1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648 |
- //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
- // and generates target-independent LLVM-IR.
- // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
- // of instructions in order to estimate the profitability of vectorization.
- //
- // The loop vectorizer combines consecutive loop iterations into a single
- // 'wide' iteration. After this transformation the index is incremented
- // by the SIMD vector width, and not by one.
- //
- // This pass has three parts:
- // 1. The main loop pass that drives the different parts.
- // 2. LoopVectorizationLegality - A unit that checks for the legality
- // of the vectorization.
- // 3. InnerLoopVectorizer - A unit that performs the actual
- // widening of instructions.
- // 4. LoopVectorizationCostModel - A unit that checks for the profitability
- // of vectorization. It decides on the optimal vector width, which
- // can be one, if vectorization is not profitable.
- //
- // There is a development effort going on to migrate loop vectorizer to the
- // VPlan infrastructure and to introduce outer loop vectorization support (see
- // docs/Proposal/VectorizationPlan.rst and
- // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
- // purpose, we temporarily introduced the VPlan-native vectorization path: an
- // alternative vectorization path that is natively implemented on top of the
- // VPlan infrastructure. See EnableVPlanNativePath for enabling.
- //
- //===----------------------------------------------------------------------===//
- //
- // The reduction-variable vectorization is based on the paper:
- // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
- //
- // Variable uniformity checks are inspired by:
- // Karrenberg, R. and Hack, S. Whole Function Vectorization.
- //
- // The interleaved access vectorization is based on the paper:
- // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
- // Data for SIMD
- //
- // Other ideas/concepts are from:
- // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
- //
- // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
- // Vectorizing Compilers.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/LoopVectorize.h"
- #include "LoopVectorizationPlanner.h"
- #include "VPRecipeBuilder.h"
- #include "VPlanHCFGBuilder.h"
- #include "VPlanHCFGTransforms.h"
- #include "VPlanPredicator.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/LoopVersioning.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <cstdlib>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <memory>
- #include <string>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- /// @{
- /// Metadata attribute names
- static const char *const LLVMLoopVectorizeFollowupAll =
- "llvm.loop.vectorize.followup_all";
- static const char *const LLVMLoopVectorizeFollowupVectorized =
- "llvm.loop.vectorize.followup_vectorized";
- static const char *const LLVMLoopVectorizeFollowupEpilogue =
- "llvm.loop.vectorize.followup_epilogue";
- /// @}
- STATISTIC(LoopsVectorized, "Number of loops vectorized");
- STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
- /// Loops with a known constant trip count below this number are vectorized only
- /// if no scalar iteration overheads are incurred.
- static cl::opt<unsigned> TinyTripCountVectorThreshold(
- "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
- cl::desc("Loops with a constant trip count that is smaller than this "
- "value are vectorized only if no scalar iteration overheads "
- "are incurred."));
- static cl::opt<bool> MaximizeBandwidth(
- "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
- cl::desc("Maximize bandwidth when selecting vectorization factor which "
- "will be determined by the smallest type in loop."));
- static cl::opt<bool> EnableInterleavedMemAccesses(
- "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
- /// An interleave-group may need masking if it resides in a block that needs
- /// predication, or in order to mask away gaps.
- static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
- "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
- cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
- /// We don't interleave loops with a known constant trip count below this
- /// number.
- static const unsigned TinyTripCountInterleaveThreshold = 128;
- static cl::opt<unsigned> ForceTargetNumScalarRegs(
- "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of scalar registers."));
- static cl::opt<unsigned> ForceTargetNumVectorRegs(
- "force-target-num-vector-regs", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's number of vector registers."));
- static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
- "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "scalar loops."));
- static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
- "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's max interleave factor for "
- "vectorized loops."));
- static cl::opt<unsigned> ForceTargetInstructionCost(
- "force-target-instruction-cost", cl::init(0), cl::Hidden,
- cl::desc("A flag that overrides the target's expected cost for "
- "an instruction to a single constant value. Mostly "
- "useful for getting consistent testing."));
- static cl::opt<unsigned> SmallLoopCost(
- "small-loop-cost", cl::init(20), cl::Hidden,
- cl::desc(
- "The cost of a loop that is considered 'small' by the interleaver."));
- static cl::opt<bool> LoopVectorizeWithBlockFrequency(
- "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to access PGO "
- "heuristics minimizing code growth in cold regions and being more "
- "aggressive in hot regions."));
- // Runtime interleave loops for load/store throughput.
- static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
- "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
- cl::desc(
- "Enable runtime interleaving until load/store ports are saturated"));
- /// The number of stores in a loop that are allowed to need predication.
- static cl::opt<unsigned> NumberOfStoresToPredicate(
- "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
- cl::desc("Max number of stores to be predicated behind an if."));
- static cl::opt<bool> EnableIndVarRegisterHeur(
- "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
- cl::desc("Count the induction variable only once when interleaving"));
- static cl::opt<bool> EnableCondStoresVectorization(
- "enable-cond-stores-vec", cl::init(true), cl::Hidden,
- cl::desc("Enable if predication of stores during vectorization."));
- static cl::opt<unsigned> MaxNestedScalarReductionIC(
- "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
- cl::desc("The maximum interleave count to use when interleaving a scalar "
- "reduction in a nested loop."));
- cl::opt<bool> EnableVPlanNativePath(
- "enable-vplan-native-path", cl::init(false), cl::Hidden,
- cl::desc("Enable VPlan-native vectorization path with "
- "support for outer loop vectorization."));
- // FIXME: Remove this switch once we have divergence analysis. Currently we
- // assume divergent non-backedge branches when this switch is true.
- cl::opt<bool> EnableVPlanPredication(
- "enable-vplan-predication", cl::init(false), cl::Hidden,
- cl::desc("Enable VPlan-native vectorization path predicator with "
- "support for outer loop vectorization."));
- // This flag enables the stress testing of the VPlan H-CFG construction in the
- // VPlan-native vectorization path. It must be used in conjuction with
- // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
- // verification of the H-CFGs built.
- static cl::opt<bool> VPlanBuildStressTest(
- "vplan-build-stress-test", cl::init(false), cl::Hidden,
- cl::desc(
- "Build VPlan for every supported loop nest in the function and bail "
- "out right after the build (stress test the VPlan H-CFG construction "
- "in the VPlan-native vectorization path)."));
- cl::opt<bool> llvm::EnableLoopInterleaving(
- "interleave-loops", cl::init(true), cl::Hidden,
- cl::desc("Enable loop interleaving in Loop vectorization passes"));
- cl::opt<bool> llvm::EnableLoopVectorization(
- "vectorize-loops", cl::init(true), cl::Hidden,
- cl::desc("Run the Loop vectorization passes"));
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type *ToVectorTy(Type *Scalar, unsigned VF) {
- if (Scalar->isVoidTy() || VF == 1)
- return Scalar;
- return VectorType::get(Scalar, VF);
- }
- /// A helper function that returns the type of loaded or stored value.
- static Type *getMemInstValueType(Value *I) {
- assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
- "Expected Load or Store instruction");
- if (auto *LI = dyn_cast<LoadInst>(I))
- return LI->getType();
- return cast<StoreInst>(I)->getValueOperand()->getType();
- }
- /// A helper function that returns true if the given type is irregular. The
- /// type is irregular if its allocated size doesn't equal the store size of an
- /// element of the corresponding vector type at the given vectorization factor.
- static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
- // Determine if an array of VF elements of type Ty is "bitcast compatible"
- // with a <VF x Ty> vector.
- if (VF > 1) {
- auto *VectorTy = VectorType::get(Ty, VF);
- return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
- }
- // If the vectorization factor is one, we just check if an array of type Ty
- // requires padding between elements.
- return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
- }
- /// A helper function that returns the reciprocal of the block probability of
- /// predicated blocks. If we return X, we are assuming the predicated block
- /// will execute once for every X iterations of the loop header.
- ///
- /// TODO: We should use actual block probability here, if available. Currently,
- /// we always assume predicated blocks have a 50% chance of executing.
- static unsigned getReciprocalPredBlockProb() { return 2; }
- /// A helper function that adds a 'fast' flag to floating-point operations.
- static Value *addFastMathFlag(Value *V) {
- if (isa<FPMathOperator>(V))
- cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
- return V;
- }
- static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
- if (isa<FPMathOperator>(V))
- cast<Instruction>(V)->setFastMathFlags(FMF);
- return V;
- }
- /// A helper function that returns an integer or floating-point constant with
- /// value C.
- static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
- return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
- : ConstantFP::get(Ty, C);
- }
- namespace llvm {
- /// InnerLoopVectorizer vectorizes loops which contain only one basic
- /// block to a specified vectorization factor (VF).
- /// This class performs the widening of scalars into vectors, or multiple
- /// scalars. This class also implements the following features:
- /// * It inserts an epilogue loop for handling loops that don't have iteration
- /// counts that are known to be a multiple of the vectorization factor.
- /// * It handles the code generation for reduction variables.
- /// * Scalarization (implementation using scalars) of un-vectorizable
- /// instructions.
- /// InnerLoopVectorizer does not perform any vectorization-legality
- /// checks, and relies on the caller to check for the different legality
- /// aspects. The InnerLoopVectorizer relies on the
- /// LoopVectorizationLegality class to provide information about the induction
- /// and reduction variables that were found to a given vectorization factor.
- class InnerLoopVectorizer {
- public:
- InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, unsigned VecWidth,
- unsigned UnrollFactor, LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM)
- : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
- AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
- Builder(PSE.getSE()->getContext()),
- VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
- virtual ~InnerLoopVectorizer() = default;
- /// Create a new empty loop. Unlink the old loop and connect the new one.
- /// Return the pre-header block of the new loop.
- BasicBlock *createVectorizedLoopSkeleton();
- /// Widen a single instruction within the innermost loop.
- void widenInstruction(Instruction &I);
- /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
- void fixVectorizedLoop();
- // Return true if any runtime check is added.
- bool areSafetyChecksAdded() { return AddedSafetyChecks; }
- /// A type for vectorized values in the new loop. Each value from the
- /// original loop, when vectorized, is represented by UF vector values in the
- /// new unrolled loop, where UF is the unroll factor.
- using VectorParts = SmallVector<Value *, 2>;
- /// Vectorize a single PHINode in a block. This method handles the induction
- /// variable canonicalization. It supports both VF = 1 for unrolled loops and
- /// arbitrary length vectors.
- void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
- /// A helper function to scalarize a single Instruction in the innermost loop.
- /// Generates a sequence of scalar instances for each lane between \p MinLane
- /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
- /// inclusive..
- void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
- bool IfPredicateInstr);
- /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
- /// is provided, the integer induction variable will first be truncated to
- /// the corresponding type.
- void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
- /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
- /// vector or scalar value on-demand if one is not yet available. When
- /// vectorizing a loop, we visit the definition of an instruction before its
- /// uses. When visiting the definition, we either vectorize or scalarize the
- /// instruction, creating an entry for it in the corresponding map. (In some
- /// cases, such as induction variables, we will create both vector and scalar
- /// entries.) Then, as we encounter uses of the definition, we derive values
- /// for each scalar or vector use unless such a value is already available.
- /// For example, if we scalarize a definition and one of its uses is vector,
- /// we build the required vector on-demand with an insertelement sequence
- /// when visiting the use. Otherwise, if the use is scalar, we can use the
- /// existing scalar definition.
- ///
- /// Return a value in the new loop corresponding to \p V from the original
- /// loop at unroll index \p Part. If the value has already been vectorized,
- /// the corresponding vector entry in VectorLoopValueMap is returned. If,
- /// however, the value has a scalar entry in VectorLoopValueMap, we construct
- /// a new vector value on-demand by inserting the scalar values into a vector
- /// with an insertelement sequence. If the value has been neither vectorized
- /// nor scalarized, it must be loop invariant, so we simply broadcast the
- /// value into a vector.
