i)));
  981. AbbrevToUse = AggregateAbbrev;
  982. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  983. switch (CE->getOpcode()) {
  984. default:
  985. if (Instruction::isCast(CE->getOpcode())) {
  986. Code = bitc::CST_CODE_CE_CAST;
  987. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  988. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  989. Record.push_back(VE.getValueID(C->getOperand(0)));
  990. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  991. } else {
  992. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  993. Code = bitc::CST_CODE_CE_BINOP;
  994. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  995. Record.push_back(VE.getValueID(C->getOperand(0)));
  996. Record.push_back(VE.getValueID(C->getOperand(1)));
  997. uint64_t Flags = GetOptimizationFlags(CE);
  998. if (Flags != 0)
  999. Record.push_back(Flags);
  1000. }
  1001. break;
  1002. case Instruction::GetElementPtr:
  1003. Code = bitc::CST_CODE_CE_GEP;
  1004. if (cast<GEPOperator>(C)->isInBounds())
  1005. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  1006. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  1007. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  1008. Record.push_back(VE.getValueID(C->getOperand(i)));
  1009. }
  1010. break;
  1011. case Instruction::Select:
  1012. Code = bitc::CST_CODE_CE_SELECT;
  1013. Record.push_back(VE.getValueID(C->getOperand(0)));
  1014. Record.push_back(VE.getValueID(C->getOperand(1)));
  1015. Record.push_back(VE.getValueID(C->getOperand(2)));
  1016. break;
  1017. case Instruction::ExtractElement:
  1018. Code = bitc::CST_CODE_CE_EXTRACTELT;
  1019. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1020. Record.push_back(VE.getValueID(C->getOperand(0)));
  1021. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  1022. Record.push_back(VE.getValueID(C->getOperand(1)));
  1023. break;
  1024. case Instruction::InsertElement:
  1025. Code = bitc::CST_CODE_CE_INSERTELT;
  1026. Record.push_back(VE.getValueID(C->getOperand(0)));
  1027. Record.push_back(VE.getValueID(C->getOperand(1)));
  1028. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  1029. Record.push_back(VE.getValueID(C->getOperand(2)));
  1030. break;
  1031. case Instruction::ShuffleVector:
  1032. // If the return type and argument types are the same, this is a
  1033. // standard shufflevector instruction. If the types are different,
  1034. // then the shuffle is widening or truncating the input vectors, and
  1035. // the argument type must also be encoded.
  1036. if (C->getType() == C->getOperand(0)->getType()) {
  1037. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1038. } else {
  1039. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1040. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1041. }
  1042. Record.push_back(VE.getValueID(C->getOperand(0)));
  1043. Record.push_back(VE.getValueID(C->getOperand(1)));
  1044. Record.push_back(VE.getValueID(C->getOperand(2)));
  1045. break;
  1046. case Instruction::ICmp:
  1047. case Instruction::FCmp:
  1048. Code = bitc::CST_CODE_CE_CMP;
  1049. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1050. Record.push_back(VE.getValueID(C->getOperand(0)));
  1051. Record.push_back(VE.getValueID(C->getOperand(1)));
  1052. Record.push_back(CE->getPredicate());
  1053. break;
  1054. }
  1055. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1056. Code = bitc::CST_CODE_BLOCKADDRESS;
  1057. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1058. Record.push_back(VE.getValueID(BA->getFunction()));
  1059. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1060. } else {
  1061. #ifndef NDEBUG
  1062. C->dump();
  1063. #endif
  1064. llvm_unreachable("Unknown constant!");
  1065. }
  1066. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1067. Record.clear();
  1068. }
  1069. Stream.ExitBlock();
  1070. }
  1071. static void WriteModuleConstants(const ValueEnumerator &VE,
  1072. BitstreamWriter &Stream) {
  1073. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1074. // Find the first constant to emit, which is the first non-globalvalue value.
  1075. // We know globalvalues have been emitted by WriteModuleInfo.
