1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058 |
- //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating from LLVM IR into SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "isel"
- #include "SelectionDAGBuild.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Constants.h"
- #include "llvm/CallingConv.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/InlineAsm.h"
- #include "llvm/Instructions.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Module.h"
- #include "llvm/CodeGen/FastISel.h"
- #include "llvm/CodeGen/GCStrategy.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/DwarfWriter.h"
- #include "llvm/Analysis/DebugInfo.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Target/TargetFrameInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- using namespace llvm;
- /// LimitFloatPrecision - Generate low-precision inline sequences for
- /// some float libcalls (6, 8 or 12 bits).
- static unsigned LimitFloatPrecision;
- static cl::opt<unsigned, true>
- LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision),
- cl::init(0));
- /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
- /// of insertvalue or extractvalue indices that identify a member, return
- /// the linearized index of the start of the member.
- ///
- static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex = 0) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
- }
- /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
- /// MVTs that represent all the individual underlying
- /// non-aggregate types that comprise it.
- ///
- /// If Offsets is non-null, it points to a vector to be filled in
- /// with the in-memory offsets of each of the individual values.
- ///
- static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<MVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets = 0,
- uint64_t StartingOffset = 0) {
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypePaddedSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty == Type::VoidTy)
- return;
- // Base case: we can get an MVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
- }
- namespace llvm {
- /// RegsForValue - This struct represents the registers (physical or virtual)
- /// that a particular set of values is assigned, and the type information about
- /// the value. The most common situation is to represent one value at a time,
- /// but struct or array values are handled element-wise as multiple values.
- /// The splitting of aggregates is performed recursively, so that we never
- /// have aggregate-typed registers. The values at this point do not necessarily
- /// have legal types, so each value may require one or more registers of some
- /// legal type.
- ///
- struct VISIBILITY_HIDDEN RegsForValue {
- /// TLI - The TargetLowering object.
- ///
- const TargetLowering *TLI;
- /// ValueVTs - The value types of the values, which may not be legal, and
- /// may need be promoted or synthesized from one or more registers.
- ///
- SmallVector<MVT, 4> ValueVTs;
- /// RegVTs - The value types of the registers. This is the same size as
- /// ValueVTs and it records, for each value, what the type of the assigned
- /// register or registers are. (Individual values are never synthesized
- /// from more than one type of register.)
- ///
- /// With virtual registers, the contents of RegVTs is redundant with TLI's
- /// getRegisterType member function, however when with physical registers
- /// it is necessary to have a separate record of the types.
- ///
- SmallVector<MVT, 4> RegVTs;
- /// Regs - This list holds the registers assigned to the values.
- /// Each legal or promoted value requires one register, and each
- /// expanded value requires multiple registers.
- ///
- SmallVector<unsigned, 4> Regs;
- RegsForValue() : TLI(0) {}
- RegsForValue(const TargetLowering &tli,
- const SmallVector<unsigned, 4> ®s,
- MVT regvt, MVT valuevt)
- : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- RegsForValue(const TargetLowering &tli,
- const SmallVector<unsigned, 4> ®s,
- const SmallVector<MVT, 4> ®vts,
- const SmallVector<MVT, 4> &valuevts)
- : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
- RegsForValue(const TargetLowering &tli,
- unsigned Reg, const Type *Ty) : TLI(&tli) {
- ComputeValueVTs(tli, Ty, ValueVTs);
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = TLI->getRegisterType(ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
- /// append - Add the specified values to this one.
- void append(const RegsForValue &RHS) {
- TLI = RHS.TLI;
- ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
- RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
- Regs.append(RHS.Regs.begin(), RHS.Regs.end());
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVTs value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const;
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const;
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker, matching input operand index
- /// (if applicable), and includes the number of values added into it.
- void AddInlineAsmOperands(unsigned Code,
- bool HasMatching, unsigned MatchingIdx,
- SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
- };
- }
- /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
- /// PHI nodes or outside of the basic block that defines it, or used by a
- /// switch or atomic instruction, which may expand to multiple basic blocks.
- static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
- if (isa<PHINode>(I)) return true;
- BasicBlock *BB = I->getParent();
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
- return true;
- return false;
- }
- /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
- /// entry block, return true. This includes arguments used by switches, since
- /// the switch may expand into multiple basic blocks.
- static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- // Don't force virtual registers for byval arguments though, because
- // fast-isel can't handle those in all cases.
- if (EnableFastISel && !A->hasByValAttr())
- return A->use_empty();
- BasicBlock *Entry = A->getParent()->begin();
- for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
- return false; // Use not in entry block.
- return true;
- }
- FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
- : TLI(tli) {
- }
- void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
- SelectionDAG &DAG,
- bool EnableFastISel) {
- Fn = &fn;
- MF = &mf;
- RegInfo = &MF->getRegInfo();
- // Create a vreg for each argument register that is not dead and is used
- // outside of the entry block for the function.
- for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
- AI != E; ++AI)
- if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
- InitializeRegForValue(AI);
- // Initialize the mapping of values to registers. This is only set up for
- // instruction values that are used outside of the block that defines
- // them.
- Function::iterator BB = Fn->begin(), EB = Fn->end();
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
- if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
- const Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
- AI->getAlignment());
- TySize *= CUI->getZExtValue(); // Get total allocated size.
- if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
- StaticAllocaMap[AI] =
- MF->getFrameInfo()->CreateStackObject(TySize, Align);
- }
- for (; BB != EB; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
- if (!isa<AllocaInst>(I) ||
- !StaticAllocaMap.count(cast<AllocaInst>(I)))
- InitializeRegForValue(I);
- // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
- // also creates the initial PHI MachineInstrs, though none of the input
- // operands are populated.
- for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
- MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
- MBBMap[BB] = MBB;
- MF->push_back(MBB);
- // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
- // appropriate.
- PHINode *PN;
- DebugLoc DL;
- for (BasicBlock::iterator
- I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- if (Function *F = CI->getCalledFunction()) {
- switch (F->getIntrinsicID()) {
- default: break;
- case Intrinsic::dbg_stoppoint: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
- if (DW && DW->ValidDebugInfo(SPI->getContext(), false)) {
- DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
- std::string Dir, FN;
- unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
- CU.getFilename(FN));
- unsigned idx = MF->getOrCreateDebugLocID(SrcFile,
- SPI->getLine(),
- SPI->getColumn());
- DL = DebugLoc::get(idx);
- }
- break;
- }
- case Intrinsic::dbg_func_start: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- if (DW) {
- DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
- Value *SP = FSI->getSubprogram();
- if (DW->ValidDebugInfo(SP, false)) {
- DISubprogram Subprogram(cast<GlobalVariable>(SP));
- DICompileUnit CU(Subprogram.getCompileUnit());
- std::string Dir, FN;
- unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
- CU.getFilename(FN));
- unsigned Line = Subprogram.getLineNumber();
- DL = DebugLoc::get(MF->getOrCreateDebugLocID(SrcFile, Line, 0));
- }
- }
- break;
- }
- }
- }
- }
- PN = dyn_cast<PHINode>(I);
- if (!PN || PN->use_empty()) continue;
- unsigned PHIReg = ValueMap[PN];
- assert(PHIReg && "PHI node does not have an assigned virtual register!");
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- MVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(VT);
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
- for (unsigned i = 0; i != NumRegisters; ++i)
- BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
- PHIReg += NumRegisters;
- }
- }
- }
- }
- unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
- return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
- }
- /// CreateRegForValue - Allocate the appropriate number of virtual registers of
- /// the correctly promoted or expanded types. Assign these registers
- /// consecutive vreg numbers and return the first assigned number.
- ///
- /// In the case that the given value has struct or array type, this function
- /// will assign registers for each member or element.
- ///
- unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, V->getType(), ValueVTs);
- unsigned FirstReg = 0;
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- MVT RegisterVT = TLI.getRegisterType(ValueVT);
- unsigned NumRegs = TLI.getNumRegisters(ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- unsigned R = MakeReg(RegisterVT);
- if (!FirstReg) FirstReg = R;
- }
- }
- return FirstReg;
- }
- /// getCopyFromParts - Create a value that contains the specified legal parts
- /// combined into the value they represent. If the parts combine to a type
- /// larger then ValueVT then AssertOp can be used to specify whether the extra
- /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
- /// (ISD::AssertSext).
- static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
- const SDValue *Parts,
- unsigned NumParts, MVT PartVT, MVT ValueVT,
- ISD::NodeType AssertOp = ISD::DELETED_NODE) {
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (!ValueVT.isVector()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
- // Assemble the power of 2 part.
- unsigned RoundParts = NumParts & (NumParts - 1) ?
- 1 << Log2_32(NumParts) : NumParts;
- unsigned RoundBits = PartBits * RoundParts;
- MVT RoundVT = RoundBits == ValueBits ?
- ValueVT : MVT::getIntegerVT(RoundBits);
- SDValue Lo, Hi;
- MVT HalfVT = ValueVT.isInteger() ?
- MVT::getIntegerVT(RoundBits/2) :
- MVT::getFloatingPointVT(RoundBits/2);
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
- Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
- PartVT, HalfVT);
- } else {
- Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
- }
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
- Hi = getCopyFromParts(DAG, dl,
- Parts+RoundParts, OddParts, PartVT, OddVT);
- // Combine the round and odd parts.
- Lo = Val;
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
- Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(),
- TLI.getPointerTy()));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
- }
- } else {
- // Handle a multi-element vector.
- MVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs =
- TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
- RegisterVT);
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT == Parts[0].getValueType() &&
- "Part type doesn't match part!");
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
- PartVT, IntermediateVT);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate operands
- // from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT);
- }
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
- // operands.
- Val = DAG.getNode(IntermediateVT.isVector() ?
- ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
- ValueVT, &Ops[0], NumIntermediates);
- }
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- PartVT = Val.getValueType();
- if (PartVT == ValueVT)
- return Val;
- if (PartVT.isVector()) {
- assert(ValueVT.isVector() && "Unknown vector conversion!");
- return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
- }
- if (ValueVT.isVector()) {
- assert(ValueVT.getVectorElementType() == PartVT &&
- ValueVT.getVectorNumElements() == 1 &&
- "Only trivial scalar-to-vector conversions should get here!");
- return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
- }
- if (PartVT.isInteger() &&
- ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp != ISD::DELETED_NODE)
- Val = DAG.getNode(AssertOp, dl, PartVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- } else {
- return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
- }
- }
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- if (ValueVT.bitsLT(Val.getValueType()))
- // FP_ROUND's are always exact here.
- return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
- DAG.getIntPtrConstant(1));
- return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
- }
- if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
- assert(0 && "Unknown mismatch!");
- return SDValue();
- }
- /// getCopyToParts - Create a series of nodes that contain the specified value
- /// split into legal parts. If the parts contain more bits than Val, then, for
- /// integers, ExtendKind can be used to specify how to generate the extra bits.
- static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
- SDValue *Parts, unsigned NumParts, MVT PartVT,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MVT PtrVT = TLI.getPointerTy();
- MVT ValueVT = Val.getValueType();
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
- if (!NumParts)
- return;
- if (!ValueVT.isVector()) {
- if (PartVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
- } else if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
- } else {
- assert(0 && "Unknown mismatch!");
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartVT != ValueVT);
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- } else {
- assert(0 && "Unknown mismatch!");
- }
- }
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
- if (NumParts == 1) {
- assert(PartVT == ValueVT && "Type conversion failed!");
- Parts[0] = Val;
- return;
- }
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = 1 << Log2_32(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
- DAG.getConstant(RoundBits,
- TLI.getPointerTy()));
- getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
- if (TLI.isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
- }
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::getIntegerVT(ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- MVT ThisVT = MVT::getIntegerVT (ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- ThisVT, Part0,
- DAG.getConstant(1, PtrVT));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
- ThisVT, Part0,
- DAG.getConstant(0, PtrVT));
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
- PartVT, Part0);
- Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
- PartVT, Part1);
- }
- }
- }
- if (TLI.isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
- return;
- }
- // Vector ValueVT.
- if (NumParts == 1) {
- if (PartVT != ValueVT) {
- if (PartVT.isVector()) {
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
- } else {
- assert(ValueVT.getVectorElementType() == PartVT &&
- ValueVT.getVectorNumElements() == 1 &&
- "Only trivial vector-to-scalar conversions should get here!");
- Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- PartVT, Val,
- DAG.getConstant(0, PtrVT));
- }
- }
- Parts[0] = Val;
- return;
- }
- // Handle a multi-element vector.
- MVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs = TLI
- .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
- RegisterVT);
- unsigned NumElements = ValueVT.getVectorNumElements();
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i)
- if (IntermediateVT.isVector())
- Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
- IntermediateVT, Val,
- DAG.getConstant(i * (NumElements / NumIntermediates),
- PtrVT));
- else
- Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- IntermediateVT, Val,
- DAG.getConstant(i, PtrVT));
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
- }
- }
- void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
- AA = &aa;
- GFI = gfi;
- TD = DAG.getTarget().getTargetData();
- }
- /// clear - Clear out the curret SelectionDAG and the associated
- /// state and prepare this SelectionDAGLowering object to be used
- /// for a new block. This doesn't clear out information about
- /// additional blocks that are needed to complete switch lowering
- /// or PHI node updating; that information is cleared out as it is
- /// consumed.