- Value *getOrCreateVectorValue(Value *V, unsigned Part);
- /// Return a value in the new loop corresponding to \p V from the original
- /// loop at unroll and vector indices \p Instance. If the value has been
- /// vectorized but not scalarized, the necessary extractelement instruction
- /// will be generated.
- Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
- /// Construct the vector value of a scalarized value \p V one lane at a time.
- void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
- /// Try to vectorize the interleaved access group that \p Instr belongs to,
- /// optionally masking the vector operations if \p BlockInMask is non-null.
- void vectorizeInterleaveGroup(Instruction *Instr,
- VectorParts *BlockInMask = nullptr);
- /// Vectorize Load and Store instructions, optionally masking the vector
- /// operations if \p BlockInMask is non-null.
- void vectorizeMemoryInstruction(Instruction *Instr,
- VectorParts *BlockInMask = nullptr);
- /// Set the debug location in the builder using the debug location in
- /// the instruction.
- void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
- /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
- void fixNonInductionPHIs(void);
- protected:
- friend class LoopVectorizationPlanner;
- /// A small list of PHINodes.
- using PhiVector = SmallVector<PHINode *, 4>;
- /// A type for scalarized values in the new loop. Each value from the
- /// original loop, when scalarized, is represented by UF x VF scalar values
- /// in the new unrolled loop, where UF is the unroll factor and VF is the
- /// vectorization factor.
- using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
- /// Set up the values of the IVs correctly when exiting the vector loop.
- void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
- Value *CountRoundDown, Value *EndValue,
- BasicBlock *MiddleBlock);
- /// Create a new induction variable inside L.
- PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
- Value *Step, Instruction *DL);
- /// Handle all cross-iteration phis in the header.
- void fixCrossIterationPHIs();
- /// Fix a first-order recurrence. This is the second phase of vectorizing
- /// this phi node.
- void fixFirstOrderRecurrence(PHINode *Phi);
- /// Fix a reduction cross-iteration phi. This is the second phase of
- /// vectorizing this phi node.
- void fixReduction(PHINode *Phi);
- /// The Loop exit block may have single value PHI nodes with some
- /// incoming value. While vectorizing we only handled real values
- /// that were defined inside the loop and we should have one value for
- /// each predecessor of its parent basic block. See PR14725.
- void fixLCSSAPHIs();
- /// Iteratively sink the scalarized operands of a predicated instruction into
- /// the block that was created for it.
- void sinkScalarOperands(Instruction *PredInst);
- /// Shrinks vector element sizes to the smallest bitwidth they can be legally
- /// represented as.
- void truncateToMinimalBitwidths();
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- virtual Value *getBroadcastInstrs(Value *V);
- /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
- /// to each vector element of Val. The sequence starts at StartIndex.
- /// \p Opcode is relevant for FP induction variable.
- virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps Opcode =
- Instruction::BinaryOpsEnd);
- /// Compute scalar induction steps. \p ScalarIV is the scalar induction
- /// variable on which to base the steps, \p Step is the size of the step, and
- /// \p EntryVal is the value from the original loop that maps to the steps.
- /// Note that \p EntryVal doesn't have to be an induction variable - it
- /// can also be a truncate instruction.
- void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
- const InductionDescriptor &ID);
- /// Create a vector induction phi node based on an existing scalar one. \p
- /// EntryVal is the value from the original loop that maps to the vector phi
- /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
- /// truncate instruction, instead of widening the original IV, we widen a
- /// version of the IV truncated to \p EntryVal's type.
- void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
- Value *Step, Instruction *EntryVal);
- /// Returns true if an instruction \p I should be scalarized instead of
- /// vectorized for the chosen vectorization factor.
- bool shouldScalarizeInstruction(Instruction *I) const;
- /// Returns true if we should generate a scalar version of \p IV.
- bool needsScalarInduction(Instruction *IV) const;
- /// If there is a cast involved in the induction variable \p ID, which should
- /// be ignored in the vectorized loop body, this function records the
- /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
- /// cast. We had already proved that the casted Phi is equal to the uncasted
- /// Phi in the vectorized loop (under a runtime guard), and therefore
- /// there is no need to vectorize the cast - the same value can be used in the
- /// vector loop for both the Phi and the cast.
- /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
- /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
- ///
- /// \p EntryVal is the value from the original loop that maps to the vector
- /// phi node and is used to distinguish what is the IV currently being
- /// processed - original one (if \p EntryVal is a phi corresponding to the
- /// original IV) or the "newly-created" one based on the proof mentioned above
- /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
- /// latter case \p EntryVal is a TruncInst and we must not record anything for
- /// that IV, but it's error-prone to expect callers of this routine to care
- /// about that, hence this explicit parameter.
- void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
- const Instruction *EntryVal,
- Value *VectorLoopValue,
- unsigned Part,
- unsigned Lane = UINT_MAX);
- /// Generate a shuffle sequence that will reverse the vector Vec.
- virtual Value *reverseVector(Value *Vec);
- /// Returns (and creates if needed) the original loop trip count.
- Value *getOrCreateTripCount(Loop *NewLoop);
- /// Returns (and creates if needed) the trip count of the widened loop.
- Value *getOrCreateVectorTripCount(Loop *NewLoop);
- /// Returns a bitcasted value to the requested vector type.
- /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
- Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL);
- /// Emit a bypass check to see if the vector trip count is zero, including if
- /// it overflows.
- void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
- /// Emit a bypass check to see if all of the SCEV assumptions we've
- /// had to make are correct.
- void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
- /// Emit bypass checks to check any memory assumptions we may have made.
- void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
- /// Compute the transformed value of Index at offset StartValue using step
- /// StepValue.
- /// For integer induction, returns StartValue + Index * StepValue.
- /// For pointer induction, returns StartValue[Index * StepValue].
- /// FIXME: The newly created binary instructions should contain nsw/nuw
- /// flags, which can be found from the original scalar operations.
- Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
- const DataLayout &DL,
- const InductionDescriptor &ID) const;
- /// Add additional metadata to \p To that was not present on \p Orig.
- ///
- /// Currently this is used to add the noalias annotations based on the
- /// inserted memchecks. Use this for instructions that are *cloned* into the
- /// vector loop.
- void addNewMetadata(Instruction *To, const Instruction *Orig);
- /// Add metadata from one instruction to another.
- ///
- /// This includes both the original MDs from \p From and additional ones (\see
- /// addNewMetadata). Use this for *newly created* instructions in the vector
- /// loop.
- void addMetadata(Instruction *To, Instruction *From);
- /// Similar to the previous function but it adds the metadata to a
- /// vector of instructions.
- void addMetadata(ArrayRef<Value *> To, Instruction *From);
- /// The original loop.
- Loop *OrigLoop;
- /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
- /// dynamic knowledge to simplify SCEV expressions and converts them to a
- /// more usable form.
- PredicatedScalarEvolution &PSE;
- /// Loop Info.
- LoopInfo *LI;
- /// Dominator Tree.
- DominatorTree *DT;
- /// Alias Analysis.
- AliasAnalysis *AA;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// Target Transform Info.
- const TargetTransformInfo *TTI;
- /// Assumption Cache.
- AssumptionCache *AC;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- /// LoopVersioning. It's only set up (non-null) if memchecks were
- /// used.
- ///
- /// This is currently only used to add no-alias metadata based on the
- /// memchecks. The actually versioning is performed manually.
- std::unique_ptr<LoopVersioning> LVer;
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- unsigned VF;
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
- /// The builder that we use
- IRBuilder<> Builder;
- // --- Vectorization state ---
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- /// The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- /// The vector loop body.
- BasicBlock *LoopVectorBody;
- /// The scalar loop body.
- BasicBlock *LoopScalarBody;
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
- /// The new Induction variable which was added to the new block.
- PHINode *Induction = nullptr;
- /// The induction variable of the old basic block.
- PHINode *OldInduction = nullptr;
- /// Maps values from the original loop to their corresponding values in the
- /// vectorized loop. A key value can map to either vector values, scalar
- /// values or both kinds of values, depending on whether the key was
- /// vectorized and scalarized.
- VectorizerValueMap VectorLoopValueMap;
- /// Store instructions that were predicated.
- SmallVector<Instruction *, 4> PredicatedInstructions;
- /// Trip count of the original loop.
- Value *TripCount = nullptr;
- /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
- Value *VectorTripCount = nullptr;
- /// The legality analysis.
- LoopVectorizationLegality *Legal;
- /// The profitablity analysis.
- LoopVectorizationCostModel *Cost;
- // Record whether runtime checks are added.
- bool AddedSafetyChecks = false;
- // Holds the end values for each induction variable. We save the end values
- // so we can later fix-up the external users of the induction variables.
- DenseMap<PHINode *, Value *> IVEndValues;
- // Vector of original scalar PHIs whose corresponding widened PHIs need to be
- // fixed up at the end of vector code generation.
- SmallVector<PHINode *, 8> OrigPHIsToFix;
- };
- class InnerLoopUnroller : public InnerLoopVectorizer {
- public:
- InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- const TargetTransformInfo *TTI, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
- LoopVectorizationLegality *LVL,
- LoopVectorizationCostModel *CM)
- : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
- UnrollFactor, LVL, CM) {}
- private:
- Value *getBroadcastInstrs(Value *V) override;
- Value *getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps Opcode =
- Instruction::BinaryOpsEnd) override;
- Value *reverseVector(Value *Vec) override;
- };
- } // end namespace llvm
- /// Look for a meaningful debug location on the instruction or it's
- /// operands.
- static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
- if (!I)
- return I;
- DebugLoc Empty;
- if (I->getDebugLoc() != Empty)
- return I;
- for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
- if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
- if (OpInst->getDebugLoc() != Empty)
- return OpInst;
- }
- return I;
- }
- void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
- if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
- const DILocation *DIL = Inst->getDebugLoc();
- if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
- !isa<DbgInfoIntrinsic>(Inst)) {
- auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
- if (NewDIL)
- B.SetCurrentDebugLocation(NewDIL.getValue());
- else
- LLVM_DEBUG(dbgs()
- << "Failed to create new discriminator: "
- << DIL->getFilename() << " Line: " << DIL->getLine());
- }
- else
- B.SetCurrentDebugLocation(DIL);
- } else
- B.SetCurrentDebugLocation(DebugLoc());
- }
- #ifndef NDEBUG
- /// \return string containing a file name and a line # for the given loop.
- static std::string getDebugLocString(const Loop *L) {
- std::string Result;
- if (L) {
- raw_string_ostream OS(Result);
- if (const DebugLoc LoopDbgLoc = L->getStartLoc())
- LoopDbgLoc.print(OS);
- else
- // Just print the module name.
- OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
- OS.flush();
- }
- return Result;
- }
- #endif
- void InnerLoopVectorizer::addNewMetadata(Instruction *To,
- const Instruction *Orig) {
- // If the loop was versioned with memchecks, add the corresponding no-alias
- // metadata.
- if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
- LVer->annotateInstWithNoAlias(To, Orig);
- }
- void InnerLoopVectorizer::addMetadata(Instruction *To,
- Instruction *From) {
- propagateMetadata(To, From);
- addNewMetadata(To, From);
- }
- void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
- Instruction *From) {
- for (Value *V : To) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- addMetadata(I, From);
- }
- }
- namespace llvm {
- /// LoopVectorizationCostModel - estimates the expected speedups due to
- /// vectorization.
- /// In many cases vectorization is not profitable. This can happen because of
- /// a number of reasons. In this class we mainly attempt to predict the
- /// expected speedup/slowdowns due to the supported instruction set. We use the
- /// TargetTransformInfo to query the different backends for the cost of
- /// different operations.
- class LoopVectorizationCostModel {
- public:
- LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
- LoopInfo *LI, LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI, DemandedBits *DB,
- AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, const Function *F,
- const LoopVectorizeHints *Hints,
- InterleavedAccessInfo &IAI)
- : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
- AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
- /// \return An upper bound for the vectorization factor, or None if
- /// vectorization and interleaving should be avoided up front.