  1076. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1077. if (!isa<GlobalValue>(Vals[i].first)) {
  1078. WriteConstants(i, Vals.size(), VE, Stream, true);
  1079. return;
  1080. }
  1081. }
  1082. }
  1083. /// PushValueAndType - The file has to encode both the value and type id for
  1084. /// many values, because we need to know what type to create for forward
  1085. /// references. However, most operands are not forward references, so this type
  1086. /// field is not needed.
  1087. ///
  1088. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1089. /// instruction ID, then it is a forward reference, and it also includes the
  1090. /// type ID. The value ID that is written is encoded relative to the InstID.
  1091. static bool PushValueAndType(const Value *V, unsigned InstID,
  1092. SmallVectorImpl<unsigned> &Vals,
  1093. ValueEnumerator &VE) {
  1094. unsigned ValID = VE.getValueID(V);
  1095. // Make encoding relative to the InstID.
  1096. Vals.push_back(InstID - ValID);
  1097. if (ValID >= InstID) {
  1098. Vals.push_back(VE.getTypeID(V->getType()));
  1099. return true;
  1100. }
  1101. return false;
  1102. }
  1103. /// pushValue - Like PushValueAndType, but where the type of the value is
  1104. /// omitted (perhaps it was already encoded in an earlier operand).
  1105. static void pushValue(const Value *V, unsigned InstID,
  1106. SmallVectorImpl<unsigned> &Vals,
  1107. ValueEnumerator &VE) {
  1108. unsigned ValID = VE.getValueID(V);
  1109. Vals.push_back(InstID - ValID);
  1110. }
  1111. static void pushValueSigned(const Value *V, unsigned InstID,
  1112. SmallVectorImpl<uint64_t> &Vals,
  1113. ValueEnumerator &VE) {
  1114. unsigned ValID = VE.getValueID(V);
  1115. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1116. emitSignedInt64(Vals, diff);
  1117. }
  1118. /// WriteInstruction - Emit an instruction to the specified stream.
  1119. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1120. ValueEnumerator &VE, BitstreamWriter &Stream,
  1121. SmallVectorImpl<unsigned> &Vals) {
  1122. unsigned Code = 0;
  1123. unsigned AbbrevToUse = 0;
  1124. VE.setInstructionID(&I);
  1125. switch (I.getOpcode()) {
  1126. default:
  1127. if (Instruction::isCast(I.getOpcode())) {
  1128. Code = bitc::FUNC_CODE_INST_CAST;
  1129. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1130. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1131. Vals.push_back(VE.getTypeID(I.getType()));
  1132. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1133. } else {
  1134. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1135. Code = bitc::FUNC_CODE_INST_BINOP;
  1136. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1137. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1138. pushValue(I.getOperand(1), InstID, Vals, VE);
  1139. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1140. uint64_t Flags = GetOptimizationFlags(&I);
  1141. if (Flags != 0) {
  1142. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1143. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1144. Vals.push_back(Flags);
  1145. }
  1146. }
  1147. break;
  1148. case Instruction::GetElementPtr:
  1149. Code = bitc::FUNC_CODE_INST_GEP;
  1150. if (cast<GEPOperator>(&I)->isInBounds())
  1151. Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
  1152. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1153. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1154. break;
  1155. case Instruction::ExtractValue: {
  1156. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1157. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1158. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1159. for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
  1160. Vals.push_back(*i);
  1161. break;
  1162. }
  1163. case Instruction::InsertValue: {
  1164. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1165. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1166. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1167. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1168. for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
  1169. Vals.push_back(*i);
  1170. break;
  1171. }
  1172. case Instruction::Select:
  1173. Code = bitc::FUNC_CODE_INST_VSELECT;
  1174. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1175. pushValue(I.getOperand(2), InstID, Vals, VE);
  1176. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1177. break;
  1178. case Instruction::ExtractElement:
  1179. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1180. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1181. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1182. break;
  1183. case Instruction::InsertElement:
  1184. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1185. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1186. pushValue(I.getOperand(1), InstID, Vals, VE);
  1187. PushValueAndType(I.getOperand(2), InstID, Vals, VE);
  1188. break;
  1189. case Instruction::ShuffleVector:
  1190. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1191. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1192. pushValue(I.getOperand(1), InstID, Vals, VE);
  1193. pushValue(I.getOperand(2), InstID, Vals, VE);
  1194. break;
  1195. case Instruction::ICmp:
  1196. case Instruction::FCmp:
  1197. // compare returning Int1Ty or vector of Int1Ty
  1198. Code = bitc::FUNC_CODE_INST_CMP2;
  1199. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1200. pushValue(I.getOperand(1), InstID, Vals, VE);
  1201. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1202. break;
  1203. case Instruction::Ret:
  1204. {
  1205. Code = bitc::FUNC_CODE_INST_RET;
  1206. unsigned NumOperands = I.getNumOperands();
  1207. if (NumOperands == 0)
  1208. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1209. else if (NumOperands == 1) {
  1210. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1211. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1212. } else {
  1213. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1214. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1215. }
  1216. }
  1217. break;
  1218. case Instruction::Br:
  1219. {
  1220. Code = bitc::FUNC_CODE_INST_BR;
  1221. const BranchInst &II = cast<BranchInst>(I);
  1222. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1223. if (II.isConditional()) {
  1224. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1225. pushValue(II.getCondition(), InstID, Vals, VE);
  1226. }
  1227. }
  1228. break;
  1229. case Instruction::Switch:
  1230. {
  1231. Code = bitc::FUNC_CODE_INST_SWITCH;
  1232. const SwitchInst &SI = cast<SwitchInst>(I);
  1233. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1234. pushValue(SI.getCondition(), InstID, Vals, VE);
  1235. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1236. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1237. i != e; ++i) {
  1238. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1239. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1240. }
  1241. }
  1242. break;
  1243. case Instruction::IndirectBr:
  1244. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1245. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1246. // Encode the address operand as relative, but not the basic blocks.
  1247. pushValue(I.getOperand(0), InstID, Vals, VE);
  1248. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1249. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1250. break;
  1251. case Instruction::Invoke: {
  1252. const InvokeInst *II = cast<InvokeInst>(&I);
  1253. const Value *Callee(II->getCalledValue());
  1254. PointerType *PTy = cast<PointerType>(Callee->getType());
  1255. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1256. Code = bitc::FUNC_CODE_INST_INVOKE;
  1257. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1258. Vals.push_back(II->getCallingConv());
  1259. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1260. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1261. PushValueAndType(Callee, InstID, Vals, VE);
  1262. // Emit value #'s for the fixed parameters.
  1263. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1264. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1265. // Emit type/value pairs for varargs params.
  1266. if (FTy->isVarArg()) {
  1267. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1268. i != e; ++i)
  1269. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1270. }
  1271. break;
  1272. }
  1273. case Instruction::Resume:
  1274. Code = bitc::FUNC_CODE_INST_RESUME;
  1275. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1276. break;
  1277. case Instruction::Unreachable:
  1278. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1279. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1280. break;
  1281. case Instruction::PHI: {
  1282. const PHINode &PN = cast<PHINode>(I);
  1283. Code = bitc::FUNC_CODE_INST_PHI;
  1284. // With the newer instruction encoding, forward references could give
  1285. // negative valued IDs. This is most common for PHIs, so we use
  1286. // signed VBRs.
  1287. SmallVector<uint64_t, 128> Vals64;
  1288. Vals64.push_back(VE.getTypeID(PN.getType()));
  1289. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1290. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1291. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1292. }
  1293. // Emit a Vals64 vector and exit.