- void SelectionDAGLowering::clear() {
- NodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- DAG.clear();
- CurDebugLoc = DebugLoc::getUnknownLoc();
- }
- /// getRoot - Return the current virtual root of the Selection DAG,
- /// flushing any PendingLoad items. This must be done before emitting
- /// a store or any other node that may need to be ordered after any
- /// prior load instructions.
- ///
- SDValue SelectionDAGLowering::getRoot() {
- if (PendingLoads.empty())
- return DAG.getRoot();
- if (PendingLoads.size() == 1) {
- SDValue Root = PendingLoads[0];
- DAG.setRoot(Root);
- PendingLoads.clear();
- return Root;
- }
- // Otherwise, we have to make a token factor node.
- SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingLoads[0], PendingLoads.size());
- PendingLoads.clear();
- DAG.setRoot(Root);
- return Root;
- }
- /// getControlRoot - Similar to getRoot, but instead of flushing all the
- /// PendingLoad items, flush all the PendingExports items. It is necessary
- /// to do this before emitting a terminator instruction.
- ///
- SDValue SelectionDAGLowering::getControlRoot() {
- SDValue Root = DAG.getRoot();
- if (PendingExports.empty())
- return Root;
- // Turn all of the CopyToReg chains into one factored node.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = PendingExports.size();
- for (; i != e; ++i) {
- assert(PendingExports[i].getNode()->getNumOperands() > 1);
- if (PendingExports[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
- if (i == e)
- PendingExports.push_back(Root);
- }
- Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingExports[0],
- PendingExports.size());
- PendingExports.clear();
- DAG.setRoot(Root);
- return Root;
- }
- void SelectionDAGLowering::visit(Instruction &I) {
- visit(I.getOpcode(), I);
- }
- void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: assert(0 && "Unknown instruction type encountered!");
- abort();
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
- #include "llvm/Instruction.def"
- }
- }
- void SelectionDAGLowering::visitAdd(User &I) {
- if (I.getType()->isFPOrFPVector())
- visitBinary(I, ISD::FADD);
- else
- visitBinary(I, ISD::ADD);
- }
- void SelectionDAGLowering::visitMul(User &I) {
- if (I.getType()->isFPOrFPVector())
- visitBinary(I, ISD::FMUL);
- else
- visitBinary(I, ISD::MUL);
- }
- SDValue SelectionDAGLowering::getValue(const Value *V) {
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
- MVT VT = TLI.getValueType(V->getType(), true);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return N = DAG.getConstant(*CI, VT);
- if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return N = DAG.getGlobalAddress(GV, VT);
- if (isa<ConstantPointerNull>(C))
- return N = DAG.getConstant(0, TLI.getPointerTy());
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return N = DAG.getConstantFP(*CFP, VT);
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return N = DAG.getUNDEF(VT);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the ValueMap!");
- return N1;
- }
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI) {
- SDNode *Val = getValue(*OI).getNode();
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(&Constants[0], Constants.size(),
- getCurDebugLoc());
- }
- if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- MVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, EltVT);
- else
- Constants[i] = DAG.getConstant(0, EltVT);
- }
- return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
- }
- const VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = VecTy->getNumElements();
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- SmallVector<SDValue, 16> Ops;
- if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CP->getOperand(i)));
- } else {
- assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- MVT EltVT = TLI.getValueType(VecTy->getElementType());
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, EltVT);
- else
- Op = DAG.getConstant(0, EltVT);
- Ops.assign(NumElements, Op);
- }
- // Create a BUILD_VECTOR node.
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size());
- }
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
- }
- unsigned InReg = FuncInfo.ValueMap[V];
- assert(InReg && "Value not in map!");
- RegsForValue RFV(TLI, InReg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
- }
- void SelectionDAGLowering::visitRet(ReturnInst &I) {
- if (I.getNumOperands() == 0) {
- DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(),
- MVT::Other, getControlRoot()));
- return;
- }
- SmallVector<SDValue, 8> NewValues;
- NewValues.push_back(getControlRoot());
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) continue;
- SDValue RetOp = getValue(I.getOperand(i));
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- MVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- const Function *F = I.getParent()->getParent();
- if (F->paramHasAttr(0, Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->paramHasAttr(0, Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- // FIXME: C calling convention requires the return type to be promoted to
- // at least 32-bit. But this is not necessary for non-C calling
- // conventions. The frontend should mark functions whose return values
- // require promoting with signext or zeroext attributes.
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- MVT MinVT = TLI.getRegisterType(MVT::i32);
- if (VT.bitsLT(MinVT))
- VT = MinVT;
- }
- unsigned NumParts = TLI.getNumRegisters(VT);
- MVT PartVT = TLI.getRegisterType(VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurDebugLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, ExtendKind);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (F->paramHasAttr(0, Attribute::InReg))
- Flags.setInReg();
- for (unsigned i = 0; i < NumParts; ++i) {
- NewValues.push_back(Parts[i]);
- NewValues.push_back(DAG.getArgFlags(Flags));
- }
- }
- }
- DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(), MVT::Other,
- &NewValues[0], NewValues.size()));
- }
- /// CopyToExportRegsIfNeeded - If the given value has virtual registers
- /// created for it, emit nodes to copy the value into the virtual
- /// registers.
- void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) {
- if (!V->use_empty()) {
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end())
- CopyValueToVirtualRegister(V, VMI->second);
- }
- }
- /// ExportFromCurrentBlock - If this condition isn't known to be exported from
- /// the current basic block, add it to ValueMap now so that we'll get a
- /// CopyTo/FromReg.
- void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
- unsigned Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
- }
- bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB == &FromBB->getParent()->getEntryBlock())
- return true;
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
- // Otherwise, constants can always be exported.
- return true;
- }
- static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
- }
- /// getFCmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR floating-point condition code. This includes
- /// consideration of global floating-point math flags.
- ///
- static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
- ISD::CondCode FPC, FOC;
- switch (Pred) {
- case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
- case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
- case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
- case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
- case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
- case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
- case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
- case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
- case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
- case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
- case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
- case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
- case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
- case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
- case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
- case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
- default:
- assert(0 && "Invalid FCmp predicate opcode!");
- FOC = FPC = ISD::SETFALSE;
- break;
- }
- if (FiniteOnlyFPMath())
- return FOC;
- else
- return FPC;
- }
- /// getICmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR integer condition code.
- ///
- static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
- switch (Pred) {
- case ICmpInst::ICMP_EQ: return ISD::SETEQ;
- case ICmpInst::ICMP_NE: return ISD::SETNE;
- case ICmpInst::ICMP_SLE: return ISD::SETLE;
- case ICmpInst::ICMP_ULE: return ISD::SETULE;
- case ICmpInst::ICMP_SGE: return ISD::SETGE;
- case ICmpInst::ICMP_UGE: return ISD::SETUGE;
- case ICmpInst::ICMP_SLT: return ISD::SETLT;
- case ICmpInst::ICMP_ULT: return ISD::SETULT;
- case ICmpInst::ICMP_SGT: return ISD::SETGT;
- case ICmpInst::ICMP_UGT: return ISD::SETUGT;
- default:
- assert(0 && "Invalid ICmp predicate opcode!");
- return ISD::SETNE;
- }
- }
- /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
- /// This function emits a branch and is used at the leaves of an OR or an
- /// AND operator tree.
- ///
- void
- SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB) {
- const BasicBlock *BB = CurBB->getBasicBlock();
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == CurMBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- Condition = getICmpCondCode(IC->getPredicate());
- } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
- Condition = getFCmpCondCode(FC->getPredicate());
- } else {
- Condition = ISD::SETEQ; // silence warning.
- assert(0 && "Unknown compare instruction");
- }
- CaseBlock CB(Condition, BOp->getOperand(0),
- BOp->getOperand(1), NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- return;
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
- NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- }
- /// FindMergedConditions - If Cond is an expression like
- void SelectionDAGLowering::FindMergedConditions(Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- unsigned Opc) {
- // If this node is not part of the or/and tree, emit it as a branch.
- Instruction *BOp = dyn_cast<Instruction>(Cond);
- if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
- (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
- BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
- !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
- return;
- }
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI = CurBB;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
- }
- }
- /// If the set of cases should be emitted as a series of branches, return true.
- /// If we should emit this as a bunch of and/or'd together conditions, return
- /// false.
- bool
- SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
- if (Cases.size() != 2) return true;
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
- return true;
- }
- void SelectionDAGLowering::visitBr(BranchInst &I) {
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- CurMBB->addSuccessor(Succ0MBB);
- // If this is not a fall-through branch, emit the branch.
- if (Succ0MBB != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- //
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (BOp->hasOneUse() &&
- (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SwitchCases)) {
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
- }
- // Emit the branch for this block.
- visitSwitchCase(SwitchCases[0]);
- SwitchCases.erase(SwitchCases.begin());
- return;
- }
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
- SwitchCases.clear();
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
- NULL, Succ0MBB, Succ1MBB, CurMBB);
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB);
- }
- /// visitSwitchCase - Emits the necessary code to represent a single node in
- /// the binary search tree resulting from lowering a switch instruction.
- void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- DebugLoc dl = getCurDebugLoc();
- // Build the setcc now.
- if (CB.CmpMHS == NULL) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
- } else {
- assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
- SDValue CmpOp = getValue(CB.CmpMHS);
- MVT VT = CmpOp.getValueType();
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
- ISD::SETLE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, VT), ISD::SETULE);
- }
- }
- // Update successor info
- CurMBB->addSuccessor(CB.TrueBB);
- CurMBB->addSuccessor(CB.FalseBB);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
- // If the branch was constant folded, fix up the CFG.
- if (BrCond.getOpcode() == ISD::BR) {
- CurMBB->removeSuccessor(CB.FalseBB);
- DAG.setRoot(BrCond);
- } else {
- // Otherwise, go ahead and insert the false branch.
- if (BrCond == getControlRoot())
- CurMBB->removeSuccessor(CB.TrueBB);
- if (CB.FalseBB == NextBlock)
- DAG.setRoot(BrCond);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB)));
- }
- }
- /// visitJumpTable - Emit JumpTable node in the current MBB
- void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- MVT PTy = TLI.getPointerTy();
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index));
- }
- /// visitJumpTableHeader - This function emits necessary code to produce index
- /// in the JumpTable from switch case.
- void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
- JumpTableHeader &JTH) {
- // Subtract the lowest switch case value from the value being switched on and
- // conditional branch to default mbb if the result is greater than the
- // difference between smallest and largest cases.
- SDValue SwitchOp = getValue(JTH.SValue);
- MVT VT = SwitchOp.getValueType();
- SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(JTH.First, VT));
- // The SDNode we just created, which holds the value being switched on minus
- // the the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- if (VT.bitsGT(TLI.getPointerTy()))
- SwitchOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- else
- SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the largest
- // case in the switch.
- SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(SUB.getValueType()), SUB,
- DAG.getConstant(JTH.Last-JTH.First,VT),
- ISD::SETUGT);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
- if (JT.MBB == NextBlock)
- DAG.setRoot(BrCond);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB)));
- }
- /// visitBitTestHeader - This function emits necessary code to produce value
- /// suitable for "bit tests"
- void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
- // Subtract the minimum value
- SDValue SwitchOp = getValue(B.SValue);
- MVT VT = SwitchOp.getValueType();
- SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(B.First, VT));
- // Check range
- SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(SUB.getValueType()),
- SUB, DAG.getConstant(B.Range, VT),
- ISD::SETUGT);
- SDValue ShiftOp;
- if (VT.bitsGT(TLI.getPointerTy()))
- ShiftOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- else
- ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- B.Reg, ShiftOp);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
- CurMBB->addSuccessor(B.Default);
- CurMBB->addSuccessor(MBB);
- SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, RangeCmp,
- DAG.getBasicBlock(B.Default));
- if (MBB == NextBlock)
- DAG.setRoot(BrRange);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
- DAG.getBasicBlock(MBB)));
- }
- /// visitBitTestCase - this function produces one "bit test"
- void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
- unsigned Reg,
- BitTestCase &B) {
- // Make desired shift
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
- TLI.getPointerTy());
- SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
- TLI.getPointerTy(),
- DAG.getConstant(1, TLI.getPointerTy()),
- ShiftOp);
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
- TLI.getPointerTy(), SwitchVal,
- DAG.getConstant(B.Mask, TLI.getPointerTy()));
- SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(AndOp.getValueType()),
- AndOp, DAG.getConstant(0, TLI.getPointerTy()),
- ISD::SETNE);
- CurMBB->addSuccessor(B.TargetBB);
- CurMBB->addSuccessor(NextMBB);
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- AndCmp, DAG.getBasicBlock(B.TargetBB));
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- if (NextMBB == NextBlock)
- DAG.setRoot(BrAnd);
- else
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB)));
- }
- void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
- // Retrieve successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
- const Value *Callee(I.getCalledValue());
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(&I);
- else
- LowerCallTo(&I, getValue(Callee), false, LandingPad);
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- CopyToExportRegsIfNeeded(&I);
- // Update successor info
- CurMBB->addSuccessor(Return);
- CurMBB->addSuccessor(LandingPad);
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
- }
- /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
- /// small case ranges).
- bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- Case& BackCase = *(CR.Range.second-1);
- // Size is the number of Cases represented by this range.
- size_t Size = CR.Range.second - CR.Range.first;
- if (Size > 3)
- return false;
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- // TODO: If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // Rearrange the case blocks so that the last one falls through if possible.
- if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
- // The last case block won't fall through into 'NextBlock' if we emit the
- // branches in this order. See if rearranging a case value would help.
- for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
- if (I->BB == NextBlock) {
- std::swap(*I, BackCase);
- break;
- }
- }
- }
- // Create a CaseBlock record representing a conditional branch to
- // the Case's target mbb if the value being switched on SV is equal
- // to C.
- MachineBasicBlock *CurBlock = CR.CaseBB;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- MachineBasicBlock *FallThrough;
- if (I != E-1) {
- FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
- CurMF->insert(BBI, FallThrough);
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- } else {
- // If the last case doesn't match, go to the default block.
- FallThrough = Default;
- }
- Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->High == I->Low) {
- // This is just small small case range :) containing exactly 1 case
- CC = ISD::SETEQ;
- LHS = SV; RHS = I->High; MHS = NULL;
- } else {
- CC = ISD::SETLE;
- LHS = I->Low; MHS = SV; RHS = I->High;
- }
- CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
- // If emitting the first comparison, just call visitSwitchCase to emit the
- // code into the current block. Otherwise, push the CaseBlock onto the
- // vector to be later processed by SDISel, and insert the node's MBB
- // before the next MBB.
- if (CurBlock == CurMBB)
- visitSwitchCase(CB);
- else
- SwitchCases.push_back(CB);
- CurBlock = FallThrough;
- }
- return true;
- }
- static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return !DisableJumpTables &&
- (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
- }
- static APInt ComputeRange(const APInt &First, const APInt &Last) {
- APInt LastExt(Last), FirstExt(First);
- uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
- return (LastExt - FirstExt + 1ULL);
- }
- /// handleJTSwitchCase - Emit jumptable for current switch case range
- bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
- size_t TSize = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
- if (!areJTsAllowed(TLI) || TSize <= 3)
- return false;
- APInt Range = ComputeRange(First, Last);
- double Density = (double)TSize / Range.roundToDouble();
- if (Density < 0.4)
- return false;
- DEBUG(errs() << "Lowering jump table\n"
- << "First entry: " << First << ". Last entry: " << Last << '\n'
- << "Range: " << Range
- << "Size: " << TSize << ". Density: " << Density << "\n\n");
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Create a new basic block to hold the code for loading the address
- // of the jump table, and jumping to it. Update successor information;
- // we will either branch to the default case for the switch, or the jump
- // table.
- MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, JumpTableBB);
- CR.CaseBB->addSuccessor(Default);
- CR.CaseBB->addSuccessor(JumpTableBB);
- // Build a vector of destination BBs, corresponding to each target
- // of the jump table. If the value of the jump table slot corresponds to
- // a case statement, push the case's BB onto the vector, otherwise, push
- // the default BB.
- std::vector<MachineBasicBlock*> DestBBs;
- APInt TEI = First;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
- const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
- const APInt& High = cast<ConstantInt>(I->High)->getValue();
- if (Low.sle(TEI) && TEI.sle(High)) {
- DestBBs.push_back(I->BB);
- if (TEI==High)
- ++I;
- } else {
- DestBBs.push_back(Default);
- }
- }
- // Update successor info. Add one edge to each unique successor.
- BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
- for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
- E = DestBBs.end(); I != E; ++I) {
- if (!SuccsHandled[(*I)->getNumber()]) {
- SuccsHandled[(*I)->getNumber()] = true;
- JumpTableBB->addSuccessor(*I);
- }
- }
- // Create a jump table index for this jump table, or return an existing
- // one.
- unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
- // Set the jump table information so that we can codegen it as a second
- // MachineBasicBlock
- JumpTable JT(-1U, JTI, JumpTableBB, Default);
- JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
- if (CR.CaseBB == CurMBB)
- visitJumpTableHeader(JT, JTH);
- JTCases.push_back(JumpTableBlock(JTH, JT));
- return true;
- }
- /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
- /// 2 subtrees.
- bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default) {
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Size is the number of Cases represented by this range.
- unsigned Size = CR.Range.second - CR.Range.first;
- const APInt& First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& Last = cast<ConstantInt>(BackCase.High)->getValue();
- double FMetric = 0;
- CaseItr Pivot = CR.Range.first + Size/2;
- // Select optimal pivot, maximizing sum density of LHS and RHS. This will
- // (heuristically) allow us to emit JumpTable's later.
- size_t TSize = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
- size_t LSize = FrontCase.size();
- size_t RSize = TSize-LSize;
- DEBUG(errs() << "Selecting best pivot: \n"
- << "First: " << First << ", Last: " << Last <<'\n'
- << "LSize: " << LSize << ", RSize: " << RSize << '\n');
- for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
- J!=E; ++I, ++J) {
- const APInt& LEnd = cast<ConstantInt>(I->High)->getValue();
- const APInt& RBegin = cast<ConstantInt>(J->Low)->getValue();
- APInt Range = ComputeRange(LEnd, RBegin);
- assert((Range - 2ULL).isNonNegative() &&
- "Invalid case distance");
- double LDensity = (double)LSize / (LEnd - First + 1ULL).roundToDouble();
- double RDensity = (double)RSize / (Last - RBegin + 1ULL).roundToDouble();
- double Metric = Range.logBase2()*(LDensity+RDensity);
- // Should always split in some non-trivial place
- DEBUG(errs() <<"=>Step\n"
- << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
- << "LDensity: " << LDensity
- << ", RDensity: " << RDensity << '\n'
- << "Metric: " << Metric << '\n');
- if (FMetric < Metric) {
- Pivot = J;
- FMetric = Metric;
- DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
- }
- LSize += J->size();
- RSize -= J->size();
- }
- if (areJTsAllowed(TLI)) {
- // If our case is dense we *really* should handle it earlier!
- assert((FMetric > 0) && "Should handle dense range earlier!");
- } else {
- Pivot = CR.Range.first + Size/2;
- }
- CaseRange LHSR(CR.Range.first, Pivot);
- CaseRange RHSR(Pivot, CR.Range.second);
- Constant *C = Pivot->Low;
- MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
- // We know that we branch to the LHS if the Value being switched on is
- // less than the Pivot value, C. We use this to optimize our binary
- // tree a bit, by recognizing that if SV is greater than or equal to the
- // LHS's Case Value, and that Case Value is exactly one less than the
- // Pivot's Value, then we can branch directly to the LHS's Target,
- // rather than creating a leaf node for it.
- if ((LHSR.second - LHSR.first) == 1 &&
- LHSR.first->High == CR.GE &&
- cast<ConstantInt>(C)->getValue() ==
- (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
- TrueBB = LHSR.first->BB;
- } else {
- TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, TrueBB);
- WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Similar to the optimization above, if the Value being switched on is
- // known to be less than the Constant CR.LT, and the current Case Value
- // is CR.LT - 1, then we can branch directly to the target block for
- // the current Case Value, rather than emitting a RHS leaf node for it.
- if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
- cast<ConstantInt>(RHSR.first->Low)->getValue() ==
- (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
- FalseBB = RHSR.first->BB;
- } else {
- FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, FalseBB);
- WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Create a CaseBlock record representing a conditional branch to
- // the LHS node if the value being switched on SV is less than C.
- // Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
- if (CR.CaseBB == CurMBB)
- visitSwitchCase(CB);
- else
- SwitchCases.push_back(CB);
- return true;
- }
- /// handleBitTestsSwitchCase - if current case range has few destination and
- /// range span less, than machine word bitwidth, encode case range into series
- /// of masks and emit bit tests with these masks.
- bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- Value* SV,
- MachineBasicBlock* Default){
- unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
- size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I) {
- // Single case counts one, case range - two.
- numCmps += (I->Low == I->High ? 1 : 2);
- }
- // Count unique destinations
- SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- Dests.insert(I->BB);
- if (Dests.size() > 3)
- // Don't bother the code below, if there are too much unique destinations
- return false;
- }
- DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
- << "Total number of comparisons: " << numCmps << '\n');
- // Compute span of values.
- const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
- APInt cmpRange = maxValue - minValue;
- DEBUG(errs() << "Compare range: " << cmpRange << '\n'
- << "Low bound: " << minValue << '\n'
- << "High bound: " << maxValue << '\n');
- if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
- (!(Dests.size() == 1 && numCmps >= 3) &&
- !(Dests.size() == 2 && numCmps >= 5) &&
- !(Dests.size() >= 3 && numCmps >= 6)))
- return false;
- DEBUG(errs() << "Emitting bit tests\n");
- APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- if (minValue.isNonNegative() &&
- maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
- cmpRange = maxValue;
- } else {
- lowBound = minValue;
- }
- CaseBitsVector CasesBits;
- unsigned i, count = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- MachineBasicBlock* Dest = I->BB;
- for (i = 0; i < count; ++i)
- if (Dest == CasesBits[i].BB)
- break;
- if (i == count) {
- assert((count < 3) && "Too much destinations to test!");
- CasesBits.push_back(CaseBits(0, Dest, 0));
- count++;
- }
- const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
- const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
- uint64_t lo = (lowValue - lowBound).getZExtValue();
- uint64_t hi = (highValue - lowBound).getZExtValue();
- for (uint64_t j = lo; j <= hi; j++) {
- CasesBits[i].Mask |= 1ULL << j;
- CasesBits[i].Bits++;
- }
- }
- std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
- BitTestInfo BTC;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- DEBUG(errs() << "Cases:\n");
- for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(errs() << "Mask: " << CasesBits[i].Mask
- << ", Bits: " << CasesBits[i].Bits
- << ", BB: " << CasesBits[i].BB << '\n');
- MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, CaseBB);
- BTC.push_back(BitTestCase(CasesBits[i].Mask,
- CaseBB,
- CasesBits[i].BB));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- BitTestBlock BTB(lowBound, cmpRange, SV,
- -1U, (CR.CaseBB == CurMBB),
- CR.CaseBB, Default, BTC);
- if (CR.CaseBB == CurMBB)
- visitBitTestHeader(BTB);
- BitTestCases.push_back(BTB);
- return true;
- }
- /// Clusterify - Transform simple list of Cases into list of CaseRange's
- size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
- size_t numCmps = 0;
- // Start with "simple" cases
- for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
- MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
- Cases.push_back(Case(SI.getSuccessorValue(i),
- SI.getSuccessorValue(i),
- SMBB));
- }
- std::sort(Cases.begin(), Cases.end(), CaseCmp());
- // Merge case into clusters
- if (Cases.size() >= 2)
- // Must recompute end() each iteration because it may be
- // invalidated by erase if we hold on to it
- for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
- const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
- const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
- MachineBasicBlock* nextBB = J->BB;
- MachineBasicBlock* currentBB = I->BB;
- // If the two neighboring cases go to the same destination, merge them
- // into a single case.
- if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
- I->High = J->High;
- J = Cases.erase(J);
- } else {
- I = J++;
- }
- }
- for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
- if (I->Low != I->High)
- // A range counts double, since it requires two compares.
- ++numCmps;
- }
- return numCmps;
- }
- void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
- MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
- // If there is only the default destination, branch to it if it is not the
- // next basic block. Otherwise, just fall through.
- if (SI.getNumOperands() == 2) {
- // Update machine-CFG edges.
- // If this is not a fall-through branch, emit the branch.
- CurMBB->addSuccessor(Default);
- if (Default != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Default)));
- return;
- }
- // If there are any non-default case statements, create a vector of Cases
- // representing each one, and sort the vector so that we can efficiently
- // create a binary search tree from them.
- CaseVector Cases;
- size_t numCmps = Clusterify(Cases, SI);
- DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n');
- numCmps = 0;
- // Get the Value to be switched on and default basic blocks, which will be
- // inserted into CaseBlock records, representing basic blocks in the binary
- // search tree.
- Value *SV = SI.getOperand(0);
- // Push the initial CaseRec onto the worklist
- CaseRecVector WorkList;
- WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
- while (!WorkList.empty()) {
- // Grab a record representing a case range to process off the worklist
- CaseRec CR = WorkList.back();
- WorkList.pop_back();
- if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
- continue;
- // If the range has few cases (two or less) emit a series of specific
- // tests.
- if (handleSmallSwitchRange(CR, WorkList, SV, Default))
- continue;
- // If the switch has more than 5 blocks, and at least 40% dense, and the
- // target supports indirect branches, then emit a jump table rather than
- // lowering the switch to a binary tree of conditional branches.