- Optional<unsigned> computeMaxVF(bool OptForSize);
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
- /// Setup cost-based decisions for user vectorization factor.
- void selectUserVectorizationFactor(unsigned UserVF) {
- collectUniformsAndScalars(UserVF);
- collectInstsToScalarize(UserVF);
- }
- /// \return The size (in bits) of the smallest and widest types in the code
- /// that needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
- /// \return The desired interleave count.
- /// If interleave count has been specified by metadata it will be returned.
- /// Otherwise, the interleave count is computed and returned. VF and LoopCost
- /// are the selected vectorization factor and the cost of the selected VF.
- unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
- unsigned LoopCost);
- /// Memory access instruction may be vectorized in more than one way.
- /// Form of instruction after vectorization depends on cost.
- /// This function takes cost-based decisions for Load/Store instructions
- /// and collects them in a map. This decisions map is used for building
- /// the lists of loop-uniform and loop-scalar instructions.
- /// The calculated cost is saved with widening decision in order to
- /// avoid redundant calculations.
- void setCostBasedWideningDecision(unsigned VF);
- /// A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- unsigned LoopInvariantRegs;
- /// Holds the maximum number of concurrent live intervals in the loop.
- unsigned MaxLocalUsers;
- };
- /// \return Returns information about the register usages of the loop for the
- /// given vectorization factors.
- SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
- /// Collect values we want to ignore in the cost model.
- void collectValuesToIgnore();
- /// \returns The smallest bitwidth each instruction can be represented with.
- /// The vector equivalents of these instructions should be truncated to this
- /// type.
- const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
- return MinBWs;
- }
- /// \returns True if it is more profitable to scalarize instruction \p I for
- /// vectorization factor \p VF.
- bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
- assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto Scalars = InstsToScalarize.find(VF);
- assert(Scalars != InstsToScalarize.end() &&
- "VF not yet analyzed for scalarization profitability");
- return Scalars->second.find(I) != Scalars->second.end();
- }
- /// Returns true if \p I is known to be uniform after vectorization.
- bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
- if (VF == 1)
- return true;
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto UniformsPerVF = Uniforms.find(VF);
- assert(UniformsPerVF != Uniforms.end() &&
- "VF not yet analyzed for uniformity");
- return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
- }
- /// Returns true if \p I is known to be scalar after vectorization.
- bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
- if (VF == 1)
- return true;
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return false;
- auto ScalarsPerVF = Scalars.find(VF);
- assert(ScalarsPerVF != Scalars.end() &&
- "Scalar values are not calculated for VF");
- return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
- }
- /// \returns True if instruction \p I can be truncated to a smaller bitwidth
- /// for vectorization factor \p VF.
- bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
- return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
- !isProfitableToScalarize(I, VF) &&
- !isScalarAfterVectorization(I, VF);
- }
- /// Decision that was taken during cost calculation for memory instruction.
- enum InstWidening {
- CM_Unknown,
- CM_Widen, // For consecutive accesses with stride +1.
- CM_Widen_Reverse, // For consecutive accesses with stride -1.
- CM_Interleave,
- CM_GatherScatter,
- CM_Scalarize
- };
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// instruction \p I and vector width \p VF.
- void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
- unsigned Cost) {
- assert(VF >= 2 && "Expected VF >=2");
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- }
- /// Save vectorization decision \p W and \p Cost taken by the cost model for
- /// interleaving group \p Grp and vector width \p VF.
- void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
- InstWidening W, unsigned Cost) {
- assert(VF >= 2 && "Expected VF >=2");
- /// Broadcast this decicion to all instructions inside the group.
- /// But the cost will be assigned to one instruction only.
- for (unsigned i = 0; i < Grp->getFactor(); ++i) {
- if (auto *I = Grp->getMember(i)) {
- if (Grp->getInsertPos() == I)
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
- else
- WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
- }
- }
- }
- /// Return the cost model decision for the given instruction \p I and vector
- /// width \p VF. Return CM_Unknown if this instruction did not pass
- /// through the cost modeling.
- InstWidening getWideningDecision(Instruction *I, unsigned VF) {
- assert(VF >= 2 && "Expected VF >=2");
- // Cost model is not run in the VPlan-native path - return conservative
- // result until this changes.
- if (EnableVPlanNativePath)
- return CM_GatherScatter;
- std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
- auto Itr = WideningDecisions.find(InstOnVF);
- if (Itr == WideningDecisions.end())
- return CM_Unknown;
- return Itr->second.first;
- }
- /// Return the vectorization cost for the given instruction \p I and vector
- /// width \p VF.
- unsigned getWideningCost(Instruction *I, unsigned VF) {
- assert(VF >= 2 && "Expected VF >=2");
- std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
- assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
- "The cost is not calculated");
- return WideningDecisions[InstOnVF].second;
- }
- /// Return True if instruction \p I is an optimizable truncate whose operand
- /// is an induction variable. Such a truncate will be removed by adding a new
- /// induction variable with the destination type.
- bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
- // If the instruction is not a truncate, return false.
- auto *Trunc = dyn_cast<TruncInst>(I);
- if (!Trunc)
- return false;
- // Get the source and destination types of the truncate.
- Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
- Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
- // If the truncate is free for the given types, return false. Replacing a
- // free truncate with an induction variable would add an induction variable
- // update instruction to each iteration of the loop. We exclude from this
- // check the primary induction variable since it will need an update
- // instruction regardless.
- Value *Op = Trunc->getOperand(0);
- if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
- return false;
- // If the truncated value is not an induction variable, return false.
- return Legal->isInductionPhi(Op);
- }
- /// Collects the instructions to scalarize for each predicated instruction in
- /// the loop.
- void collectInstsToScalarize(unsigned VF);
- /// Collect Uniform and Scalar values for the given \p VF.
- /// The sets depend on CM decision for Load/Store instructions
- /// that may be vectorized as interleave, gather-scatter or scalarized.
- void collectUniformsAndScalars(unsigned VF) {
- // Do the analysis once.
- if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
- return;
- setCostBasedWideningDecision(VF);
- collectLoopUniforms(VF);
- collectLoopScalars(VF);
- }
- /// Returns true if the target machine supports masked store operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
- return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
- }
- /// Returns true if the target machine supports masked load operation
- /// for the given \p DataType and kind of access to \p Ptr.
- bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
- return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
- }
- /// Returns true if the target machine supports masked scatter operation
- /// for the given \p DataType.
- bool isLegalMaskedScatter(Type *DataType) {
- return TTI.isLegalMaskedScatter(DataType);
- }
- /// Returns true if the target machine supports masked gather operation
- /// for the given \p DataType.
- bool isLegalMaskedGather(Type *DataType) {
- return TTI.isLegalMaskedGather(DataType);
- }
- /// Returns true if the target machine can represent \p V as a masked gather
- /// or scatter operation.
- bool isLegalGatherOrScatter(Value *V) {
- bool LI = isa<LoadInst>(V);
- bool SI = isa<StoreInst>(V);
- if (!LI && !SI)
- return false;
- auto *Ty = getMemInstValueType(V);
- return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
- }
- /// Returns true if \p I is an instruction that will be scalarized with
- /// predication. Such instructions include conditional stores and
- /// instructions that may divide by zero.
- /// If a non-zero VF has been calculated, we check if I will be scalarized
- /// predication for that VF.
- bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
- // Returns true if \p I is an instruction that will be predicated either
- // through scalar predication or masked load/store or masked gather/scatter.
- // Superset of instructions that return true for isScalarWithPredication.
- bool isPredicatedInst(Instruction *I) {
- if (!blockNeedsPredication(I->getParent()))
- return false;
- // Loads and stores that need some form of masked operation are predicated
- // instructions.
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- return Legal->isMaskRequired(I);
- return isScalarWithPredication(I);
- }
- /// Returns true if \p I is a memory instruction with consecutive memory
- /// access that can be widened.
- bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
- /// Returns true if \p I is a memory instruction in an interleaved-group
- /// of memory accesses that can be vectorized with wide vector loads/stores
- /// and shuffles.
- bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
- /// Check if \p Instr belongs to any interleaved access group.
- bool isAccessInterleaved(Instruction *Instr) {
- return InterleaveInfo.isInterleaved(Instr);
- }
- /// Get the interleaved access group that \p Instr belongs to.
- const InterleaveGroup<Instruction> *
- getInterleavedAccessGroup(Instruction *Instr) {
- return InterleaveInfo.getInterleaveGroup(Instr);
- }
- /// Returns true if an interleaved group requires a scalar iteration
- /// to handle accesses with gaps, and there is nothing preventing us from
- /// creating a scalar epilogue.
- bool requiresScalarEpilogue() const {
- return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue();
- }
- /// Returns true if a scalar epilogue is not allowed due to optsize.
- bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; }
- /// Returns true if all loop blocks should be masked to fold tail loop.
- bool foldTailByMasking() const { return FoldTailByMasking; }
- bool blockNeedsPredication(BasicBlock *BB) {
- return foldTailByMasking() || Legal->blockNeedsPredication(BB);
- }
- private:
- unsigned NumPredStores = 0;
- /// \return An upper bound for the vectorization factor, larger than zero.
- /// One is returned if vectorization should best be avoided due to cost.
- unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
- /// The vectorization cost is a combination of the cost itself and a boolean
- /// indicating whether any of the contributing operations will actually
- /// operate on
- /// vector values after type legalization in the backend. If this latter value
- /// is
- /// false, then all operations will be scalarized (i.e. no vectorization has
- /// actually taken place).
- using VectorizationCostTy = std::pair<unsigned, bool>;
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- VectorizationCostTy expectedCost(unsigned VF);
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
- /// The cost-computation logic from getInstructionCost which provides
- /// the vector type as an output parameter.
- unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
- /// Calculate vectorization cost of memory instruction \p I.
- unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
- /// The cost computation for scalarized memory instruction.
- unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
- /// The cost computation for interleaving group of memory instructions.
- unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
- /// The cost computation for Gather/Scatter instruction.
- unsigned getGatherScatterCost(Instruction *I, unsigned VF);
- /// The cost computation for widening instruction \p I with consecutive
- /// memory access.
- unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
- /// The cost calculation for Load/Store instruction \p I with uniform pointer -
- /// Load: scalar load + broadcast.
- /// Store: scalar store + (loop invariant value stored? 0 : extract of last
- /// element)
- unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
- /// Returns whether the instruction is a load or store and will be a emitted
- /// as a vector operation.
- bool isConsecutiveLoadOrStore(Instruction *I);
- /// Returns true if an artificially high cost for emulated masked memrefs
- /// should be used.
- bool useEmulatedMaskMemRefHack(Instruction *I);
- /// Create an analysis remark that explains why vectorization failed
- ///
- /// \p RemarkName is the identifier for the remark. \return the remark object
- /// that can be streamed to.
- OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
- return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
- RemarkName, TheLoop);
- }
- /// Map of scalar integer values to the smallest bitwidth they can be legally
- /// represented as. The vector equivalents of these values should be truncated
- /// to this type.
- MapVector<Instruction *, uint64_t> MinBWs;
- /// A type representing the costs for instructions if they were to be
- /// scalarized rather than vectorized. The entries are Instruction-Cost
- /// pairs.
- using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
- /// A set containing all BasicBlocks that are known to present after
- /// vectorization as a predicated block.
- SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
- /// Records whether it is allowed to have the original scalar loop execute at
- /// least once. This may be needed as a fallback loop in case runtime
- /// aliasing/dependence checks fail, or to handle the tail/remainder
- /// iterations when the trip count is unknown or doesn't divide by the VF,
- /// or as a peel-loop to handle gaps in interleave-groups.
- /// Under optsize and when the trip count is very small we don't allow any
- /// iterations to execute in the scalar loop.
- bool IsScalarEpilogueAllowed = true;
- /// All blocks of loop are to be masked to fold tail of scalar iterations.