  1294. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1295. Vals64.clear();
  1296. return;
  1297. }
  1298. case Instruction::LandingPad: {
  1299. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1300. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1301. Vals.push_back(VE.getTypeID(LP.getType()));
  1302. PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
  1303. Vals.push_back(LP.isCleanup());
  1304. Vals.push_back(LP.getNumClauses());
  1305. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1306. if (LP.isCatch(I))
  1307. Vals.push_back(LandingPadInst::Catch);
  1308. else
  1309. Vals.push_back(LandingPadInst::Filter);
  1310. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1311. }
  1312. break;
  1313. }
  1314. case Instruction::Alloca:
  1315. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1316. Vals.push_back(VE.getTypeID(I.getType()));
  1317. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1318. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1319. Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
  1320. break;
  1321. case Instruction::Load:
  1322. if (cast<LoadInst>(I).isAtomic()) {
  1323. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1324. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1325. } else {
  1326. Code = bitc::FUNC_CODE_INST_LOAD;
  1327. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1328. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1329. }
  1330. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1331. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1332. if (cast<LoadInst>(I).isAtomic()) {
  1333. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1334. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1335. }
  1336. break;
  1337. case Instruction::Store:
  1338. if (cast<StoreInst>(I).isAtomic())
  1339. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1340. else
  1341. Code = bitc::FUNC_CODE_INST_STORE;
  1342. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1343. pushValue(I.getOperand(0), InstID, Vals, VE); // val.
  1344. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1345. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1346. if (cast<StoreInst>(I).isAtomic()) {
  1347. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1348. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1349. }
  1350. break;
  1351. case Instruction::AtomicCmpXchg:
  1352. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1353. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1354. pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
  1355. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1356. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1357. Vals.push_back(GetEncodedOrdering(
  1358. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1359. Vals.push_back(GetEncodedSynchScope(
  1360. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1361. Vals.push_back(GetEncodedOrdering(
  1362. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1363. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  1364. break;
  1365. case Instruction::AtomicRMW:
  1366. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1367. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1368. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1369. Vals.push_back(GetEncodedRMWOperation(
  1370. cast<AtomicRMWInst>(I).getOperation()));
  1371. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1372. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1373. Vals.push_back(GetEncodedSynchScope(
  1374. cast<AtomicRMWInst>(I).getSynchScope()));
  1375. break;
  1376. case Instruction::Fence:
  1377. Code = bitc::FUNC_CODE_INST_FENCE;
  1378. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1379. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1380. break;
  1381. case Instruction::Call: {
  1382. const CallInst &CI = cast<CallInst>(I);
  1383. PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
  1384. FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  1385. Code = bitc::FUNC_CODE_INST_CALL;
  1386. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1387. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
  1388. unsigned(CI.isMustTailCall()) << 14);
  1389. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1390. // Emit value #'s for the fixed parameters.
  1391. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1392. // Check for labels (can happen with asm labels).
  1393. if (FTy->getParamType(i)->isLabelTy())
  1394. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1395. else
  1396. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1397. }
  1398. // Emit type/value pairs for varargs params.
  1399. if (FTy->isVarArg()) {
  1400. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1401. i != e; ++i)
  1402. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1403. }
  1404. break;
  1405. }
  1406. case Instruction::VAArg:
  1407. Code = bitc::FUNC_CODE_INST_VAARG;
  1408. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1409. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1410. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1411. break;
  1412. }
  1413. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1414. Vals.clear();
  1415. }
  1416. // Emit names for globals/functions etc.
  1417. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1418. const ValueEnumerator &VE,
  1419. BitstreamWriter &Stream) {
  1420. if (VST.empty()) return;
  1421. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1422. // FIXME: Set up the abbrev, we know how many values there are!
  1423. // FIXME: We know if the type names can use 7-bit ascii.
  1424. SmallVector<unsigned, 64> NameVals;
  1425. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1426. SI != SE; ++SI) {
  1427. const ValueName &Name = *SI;
  1428. // Figure out the encoding to use for the name.
  1429. bool is7Bit = true;
  1430. bool isChar6 = true;
  1431. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1432. C != E; ++C) {
  1433. if (isChar6)
  1434. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1435. if ((unsigned char)*C & 128) {
  1436. is7Bit = false;
  1437. break; // don't bother scanning the rest.