- if (handleJTSwitchCase(CR, WorkList, SV, Default))
- continue;
- // Emit binary tree. We need to pick a pivot, and push left and right ranges
- // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, Default);
- }
- }
- void SelectionDAGLowering::visitSub(User &I) {
- // -0.0 - X --> fneg
- const Type *Ty = I.getType();
- if (isa<VectorType>(Ty)) {
- if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
- const VectorType *DestTy = cast<VectorType>(I.getType());
- const Type *ElTy = DestTy->getElementType();
- if (ElTy->isFloatingPoint()) {
- unsigned VL = DestTy->getNumElements();
- std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
- Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
- if (CV == CNZ) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- }
- }
- }
- if (Ty->isFloatingPoint()) {
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- }
- visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
- }
- void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- if (!isa<VectorType>(I.getType()) &&
- Op2.getValueType() != TLI.getShiftAmountTy()) {
- // If the operand is smaller than the shift count type, promote it.
- if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
- TLI.getShiftAmountTy(), Op2);
- // If the operand is larger than the shift count type but the shift
- // count type has enough bits to represent any shift value, truncate
- // it now. This is a common case and it exposes the truncate to
- // optimization early.
- else if (TLI.getShiftAmountTy().getSizeInBits() >=
- Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
- Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getShiftAmountTy(), Op2);
- // Otherwise we'll need to temporarily settle for some other
- // convenient type; type legalization will make adjustments as
- // needed.
- else if (TLI.getPointerTy().bitsLT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), Op2);
- else if (TLI.getPointerTy().bitsGT(Op2.getValueType()))
- Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), Op2);
- }
- setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGLowering::visitICmp(User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- setValue(&I, DAG.getSetCC(getCurDebugLoc(),MVT::i1, Op1, Op2, Opcode));
- }
- void SelectionDAGLowering::visitFCmp(User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), MVT::i1, Op1, Op2, Condition));
- }
- void SelectionDAGLowering::visitVICmp(User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- setValue(&I, DAG.getVSetCC(getCurDebugLoc(), Op1.getValueType(),
- Op1, Op2, Opcode));
- }
- void SelectionDAGLowering::visitVFCmp(User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getVSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
- }
- void SelectionDAGLowering::visitSelect(User &I) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues != 0) {
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue TrueVal = getValue(I.getOperand(1));
- SDValue FalseVal = getValue(I.getOperand(2));
- for (unsigned i = 0; i != NumValues; ++i)
- Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
- TrueVal.getValueType(), Cond,
- SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
- SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- }
- void SelectionDAGLowering::visitTrunc(User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitZExt(User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitSExt(User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitFPTrunc(User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
- DestVT, N, DAG.getIntPtrConstant(0)));
- }
- void SelectionDAGLowering::visitFPExt(User &I){
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitFPToUI(User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitFPToSI(User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitUIToFP(User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitSIToFP(User &I){
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGLowering::visitPtrToInt(User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- MVT SrcVT = N.getValueType();
- MVT DestVT = TLI.getValueType(I.getType());
- SDValue Result;
- if (DestVT.bitsLT(SrcVT))
- Result = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
- else
- // Note: ZERO_EXTEND can handle cases where the sizes are equal too
- Result = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
- setValue(&I, Result);
- }
- void SelectionDAGLowering::visitIntToPtr(User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- MVT SrcVT = N.getValueType();
- MVT DestVT = TLI.getValueType(I.getType());
- if (DestVT.bitsLT(SrcVT))
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
- else
- // Note: ZERO_EXTEND can handle cases where the sizes are equal too
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- DestVT, N));
- }
- void SelectionDAGLowering::visitBitCast(User &I) {
- SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
- // BitCast assures us that source and destination are the same size so this
- // is either a BIT_CONVERT or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- DestVT, N)); // convert types
- else
- setValue(&I, N); // noop cast.
- }
- void SelectionDAGLowering::visitInsertElement(User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(2)));
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()),
- InVec, InVal, InIdx));
- }
- void SelectionDAGLowering::visitExtractElement(User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(1)));
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()), InVec, InIdx));
- }
- // Utility for visitShuffleVector - Returns true if the mask is mask starting
- // from SIndx and increasing to the element length (undefs are allowed).
- static bool SequentialMask(SmallVectorImpl<int> &Mask, int SIndx) {
- int MaskNumElts = Mask.size();
- for (int i = 0; i != MaskNumElts; ++i)
- if ((Mask[i] >= 0) && (Mask[i] != i + SIndx))
- return false;
- return true;
- }
- void SelectionDAGLowering::visitShuffleVector(User &I) {
- SmallVector<int, 8> Mask;
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
- // Convert the ConstantVector mask operand into an array of ints, with -1
- // representing undef values.
- SmallVector<Constant*, 8> MaskElts;
- cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
- int MaskNumElts = MaskElts.size();
- for (int i = 0; i != MaskNumElts; ++i) {
- if (isa<UndefValue>(MaskElts[i]))
- Mask.push_back(-1);
- else
- Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
- }
-
- MVT VT = TLI.getValueType(I.getType());
- MVT SrcVT = Src1.getValueType();
- int SrcNumElts = SrcVT.getVectorNumElements();
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &Mask[0]));
- return;
- }
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
- if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
- VT, Src1, Src2));
- return;
- }
- // Pad both vectors with undefs to make them the same length as the mask.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool Src1U = Src1.getOpcode() == ISD::UNDEF;
- bool Src2U = Src2.getOpcode() == ISD::UNDEF;
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
-
- Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps1[0], NumConcat);
- Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps2[0], NumConcat);
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
- for (int i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < SrcNumElts)
- MappedOps.push_back(Idx);
- else
- MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- if (SrcNumElts > MaskNumElts) {
- // Resulting vector is shorter than the incoming vector.
- if (SrcNumElts == MaskNumElts && SequentialMask(Mask,0)) {
- // Shuffle extracts 1st vector.
- setValue(&I, Src1);
- return;
- }
- if (SrcNumElts == MaskNumElts && SequentialMask(Mask,MaskNumElts)) {
- // Shuffle extracts 2nd vector.
- setValue(&I, Src2);
- return;
- }
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle. The analysis is done by calculating
- // the range of elements the mask access on both vectors.
- int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
- int MaxRange[2] = {-1, -1};
- for (int i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- int Input = 0;
- if (Idx < 0)
- continue;
-
- if (Idx >= SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- if (Idx > MaxRange[Input])
- MaxRange[Input] = Idx;
- if (Idx < MinRange[Input])
- MinRange[Input] = Idx;
- }
- // Check if the access is smaller than the vector size and can we find
- // a reasonable extract index.
- int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
- int StartIdx[2]; // StartIdx to extract from
- for (int Input=0; Input < 2; ++Input) {
- if (MinRange[Input] == SrcNumElts+1 && MaxRange[Input] == -1) {
- RangeUse[Input] = 0; // Unused
- StartIdx[Input] = 0;
- } else if (MaxRange[Input] - MinRange[Input] < MaskNumElts) {
- // Fits within range but we should see if we can find a good
- // start index that is a multiple of the mask length.
- if (MaxRange[Input] < MaskNumElts) {
- RangeUse[Input] = 1; // Extract from beginning of the vector
- StartIdx[Input] = 0;
- } else {
- StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
- if (MaxRange[Input] - StartIdx[Input] < MaskNumElts &&
- StartIdx[Input] + MaskNumElts < SrcNumElts)
- RangeUse[Input] = 1; // Extract from a multiple of the mask length.
- }
- }
- }
- if (RangeUse[0] == 0 && RangeUse[0] == 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
- // Extract appropriate subvector and generate a vector shuffle
- for (int Input=0; Input < 2; ++Input) {
- SDValue& Src = Input == 0 ? Src1 : Src2;
- if (RangeUse[Input] == 0) {
- Src = DAG.getUNDEF(VT);
- } else {
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
- Src, DAG.getIntPtrConstant(StartIdx[Input]));
- }
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps;
- for (int i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx < 0)
- MappedOps.push_back(Idx);
- else if (Idx < SrcNumElts)
- MappedOps.push_back(Idx - StartIdx[0]);
- else
- MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- }
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- MVT EltVT = VT.getVectorElementType();
- MVT PtrVT = TLI.getPointerTy();
- SmallVector<SDValue,8> Ops;
- for (int i = 0; i != MaskNumElts; ++i) {
- if (Mask[i] < 0) {
- Ops.push_back(DAG.getUNDEF(EltVT));
- } else {
- int Idx = Mask[i];
- if (Idx < SrcNumElts)
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- EltVT, Src1, DAG.getConstant(Idx, PtrVT)));
- else
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- EltVT, Src2,
- DAG.getConstant(Idx - SrcNumElts, PtrVT)));
- }
- }
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size()));
- }
- void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- const Type *AggTy = I.getType();
- const Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
- unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
- I.idx_begin(), I.idx_end());
- SmallVector<MVT, 4> AggValueVTs;
- ComputeValueVTs(TLI, AggTy, AggValueVTs);
- SmallVector<MVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
- SDValue Agg = getValue(Op0);
- SDValue Val = getValue(Op1);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&AggValueVTs[0], NumAggValues),
- &Values[0], NumAggValues));
- }
- void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Type *AggTy = Op0->getType();
- const Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
- unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
- I.idx_begin(), I.idx_end());
- SmallVector<MVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumValValues);
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValValueVTs[0], NumValValues),
- &Values[0], NumValValues));
- }
- void SelectionDAGLowering::visitGetElementPtr(User &I) {
- SDValue N = getValue(I.getOperand(0));
- const Type *Ty = I.getOperand(0)->getType();
- for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
- OI != E; ++OI) {
- Value *Idx = *OI;
- if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
- unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- DAG.getIntPtrConstant(Offset));
- }
- Ty = StTy->getElementType(Field);
- } else {
- Ty = cast<SequentialType>(Ty)->getElementType();
- // If this is a constant subscript, handle it quickly.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
- if (CI->getZExtValue() == 0) continue;
- uint64_t Offs =
- TD->getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
- SDValue OffsVal;
- unsigned PtrBits = TLI.getPointerTy().getSizeInBits();
- if (PtrBits < 64) {
- OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(),
- DAG.getConstant(Offs, MVT::i64));
- } else
- OffsVal = DAG.getIntPtrConstant(Offs);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- OffsVal);
- continue;
- }
- // N = N + Idx * ElementSize;
- uint64_t ElementSize = TD->getTypePaddedSize(Ty);
- SDValue IdxN = getValue(Idx);
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- if (IdxN.getValueType().bitsLT(N.getValueType()))
- IdxN = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(),
- N.getValueType(), IdxN);
- else if (IdxN.getValueType().bitsGT(N.getValueType()))
- IdxN = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- N.getValueType(), IdxN);
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementSize != 1) {
- if (isPowerOf2_64(ElementSize)) {
- unsigned Amt = Log2_64(ElementSize);
- IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, TLI.getPointerTy()));
- } else {
- SDValue Scale = DAG.getIntPtrConstant(ElementSize);
- IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
- N.getValueType(), IdxN, Scale);
- }
- }
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- N.getValueType(), N, IdxN);
- }
- }
- setValue(&I, N);
- }
- void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
- const Type *Ty = I.getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
- I.getAlignment());
- SDValue AllocSize = getValue(I.getArraySize());
-
- AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
- AllocSize,
- DAG.getConstant(TySize, AllocSize.getValueType()));
-
-
-
- MVT IntPtr = TLI.getPointerTy();
- if (IntPtr.bitsLT(AllocSize.getValueType()))
- AllocSize = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- IntPtr, AllocSize);
- else if (IntPtr.bitsGT(AllocSize.getValueType()))
- AllocSize = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- IntPtr, AllocSize);
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign =
- TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign-1));
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
- VTs, Ops, 3);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
- }
- void SelectionDAGLowering::visitLoad(LoadInst &I) {
- const Value *SV = I.getOperand(0);
- SDValue Ptr = getValue(SV);
- const Type *Ty = I.getType();
- bool isVolatile = I.isVolatile();
- unsigned Alignment = I.getAlignment();
- SmallVector<MVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- SDValue Root;
- bool ConstantMemory = false;
- if (I.isVolatile())
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (AA->pointsToConstantMemory(SV)) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- MVT PtrVT = Ptr.getValueType();
- for (unsigned i = 0; i != NumValues; ++i) {
- SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
- DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT)),
- SV, Offsets[i],
- isVolatile, Alignment);
- Values[i] = L;
- Chains[i] = L.getValue(1);
- }
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other,
- &Chains[0], NumValues);
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- void SelectionDAGLowering::visitStore(StoreInst &I) {
- Value *SrcV = I.getOperand(0);
- Value *PtrV = I.getOperand(1);
- SmallVector<MVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
- SDValue Root = getRoot();
- SmallVector<SDValue, 4> Chains(NumValues);
- MVT PtrVT = Ptr.getValueType();
- bool isVolatile = I.isVolatile();
- unsigned Alignment = I.getAlignment();
- for (unsigned i = 0; i != NumValues; ++i)
- Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
- SDValue(Src.getNode(), Src.getResNo() + i),
- DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT)),
- PtrV, Offsets[i],
- isVolatile, Alignment);
- DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues));
- }
- /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
- /// node.