- bool FoldTailByMasking = false;
- /// A map holding scalar costs for different vectorization factors. The
- /// presence of a cost for an instruction in the mapping indicates that the
- /// instruction will be scalarized when vectorizing with the associated
- /// vectorization factor. The entries are VF-ScalarCostTy pairs.
- DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
- /// Holds the instructions known to be uniform after vectorization.
- /// The data is collected per VF.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
- /// Holds the instructions known to be scalar after vectorization.
- /// The data is collected per VF.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
- /// Holds the instructions (address computations) that are forced to be
- /// scalarized.
- DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
- /// Returns the expected difference in cost from scalarizing the expression
- /// feeding a predicated instruction \p PredInst. The instructions to
- /// scalarize and their scalar costs are collected in \p ScalarCosts. A
- /// non-negative return value implies the expression will be scalarized.
- /// Currently, only single-use chains are considered for scalarization.
- int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
- unsigned VF);
- /// Collect the instructions that are uniform after vectorization. An
- /// instruction is uniform if we represent it with a single scalar value in
- /// the vectorized loop corresponding to each vector iteration. Examples of
- /// uniform instructions include pointer operands of consecutive or
- /// interleaved memory accesses. Note that although uniformity implies an
- /// instruction will be scalar, the reverse is not true. In general, a
- /// scalarized instruction will be represented by VF scalar values in the
- /// vectorized loop, each corresponding to an iteration of the original
- /// scalar loop.
- void collectLoopUniforms(unsigned VF);
- /// Collect the instructions that are scalar after vectorization. An
- /// instruction is scalar if it is known to be uniform or will be scalarized
- /// during vectorization. Non-uniform scalarized instructions will be
- /// represented by VF values in the vectorized loop, each corresponding to an
- /// iteration of the original scalar loop.
- void collectLoopScalars(unsigned VF);
- /// Keeps cost model vectorization decision and cost for instructions.
- /// Right now it is used for memory instructions only.
- using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
- std::pair<InstWidening, unsigned>>;
- DecisionList WideningDecisions;
- public:
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Predicated scalar evolution analysis.
- PredicatedScalarEvolution &PSE;
- /// Loop Info analysis.
- LoopInfo *LI;
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const TargetTransformInfo &TTI;
- /// Target Library Info.
- const TargetLibraryInfo *TLI;
- /// Demanded bits analysis.
- DemandedBits *DB;
- /// Assumption cache.
- AssumptionCache *AC;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- const Function *TheFunction;
- /// Loop Vectorize Hint.
- const LoopVectorizeHints *Hints;
- /// The interleave access information contains groups of interleaved accesses
- /// with the same stride and close to each other.
- InterleavedAccessInfo &InterleaveInfo;
- /// Values to ignore in the cost model.
- SmallPtrSet<const Value *, 16> ValuesToIgnore;
- /// Values to ignore in the cost model when VF > 1.
- SmallPtrSet<const Value *, 16> VecValuesToIgnore;
- };
- } // end namespace llvm
- // Return true if \p OuterLp is an outer loop annotated with hints for explicit
- // vectorization. The loop needs to be annotated with #pragma omp simd
- // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
- // vector length information is not provided, vectorization is not considered
- // explicit. Interleave hints are not allowed either. These limitations will be
- // relaxed in the future.
- // Please, note that we are currently forced to abuse the pragma 'clang
- // vectorize' semantics. This pragma provides *auto-vectorization hints*
- // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
- // provides *explicit vectorization hints* (LV can bypass legal checks and
- // assume that vectorization is legal). However, both hints are implemented
- // using the same metadata (llvm.loop.vectorize, processed by
- // LoopVectorizeHints). This will be fixed in the future when the native IR
- // representation for pragma 'omp simd' is introduced.
- static bool isExplicitVecOuterLoop(Loop *OuterLp,
- OptimizationRemarkEmitter *ORE) {
- assert(!OuterLp->empty() && "This is not an outer loop");
- LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
- // Only outer loops with an explicit vectorization hint are supported.
- // Unannotated outer loops are ignored.
- if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
- return false;
- Function *Fn = OuterLp->getHeader()->getParent();
- if (!Hints.allowVectorization(Fn, OuterLp,
- true /*VectorizeOnlyWhenForced*/)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
- return false;
- }
- if (Hints.getInterleave() > 1) {
- // TODO: Interleave support is future work.
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
- "outer loops.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- return true;
- }
- static void collectSupportedLoops(Loop &L, LoopInfo *LI,
- OptimizationRemarkEmitter *ORE,
- SmallVectorImpl<Loop *> &V) {
- // Collect inner loops and outer loops without irreducible control flow. For
- // now, only collect outer loops that have explicit vectorization hints. If we
- // are stress testing the VPlan H-CFG construction, we collect the outermost
- // loop of every loop nest.
- if (L.empty() || VPlanBuildStressTest ||
- (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
- LoopBlocksRPO RPOT(&L);
- RPOT.perform(LI);
- if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
- V.push_back(&L);
- // TODO: Collect inner loops inside marked outer loops in case
- // vectorization fails for the outer loop. Do not invoke
- // 'containsIrreducibleCFG' again for inner loops when the outer loop is
- // already known to be reducible. We can use an inherited attribute for
- // that.
- return;
- }
- }
- for (Loop *InnerL : L)
- collectSupportedLoops(*InnerL, LI, ORE, V);
- }
- namespace {
- /// The LoopVectorize Pass.
- struct LoopVectorize : public FunctionPass {
- /// Pass identification, replacement for typeid
- static char ID;
- LoopVectorizePass Impl;
- explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
- bool VectorizeOnlyWhenForced = false)
- : FunctionPass(ID) {
- Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced;
- Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced;
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- std::function<const LoopAccessInfo &(Loop &)> GetLAA =
- [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
- return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
- GetLAA, *ORE, PSI);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<LoopAccessLegacyAnalysis>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
- // LoopVectorizationCostModel and LoopVectorizationPlanner.
- //===----------------------------------------------------------------------===//
- Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // We need to place the broadcast of invariant variables outside the loop,
- // but only if it's proven safe to do so. Else, broadcast will be inside
- // vector loop body.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
- (!Instr ||
- DT->dominates(Instr->getParent(), LoopVectorPreHeader));
- // Place the code for broadcasting invariant variables in the new preheader.
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (SafeToHoist)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
- return Shuf;
- }
- void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
- const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
- assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
- "Expected either an induction phi-node or a truncate of it!");
- Value *Start = II.getStartValue();
- // Construct the initial value of the vector IV in the vector loop preheader
- auto CurrIP = Builder.saveIP();
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- if (isa<TruncInst>(EntryVal)) {
- assert(Start->getType()->isIntegerTy() &&
- "Truncation requires an integer type");
- auto *TruncType = cast<IntegerType>(EntryVal->getType());
- Step = Builder.CreateTrunc(Step, TruncType);
- Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
- }
- Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
- Value *SteppedStart =
- getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
- // We create vector phi nodes for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (Step->getType()->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = II.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
- // Multiply the vectorization factor by the step using integer or
- // floating-point arithmetic as appropriate.
- Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
- Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
- // Create a vector splat to use in the induction update.
- //
- // FIXME: If the step is non-constant, we create the vector splat with
- // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
- // handle a constant vector splat.
- Value *SplatVF = isa<Constant>(Mul)
- ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
- : Builder.CreateVectorSplat(VF, Mul);
- Builder.restoreIP(CurrIP);
- // We may need to add the step a number of times, depending on the unroll
- // factor. The last of those goes into the PHI.
- PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
- &*LoopVectorBody->getFirstInsertionPt());
- VecInd->setDebugLoc(EntryVal->getDebugLoc());
- Instruction *LastInduction = VecInd;
- for (unsigned Part = 0; Part < UF; ++Part) {
- VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
- if (isa<TruncInst>(EntryVal))
- addMetadata(LastInduction, EntryVal);
- recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
- LastInduction = cast<Instruction>(addFastMathFlag(
- Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
- LastInduction->setDebugLoc(EntryVal->getDebugLoc());
- }
- // Move the last step to the end of the latch block. This ensures consistent
- // placement of all induction updates.
- auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
- auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
- auto *ICmp = cast<Instruction>(Br->getCondition());
- LastInduction->moveBefore(ICmp);
- LastInduction->setName("vec.ind.next");
- VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
- VecInd->addIncoming(LastInduction, LoopVectorLatch);
- }
- bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
- return Cost->isScalarAfterVectorization(I, VF) ||
- Cost->isProfitableToScalarize(I, VF);
- }
- bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
- if (shouldScalarizeInstruction(IV))
- return true;
- auto isScalarInst = [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
- };
- return llvm::any_of(IV->users(), isScalarInst);
- }
- void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
- const InductionDescriptor &ID, const Instruction *EntryVal,
- Value *VectorLoopVal, unsigned Part, unsigned Lane) {
- assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
- "Expected either an induction phi-node or a truncate of it!");
- // This induction variable is not the phi from the original loop but the
- // newly-created IV based on the proof that casted Phi is equal to the
- // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
- // re-uses the same InductionDescriptor that original IV uses but we don't
- // have to do any recording in this case - that is done when original IV is
- // processed.
- if (isa<TruncInst>(EntryVal))
- return;
- const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
- if (Casts.empty())
- return;
- // Only the first Cast instruction in the Casts vector is of interest.
- // The rest of the Casts (if exist) have no uses outside the
- // induction update chain itself.
- Instruction *CastInst = *Casts.begin();
- if (Lane < UINT_MAX)
- VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
- else
- VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
- }
- void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
- assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
- "Primary induction variable must have an integer type");
- auto II = Legal->getInductionVars()->find(IV);
- assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
- auto ID = II->second;
- assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
- // The scalar value to broadcast. This will be derived from the canonical
- // induction variable.
- Value *ScalarIV = nullptr;
- // The value from the original loop to which we are mapping the new induction
- // variable.
- Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
- // True if we have vectorized the induction variable.
- auto VectorizedIV = false;
- // Determine if we want a scalar version of the induction variable. This is
- // true if the induction variable itself is not widened, or if it has at
- // least one user in the loop that is not widened.
- auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
- // Generate code for the induction step. Note that induction steps are
- // required to be loop-invariant
- assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
- "Induction step should be loop invariant");
- auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
- Value *Step = nullptr;
- if (PSE.getSE()->isSCEVable(IV->getType())) {
- SCEVExpander Exp(*PSE.getSE(), DL, "induction");
- Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
- LoopVectorPreHeader->getTerminator());
- } else {
- Step = cast<SCEVUnknown>(ID.getStep())->getValue();
- }
- // Try to create a new independent vector induction variable. If we can't
- // create the phi node, we will splat the scalar induction variable in each
- // loop iteration.
- if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
- createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
- VectorizedIV = true;
- }
- // If we haven't yet vectorized the induction variable, or if we will create
- // a scalar one, we need to define the scalar induction variable and step
- // values. If we were given a truncation type, truncate the canonical
- // induction variable and step. Otherwise, derive these values from the
- // induction descriptor.
- if (!VectorizedIV || NeedsScalarIV) {
- ScalarIV = Induction;
- if (IV != OldInduction) {
- ScalarIV = IV->getType()->isIntegerTy()
- ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
- : Builder.CreateCast(Instruction::SIToFP, Induction,
- IV->getType());
- ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
- ScalarIV->setName("offset.idx");
- }
- if (Trunc) {
- auto *TruncType = cast<IntegerType>(Trunc->getType());
- assert(Step->getType()->isIntegerTy() &&
- "Truncation requires an integer step");
- ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
- Step = Builder.CreateTrunc(Step, TruncType);
- }
- }
- // If we haven't yet vectorized the induction variable, splat the scalar
- // induction variable, and build the necessary step vectors.
- // TODO: Don't do it unless the vectorized IV is really required.