  1438. }
  1439. }
  1440. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1441. // VST_ENTRY: [valueid, namechar x N]
  1442. // VST_BBENTRY: [bbid, namechar x N]
  1443. unsigned Code;
  1444. if (isa<BasicBlock>(SI->getValue())) {
  1445. Code = bitc::VST_CODE_BBENTRY;
  1446. if (isChar6)
  1447. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1448. } else {
  1449. Code = bitc::VST_CODE_ENTRY;
  1450. if (isChar6)
  1451. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1452. else if (is7Bit)
  1453. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1454. }
  1455. NameVals.push_back(VE.getValueID(SI->getValue()));
  1456. for (const char *P = Name.getKeyData(),
  1457. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1458. NameVals.push_back((unsigned char)*P);
  1459. // Emit the finished record.
  1460. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1461. NameVals.clear();
  1462. }
  1463. Stream.ExitBlock();
  1464. }
  1465. /// WriteFunction - Emit a function body to the module stream.
  1466. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1467. BitstreamWriter &Stream) {
  1468. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1469. VE.incorporateFunction(F);
  1470. SmallVector<unsigned, 64> Vals;
  1471. // Emit the number of basic blocks, so the reader can create them ahead of
  1472. // time.
  1473. Vals.push_back(VE.getBasicBlocks().size());
  1474. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1475. Vals.clear();
  1476. // If there are function-local constants, emit them now.
  1477. unsigned CstStart, CstEnd;
  1478. VE.getFunctionConstantRange(CstStart, CstEnd);
  1479. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1480. // If there is function-local metadata, emit it now.
  1481. WriteFunctionLocalMetadata(F, VE, Stream);
  1482. // Keep a running idea of what the instruction ID is.
  1483. unsigned InstID = CstEnd;
  1484. bool NeedsMetadataAttachment = false;
  1485. DebugLoc LastDL;
  1486. // Finally, emit all the instructions, in order.
  1487. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1488. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1489. I != E; ++I) {
  1490. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1491. if (!I->getType()->isVoidTy())
  1492. ++InstID;
  1493. // If the instruction has metadata, write a metadata attachment later.
  1494. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1495. // If the instruction has a debug location, emit it.
  1496. DebugLoc DL = I->getDebugLoc();
  1497. if (DL.isUnknown()) {
  1498. // nothing todo.
  1499. } else if (DL == LastDL) {
  1500. // Just repeat the same debug loc as last time.
  1501. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1502. } else {
  1503. MDNode *Scope, *IA;
  1504. DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
  1505. Vals.push_back(DL.getLine());
  1506. Vals.push_back(DL.getCol());
  1507. Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
  1508. Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
  1509. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1510. Vals.clear();
  1511. LastDL = DL;
  1512. }
  1513. }
  1514. // Emit names for all the instructions etc.
  1515. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1516. if (NeedsMetadataAttachment)
  1517. WriteMetadataAttachment(F, VE, Stream);
  1518. VE.purgeFunction();
  1519. Stream.ExitBlock();
  1520. }
  1521. // Emit blockinfo, which defines the standard abbreviations etc.
  1522. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1523. // We only want to emit block info records for blocks that have multiple
  1524. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1525. // Other blocks can define their abbrevs inline.
  1526. Stream.EnterBlockInfoBlock(2);
  1527. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1528. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1529. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1530. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1531. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1532. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1533. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1534. Abbv) != VST_ENTRY_8_ABBREV)
  1535. llvm_unreachable("Unexpected abbrev ordering!");
  1536. }
  1537. { // 7-bit fixed width VST_ENTRY strings.
  1538. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1539. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1540. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1541. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1542. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1543. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1544. Abbv) != VST_ENTRY_7_ABBREV)
  1545. llvm_unreachable("Unexpected abbrev ordering!");
  1546. }
  1547. { // 6-bit char6 VST_ENTRY strings.
  1548. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1549. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  1550. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1551. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1552. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1553. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1554. Abbv) != VST_ENTRY_6_ABBREV)
  1555. llvm_unreachable("Unexpected abbrev ordering!");
  1556. }
  1557. { // 6-bit char6 VST_BBENTRY strings.