- void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
- unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
- // Info is set by getTgtMemInstrinsic
- TargetLowering::IntrinsicInfo Info;
- bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic)
- Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
- // Add all operands of the call to the operand list.
- for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
- SDValue Op = getValue(I.getOperand(i));
- assert(TLI.isTypeLegal(Op.getValueType()) &&
- "Intrinsic uses a non-legal type?");
- Ops.push_back(Op);
- }
- std::vector<MVT> VTArray;
- if (I.getType() != Type::VoidTy) {
- MVT VT = TLI.getValueType(I.getType());
- if (VT.isVector()) {
- const VectorType *DestTy = cast<VectorType>(I.getType());
- MVT EltVT = TLI.getValueType(DestTy->getElementType());
- VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
- assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
- }
- assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
- VTArray.push_back(VT);
- }
- if (HasChain)
- VTArray.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(&VTArray[0], VTArray.size());
- // Create the node.
- SDValue Result;
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size(),
- Info.memVT, Info.ptrVal, Info.offset,
- Info.align, Info.vol,
- Info.readMem, Info.writeMem);
- }
- else if (!HasChain)
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- else if (I.getType() != Type::VoidTy)
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- else
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (I.getType() != Type::VoidTy) {
- if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- MVT VT = TLI.getValueType(PTy);
- Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
- }
- setValue(&I, Result);
- }
- }
- /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
- static GlobalVariable *ExtractTypeInfo(Value *V) {
- V = V->stripPointerCasts();
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- assert ((GV || isa<ConstantPointerNull>(V)) &&
- "TypeInfo must be a global variable or NULL");
- return GV;
- }
- namespace llvm {
- /// AddCatchInfo - Extract the personality and type infos from an eh.selector
- /// call, and add them to the specified machine basic block.
- void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
- MachineBasicBlock *MBB) {
- // Inform the MachineModuleInfo of the personality for this landing pad.
- ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
- assert(CE->getOpcode() == Instruction::BitCast &&
- isa<Function>(CE->getOperand(0)) &&
- "Personality should be a function");
- MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
- // Gather all the type infos for this landing pad and pass them along to
- // MachineModuleInfo.
- std::vector<GlobalVariable *> TyInfo;
- unsigned N = I.getNumOperands();
- for (unsigned i = N - 1; i > 2; --i) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
- unsigned FilterLength = CI->getZExtValue();
- unsigned FirstCatch = i + FilterLength + !FilterLength;
- assert (FirstCatch <= N && "Invalid filter length");
- if (FirstCatch < N) {
- TyInfo.reserve(N - FirstCatch);
- for (unsigned j = FirstCatch; j < N; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addCatchTypeInfo(MBB, TyInfo);
- TyInfo.clear();
- }
- if (!FilterLength) {
- // Cleanup.
- MMI->addCleanup(MBB);
- } else {
- // Filter.
- TyInfo.reserve(FilterLength - 1);
- for (unsigned j = i + 1; j < FirstCatch; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addFilterTypeInfo(MBB, TyInfo);
- TyInfo.clear();
- }
- N = i;
- }
- }
- if (N > 3) {
- TyInfo.reserve(N - 3);
- for (unsigned j = 3; j < N; ++j)
- TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
- MMI->addCatchTypeInfo(MBB, TyInfo);
- }
- }
- }
- /// GetSignificand - Get the significand and build it into a floating-point
- /// number with exponent of 1:
- ///
- /// Op = (Op & 0x007fffff) | 0x3f800000;
- ///
- /// where Op is the hexidecimal representation of floating point value.
- static SDValue
- GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, MVT::i32));
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
- }
- /// GetExponent - Get the exponent:
- ///
- /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
- ///
- /// where Op is the hexidecimal representation of floating point value.
- static SDValue
- GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
- DebugLoc dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, MVT::i32));
- SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
- }
- /// getF32Constant - Get 32-bit floating point constant.
- static SDValue
- getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
- }
- /// Inlined utility function to implement binary input atomic intrinsics for
- /// visitIntrinsicCall: I is a call instruction
- /// Op is the associated NodeType for I
- const char *
- SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
- SDValue Root = getRoot();
- SDValue L =
- DAG.getAtomic(Op, getCurDebugLoc(),
- getValue(I.getOperand(2)).getValueType().getSimpleVT(),
- Root,
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- I.getOperand(1));
- setValue(&I, L);
- DAG.setRoot(L.getValue(1));
- return 0;
- }
- // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
- const char *
- SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
- SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
- setValue(&I, Result);
- return 0;
- }
- /// visitExp - Lower an exp intrinsic. Handles the special sequences for
- /// limited-precision mode.
- void
- SelectionDAGLowering::visitExp(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OFe 1.4426950f
- // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
- // Add the exponent into the result in integer domain.
- SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // 0.000107046256 error, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
- // Add the exponent into the result in integer domain.
- SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- //
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::i32, t13);
- // Add the exponent into the result in integer domain.
- SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
- TwoToFracPartOfX, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FEXP, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
- setValue(&I, result);
- }
- /// visitLog - Lower a log intrinsic. Handles the special sequences for
- /// limited-precision mode.
- void
- SelectionDAGLowering::visitLog(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
- // Scale the exponent by log(2) [0.69314718f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, LogOfMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
- setValue(&I, result);
- }
- /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- void
- SelectionDAGLowering::visitLog2(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG2, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
- setValue(&I, result);
- }
- /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- void
- SelectionDAGLowering::visitLog10(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70));
- result = DAG.getNode(ISD::FADD, dl,
- MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FLOG10, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
- setValue(&I, result);
- }
- /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- void
- SelectionDAGLowering::visitExp2(CallInst &I) {
- SDValue result;
- DebugLoc dl = getCurDebugLoc();
- if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(1));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FEXP2, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)));
- }
- setValue(&I, result);
- }
- /// visitPow - Lower a pow intrinsic. Handles the special sequences for
- /// limited-precision mode with x == 10.0f.
- void
- SelectionDAGLowering::visitPow(CallInst &I) {
- SDValue result;
- Value *Val = I.getOperand(1);
- DebugLoc dl = getCurDebugLoc();
- bool IsExp10 = false;
- if (getValue(Val).getValueType() == MVT::f32 &&
- getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- APFloat Ten(10.0f);
- IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
- }
- }
- }
- if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op = getValue(I.getOperand(2));
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // IntegerPartOfX = (int32_t)(x * LOG2OF10);
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x40549a78));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // twoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
- SDValue TwoToFractionalPartOfX =
- DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
- result = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::f32, TwoToFractionalPartOfX);
- }
- } else {
- // No special expansion.
- result = DAG.getNode(ISD::FPOW, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)));
- }
- setValue(&I, result);
- }
- /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
- /// we want to emit this as a call to a named external function, return the name
- /// otherwise lower it and return null.
- const char *
- SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
- DebugLoc dl = getCurDebugLoc();
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- case Intrinsic::vastart: visitVAStart(I); return 0;
- case Intrinsic::vaend: visitVAEnd(I); return 0;
- case Intrinsic::vacopy: visitVACopy(I); return 0;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::setjmp:
- return "_setjmp"+!TLI.usesUnderscoreSetJmp();
- break;
- case Intrinsic::longjmp:
- return "_longjmp"+!TLI.usesUnderscoreLongJmp();
- break;
- case Intrinsic::memcpy: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
- case Intrinsic::memset: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
- I.getOperand(1), 0));
- return 0;
- }
- case Intrinsic::memmove: {
- SDValue Op1 = getValue(I.getOperand(1));
- SDValue Op2 = getValue(I.getOperand(2));
- SDValue Op3 = getValue(I.getOperand(3));
- unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
- // If the source and destination are known to not be aliases, we can
- // lower memmove as memcpy.
- uint64_t Size = -1ULL;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
- Size = C->getZExtValue();
- if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
- AliasAnalysis::NoAlias) {
- DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
- DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
- I.getOperand(1), 0, I.getOperand(2), 0));
- return 0;
- }
- case Intrinsic::dbg_stoppoint: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
- if (DW && DW->ValidDebugInfo(SPI.getContext(), Fast)) {
- MachineFunction &MF = DAG.getMachineFunction();
- if (Fast)
- DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
- SPI.getLine(),
- SPI.getColumn(),
- SPI.getContext()));
- DICompileUnit CU(cast<GlobalVariable>(SPI.getContext()));
- std::string Dir, FN;
- unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
- CU.getFilename(FN));
- unsigned idx = MF.getOrCreateDebugLocID(SrcFile,
- SPI.getLine(), SPI.getColumn());
- setCurDebugLoc(DebugLoc::get(idx));
- }
- return 0;
- }
- case Intrinsic::dbg_region_start: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
- if (DW && DW->ValidDebugInfo(RSI.getContext(), Fast)) {
- unsigned LabelID =
- DW->RecordRegionStart(cast<GlobalVariable>(RSI.getContext()));
- DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
- getRoot(), LabelID));
- }
- return 0;
- }
- case Intrinsic::dbg_region_end: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
- if (DW && DW->ValidDebugInfo(REI.getContext(), Fast)) {
- MachineFunction &MF = DAG.getMachineFunction();
- DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext()));
- std::string SPName;
- Subprogram.getLinkageName(SPName);
- if (!SPName.empty()
- && strcmp(SPName.c_str(), MF.getFunction()->getNameStart())) {
- // This is end of inlined function. Debugging information for
- // inlined function is not handled yet (only supported by FastISel).
- if (Fast) {
- unsigned ID = DW->RecordInlinedFnEnd(Subprogram);
- if (ID != 0)
- // Returned ID is 0 if this is unbalanced "end of inlined
- // scope". This could happen if optimizer eats dbg intrinsics
- // or "beginning of inlined scope" is not recoginized due to
- // missing location info. In such cases, do ignore this region.end.
- DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
- getRoot(), ID));
- }
- return 0;
- }
- unsigned LabelID =
- DW->RecordRegionEnd(cast<GlobalVariable>(REI.getContext()));
- DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
- getRoot(), LabelID));
- }
- return 0;
- }
- case Intrinsic::dbg_func_start: {
- DwarfWriter *DW = DAG.getDwarfWriter();
- if (!DW) return 0;
- DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
- Value *SP = FSI.getSubprogram();
- if (SP && DW->ValidDebugInfo(SP, Fast)) {
- MachineFunction &MF = DAG.getMachineFunction();
- if (Fast) {
- // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
- // (most?) gdb expects.
- DebugLoc PrevLoc = CurDebugLoc;
- DISubprogram Subprogram(cast<GlobalVariable>(SP));
- DICompileUnit CompileUnit = Subprogram.getCompileUnit();
- std::string Dir, FN;
- unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
- CompileUnit.getFilename(FN));
-
- if (!Subprogram.describes(MF.getFunction())) {
- // This is a beginning of an inlined function.
- // If llvm.dbg.func.start is seen in a new block before any
- // llvm.dbg.stoppoint intrinsic then the location info is unknown.
- // FIXME : Why DebugLoc is reset at the beginning of each block ?
- if (PrevLoc.isUnknown())
- return 0;
- // Record the source line.
- unsigned Line = Subprogram.getLineNumber();
- unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
- setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
- DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
- getRoot(), LabelID));
- DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
- DW->RecordInlinedFnStart(&FSI, Subprogram, LabelID,
- PrevLocTpl.Src,
- PrevLocTpl.Line,
- PrevLocTpl.Col);
- } else {
- // Record the source line.
- unsigned Line = Subprogram.getLineNumber();
- setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
- DW->RecordSourceLine(Line, 0, SrcFile);
- // llvm.dbg.func_start also defines beginning of function scope.
- DW->RecordRegionStart(cast<GlobalVariable>(FSI.getSubprogram()));
- }
- } else {
- DISubprogram Subprogram(cast<GlobalVariable>(SP));
-
- std::string SPName;
- Subprogram.getLinkageName(SPName);
- if (!SPName.empty()
- && strcmp(SPName.c_str(), MF.getFunction()->getNameStart())) {
- // This is beginning of inlined function. Debugging information for
- // inlined function is not handled yet (only supported by FastISel).
- return 0;
- }
- // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
- // what (most?) gdb expects.
- DICompileUnit CompileUnit = Subprogram.getCompileUnit();
- std::string Dir, FN;
- unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
- CompileUnit.getFilename(FN));
-
- // Record the source line but does not create a label for the normal
- // function start. It will be emitted at asm emission time. However,
- // create a label if this is a beginning of inlined function.
- unsigned Line = Subprogram.getLineNumber();
- setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
- // FIXME - Start new region because llvm.dbg.func_start also defines
- // beginning of function scope.
- }
- }
- return 0;
- }
- case Intrinsic::dbg_declare: {
- if (Fast) {
- DwarfWriter *DW = DAG.getDwarfWriter();
- DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- Value *Variable = DI.getVariable();
- if (DW && DW->ValidDebugInfo(Variable, Fast))
- DAG.setRoot(DAG.getNode(ISD::DECLARE, dl, MVT::Other, getRoot(),
- getValue(DI.getAddress()), getValue(Variable)));
- } else {
- // FIXME: Do something sensible here when we support debug declare.