- if (!VectorizedIV) {
- Value *Broadcasted = getBroadcastInstrs(ScalarIV);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *EntryPart =
- getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
- VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
- if (Trunc)
- addMetadata(EntryPart, Trunc);
- recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
- }
- }
- // If an induction variable is only used for counting loop iterations or
- // calculating addresses, it doesn't need to be widened. Create scalar steps
- // that can be used by instructions we will later scalarize. Note that the
- // addition of the scalar steps will not increase the number of instructions
- // in the loop in the common case prior to InstCombine. We will be trading
- // one vector extract for each scalar step.
- if (NeedsScalarIV)
- buildScalarSteps(ScalarIV, Step, EntryVal, ID);
- }
- Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps BinOp) {
- // Create and check the types.
- assert(Val->getType()->isVectorTy() && "Must be a vector");
- int VLen = Val->getType()->getVectorNumElements();
- Type *STy = Val->getType()->getScalarType();
- assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
- "Induction Step must be an integer or FP");
- assert(Step->getType() == STy && "Step has wrong type");
- SmallVector<Constant *, 8> Indices;
- if (STy->isIntegerTy()) {
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(STy, StartIdx + i));
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
- Step = Builder.CreateVectorSplat(VLen, Step);
- assert(Step->getType() == Val->getType() && "Invalid step vec");
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- Step = Builder.CreateMul(Cv, Step);
- return Builder.CreateAdd(Val, Step, "induction");
- }
- // Floating point induction.
- assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
- "Binary Opcode should be specified for FP induction");
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- Step = Builder.CreateVectorSplat(VLen, Step);
- // Floating point operations had to be 'fast' to enable the induction.
- FastMathFlags Flags;
- Flags.setFast();
- Value *MulOp = Builder.CreateFMul(Cv, Step);
- if (isa<Instruction>(MulOp))
- // Have to check, MulOp may be a constant
- cast<Instruction>(MulOp)->setFastMathFlags(Flags);
- Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
- if (isa<Instruction>(BOp))
- cast<Instruction>(BOp)->setFastMathFlags(Flags);
- return BOp;
- }
- void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
- Instruction *EntryVal,
- const InductionDescriptor &ID) {
- // We shouldn't have to build scalar steps if we aren't vectorizing.
- assert(VF > 1 && "VF should be greater than one");
- // Get the value type and ensure it and the step have the same integer type.
- Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
- assert(ScalarIVTy == Step->getType() &&
- "Val and Step should have the same type");
- // We build scalar steps for both integer and floating-point induction
- // variables. Here, we determine the kind of arithmetic we will perform.
- Instruction::BinaryOps AddOp;
- Instruction::BinaryOps MulOp;
- if (ScalarIVTy->isIntegerTy()) {
- AddOp = Instruction::Add;
- MulOp = Instruction::Mul;
- } else {
- AddOp = ID.getInductionOpcode();
- MulOp = Instruction::FMul;
- }
- // Determine the number of scalars we need to generate for each unroll
- // iteration. If EntryVal is uniform, we only need to generate the first
- // lane. Otherwise, we generate all VF values.
- unsigned Lanes =
- Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
- : VF;
- // Compute the scalar steps and save the results in VectorLoopValueMap.
- for (unsigned Part = 0; Part < UF; ++Part) {
- for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
- auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
- auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
- auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
- VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
- recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
- }
- }
- }
- Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- assert(!V->getType()->isVoidTy() && "Type does not produce a value");
- // If we have a stride that is replaced by one, do it here. Defer this for
- // the VPlan-native path until we start running Legal checks in that path.
- if (!EnableVPlanNativePath && Legal->hasStride(V))
- V = ConstantInt::get(V->getType(), 1);
- // If we have a vector mapped to this value, return it.
- if (VectorLoopValueMap.hasVectorValue(V, Part))
- return VectorLoopValueMap.getVectorValue(V, Part);
- // If the value has not been vectorized, check if it has been scalarized
- // instead. If it has been scalarized, and we actually need the value in
- // vector form, we will construct the vector values on demand.
- if (VectorLoopValueMap.hasAnyScalarValue(V)) {
- Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
- // If we've scalarized a value, that value should be an instruction.
- auto *I = cast<Instruction>(V);
- // If we aren't vectorizing, we can just copy the scalar map values over to
- // the vector map.
- if (VF == 1) {
- VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
- return ScalarValue;
- }
- // Get the last scalar instruction we generated for V and Part. If the value
- // is known to be uniform after vectorization, this corresponds to lane zero
- // of the Part unroll iteration. Otherwise, the last instruction is the one
- // we created for the last vector lane of the Part unroll iteration.
- unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
- auto *LastInst = cast<Instruction>(
- VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
- // Set the insert point after the last scalarized instruction. This ensures
- // the insertelement sequence will directly follow the scalar definitions.
- auto OldIP = Builder.saveIP();
- auto NewIP = std::next(BasicBlock::iterator(LastInst));
- Builder.SetInsertPoint(&*NewIP);
- // However, if we are vectorizing, we need to construct the vector values.
- // If the value is known to be uniform after vectorization, we can just
- // broadcast the scalar value corresponding to lane zero for each unroll
- // iteration. Otherwise, we construct the vector values using insertelement
- // instructions. Since the resulting vectors are stored in
- // VectorLoopValueMap, we will only generate the insertelements once.
- Value *VectorValue = nullptr;
- if (Cost->isUniformAfterVectorization(I, VF)) {
- VectorValue = getBroadcastInstrs(ScalarValue);
- VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
- } else {
- // Initialize packing with insertelements to start from undef.
- Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
- VectorLoopValueMap.setVectorValue(V, Part, Undef);
- for (unsigned Lane = 0; Lane < VF; ++Lane)
- packScalarIntoVectorValue(V, {Part, Lane});
- VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
- }
- Builder.restoreIP(OldIP);
- return VectorValue;
- }
- // If this scalar is unknown, assume that it is a constant or that it is
- // loop invariant. Broadcast V and save the value for future uses.
- Value *B = getBroadcastInstrs(V);
- VectorLoopValueMap.setVectorValue(V, Part, B);
- return B;
- }
- Value *
- InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
- const VPIteration &Instance) {
- // If the value is not an instruction contained in the loop, it should
- // already be scalar.
- if (OrigLoop->isLoopInvariant(V))
- return V;
- assert(Instance.Lane > 0
- ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
- : true && "Uniform values only have lane zero");
- // If the value from the original loop has not been vectorized, it is
- // represented by UF x VF scalar values in the new loop. Return the requested
- // scalar value.
- if (VectorLoopValueMap.hasScalarValue(V, Instance))
- return VectorLoopValueMap.getScalarValue(V, Instance);
- // If the value has not been scalarized, get its entry in VectorLoopValueMap
- // for the given unroll part. If this entry is not a vector type (i.e., the
- // vectorization factor is one), there is no need to generate an
- // extractelement instruction.
- auto *U = getOrCreateVectorValue(V, Instance.Part);
- if (!U->getType()->isVectorTy()) {
- assert(VF == 1 && "Value not scalarized has non-vector type");
- return U;
- }
- // Otherwise, the value from the original loop has been vectorized and is
- // represented by UF vector values. Extract and return the requested scalar
- // value from the appropriate vector lane.
- return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
- }
- void InnerLoopVectorizer::packScalarIntoVectorValue(
- Value *V, const VPIteration &Instance) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't pack a vector");
- assert(!V->getType()->isVoidTy() && "Type does not produce a value");
- Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
- Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
- VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
- Builder.getInt32(Instance.Lane));
- VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
- }
- Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
- assert(Vec->getType()->isVectorTy() && "Invalid type");
- SmallVector<Constant *, 8> ShuffleMask;
- for (unsigned i = 0; i < VF; ++i)
- ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
- return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
- ConstantVector::get(ShuffleMask),
- "reverse");
- }
- // Return whether we allow using masked interleave-groups (for dealing with
- // strided loads/stores that reside in predicated blocks, or for dealing
- // with gaps).
- static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
- return EnableMaskedInterleavedMemAccesses;
- return TTI.enableMaskedInterleavedAccessVectorization();
- }
- // Try to vectorize the interleave group that \p Instr belongs to.
- //
- // E.g. Translate following interleaved load group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // R = Pic[i]; // Member of index 0
- // G = Pic[i+1]; // Member of index 1
- // B = Pic[i+2]; // Member of index 2
- // ... // do something to R, G, B
- // }
- // To:
- // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
- // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
- // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
- // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
- //
- // Or translate following interleaved store group (factor = 3):
- // for (i = 0; i < N; i+=3) {
- // ... do something to R, G, B
- // Pic[i] = R; // Member of index 0
- // Pic[i+1] = G; // Member of index 1
- // Pic[i+2] = B; // Member of index 2
- // }
- // To:
- // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
- // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
- // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
- // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
- // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
- void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr,
- VectorParts *BlockInMask) {
- const InterleaveGroup<Instruction> *Group =
- Cost->getInterleavedAccessGroup(Instr);
- assert(Group && "Fail to get an interleaved access group.");
- // Skip if current instruction is not the insert position.
- if (Instr != Group->getInsertPos())
- return;
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- Value *Ptr = getLoadStorePointerOperand(Instr);
- // Prepare for the vector type of the interleaved load/store.
- Type *ScalarTy = getMemInstValueType(Instr);
- unsigned InterleaveFactor = Group->getFactor();
- Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
- Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr));
- // Prepare for the new pointers.
- setDebugLocFromInst(Builder, Ptr);
- SmallVector<Value *, 2> NewPtrs;
- unsigned Index = Group->getIndex(Instr);
- VectorParts Mask;
- bool IsMaskForCondRequired = BlockInMask;
- if (IsMaskForCondRequired) {
- Mask = *BlockInMask;
- // TODO: extend the masked interleaved-group support to reversed access.
- assert(!Group->isReverse() && "Reversed masked interleave-group "
- "not supported.");
- }
- // If the group is reverse, adjust the index to refer to the last vector lane
- // instead of the first. We adjust the index from the first vector lane,
- // rather than directly getting the pointer for lane VF - 1, because the
- // pointer operand of the interleaved access is supposed to be uniform. For
- // uniform instructions, we're only required to generate a value for the
- // first vector lane in each unroll iteration.
- if (Group->isReverse())
- Index += (VF - 1) * Group->getFactor();
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
- InBounds = gep->isInBounds();
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
- // Notice current instruction could be any index. Need to adjust the address
- // to the member of index 0.
- //
- // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
- // b = A[i]; // Member of index 0
- // Current pointer is pointed to A[i+1], adjust it to A[i].
- //
- // E.g. A[i+1] = a; // Member of index 1
- // A[i] = b; // Member of index 0
- // A[i+2] = c; // Member of index 2 (Current instruction)
- // Current pointer is pointed to A[i+2], adjust it to A[i].
- NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index));
- if (InBounds)
- cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true);
- // Cast to the vector pointer type.
- NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
- }
- setDebugLocFromInst(Builder, Instr);
- Value *UndefVec = UndefValue::get(VecTy);
- Value *MaskForGaps = nullptr;
- if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
- MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
- assert(MaskForGaps && "Mask for Gaps is required but it is null");
- }
- // Vectorize the interleaved load group.
- if (isa<LoadInst>(Instr)) {
- // For each unroll part, create a wide load for the group.
- SmallVector<Value *, 2> NewLoads;
- for (unsigned Part = 0; Part < UF; Part++) {
- Instruction *NewLoad;
- if (IsMaskForCondRequired || MaskForGaps) {
- assert(useMaskedInterleavedAccesses(*TTI) &&
- "masked interleaved groups are not allowed.");
- Value *GroupMask = MaskForGaps;
- if (IsMaskForCondRequired) {
- auto *Undefs = UndefValue::get(Mask[Part]->getType());
- auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- Mask[Part], Undefs, RepMask, "interleaved.mask");
- GroupMask = MaskForGaps
- ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
- MaskForGaps)
- : ShuffledMask;
- }
- NewLoad =
- Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(),
- GroupMask, UndefVec, "wide.masked.vec");
- }
- else
- NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part],
- Group->getAlignment(), "wide.vec");
- Group->addMetadata(NewLoad);
- NewLoads.push_back(NewLoad);
- }
- // For each member in the group, shuffle out the appropriate data from the
- // wide loads.