  1558. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1559. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  1560. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1561. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1562. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1563. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1564. Abbv) != VST_BBENTRY_6_ABBREV)
  1565. llvm_unreachable("Unexpected abbrev ordering!");
  1566. }
  1567. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  1568. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1569. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  1570. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1571. Log2_32_Ceil(VE.getTypes().size()+1)));
  1572. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1573. Abbv) != CONSTANTS_SETTYPE_ABBREV)
  1574. llvm_unreachable("Unexpected abbrev ordering!");
  1575. }
  1576. { // INTEGER abbrev for CONSTANTS_BLOCK.
  1577. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1578. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  1579. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1580. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1581. Abbv) != CONSTANTS_INTEGER_ABBREV)
  1582. llvm_unreachable("Unexpected abbrev ordering!");
  1583. }
  1584. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  1585. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1586. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  1587. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  1588. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  1589. Log2_32_Ceil(VE.getTypes().size()+1)));
  1590. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  1591. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1592. Abbv) != CONSTANTS_CE_CAST_Abbrev)
  1593. llvm_unreachable("Unexpected abbrev ordering!");
  1594. }
  1595. { // NULL abbrev for CONSTANTS_BLOCK.
  1596. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1597. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  1598. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  1599. Abbv) != CONSTANTS_NULL_Abbrev)
  1600. llvm_unreachable("Unexpected abbrev ordering!");
  1601. }
  1602. // FIXME: This should only use space for first class types!
  1603. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  1604. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1605. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  1606. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  1607. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  1608. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  1609. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1610. Abbv) != FUNCTION_INST_LOAD_ABBREV)
  1611. llvm_unreachable("Unexpected abbrev ordering!");
  1612. }
  1613. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  1614. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1615. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1616. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1617. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1618. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1619. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1620. Abbv) != FUNCTION_INST_BINOP_ABBREV)
  1621. llvm_unreachable("Unexpected abbrev ordering!");
  1622. }
  1623. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  1624. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1625. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  1626. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  1627. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  1628. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1629. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  1630. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1631. Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  1632. llvm_unreachable("Unexpected abbrev ordering!");
  1633. }
  1634. { // INST_CAST abbrev for FUNCTION_BLOCK.
  1635. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1636. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  1637. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  1638. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  1639. Log2_32_Ceil(VE.getTypes().size()+1)));
  1640. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  1641. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1642. Abbv) != FUNCTION_INST_CAST_ABBREV)
  1643. llvm_unreachable("Unexpected abbrev ordering!");
  1644. }
  1645. { // INST_RET abbrev for FUNCTION_BLOCK.
  1646. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1647. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1648. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1649. Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
  1650. llvm_unreachable("Unexpected abbrev ordering!");
  1651. }
  1652. { // INST_RET abbrev for FUNCTION_BLOCK.
  1653. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1654. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  1655. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  1656. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1657. Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
  1658. llvm_unreachable("Unexpected abbrev ordering!");
  1659. }
  1660. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  1661. BitCodeAbbrev *Abbv = new BitCodeAbbrev();
  1662. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  1663. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  1664. Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
  1665. llvm_unreachable("Unexpected abbrev ordering!");
  1666. }
  1667. Stream.ExitBlock();
  1668. }
  1669. // Sort the Users based on the order in which the reader parses the bitcode
  1670. // file.
  1671. static bool bitcodereader_order(const User *lhs, const User *rhs) {
  1672. // TODO: Implement.
  1673. return true;
  1674. }
  1675. static void WriteUseList(const Value *V, const ValueEnumerator &VE,
  1676. BitstreamWriter &Stream) {
  1677. // One or zero uses can't get out of order.
  1678. if (V->use_empty() || V->hasNUses(1))
  1679. return;
  1680. // Make a copy of the in-memory use-list for sorting.
  1681. SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end());
  1682. // Sort the copy based on the order read by the BitcodeReader.
  1683. std::sort(UserList.begin(), UserList.end(), bitcodereader_order);
  1684. // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
  1685. // sorted list (i.e., the expected BitcodeReader in-memory use-list).