- }
- return 0;
- }
- case Intrinsic::eh_exception: {
- if (!CurMBB->isLandingPad()) {
- // FIXME: Mark exception register as live in. Hack for PR1508.
- unsigned Reg = TLI.getExceptionAddressRegister();
- if (Reg) CurMBB->addLiveIn(Reg);
- }
- // Insert the EXCEPTIONADDR instruction.
- SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
- SDValue Ops[1];
- Ops[0] = DAG.getRoot();
- SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
- setValue(&I, Op);
- DAG.setRoot(Op.getValue(1));
- return 0;
- }
- case Intrinsic::eh_selector_i32:
- case Intrinsic::eh_selector_i64: {
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
- MVT::i32 : MVT::i64);
- if (MMI) {
- if (CurMBB->isLandingPad())
- AddCatchInfo(I, MMI, CurMBB);
- else {
- #ifndef NDEBUG
- FuncInfo.CatchInfoLost.insert(&I);
- #endif
- // FIXME: Mark exception selector register as live in. Hack for PR1508.
- unsigned Reg = TLI.getExceptionSelectorRegister();
- if (Reg) CurMBB->addLiveIn(Reg);
- }
- // Insert the EHSELECTION instruction.
- SDVTList VTs = DAG.getVTList(VT, MVT::Other);
- SDValue Ops[2];
- Ops[0] = getValue(I.getOperand(1));
- Ops[1] = getRoot();
- SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
- setValue(&I, Op);
- DAG.setRoot(Op.getValue(1));
- } else {
- setValue(&I, DAG.getConstant(0, VT));
- }
- return 0;
- }
- case Intrinsic::eh_typeid_for_i32:
- case Intrinsic::eh_typeid_for_i64: {
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
- MVT::i32 : MVT::i64);
- if (MMI) {
- // Find the type id for the given typeinfo.
- GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
- unsigned TypeID = MMI->getTypeIDFor(GV);
- setValue(&I, DAG.getConstant(TypeID, VT));
- } else {
- // Return something different to eh_selector.
- setValue(&I, DAG.getConstant(1, VT));
- }
- return 0;
- }
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
- MMI->setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2))));
- } else {
- setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
- }
- return 0;
- case Intrinsic::eh_unwind_init:
- if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
- MMI->setCallsUnwindInit(true);
- }
- return 0;
- case Intrinsic::eh_dwarf_cfa: {
- MVT VT = getValue(I.getOperand(1)).getValueType();
- SDValue CfaArg;
- if (VT.bitsGT(TLI.getPointerTy()))
- CfaArg = DAG.getNode(ISD::TRUNCATE, dl,
- TLI.getPointerTy(), getValue(I.getOperand(1)));
- else
- CfaArg = DAG.getNode(ISD::SIGN_EXTEND, dl,
- TLI.getPointerTy(), getValue(I.getOperand(1)));
- SDValue Offset = DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(),
- DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
- TLI.getPointerTy()),
- CfaArg);
- setValue(&I, DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(),
- DAG.getNode(ISD::FRAMEADDR, dl,
- TLI.getPointerTy(),
- DAG.getConstant(0,
- TLI.getPointerTy())),
- Offset));
- return 0;
- }
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- MVT DestVT = TLI.getValueType(I.getType());
- Value* Op1 = I.getOperand(1);
- setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getOperand(2)),
- getValue(I.getOperand(3)),
- Code));
- return 0;
- }
- case Intrinsic::sqrt:
- setValue(&I, DAG.getNode(ISD::FSQRT, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::powi:
- setValue(&I, DAG.getNode(ISD::FPOWI, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2))));
- return 0;
- case Intrinsic::sin:
- setValue(&I, DAG.getNode(ISD::FSIN, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::cos:
- setValue(&I, DAG.getNode(ISD::FCOS, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::log:
- visitLog(I);
- return 0;
- case Intrinsic::log2:
- visitLog2(I);
- return 0;
- case Intrinsic::log10:
- visitLog10(I);
- return 0;
- case Intrinsic::exp:
- visitExp(I);
- return 0;
- case Intrinsic::exp2:
- visitExp2(I);
- return 0;
- case Intrinsic::pow:
- visitPow(I);
- return 0;
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getOperand(1));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl,
- DAG.getVTList(MVT::i64, MVT::Other),
- &Op, 1);
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
- case Intrinsic::part_select: {
- // Currently not implemented: just abort
- assert(0 && "part_select intrinsic not implemented");
- abort();
- }
- case Intrinsic::part_set: {
- // Currently not implemented: just abort
- assert(0 && "part_set intrinsic not implemented");
- abort();
- }
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, dl,
- getValue(I.getOperand(1)).getValueType(),
- getValue(I.getOperand(1))));
- return 0;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
- SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
- setValue(&I, result);
- return 0;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl,
- DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
- case Intrinsic::stackrestore: {
- SDValue Tmp = getValue(I.getOperand(1));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- MVT PtrTy = TLI.getPointerTy();
- SDValue Src = getValue(I.getOperand(1)); // The guard's value.
- AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
- // Store the stack protector onto the stack.
- SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
- PseudoSourceValue::getFixedStack(FI),
- 0, true);
- setValue(&I, Result);
- DAG.setRoot(Result);
- return 0;
- }
- case Intrinsic::var_annotation:
- // Discard annotate attributes
- return 0;
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getOperand(1));
- Ops[2] = getValue(I.getOperand(2));
- Ops[3] = getValue(I.getOperand(3));
- Ops[4] = DAG.getSrcValue(I.getOperand(1));
- Ops[5] = DAG.getSrcValue(F);
- SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl,
- DAG.getVTList(TLI.getPointerTy(), MVT::Other),
- Ops, 6);
- setValue(&I, Tmp);
- DAG.setRoot(Tmp.getValue(1));
- return 0;
- }
- case Intrinsic::gcroot:
- if (GFI) {
- Value *Alloca = I.getOperand(1);
- Constant *TypeMap = cast<Constant>(I.getOperand(2));
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- }
- return 0;
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
- return 0;
- case Intrinsic::flt_rounds: {
- setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
- return 0;
- }
- case Intrinsic::trap: {
- DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
- return 0;
- }
- case Intrinsic::uadd_with_overflow:
- return implVisitAluOverflow(I, ISD::UADDO);
- case Intrinsic::sadd_with_overflow:
- return implVisitAluOverflow(I, ISD::SADDO);
- case Intrinsic::usub_with_overflow:
- return implVisitAluOverflow(I, ISD::USUBO);
- case Intrinsic::ssub_with_overflow:
- return implVisitAluOverflow(I, ISD::SSUBO);
- case Intrinsic::umul_with_overflow:
- return implVisitAluOverflow(I, ISD::UMULO);
- case Intrinsic::smul_with_overflow:
- return implVisitAluOverflow(I, ISD::SMULO);
- case Intrinsic::prefetch: {
- SDValue Ops[4];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getOperand(1));
- Ops[2] = getValue(I.getOperand(2));
- Ops[3] = getValue(I.getOperand(3));
- DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
- return 0;
- }
- case Intrinsic::memory_barrier: {
- SDValue Ops[6];
- Ops[0] = getRoot();
- for (int x = 1; x < 6; ++x)
- Ops[x] = getValue(I.getOperand(x));
- DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
- return 0;
- }
- case Intrinsic::atomic_cmp_swap: {
- SDValue Root = getRoot();
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
- getValue(I.getOperand(2)).getValueType().getSimpleVT(),
- Root,
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- getValue(I.getOperand(3)),
- I.getOperand(1));
- setValue(&I, L);
- DAG.setRoot(L.getValue(1));
- return 0;
- }
- case Intrinsic::atomic_load_add:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
- case Intrinsic::atomic_load_sub:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
- case Intrinsic::atomic_load_or:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
- case Intrinsic::atomic_load_xor:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
- case Intrinsic::atomic_load_and:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
- case Intrinsic::atomic_load_nand:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
- case Intrinsic::atomic_load_max:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
- case Intrinsic::atomic_load_min:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
- case Intrinsic::atomic_load_umin:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
- case Intrinsic::atomic_load_umax:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
- case Intrinsic::atomic_swap:
- return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
- }
- }
- void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
- bool IsTailCall,
- MachineBasicBlock *LandingPad) {
- const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- unsigned BeginLabel = 0, EndLabel = 0;
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
- for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- SDValue ArgNode = getValue(*i);
- Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
- unsigned attrInd = i - CS.arg_begin() + 1;
- Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
- Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
- Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
- Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
- Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
- Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
- Entry.Alignment = CS.getParamAlignment(attrInd);
- Args.push_back(Entry);
- }
- if (LandingPad && MMI) {
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI->NextLabelID();
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
- getControlRoot(), BeginLabel));
- }
- std::pair<SDValue,SDValue> Result =
- TLI.LowerCallTo(getRoot(), CS.getType(),
- CS.paramHasAttr(0, Attribute::SExt),
- CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
- CS.paramHasAttr(0, Attribute::InReg),
- CS.getCallingConv(),
- IsTailCall && PerformTailCallOpt,
- Callee, Args, DAG, getCurDebugLoc());
- if (CS.getType() != Type::VoidTy)
- setValue(CS.getInstruction(), Result.first);
- DAG.setRoot(Result.second);
- if (LandingPad && MMI) {
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- EndLabel = MMI->NextLabelID();
- DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
- getRoot(), EndLabel));
- // Inform MachineModuleInfo of range.
- MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
- }
- }
- void SelectionDAGLowering::visitCall(CallInst &I) {
- const char *RenameFn = 0;
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
- if (II) {
- if (unsigned IID = II->getIntrinsicID(F)) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- if (unsigned IID = F->getIntrinsicID()) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call.
- unsigned NameLen = F->getNameLen();
- if (!F->hasLocalLinkage() && NameLen) {
- const char *NameStr = F->getNameStart();
- if (NameStr[0] == 'c' &&
- ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
- (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
- if (I.getNumOperands() == 3 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType() &&
- I.getType() == I.getOperand(2)->getType()) {
- SDValue LHS = getValue(I.getOperand(1));
- SDValue RHS = getValue(I.getOperand(2));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- } else if (NameStr[0] == 'f' &&
- ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
- (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
- (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- } else if (NameStr[0] == 's' &&
- ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
- (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
- (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- } else if (NameStr[0] == 'c' &&
- ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
- (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
- (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
- if (I.getNumOperands() == 2 && // Basic sanity checks.
- I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
- SDValue Tmp = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
- Tmp.getValueType(), Tmp));
- return;
- }
- }
- }
- } else if (isa<InlineAsm>(I.getOperand(0))) {
- visitInlineAsm(&I);
- return;
- }
- SDValue Callee;
- if (!RenameFn)
- Callee = getValue(I.getOperand(0));
- else
- Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
- LowerCallTo(&I, Callee, I.isTailCall());
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVT value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain,
- SDValue *Flag) const {
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- MVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = RegVTs[Value];
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (Flag == 0)
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
- RegisterVT.isInteger() && !RegisterVT.isVector()) {
- unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
- FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
- if (FLI.LiveOutRegInfo.size() > SlotNo) {
- FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
- unsigned RegSize = RegisterVT.getSizeInBits();
- unsigned NumSignBits = LOI.NumSignBits;
- unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt = true;
- MVT FromVT(MVT::Other);
- if (NumSignBits == RegSize)
- isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
- else if (NumZeroBits >= RegSize-1)
- isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
- else if (NumSignBits > RegSize-8)
- isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
- else if (NumZeroBits >= RegSize-8)
- isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
- else if (NumSignBits > RegSize-16)
- isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
- else if (NumZeroBits >= RegSize-16)
- isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
- else if (NumSignBits > RegSize-32)
- isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
- else if (NumZeroBits >= RegSize-32)
- isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
- if (FromVT != MVT::Other) {
- P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
- }
- }
- }
- Parts[i] = P;
- }
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
- NumRegs, RegisterVT, ValueVT);
- Part += NumRegs;
- Parts.clear();
- }
- return DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Values[0], ValueVTs.size());
- }
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag) const {
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = RegVTs[Value];
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
- &Parts[Part], NumParts, RegisterVT);
- Part += NumParts;
- }
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (Flag == 0)
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
- }
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker and includes the number of
- /// values added into it.
- void RegsForValue::AddInlineAsmOperands(unsigned Code,
- bool HasMatching,unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
- assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
- unsigned Flag = Code | (Regs.size() << 3);
- if (HasMatching)
- Flag |= 0x80000000 | (MatchingIdx << 16);
- Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
- MVT RegisterVT = RegVTs[Value];
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
- }
- }
- }
- /// isAllocatableRegister - If the specified register is safe to allocate,
- /// i.e. it isn't a stack pointer or some other special register, return the
- /// register class for the register. Otherwise, return null.