  1686. // TODO: Emit the USELIST_CODE_ENTRYs.
  1687. }
  1688. static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
  1689. BitstreamWriter &Stream) {
  1690. VE.incorporateFunction(*F);
  1691. for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  1692. AI != AE; ++AI)
  1693. WriteUseList(AI, VE, Stream);
  1694. for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
  1695. ++BB) {
  1696. WriteUseList(BB, VE, Stream);
  1697. for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
  1698. ++II) {
  1699. WriteUseList(II, VE, Stream);
  1700. for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
  1701. OI != E; ++OI) {
  1702. if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
  1703. isa<InlineAsm>(*OI))
  1704. WriteUseList(*OI, VE, Stream);
  1705. }
  1706. }
  1707. }
  1708. VE.purgeFunction();
  1709. }
  1710. // Emit use-lists.
  1711. static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
  1712. BitstreamWriter &Stream) {
  1713. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1714. // XXX: this modifies the module, but in a way that should never change the
  1715. // behavior of any pass or codegen in LLVM. The problem is that GVs may
  1716. // contain entries in the use_list that do not exist in the Module and are
  1717. // not stored in the .bc file.
  1718. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
  1719. I != E; ++I)
  1720. I->removeDeadConstantUsers();
  1721. // Write the global variables.
  1722. for (Module::const_global_iterator GI = M->global_begin(),
  1723. GE = M->global_end(); GI != GE; ++GI) {
  1724. WriteUseList(GI, VE, Stream);
  1725. // Write the global variable initializers.
  1726. if (GI->hasInitializer())
  1727. WriteUseList(GI->getInitializer(), VE, Stream);
  1728. }
  1729. // Write the functions.
  1730. for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
  1731. WriteUseList(FI, VE, Stream);
  1732. if (!FI->isDeclaration())
  1733. WriteFunctionUseList(FI, VE, Stream);
  1734. if (FI->hasPrefixData())
  1735. WriteUseList(FI->getPrefixData(), VE, Stream);
  1736. }
  1737. // Write the aliases.
  1738. for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
  1739. AI != AE; ++AI) {
  1740. WriteUseList(AI, VE, Stream);
  1741. WriteUseList(AI->getAliasee(), VE, Stream);
  1742. }
  1743. Stream.ExitBlock();
  1744. }
  1745. /// WriteModule - Emit the specified module to the bitstream.
  1746. static void WriteModule(const Module *M, BitstreamWriter &Stream) {
  1747. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  1748. SmallVector<unsigned, 1> Vals;
  1749. unsigned CurVersion = 1;
  1750. Vals.push_back(CurVersion);
  1751. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  1752. // Analyze the module, enumerating globals, functions, etc.
  1753. ValueEnumerator VE(M);
  1754. // Emit blockinfo, which defines the standard abbreviations etc.
  1755. WriteBlockInfo(VE, Stream);
  1756. // Emit information about attribute groups.
  1757. WriteAttributeGroupTable(VE, Stream);
  1758. // Emit information about parameter attributes.
  1759. WriteAttributeTable(VE, Stream);
  1760. // Emit information describing all of the types in the module.
  1761. WriteTypeTable(VE, Stream);
  1762. writeComdats(VE, Stream);
  1763. // Emit top-level description of module, including target triple, inline asm,
  1764. // descriptors for global variables, and function prototype info.
  1765. WriteModuleInfo(M, VE, Stream);
  1766. // Emit constants.
  1767. WriteModuleConstants(VE, Stream);
  1768. // Emit metadata.
  1769. WriteModuleMetadata(M, VE, Stream);
  1770. // Emit metadata.
  1771. WriteModuleMetadataStore(M, Stream);
  1772. // Emit names for globals/functions etc.
  1773. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  1774. // Emit use-lists.
  1775. if (EnablePreserveUseListOrdering)
  1776. WriteModuleUseLists(M, VE, Stream);
  1777. // Emit function bodies.