- static const TargetRegisterClass *
- isAllocatableRegister(unsigned Reg, MachineFunction &MF,
- const TargetLowering &TLI,
- const TargetRegisterInfo *TRI) {
- MVT FoundVT = MVT::Other;
- const TargetRegisterClass *FoundRC = 0;
- for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
- E = TRI->regclass_end(); RCI != E; ++RCI) {
- MVT ThisVT = MVT::Other;
- const TargetRegisterClass *RC = *RCI;
- // If none of the the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (TLI.isTypeLegal(*I)) {
- // If we have already found this register in a different register class,
- // choose the one with the largest VT specified. For example, on
- // PowerPC, we favor f64 register classes over f32.
- if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
- ThisVT = *I;
- break;
- }
- }
- }
- if (ThisVT == MVT::Other) continue;
- // NOTE: This isn't ideal. In particular, this might allocate the
- // frame pointer in functions that need it (due to them not being taken
- // out of allocation, because a variable sized allocation hasn't been seen
- // yet). This is a slight code pessimization, but should still work.
- for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
- E = RC->allocation_order_end(MF); I != E; ++I)
- if (*I == Reg) {
- // We found a matching register class. Keep looking at others in case
- // we find one with larger registers that this physreg is also in.
- FoundRC = RC;
- FoundVT = ThisVT;
- break;
- }
- }
- return FoundRC;
- }
- namespace llvm {
- /// AsmOperandInfo - This contains information for each constraint that we are
- /// lowering.
- class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
- public TargetLowering::AsmOperandInfo {
- public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
- explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
- }
- /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
- /// busy in OutputRegs/InputRegs.
- void MarkAllocatedRegs(bool isOutReg, bool isInReg,
- std::set<unsigned> &OutputRegs,
- std::set<unsigned> &InputRegs,
- const TargetRegisterInfo &TRI) const {
- if (isOutReg) {
- for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
- MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
- }
- if (isInReg) {
- for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
- MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
- }
- }
- /// getCallOperandValMVT - Return the MVT of the Value* that this operand
- /// corresponds to. If there is no Value* for this operand, it returns
- /// MVT::Other.
- MVT getCallOperandValMVT(const TargetLowering &TLI,
- const TargetData *TD) const {
- if (CallOperandVal == 0) return MVT::Other;
- if (isa<BasicBlock>(CallOperandVal))
- return TLI.getPointerTy();
- const llvm::Type *OpTy = CallOperandVal->getType();
- // If this is an indirect operand, the operand is a pointer to the
- // accessed type.
- if (isIndirect)
- OpTy = cast<PointerType>(OpTy)->getElementType();
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(BitSize);
- break;
- }
- }
- return TLI.getValueType(OpTy, true);
- }
- private:
- /// MarkRegAndAliases - Mark the specified register and all aliases in the
- /// specified set.
- static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
- const TargetRegisterInfo &TRI) {
- assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
- Regs.insert(Reg);
- if (const unsigned *Aliases = TRI.getAliasSet(Reg))
- for (; *Aliases; ++Aliases)
- Regs.insert(*Aliases);
- }
- };
- } // end llvm namespace.
- /// GetRegistersForValue - Assign registers (virtual or physical) for the
- /// specified operand. We prefer to assign virtual registers, to allow the
- /// register allocator handle the assignment process. However, if the asm uses
- /// features that we can't model on machineinstrs, we have SDISel do the
- /// allocation. This produces generally horrible, but correct, code.
- ///
- /// OpInfo describes the operand.
- /// Input and OutputRegs are the set of already allocated physical registers.
- ///
- void SelectionDAGLowering::
- GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
- std::set<unsigned> &OutputRegs,
- std::set<unsigned> &InputRegs) {
- // Compute whether this value requires an input register, an output register,
- // or both.
- bool isOutReg = false;
- bool isInReg = false;
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- isOutReg = true;
- // If there is an input constraint that matches this, we need to reserve
- // the input register so no other inputs allocate to it.
- isInReg = OpInfo.hasMatchingInput();
- break;
- case InlineAsm::isInput:
- isInReg = true;
- isOutReg = false;
- break;
- case InlineAsm::isClobber:
- isOutReg = true;
- isInReg = true;
- break;
- }
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other) {
- // If this is a FP input in an integer register (or visa versa) insert a bit
- // cast of the input value. More generally, handle any case where the input
- // value disagrees with the register class we plan to stick this in.
- if (OpInfo.Type == InlineAsm::isInput &&
- PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first MVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types).
- MVT RegVT = *PhysReg.second->vt_begin();
- if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
- OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- // If the input is a FP value and we want it in FP registers, do a
- // bitcast to the corresponding integer type. This turns an f64 value
- // into i64, which can be passed with two i32 values on a 32-bit
- // machine.
- RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
- OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- }
- }
- NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
- }
- MVT RegVT;
- MVT ValueVT = OpInfo.ConstraintVT;
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- if (unsigned AssignedReg = PhysReg.first) {
- const TargetRegisterClass *RC = PhysReg.second;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = *RC->vt_begin();
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- RegVT = *RC->vt_begin();
- // This is a explicit reference to a physical register.
- Regs.push_back(AssignedReg);
- // If this is an expanded reference, add the rest of the regs to Regs.
- if (NumRegs != 1) {
- TargetRegisterClass::iterator I = RC->begin();
- for (; *I != AssignedReg; ++I)
- assert(I != RC->end() && "Didn't find reg!");
- // Already added the first reg.
- --NumRegs; ++I;
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Regs.push_back(*I);
- }
- }
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
- return;
- }
- // Otherwise, if this was a reference to an LLVM register class, create vregs
- // for this reference.
- if (const TargetRegisterClass *RC = PhysReg.second) {
- RegVT = *RC->vt_begin();
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
- // Create the appropriate number of virtual registers.
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- for (; NumRegs; --NumRegs)
- Regs.push_back(RegInfo.createVirtualRegister(RC));
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
- return;
- }
-
- // This is a reference to a register class that doesn't directly correspond
- // to an LLVM register class. Allocate NumRegs consecutive, available,
- // registers from the class.
- std::vector<unsigned> RegClassRegs
- = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- unsigned NumAllocated = 0;
- for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
- unsigned Reg = RegClassRegs[i];
- // See if this register is available.
- if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
- (isInReg && InputRegs.count(Reg))) { // Already used.
- // Make sure we find consecutive registers.
- NumAllocated = 0;
- continue;
- }
- // Check to see if this register is allocatable (i.e. don't give out the
- // stack pointer).
- const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
- if (!RC) { // Couldn't allocate this register.
- // Reset NumAllocated to make sure we return consecutive registers.
- NumAllocated = 0;
- continue;
- }
- // Okay, this register is good, we can use it.
- ++NumAllocated;
- // If we allocated enough consecutive registers, succeed.
- if (NumAllocated == NumRegs) {
- unsigned RegStart = (i-NumAllocated)+1;
- unsigned RegEnd = i+1;
- // Mark all of the allocated registers used.
- for (unsigned i = RegStart; i != RegEnd; ++i)
- Regs.push_back(RegClassRegs[i]);
- OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
- OpInfo.ConstraintVT);
- OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
- return;
- }
- }
- // Otherwise, we couldn't allocate enough registers for this.
- }
- /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
- /// processed uses a memory 'm' constraint.
- static bool
- hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
- const TargetLowering &TLI) {
- for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
- InlineAsm::ConstraintInfo &CI = CInfos[i];
- for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
- if (CType == TargetLowering::C_Memory)
- return true;
- }
- }
- return false;
- }
- /// visitInlineAsm - Handle a call to an InlineAsm object.
- ///
- void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
- InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- /// ConstraintOperands - Information about all of the constraints.
- std::vector<SDISelAsmOperandInfo> ConstraintOperands;
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- SDValue Chain = IA->hasSideEffects() ? getRoot() : DAG.getRoot();
- SDValue Flag;
- std::set<unsigned> OutputRegs, InputRegs;
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- std::vector<InlineAsm::ConstraintInfo>
- ConstraintInfos = IA->ParseConstraints();
- bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
- // Flush pending loads if this touches memory (includes clobbering it).
- // It's possible this is overly conservative.
- if (hasMemory)
- Chain = getRoot();
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- MVT OpVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
- if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI.getValueType(STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI.getValueType(CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
- OpVT = OpInfo.getCallOperandValMVT(TLI, TD);
- }
- OpInfo.ConstraintVT = OpVT;
- }
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- cerr << "llvm: error: Unsupported asm: input constraint with a "
- << "matching output constraint of incompatible type!\n";
- exit(1);
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert(OpInfo.Type == InlineAsm::isInput &&
- "Can only indirectify direct input operands!");
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
- TLI.getPointerTy());
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- const Type *Ty = OpVal->getType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
- unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
- Chain = DAG.getStore(Chain, getCurDebugLoc(),
- OpInfo.CallOperand, StackSlot, NULL, 0);
- OpInfo.CallOperand = StackSlot;
- }
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = 0;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
- // If this constraint is for a specific register, allocate it before
- // anything else.
- if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
- }
- ConstraintInfos.clear();
- // Second pass - Loop over all of the operands, assigning virtual or physregs
- // to register class operands.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // C_Register operands have already been allocated, Other/Memory don't need
- // to be.
- if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
- }
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(
- DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
- // Loop over all of the inputs, copying the operand values into the
- // appropriate registers and processing the output regs.
- RegsForValue RetValRegs;
- // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
- std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- switch (OpInfo.Type) {
- case InlineAsm::isOutput: {
- if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
- OpInfo.ConstraintType != TargetLowering::C_Register) {
- // Memory output, or 'other' output (e.g. 'X' constraint).
- assert(OpInfo.isIndirect && "Memory output must be indirect operand");
- // Add information to the INLINEASM node to know about this output.
- unsigned ResOpType = 4/*MEM*/ | (1<<3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- break;
- }
- // Otherwise, this is a register or register class output.
- // Copy the output from the appropriate register. Find a register that
- // we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- cerr << "llvm: error: Couldn't allocate output reg for constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
- }
- // If this is an indirect operand, store through the pointer after the
- // asm.
- if (OpInfo.isIndirect) {
- IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
- OpInfo.CallOperandVal));
- } else {
- // This is the result value of the call.
- assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
- // Concatenate this output onto the outputs list.
- RetValRegs.append(OpInfo.AssignedRegs);
- }
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
- 6 /* EARLYCLOBBER REGDEF */ :
- 2 /* REGDEF */ ,
- false,
- 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isInput: {
- SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
- // If this is required to match an output register we have already set,
- // just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = 2; // The first operand.
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
- (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
- (OpFlag & 7) == 4 /*MEM*/) &&
- "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if ((OpFlag & 7) == 2 /*REGDEF*/
- || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- RegsForValue MatchedRegs;
- MatchedRegs.TLI = &TLI;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- MVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i)
- MatchedRegs.Regs.
- push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag);
- MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
- true, OpInfo.getMatchedOperand(),
- DAG, AsmNodeOperands);
- break;
- } else {
- assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
- assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Other) {
- assert(!OpInfo.isIndirect &&
- "Don't know how to handle indirect other inputs yet!");
- std::vector<SDValue> Ops;
- TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
- hasMemory, Ops, DAG);
- if (Ops.empty()) {
- cerr << "llvm: error: Invalid operand for inline asm constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
- }
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
- break;
- } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
- "Memory operands expect pointer values");
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = 4/*MEM*/ | (1<<3);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- assert(!OpInfo.isIndirect &&
- "Don't know how to handle indirect register inputs yet!");
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- cerr << "llvm: error: Couldn't allocate output reg for constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
- }
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag);
- OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber: {
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
- false, 0, DAG,AsmNodeOperands);
- break;
- }
- }
- }
- // Finish up input operands.
- AsmNodeOperands[0] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
- Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
- DAG.getVTList(MVT::Other, MVT::Flag),
- &AsmNodeOperands[0], AsmNodeOperands.size());
- Flag = Chain.getValue(1);
- // If this asm returns a register value, copy the result from that register
- // and set it as the value of the call.
- if (!RetValRegs.Regs.empty()) {
- SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
- Chain, &Flag);
- // FIXME: Why don't we do this for inline asms with MRVs?
- if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- MVT ResultType = TLI.getValueType(CS.getType());
- // If any of the results of the inline asm is a vector, it may have the
- // wrong width/num elts. This can happen for register classes that can
- // contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
- ResultType, Val);
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
- }
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
- }
- setValue(CS.getInstruction(), Val);
- // Don't need to use this as a chain in this case.
- if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
- return;
- }
- std::vector<std::pair<SDValue, Value*> > StoresToEmit;
- // Process indirect outputs, first output all of the flagged copies out of
- // physregs.
- for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
- RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
- Value *Ptr = IndirectStoresToEmit[i].second;
- SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
- Chain, &Flag);
- StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
- }
- // Emit the non-flagged stores from the physregs.