  1778. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  1779. if (!F->isDeclaration())
  1780. WriteFunction(*F, VE, Stream);
  1781. Stream.ExitBlock();
  1782. }
  1783. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  1784. /// header and trailer to make it compatible with the system archiver. To do
  1785. /// this we emit the following header, and then emit a trailer that pads the
  1786. /// file out to be a multiple of 16 bytes.
  1787. ///
  1788. /// struct bc_header {
  1789. /// uint32_t Magic; // 0x0B17C0DE
  1790. /// uint32_t Version; // Version, currently always 0.
  1791. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  1792. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  1793. /// uint32_t CPUType; // CPU specifier.
  1794. /// ... potentially more later ...
  1795. /// };
  1796. enum {
  1797. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  1798. DarwinBCHeaderSize = 5*4
  1799. };
  1800. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  1801. uint32_t &Position) {
  1802. Buffer[Position + 0] = (unsigned char) (Value >> 0);
  1803. Buffer[Position + 1] = (unsigned char) (Value >> 8);
  1804. Buffer[Position + 2] = (unsigned char) (Value >> 16);
  1805. Buffer[Position + 3] = (unsigned char) (Value >> 24);
  1806. Position += 4;
  1807. }
  1808. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  1809. const Triple &TT) {
  1810. unsigned CPUType = ~0U;
  1811. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  1812. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  1813. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  1814. // specific constants here because they are implicitly part of the Darwin ABI.
  1815. enum {
  1816. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  1817. DARWIN_CPU_TYPE_X86 = 7,
  1818. DARWIN_CPU_TYPE_ARM = 12,
  1819. DARWIN_CPU_TYPE_POWERPC = 18
  1820. };
  1821. Triple::ArchType Arch = TT.getArch();
  1822. if (Arch == Triple::x86_64)
  1823. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  1824. else if (Arch == Triple::x86)
  1825. CPUType = DARWIN_CPU_TYPE_X86;
  1826. else if (Arch == Triple::ppc)
  1827. CPUType = DARWIN_CPU_TYPE_POWERPC;
  1828. else if (Arch == Triple::ppc64)
  1829. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  1830. else if (Arch == Triple::arm || Arch == Triple::thumb)
  1831. CPUType = DARWIN_CPU_TYPE_ARM;
  1832. // Traditional Bitcode starts after header.
  1833. assert(Buffer.size() >= DarwinBCHeaderSize &&
  1834. "Expected header size to be reserved");
  1835. unsigned BCOffset = DarwinBCHeaderSize;
  1836. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  1837. // Write the magic and version.
  1838. unsigned Position = 0;
  1839. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  1840. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  1841. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  1842. WriteInt32ToBuffer(BCSize , Buffer, Position);
  1843. WriteInt32ToBuffer(CPUType , Buffer, Position);
  1844. // If the file is not a multiple of 16 bytes, insert dummy padding.
  1845. while (Buffer.size() & 15)
  1846. Buffer.push_back(0);
  1847. }
  1848. /// WriteBitcodeToFile - Write the specified module to the specified output
  1849. /// stream.
  1850. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
  1851. SmallVector<char, 0> Buffer;
  1852. Buffer.reserve(256*1024);
  1853. // If this is darwin or another generic macho target, reserve space for the
  1854. // header.
  1855. Triple TT(M->getTargetTriple());
  1856. if (TT.isOSDarwin())
  1857. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  1858. // Emit the module into the buffer.
  1859. {
  1860. BitstreamWriter Stream(Buffer);
  1861. // Emit the file header.
  1862. Stream.Emit((unsigned)'B', 8);
  1863. Stream.Emit((unsigned)'C', 8);
  1864. Stream.Emit(0x0, 4);
  1865. Stream.Emit(0xC, 4);
  1866. Stream.Emit(0xE, 4);
  1867. Stream.Emit(0xD, 4);
  1868. // Emit the module.
  1869. WriteModule(M, Stream);
  1870. }
  1871. if (TT.isOSDarwin())
  1872. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  1873. // Write the generated bitstream to "Out".
  1874. Out.write((char*)&Buffer.front(), Buffer.size());
  1875. }