- SmallVector<SDValue, 8> OutChains;
- for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
- OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
- StoresToEmit[i].first,
- getValue(StoresToEmit[i].second),
- StoresToEmit[i].second, 0));
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &OutChains[0], OutChains.size());
- DAG.setRoot(Chain);
- }
- void SelectionDAGLowering::visitMalloc(MallocInst &I) {
- SDValue Src = getValue(I.getOperand(0));
- // Scale up by the type size in the original i32 type width. Various
- // mid-level optimizers may make assumptions about demanded bits etc from the
- // i32-ness of the optimizer: we do not want to promote to i64 and then
- // multiply on 64-bit targets.
- // FIXME: Malloc inst should go away: PR715.
- uint64_t ElementSize = TD->getTypePaddedSize(I.getType()->getElementType());
- if (ElementSize != 1)
- Src = DAG.getNode(ISD::MUL, getCurDebugLoc(), Src.getValueType(),
- Src, DAG.getConstant(ElementSize, Src.getValueType()));
-
- MVT IntPtr = TLI.getPointerTy();
- if (IntPtr.bitsLT(Src.getValueType()))
- Src = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), IntPtr, Src);
- else if (IntPtr.bitsGT(Src.getValueType()))
- Src = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), IntPtr, Src);
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Src;
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
- Args.push_back(Entry);
- std::pair<SDValue,SDValue> Result =
- TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false,
- CallingConv::C, PerformTailCallOpt,
- DAG.getExternalSymbol("malloc", IntPtr),
- Args, DAG, getCurDebugLoc());
- setValue(&I, Result.first); // Pointers always fit in registers
- DAG.setRoot(Result.second);
- }
- void SelectionDAGLowering::visitFree(FreeInst &I) {
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = getValue(I.getOperand(0));
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
- Args.push_back(Entry);
- MVT IntPtr = TLI.getPointerTy();
- std::pair<SDValue,SDValue> Result =
- TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false,
- CallingConv::C, PerformTailCallOpt,
- DAG.getExternalSymbol("free", IntPtr), Args, DAG,
- getCurDebugLoc());
- DAG.setRoot(Result.second);
- }
- void SelectionDAGLowering::visitVAStart(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(1))));
- }
- void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
- SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
- getRoot(), getValue(I.getOperand(0)),
- DAG.getSrcValue(I.getOperand(0)));
- setValue(&I, V);
- DAG.setRoot(V.getValue(1));
- }
- void SelectionDAGLowering::visitVAEnd(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(1))));
- }
- void SelectionDAGLowering::visitVACopy(CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getOperand(1)),
- getValue(I.getOperand(2)),
- DAG.getSrcValue(I.getOperand(1)),
- DAG.getSrcValue(I.getOperand(2))));
- }
- /// TargetLowering::LowerArguments - This is the default LowerArguments
- /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
- /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
- /// integrated into SDISel.
- void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &ArgValues,
- DebugLoc dl) {
- // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
- SmallVector<SDValue, 3+16> Ops;
- Ops.push_back(DAG.getRoot());
- Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
- Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
- // Add one result value for each formal argument.
- SmallVector<MVT, 16> RetVals;
- unsigned j = 1;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++j) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(*this, I->getType(), ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForMVT();
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getTargetData()->getABITypeAlignment(ArgTy);
- if (F.paramHasAttr(j, Attribute::ZExt))
- Flags.setZExt();
- if (F.paramHasAttr(j, Attribute::SExt))
- Flags.setSExt();
- if (F.paramHasAttr(j, Attribute::InReg))
- Flags.setInReg();
- if (F.paramHasAttr(j, Attribute::StructRet))
- Flags.setSRet();
- if (F.paramHasAttr(j, Attribute::ByVal)) {
- Flags.setByVal();
- const PointerType *Ty = cast<PointerType>(I->getType());
- const Type *ElementTy = Ty->getElementType();
- unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- if (F.getParamAlignment(j))
- FrameAlign = F.getParamAlignment(j);
- Flags.setByValAlign(FrameAlign);
- Flags.setByValSize(FrameSize);
- }
- if (F.paramHasAttr(j, Attribute::Nest))
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- RetVals.push_back(RegisterVT);
- ISD::ArgFlagsTy MyFlags = Flags;
- if (NumRegs > 1 && i == 0)
- MyFlags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.setOrigAlign(1);
- Ops.push_back(DAG.getArgFlags(MyFlags));
- }
- }
- }
- RetVals.push_back(MVT::Other);
- // Create the node.
- SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, dl,
- DAG.getVTList(&RetVals[0], RetVals.size()),
- &Ops[0], Ops.size()).getNode();
- // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
- // allows exposing the loads that may be part of the argument access to the
- // first DAGCombiner pass.
- SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
- // The number of results should match up, except that the lowered one may have
- // an extra flag result.
- assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
- (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
- TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
- && "Lowering produced unexpected number of results!");
- // The FORMAL_ARGUMENTS node itself is likely no longer needed.
- if (Result != TmpRes.getNode() && Result->use_empty()) {
- HandleSDNode Dummy(DAG.getRoot());
- DAG.RemoveDeadNode(Result);
- }
- Result = TmpRes.getNode();
- unsigned NumArgRegs = Result->getNumValues() - 1;
- DAG.setRoot(SDValue(Result, NumArgRegs));
- // Set up the return result vector.
- unsigned i = 0;
- unsigned Idx = 1;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(*this, I->getType(), ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- MVT PartVT = getRegisterType(VT);
- unsigned NumParts = getNumRegisters(VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- for (unsigned j = 0; j != NumParts; ++j)
- Parts[j] = SDValue(Result, i++);
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.paramHasAttr(Idx, Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.paramHasAttr(Idx, Attribute::ZExt))
- AssertOp = ISD::AssertZext;
- ArgValues.push_back(getCopyFromParts(DAG, dl, &Parts[0], NumParts,
- PartVT, VT, AssertOp));
- }
- }
- assert(i == NumArgRegs && "Argument register count mismatch!");
- }
- /// TargetLowering::LowerCallTo - This is the default LowerCallTo
- /// implementation, which just inserts an ISD::CALL node, which is later custom
- /// lowered by the target to something concrete. FIXME: When all targets are
- /// migrated to using ISD::CALL, this hook should be integrated into SDISel.
- std::pair<SDValue, SDValue>
- TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
- bool RetSExt, bool RetZExt, bool isVarArg,
- bool isInreg,
- unsigned CallingConv, bool isTailCall,
- SDValue Callee,
- ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
- assert((!isTailCall || PerformTailCallOpt) &&
- "isTailCall set when tail-call optimizations are disabled!");
- SmallVector<SDValue, 32> Ops;
- Ops.push_back(Chain); // Op#0 - Chain
- Ops.push_back(Callee);
- // Handle all of the outgoing arguments.
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForMVT();
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getTargetData()->getABITypeAlignment(ArgTy);
- if (Args[i].isZExt)
- Flags.setZExt();
- if (Args[i].isSExt)
- Flags.setSExt();
- if (Args[i].isInReg)
- Flags.setInReg();
- if (Args[i].isSRet)
- Flags.setSRet();
- if (Args[i].isByVal) {
- Flags.setByVal();
- const PointerType *Ty = cast<PointerType>(Args[i].Ty);
- const Type *ElementTy = Ty->getElementType();
- unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
- // For ByVal, alignment should come from FE. BE will guess if this
- // info is not there but there are cases it cannot get right.
- if (Args[i].Alignment)
- FrameAlign = Args[i].Alignment;
- Flags.setByValAlign(FrameAlign);
- Flags.setByValSize(FrameSize);
- }
- if (Args[i].isNest)
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- MVT PartVT = getRegisterType(VT);
- unsigned NumParts = getNumRegisters(VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (Args[i].isSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].isZExt)
- ExtendKind = ISD::ZERO_EXTEND;
- getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
- for (unsigned i = 0; i != NumParts; ++i) {
- // if it isn't first piece, alignment must be 1
- ISD::ArgFlagsTy MyFlags = Flags;
- if (NumParts > 1 && i == 0)
- MyFlags.setSplit();
- else if (i != 0)
- MyFlags.setOrigAlign(1);
- Ops.push_back(Parts[i]);
- Ops.push_back(DAG.getArgFlags(MyFlags));
- }
- }
- }
- // Figure out the result value types. We start by making a list of
- // the potentially illegal return value types.
- SmallVector<MVT, 4> LoweredRetTys;
- SmallVector<MVT, 4> RetTys;
- ComputeValueVTs(*this, RetTy, RetTys);
- // Then we translate that to a list of legal types.
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- MVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- for (unsigned i = 0; i != NumRegs; ++i)
- LoweredRetTys.push_back(RegisterVT);
- }
- LoweredRetTys.push_back(MVT::Other); // Always has a chain.
- // Create the CALL node.
- SDValue Res = DAG.getCall(CallingConv, dl,
- isVarArg, isTailCall, isInreg,
- DAG.getVTList(&LoweredRetTys[0],
- LoweredRetTys.size()),
- &Ops[0], Ops.size()
- );
- Chain = Res.getValue(LoweredRetTys.size() - 1);
- // Gather up the call result into a single value.
- if (RetTy != Type::VoidTy && !RetTys.empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (RetSExt)
- AssertOp = ISD::AssertSext;
- else if (RetZExt)
- AssertOp = ISD::AssertZext;
- SmallVector<SDValue, 4> ReturnValues;
- unsigned RegNo = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- MVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- unsigned RegNoEnd = NumRegs + RegNo;
- SmallVector<SDValue, 4> Results;
- for (; RegNo != RegNoEnd; ++RegNo)
- Results.push_back(Res.getValue(RegNo));
- SDValue ReturnValue =
- getCopyFromParts(DAG, dl, &Results[0], NumRegs, RegisterVT, VT,
- AssertOp);
- ReturnValues.push_back(ReturnValue);
- }
- Res = DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&RetTys[0], RetTys.size()),
- &ReturnValues[0], ReturnValues.size());
- }
- return std::make_pair(Res, Chain);
- }
- void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (Res.getNode())
- Results.push_back(Res);
- }
- SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
- assert(0 && "LowerOperation not implemented for this target!");
- abort();
- return SDValue();
- }
- void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
- SDValue Op = getValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- RegsForValue RFV(TLI, Reg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
- PendingExports.push_back(Chain);
- }
- #include "llvm/CodeGen/SelectionDAGISel.h"
- void SelectionDAGISel::
- LowerArguments(BasicBlock *LLVMBB) {
- // If this is the entry block, emit arguments.
- Function &F = *LLVMBB->getParent();
- SDValue OldRoot = SDL->DAG.getRoot();
- SmallVector<SDValue, 16> Args;
- TLI.LowerArguments(F, SDL->DAG, Args, SDL->getCurDebugLoc());
- unsigned a = 0;
- for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
- AI != E; ++AI) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, AI->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (!AI->use_empty()) {
- SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues,
- SDL->getCurDebugLoc()));
- // If this argument is live outside of the entry block, insert a copy from
- // whereever we got it to the vreg that other BB's will reference it as.
- SDL->CopyToExportRegsIfNeeded(AI);
- }
- a += NumValues;
- }
- // Finally, if the target has anything special to do, allow it to do so.
- // FIXME: this should insert code into the DAG!
- EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
- }
- /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
- /// ensure constants are generated when needed. Remember the virtual registers
- /// that need to be added to the Machine PHI nodes as input. We cannot just
- /// directly add them, because expansion might result in multiple MBB's for one
- /// BB. As such, the start of the BB might correspond to a different MBB than
- /// the end.
- ///
- void
- SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
- TerminatorInst *TI = LLVMBB->getTerminator();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- PHINode *PN;
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::iterator I = SuccBB->begin();
- (PN = dyn_cast<PHINode>(I)); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
- unsigned Reg;
- Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
- if (Constant *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = SDL->ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo->CreateRegForValue(C);
- SDL->CopyValueToVirtualRegister(C, RegOut);
- }
- Reg = RegOut;
- } else {
- Reg = FuncInfo->ValueMap[PHIOp];
- if (Reg == 0) {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo->CreateRegForValue(PHIOp);
- SDL->CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- MVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(VT);
- for (unsigned i = 0, e = NumRegisters; i != e; ++i)
- SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
- Reg += NumRegisters;
- }
- }
- }
- SDL->ConstantsOut.clear();
- }
- /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
- /// supports legal types, and it emits MachineInstrs directly instead of
- /// creating SelectionDAG nodes.
- ///
- bool
- SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
- FastISel *F) {
- TerminatorInst *TI = LLVMBB->getTerminator();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- PHINode *PN;
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::iterator I = SuccBB->begin();
- (PN = dyn_cast<PHINode>(I)); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
- // Only handle legal types. Two interesting things to note here. First,
- // by bailing out early, we may leave behind some dead instructions,
- // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
- // own moves. Second, this check is necessary becuase FastISel doesn't
- // use CreateRegForValue to create registers, so it always creates
- // exactly one register for each non-void instruction.
- MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
- if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
- // Promote MVT::i1.
- if (VT == MVT::i1)
- VT = TLI.getTypeToTransformTo(VT);
- else {
- SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
- return false;
- }
- }
- Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
- unsigned Reg = F->getRegForValue(PHIOp);
- if (Reg == 0) {
- SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
- return false;
- }
- SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
- }
- }
- return true;
- }
|