- for (unsigned I = 0; I < InterleaveFactor; ++I) {
- Instruction *Member = Group->getMember(I);
- // Skip the gaps in the group.
- if (!Member)
- continue;
- Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
- for (unsigned Part = 0; Part < UF; Part++) {
- Value *StridedVec = Builder.CreateShuffleVector(
- NewLoads[Part], UndefVec, StrideMask, "strided.vec");
- // If this member has different type, cast the result type.
- if (Member->getType() != ScalarTy) {
- VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
- StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
- }
- if (Group->isReverse())
- StridedVec = reverseVector(StridedVec);
- VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
- }
- }
- return;
- }
- // The sub vector type for current instruction.
- VectorType *SubVT = VectorType::get(ScalarTy, VF);
- // Vectorize the interleaved store group.
- for (unsigned Part = 0; Part < UF; Part++) {
- // Collect the stored vector from each member.
- SmallVector<Value *, 4> StoredVecs;
- for (unsigned i = 0; i < InterleaveFactor; i++) {
- // Interleaved store group doesn't allow a gap, so each index has a member
- Instruction *Member = Group->getMember(i);
- assert(Member && "Fail to get a member from an interleaved store group");
- Value *StoredVec = getOrCreateVectorValue(
- cast<StoreInst>(Member)->getValueOperand(), Part);
- if (Group->isReverse())
- StoredVec = reverseVector(StoredVec);
- // If this member has different type, cast it to a unified type.
- if (StoredVec->getType() != SubVT)
- StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
- StoredVecs.push_back(StoredVec);
- }
- // Concatenate all vectors into a wide vector.
- Value *WideVec = concatenateVectors(Builder, StoredVecs);
- // Interleave the elements in the wide vector.
- Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
- Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
- "interleaved.vec");
- Instruction *NewStoreInstr;
- if (IsMaskForCondRequired) {
- auto *Undefs = UndefValue::get(Mask[Part]->getType());
- auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF);
- Value *ShuffledMask = Builder.CreateShuffleVector(
- Mask[Part], Undefs, RepMask, "interleaved.mask");
- NewStoreInstr = Builder.CreateMaskedStore(
- IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask);
- }
- else
- NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part],
- Group->getAlignment());
- Group->addMetadata(NewStoreInstr);
- }
- }
- void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
- VectorParts *BlockInMask) {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(Instr);
- StoreInst *SI = dyn_cast<StoreInst>(Instr);
- assert((LI || SI) && "Invalid Load/Store instruction");
- LoopVectorizationCostModel::InstWidening Decision =
- Cost->getWideningDecision(Instr, VF);
- assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
- "CM decision should be taken at this point");
- if (Decision == LoopVectorizationCostModel::CM_Interleave)
- return vectorizeInterleaveGroup(Instr);
- Type *ScalarDataTy = getMemInstValueType(Instr);
- Type *DataTy = VectorType::get(ScalarDataTy, VF);
- Value *Ptr = getLoadStorePointerOperand(Instr);
- unsigned Alignment = getLoadStoreAlignment(Instr);
- // An alignment of 0 means target abi alignment. We need to use the scalar's
- // target abi alignment in such a case.
- const DataLayout &DL = Instr->getModule()->getDataLayout();
- if (!Alignment)
- Alignment = DL.getABITypeAlignment(ScalarDataTy);
- unsigned AddressSpace = getLoadStoreAddressSpace(Instr);
- // Determine if the pointer operand of the access is either consecutive or
- // reverse consecutive.
- bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
- bool ConsecutiveStride =
- Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
- bool CreateGatherScatter =
- (Decision == LoopVectorizationCostModel::CM_GatherScatter);
- // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
- // gather/scatter. Otherwise Decision should have been to Scalarize.
- assert((ConsecutiveStride || CreateGatherScatter) &&
- "The instruction should be scalarized");
- // Handle consecutive loads/stores.
- if (ConsecutiveStride)
- Ptr = getOrCreateScalarValue(Ptr, {0, 0});
- VectorParts Mask;
- bool isMaskRequired = BlockInMask;
- if (isMaskRequired)
- Mask = *BlockInMask;
- bool InBounds = false;
- if (auto *gep = dyn_cast<GetElementPtrInst>(
- getLoadStorePointerOperand(Instr)->stripPointerCasts()))
- InBounds = gep->isInBounds();
- const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
- // Calculate the pointer for the specific unroll-part.
- GetElementPtrInst *PartPtr = nullptr;
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
- PartPtr->setIsInBounds(InBounds);
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
- PartPtr->setIsInBounds(InBounds);
- if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
- Mask[Part] = reverseVector(Mask[Part]);
- } else {
- PartPtr = cast<GetElementPtrInst>(
- Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
- PartPtr->setIsInBounds(InBounds);
- }
- return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
- };
- // Handle Stores:
- if (SI) {
- setDebugLocFromInst(Builder, SI);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Instruction *NewSI = nullptr;
- Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
- Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
- NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
- MaskPart);
- } else {
- if (Reverse) {
- // If we store to reverse consecutive memory locations, then we need
- // to reverse the order of elements in the stored value.
- StoredVal = reverseVector(StoredVal);
- // We don't want to update the value in the map as it might be used in
- // another expression. So don't call resetVectorValue(StoredVal).
- }
- auto *VecPtr = CreateVecPtr(Part, Ptr);
- if (isMaskRequired)
- NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
- Mask[Part]);
- else
- NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
- }
- addMetadata(NewSI, SI);
- }
- return;
- }
- // Handle loads.
- assert(LI && "Must have a load instruction");
- setDebugLocFromInst(Builder, LI);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *NewLI;
- if (CreateGatherScatter) {
- Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
- Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
- NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
- nullptr, "wide.masked.gather");
- addMetadata(NewLI, LI);
- } else {
- auto *VecPtr = CreateVecPtr(Part, Ptr);
- if (isMaskRequired)
- NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
- UndefValue::get(DataTy),
- "wide.masked.load");
- else
- NewLI =
- Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
- // Add metadata to the load, but setVectorValue to the reverse shuffle.
- addMetadata(NewLI, LI);
- if (Reverse)
- NewLI = reverseVector(NewLI);
- }
- VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
- }
- }
- void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
- const VPIteration &Instance,
- bool IfPredicateInstr) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- setDebugLocFromInst(Builder, Instr);
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instructions with their scalar
- // equivalents in the new loop.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
- Cloned->setOperand(op, NewOp);
- }
- addNewMetadata(Cloned, Instr);
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // Add the cloned scalar to the scalar map entry.
- VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
- // If we just cloned a new assumption, add it the assumption cache.
- if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC->registerAssumption(II);
- // End if-block.
- if (IfPredicateInstr)
- PredicatedInstructions.push_back(Cloned);
- }
- PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
- Value *End, Value *Step,
- Instruction *DL) {
- BasicBlock *Header = L->getHeader();
- BasicBlock *Latch = L->getLoopLatch();
- // As we're just creating this loop, it's possible no latch exists
- // yet. If so, use the header as this will be a single block loop.
- if (!Latch)
- Latch = Header;
- IRBuilder<> Builder(&*Header->getFirstInsertionPt());
- Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
- setDebugLocFromInst(Builder, OldInst);
- auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
- Builder.SetInsertPoint(Latch->getTerminator());
- setDebugLocFromInst(Builder, OldInst);
- // Create i+1 and fill the PHINode.
- Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
- Induction->addIncoming(Start, L->getLoopPreheader());
- Induction->addIncoming(Next, Latch);
- // Create the compare.
- Value *ICmp = Builder.CreateICmpEQ(Next, End);
- Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
- // Now we have two terminators. Remove the old one from the block.
- Latch->getTerminator()->eraseFromParent();
- return Induction;
- }
- Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
- if (TripCount)
- return TripCount;
- assert(L && "Create Trip Count for null loop.");
- IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
- // Find the loop boundaries.
- ScalarEvolution *SE = PSE.getSE();
- const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
- assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
- "Invalid loop count");
- Type *IdxTy = Legal->getWidestInductionType();
- assert(IdxTy && "No type for induction");
- // The exit count might have the type of i64 while the phi is i32. This can
- // happen if we have an induction variable that is sign extended before the
- // compare. The only way that we get a backedge taken count is that the
- // induction variable was signed and as such will not overflow. In such a case
- // truncation is legal.
- if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
- IdxTy->getPrimitiveSizeInBits())
- BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
- BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
- // Get the total trip count from the count by adding 1.
- const SCEV *ExitCount = SE->getAddExpr(
- BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, DL, "induction");
- // Count holds the overall loop count (N).
- TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- L->getLoopPreheader()->getTerminator());
- if (TripCount->getType()->isPointerTy())
- TripCount =
- CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
- L->getLoopPreheader()->getTerminator());
- return TripCount;
- }
- Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
- if (VectorTripCount)
- return VectorTripCount;
- Value *TC = getOrCreateTripCount(L);
- IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
- Type *Ty = TC->getType();
- Constant *Step = ConstantInt::get(Ty, VF * UF);
- // If the tail is to be folded by masking, round the number of iterations N
- // up to a multiple of Step instead of rounding down. This is done by first
- // adding Step-1 and then rounding down. Note that it's ok if this addition
- // overflows: the vector induction variable will eventually wrap to zero given
- // that it starts at zero and its Step is a power of two; the loop will then
- // exit, with the last early-exit vector comparison also producing all-true.
- if (Cost->foldTailByMasking()) {
- assert(isPowerOf2_32(VF * UF) &&
- "VF*UF must be a power of 2 when folding tail by masking");
- TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
- }
- // Now we need to generate the expression for the part of the loop that the
- // vectorized body will execute. This is equal to N - (N % Step) if scalar
- // iterations are not required for correctness, or N - Step, otherwise. Step
- // is equal to the vectorization factor (number of SIMD elements) times the
- // unroll factor (number of SIMD instructions).
- Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
- // If there is a non-reversed interleaved group that may speculatively access
- // memory out-of-bounds, we need to ensure that there will be at least one
- // iteration of the scalar epilogue loop. Thus, if the step evenly divides
- // the trip count, we set the remainder to be equal to the step. If the step
- // does not evenly divide the trip count, no adjustment is necessary since
- // there will already be scalar iterations. Note that the minimum iterations
- // check ensures that N >= Step.
- if (VF > 1 && Cost->requiresScalarEpilogue()) {
- auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
- R = Builder.CreateSelect(IsZero, Step, R);
- }
- VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
- return VectorTripCount;
- }
- Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
- const DataLayout &DL) {
- // Verify that V is a vector type with same number of elements as DstVTy.
- unsigned VF = DstVTy->getNumElements();
- VectorType *SrcVecTy = cast<VectorType>(V->getType());
- assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
- Type *SrcElemTy = SrcVecTy->getElementType();
- Type *DstElemTy = DstVTy->getElementType();
- assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
- "Vector elements must have same size");
- // Do a direct cast if element types are castable.
- if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
- return Builder.CreateBitOrPointerCast(V, DstVTy);
- }
- // V cannot be directly casted to desired vector type.
- // May happen when V is a floating point vector but DstVTy is a vector of
- // pointers or vice-versa. Handle this using a two-step bitcast using an
- // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
- assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
- "Only one type should be a pointer type");
- assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
- "Only one type should be a floating point type");
- Type *IntTy =
- IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
- VectorType *VecIntTy = VectorType::get(IntTy, VF);
- Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
- return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
- }
- void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
- BasicBlock *Bypass) {
- Value *Count = getOrCreateTripCount(L);
- BasicBlock *BB = L->getLoopPreheader();
- IRBuilder<> Builder(BB->getTerminator());
- // Generate code to check if the loop's trip count is less than VF * UF, or
- // equal to it in case a scalar epilogue is required; this implies that the
- // vector trip count is zero. This check also covers the case where adding one
- // to the backedge-taken count overflowed leading to an incorrect trip count
- // of zero. In this case we will also jump to the scalar loop.
- auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
- : ICmpInst::ICMP_ULT;
- // If tail is to be folded, vector loop takes care of all iterations.
- Value *CheckMinIters = Builder.getFalse();
- if (!Cost->foldTailByMasking())
- CheckMinIters = Builder.CreateICmp(
- P, Count, ConstantInt::get(Count->getType(), VF * UF),
- "min.iters.check");
- BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, CheckMinIters));
- LoopBypassBlocks.push_back(BB);
- }
- void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
- BasicBlock *BB = L->getLoopPreheader();
- // Generate the code to check that the SCEV assumptions that we made.
- // We want the new basic block to start at the first instruction in a
- // sequence of instructions that form a check.
- SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
- "scev.check");
- Value *SCEVCheck =
- Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
- if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
- if (C->isZero())
- return;
- assert(!Cost->foldTailByMasking() &&
- "Cannot SCEV check stride or overflow when folding tail");
- // Create a new block containing the stride check.
- BB->setName("vector.scevcheck");
- auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, SCEVCheck));
- LoopBypassBlocks.push_back(BB);
- AddedSafetyChecks = true;
- }
- void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
- // VPlan-native path does not do any analysis for runtime checks currently.
- if (EnableVPlanNativePath)
- return;
- BasicBlock *BB = L->getLoopPreheader();
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- Instruction *FirstCheckInst;
- Instruction *MemRuntimeCheck;
- std::tie(FirstCheckInst, MemRuntimeCheck) =
- Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
- if (!MemRuntimeCheck)
- return;
- assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail");
- // Create a new block containing the memory check.
- BB->setName("vector.memcheck");
- auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
- // Update dominator tree immediately if the generated block is a
- // LoopBypassBlock because SCEV expansions to generate loop bypass
- // checks may query it before the current function is finished.
- DT->addNewBlock(NewBB, BB);
- if (L->getParentLoop())
- L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
- ReplaceInstWithInst(BB->getTerminator(),
- BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
- LoopBypassBlocks.push_back(BB);
- AddedSafetyChecks = true;
- // We currently don't use LoopVersioning for the actual loop cloning but we
- // still use it to add the noalias metadata.
- LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
- PSE.getSE());
- LVer->prepareNoAliasMetadata();
- }
- Value *InnerLoopVectorizer::emitTransformedIndex(
- IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
- const InductionDescriptor &ID) const {
- SCEVExpander Exp(*SE, DL, "induction");
- auto Step = ID.getStep();
- auto StartValue = ID.getStartValue();
- assert(Index->getType() == Step->getType() &&
- "Index type does not match StepValue type");
- // Note: the IR at this point is broken. We cannot use SE to create any new
- // SCEV and then expand it, hoping that SCEV's simplification will give us
- // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
- // lead to various SCEV crashes. So all we can do is to use builder and rely
- // on InstCombine for future simplifications. Here we handle some trivial
- // cases only.
- auto CreateAdd = [&B](Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isZero())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isZero())
- return X;
- return B.CreateAdd(X, Y);
- };
- auto CreateMul = [&B](Value *X, Value *Y) {
- assert(X->getType() == Y->getType() && "Types don't match!");
- if (auto *CX = dyn_cast<ConstantInt>(X))
- if (CX->isOne())
- return Y;
- if (auto *CY = dyn_cast<ConstantInt>(Y))
- if (CY->isOne())
- return X;
- return B.CreateMul(X, Y);
- };
- switch (ID.getKind()) {
- case InductionDescriptor::IK_IntInduction: {
- assert(Index->getType() == StartValue->getType() &&
- "Index type does not match StartValue type");
- if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
- return B.CreateSub(StartValue, Index);
- auto *Offset = CreateMul(
- Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
- return CreateAdd(StartValue, Offset);
- }
- case InductionDescriptor::IK_PtrInduction: {
- assert(isa<SCEVConstant>(Step) &&
- "Expected constant step for pointer induction");
- return B.CreateGEP(
- StartValue->getType()->getPointerElementType(), StartValue,
- CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
- &*B.GetInsertPoint())));
- }
- case InductionDescriptor::IK_FpInduction: {
- assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
- auto InductionBinOp = ID.getInductionBinOp();
- assert(InductionBinOp &&
- (InductionBinOp->getOpcode() == Instruction::FAdd ||
- InductionBinOp->getOpcode() == Instruction::FSub) &&
- "Original bin op should be defined for FP induction");
- Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
- // Floating point operations had to be 'fast' to enable the induction.
- FastMathFlags Flags;
- Flags.setFast();
- Value *MulExp = B.CreateFMul(StepValue, Index);
- if (isa<Instruction>(MulExp))
- // We have to check, the MulExp may be a constant.
- cast<Instruction>(MulExp)->setFastMathFlags(Flags);
- Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
- "induction");
- if (isa<Instruction>(BOp))
- cast<Instruction>(BOp)->setFastMathFlags(Flags);
- return BOp;
- }
- case InductionDescriptor::IK_NoInduction:
- return nullptr;
- }
- llvm_unreachable("invalid enum");
- }
- BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
- [ ] <-- loop iteration number check.
- / |
- / v
- | [ ] <-- vector loop bypass (may consist of multiple blocks).
- | / |
- | / v
- || [ ] <-- vector pre header.
- |/ |
- | v
- | [ ] \
- | [ ]_| <-- vector loop.
- | |
- | v
- | -[ ] <--- middle-block.
- | / |
- | / v
- -|- >[ ] <--- new preheader.
- | |
- | v
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
- ...
- */
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
- BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- MDNode *OrigLoopID = OrigLoop->getLoopID();
- assert(VectorPH && "Invalid loop structure");
- assert(ExitBlock && "Must have an exit block");
- // Some loops have a single integer induction variable, while other loops
- // don't. One example is c++ iterators that often have multiple pointer
- // induction variables. In the code below we also support a case where we
- // don't have a single induction variable.
- //
- // We try to obtain an induction variable from the original loop as hard
- // as possible. However if we don't find one that:
- // - is an integer
- // - counts from zero, stepping by one
- // - is the size of the widest induction variable type
- // then we create a new one.
- OldInduction = Legal->getPrimaryInduction();
- Type *IdxTy = Legal->getWidestInductionType();
- // Split the single block loop into the two loop structure described above.
- BasicBlock *VecBody =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
- BasicBlock *MiddleBlock =
- VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
- BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
- // Create and register the new vector loop.
- Loop *Lp = LI->AllocateLoop();
- Loop *ParentLoop = OrigLoop->getParentLoop();
- // Insert the new loop into the loop nest and register the new basic blocks
- // before calling any utilities such as SCEV that require valid LoopInfo.
- if (ParentLoop) {
- ParentLoop->addChildLoop(Lp);
- ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
- ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
- } else {
- LI->addTopLevelLoop(Lp);
- }
- Lp->addBasicBlockToLoop(VecBody, *LI);
- // Find the loop boundaries.
- Value *Count = getOrCreateTripCount(Lp);
- Value *StartIdx = ConstantInt::get(IdxTy, 0);
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop. This check also covers the case where the
- // backedge-taken count is uint##_max: adding one to it will overflow leading
- // to an incorrect trip count of zero. In this (rare) case we will also jump
- // to the scalar loop.
- emitMinimumIterationCountCheck(Lp, ScalarPH);
- // Generate the code to check any assumptions that we've made for SCEV
- // expressions.
- emitSCEVChecks(Lp, ScalarPH);
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- emitMemRuntimeChecks(Lp, ScalarPH);
- // Generate the induction variable.
- // The loop step is equal to the vectorization factor (num of SIMD elements)
- // times the unroll factor (num of SIMD instructions).
- Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
- Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- Induction =
- createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
- getDebugLocFromInstOrOperands(OldInduction));
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
- // This variable saves the new starting index for the scalar loop. It is used
- // to test if there are any tail iterations left once the vector loop has
- // completed.
- LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
- for (auto &InductionEntry : *List) {
- PHINode *OrigPhi = InductionEntry.first;
- InductionDescriptor II = InductionEntry.second;
- // Create phi nodes to merge from the backedge-taken check block.
- PHINode *BCResumeVal = PHINode::Create(
- OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
- // Copy original phi DL over to the new one.
- BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
- Value *&EndValue = IVEndValues[OrigPhi];
- if (OrigPhi == OldInduction) {
- // We know what the end value is.
- EndValue = CountRoundDown;
- } else {
- IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
- Type *StepType = II.getStep()->getType();
- Instruction::CastOps CastOp =
- CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
- Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
- const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
- EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
- EndValue->setName("ind.end");
- }
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- BCResumeVal->addIncoming(EndValue, MiddleBlock);
- // Fix the scalar body counter (PHI node).
- unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
- // The old induction's phi node in the scalar body needs the truncated
- // value.
- for (BasicBlock *BB : LoopBypassBlocks)
- BCResumeVal->addIncoming(II.getStartValue(), BB);
- OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
- }
- // We need the OrigLoop (scalar loop part) latch terminator to help
- // produce correct debug info for the middle block BB instructions.
- // The legality check stage guarantees that the loop will have a single
- // latch.
- assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
- "Scalar loop latch terminator isn't a branch");
- BranchInst *ScalarLatchBr =
- cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop.
- // If (N - N%VF) == N, then we *don't* need to run the remainder.
- // If tail is to be folded, we know we don't need to run the remainder.
- Value *CmpN = Builder.getTrue();
- if (!Cost->foldTailByMasking()) {
- CmpN =
- CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
- CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
- // Provide correct stepping behaviour by using the same DebugLoc as the
- // scalar loop latch branch cmp if it exists.
- if (CmpInst *ScalarLatchCmp =
- dyn_cast_or_null<CmpInst>(ScalarLatchBr->getCondition()))
- cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchCmp->getDebugLoc());
- }
- BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN);
- BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
- ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst);
- // Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
- // Save the state.
- LoopVectorPreHeader = Lp->getLoopPreheader();
- LoopScalarPreHeader = ScalarPH;
- LoopMiddleBlock = MiddleBlock;
- LoopExitBlock = ExitBlock;
- LoopVectorBody = VecBody;
- LoopScalarBody = OldBasicBlock;
- Optional<MDNode *> VectorizedLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupVectorized});
- if (VectorizedLoopID.hasValue()) {
- Lp->setLoopID(VectorizedLoopID.getValue());
- // Do not setAlreadyVectorized if loop attributes have been defined
- // explicitly.
- return LoopVectorPreHeader;
- }
- // Keep all loop hints from the original loop on the vector loop (we'll
- // replace the vectorizer-specific hints below).
- if (MDNode *LID = OrigLoop->getLoopID())
- Lp->setLoopID(LID);
- LoopVectorizeHints Hints(Lp, true, *ORE);
- Hints.setAlreadyVectorized();
- return LoopVectorPreHeader;
- }
- // Fix up external users of the induction variable. At this point, we are
- // in LCSSA form, with all external PHIs that use the IV having one input value,
- // coming from the remainder loop. We need those PHIs to also have a correct
- // value for the IV when arriving directly from the middle block.
- void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
- const InductionDescriptor &II,
- Value *CountRoundDown, Value *EndValue,
- BasicBlock *MiddleBlock) {
- // There are two kinds of external IV usages - those that use the value
- // computed in the last iteration (the PHI) and those that use the penultimate
- // value (the value that feeds into the phi from the loop latch).
- // We allow both, but they, obviously, have different values.
- assert(OrigLoop->getExitBlock() && "Expected a single exit block");
- DenseMap<Value *, Value *> MissingVals;
- // An external user of the last iteration's value should see the value that
- // the remainder loop uses to initialize its own IV.
- Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
- for (User *U : PostInc->users()) {
- Instruction *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
- MissingVals[UI] = EndValue;
- }
- }
- // An external user of the penultimate value need to see EndValue - Step.
- // The simplest way to get this is to recompute it from the constituent SCEVs,
- // that is Start + (Step * (CRD - 1)).
- for (User *U : OrigPhi->users()) {
- auto *UI = cast<Instruction>(U);
- if (!OrigLoop->contains(UI)) {
- const DataLayout &DL =
- OrigLoop->getHeader()->getModule()->getDataLayout();
- assert(isa<PHINode>(UI) && "Expected LCSSA form");
- IRBuilder<> B(MiddleBlock->getTerminator());
- Value *CountMinusOne = B.CreateSub(
- CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
- Value *CMO =
- !II.getStep()->getType()->isIntegerTy()
- ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
- II.getStep()->getType())
- : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
- CMO->setName("cast.cmo");
- Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
- Escape->setName("ind.escape");
- MissingVals[UI] = Escape;
- }
- }
- for (auto &I : MissingVals) {
- PHINode *PHI = cast<PHINode>(I.first);
- // One corner case we have to handle is two IVs "chasing" each-other,
- // that is %IV2 = phi [...], [ %IV1, %latch ]
- // In this case, if IV1 has an external use, we need to avoid adding both
- // "last value of IV1" and "penultimate value of IV2". So, verify that we
- // don't already have an incoming value for the middle block.
- if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
- PHI->addIncoming(I.second, MiddleBlock);
- }
- }
- namespace {
- struct CSEDenseMapInfo {
- static bool canHandle(const Instruction *I) {
- return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
- }
- static inline Instruction *getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline Instruction *getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(const Instruction *I) {
- assert(canHandle(I) && "Unknown instruction!");
- return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
- I->value_op_end()));
- }
- static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
- if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
- LHS == getTombstoneKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- } // end anonymous namespace
- ///Perform cse of induction variable instructions.
- static void cse(BasicBlock *BB) {
- // Perform simple cse.
- SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *In = &*I++;
- if (!CSEDenseMapInfo::canHandle(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- if (Instruction *V = CSEMap.lookup(In)) {
- In->replaceAllUsesWith(V);
- In->eraseFromParent();
- continue;
- }
- CSEMap[In] = In;
- }
- }
- /// Estimate the overhead of scalarizing an instruction. This is a
- /// convenience wrapper for the type-based getScalarizationOverhead API.
- static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
- const TargetTransformInfo &TTI) {
- if (VF == 1)
- return 0;
- unsigned Cost = 0;
- Type *RetTy = ToVectorTy(I->getType(), VF);
- if (!RetTy->isVoidTy() &&
- (!isa<LoadInst>(I) ||
- !TTI.supportsEfficientVectorElementLoadStore()))
- Cost += TTI.getScalarizationOverhead(RetTy, true, false);
- // Some targets keep addresses scalar.
- if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
- return Cost;
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- SmallVector<const Value *, 4> Operands(CI->arg_operands());
- Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
- }
- else if (!isa<StoreInst>(I) ||
- !TTI.supportsEfficientVectorElementLoadStore()) {
- SmallVector<const Value *, 4> Operands(I->operand_values());
- Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
- }
- return Cost;
- }
- // Estimate cost of a call instruction CI if it were vectorized with factor VF.
- // Return the cost of the instruction, including scalarization overhead if it's
- // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
- // i.e. either vector version isn't available, or is too expensive.
- static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI,
- bool &NeedToScalarize) {
- Function *F = CI->getCalledFunction();
- StringRef FnName = CI->getCalledFunction()->getName();
- Type *ScalarRetTy = CI->getType();
- SmallVector<Type *, 4> Tys, ScalarTys;
- for (auto &ArgOp : CI->arg_operands())
- ScalarTys.push_back(ArgOp->getType());
- // Estimate cost of scalarized vector call. The source operands are assumed
- // to be vectors, so we need to extract individual elements from there,
- // execute VF scalar calls, and then gather the result into the vector return
- // value.
- unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
- if (VF == 1)
- return ScalarCallCost;
- // Compute corresponding vector type for return value and arguments.
- Type *RetTy = ToVectorTy(ScalarRetTy, VF);
- for (Type *ScalarTy : ScalarTys)
- Tys.push_back(ToVectorTy(ScalarTy, VF));
- // Compute costs of unpacking argument values for the scalar calls and
- // packing the return values to a vector.
- unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
- unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
- // If we can't emit a vector call for this function, then the currently found
- // cost is the cost we need to return.
- NeedToScalarize = true;
- if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
- return Cost;
- // If the corresponding vector cost is cheaper, return its cost.
- unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
- if (VectorCallCost < Cost) {
- NeedToScalarize = false;
- return VectorCallCost;
- }
- return Cost;
- }
- // Estimate cost of an intrinsic call instruction CI if it were vectorized with
- // factor VF. Return the cost of the instruction, including scalarization
- // overhead if it's needed.
- static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
- const TargetTransformInfo &TTI,
- const TargetLibraryInfo *TLI) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- assert(ID && "Expected intrinsic call!");
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
- SmallVector<Value *, 4> Operands(CI->arg_operands());
- return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
- }
- static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(T1->getVectorElementType());
- auto *I2 = cast<IntegerType>(T2->getVectorElementType());
- return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
- }
- static Type *largestIntegerVectorType(Type *T1, Type *T2) {
- auto *I1 = cast<IntegerType>(T1->getVectorElementType());
- auto *I2 = cast<IntegerType>(T2->getVectorElementType());
- return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
- }
- void InnerLoopVectorizer::truncateToMinimalBitwidths() {
- // For every instruction `I` in MinBWs, truncate the operands, create a
- // truncated version of `I` and reextend its result. InstCombine runs
- // later and will remove any ext/trunc pairs.
- SmallPtrSet<Value *, 4> Erased;
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from VectorLoopValueMap indicates that it
- // wasn't vectorized.
- if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = getOrCreateVectorValue(KV.first, Part);
- if (Erased.find(I) != Erased.end() || I->use_empty() ||
- !isa<Instruction>(I))
- continue;
- Type *OriginalTy = I->getType();
- Type *ScalarTruncatedTy =
- IntegerType::get(OriginalTy->getContext(), KV.second);
- Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
- OriginalTy->getVectorNumElements());
- if (TruncatedTy == OriginalTy)
- continue;
- IRBuilder<> B(cast<Instruction>(I));
- auto ShrinkOperand = [&](Value *V) -> Value * {
- if (auto *ZI = dyn_cast<ZExtInst>(V))
- if (ZI->getSrcTy() == TruncatedTy)
- return ZI->getOperand(0);
- return B.CreateZExtOrTrunc(V, TruncatedTy);
- };
- // The actual instruction modification depends on the instruction type,
- // unfortunately.
- Value *NewI = nullptr;
- if (auto *BO = dyn_cast<BinaryOperator>(I)) {
- NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
- ShrinkOperand(BO->getOperand(1)));
- // Any wrapping introduced by shrinking this operation shouldn't be
- // considered undefined behavior. So, we can't unconditionally copy
- // arithmetic wrapping flags to NewI.
- cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
- } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
- NewI =
- B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
- ShrinkOperand(CI->getOperand(1)));
- } else if (auto *SI = dyn_cast<SelectInst>(I)) {
- NewI = B.CreateSelect(SI->getCondition(),
- ShrinkOperand(SI->getTrueValue()),
- ShrinkOperand(SI->getFalseValue()));
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- switch (CI->getOpcode()) {
- default:
- llvm_unreachable("Unhandled cast!");
- case Instruction::Trunc:
- NewI = ShrinkOperand(CI->getOperand(0));
- break;
- case Instruction::SExt:
- NewI = B.CreateSExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- case Instruction::ZExt:
- NewI = B.CreateZExtOrTrunc(
- CI->getOperand(0),
- smallestIntegerVectorType(OriginalTy, TruncatedTy));
- break;
- }
- } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
- auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
- auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
- auto *O1 = B.CreateZExtOrTrunc(
- SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
- NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
- } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
- // Don't do anything with the operands, just extend the result.
- continue;
- } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
- NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
- } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
- auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
- auto *O0 = B.CreateZExtOrTrunc(
- EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
- NewI = B.CreateExtractElement(O0, EE->getOperand(2));
- } else {
- // If we don't know what to do, be conservative and don't do anything.
- continue;
- }
- // Lastly, extend the result.
- NewI->takeName(cast<Instruction>(I));
- Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
- I->replaceAllUsesWith(Res);
- cast<Instruction>(I)->eraseFromParent();
- Erased.insert(I);
- VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
- }
- }
- // We'll have created a bunch of ZExts that are now parentless. Clean up.
- for (const auto &KV : Cost->getMinimalBitwidths()) {
- // If the value wasn't vectorized, we must maintain the original scalar
- // type. The absence of the value from VectorLoopValueMap indicates that it
- // wasn't vectorized.
- if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
- continue;
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *I = getOrCreateVectorValue(KV.first, Part);
- ZExtInst *Inst = dyn_cast<ZExtInst>(I);
- if (Inst && Inst->use_empty()) {
- Value *NewI = Inst->getOperand(0);
- Inst->eraseFromParent();
- VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
- }
- }
- }
- }
- void InnerLoopVectorizer::fixVectorizedLoop() {
- // Insert truncates and extends for any truncated instructions as hints to
- // InstCombine.
- if (VF > 1)
- truncateToMinimalBitwidths();
- // Fix widened non-induction PHIs by setting up the PHI operands.
- if (OrigPHIsToFix.size()) {
- assert(EnableVPlanNativePath &&
- "Unexpected non-induction PHIs for fixup in non VPlan-native path");
- fixNonInductionPHIs();
- }
- // At this point every instruction in the original loop is widened to a
- // vector form. Now we need to fix the recurrences in the loop. These PHI
- // nodes are currently empty because we did not want to introduce cycles.
- // This is the second stage of vectorizing recurrences.
- fixCrossIterationPHIs();
- // Update the dominator tree.
- //
- // FIXME: After creating the structure of the new loop, the dominator tree is
- // no longer up-to-date, and it remains that way until we update it
- // here. An out-of-date dominator tree is problematic for SCEV,
- // because SCEVExpander uses it to guide code generation. The
- // vectorizer use SCEVExpanders in several places. Instead, we should
- // keep the dominator tree up-to-date as we go.
- updateAnalysis();
- // Fix-up external users of the induction variables.
- for (auto &Entry : *Legal->getInductionVars())
- fixupIVUsers(Entry.first, Entry.second,
- getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
- IVEndValues[Entry.first], LoopMiddleBlock);
- fixLCSSAPHIs();
- for (Instruction *PI : PredicatedInstructions)
- sinkScalarOperands(&*PI);
- // Remove redundant induction instructions.
- cse(LoopVectorBody);
- }
- void InnerLoopVectorizer::fixCrossIterationPHIs() {
- // In order to support recurrences we need to be able to vectorize Phi nodes.
- // Phi nodes have cycles, so we need to vectorize them in two stages. This is
- // stage #2: We now need to fix the recurrences by adding incoming edges to
- // the currently empty PHI nodes. At this point every instruction in the
- // original loop is widened to a vector form so we can use them to construct
- // the incoming edges.
- for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
- // Handle first-order recurrences and reductions that need to be fixed.
- if (Legal->isFirstOrderRecurrence(&Phi))
- fixFirstOrderRecurrence(&Phi);
- else if (Legal->isReductionVariable(&Phi))
- fixReduction(&Phi);
- }
- }
- void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
- // This is the second phase of vectorizing first-order recurrences. An
- // overview of the transformation is described below. Suppose we have the
- // following loop.
- //
- // for (int i = 0; i < n; ++i)
- // b[i] = a[i] - a[i - 1];
- //
- // There is a first-order recurrence on "a". For this loop, the shorthand
- // scalar IR looks like:
- //
- // scalar.ph:
- // s_init = a[-1]
- // br scalar.body
- //
- // scalar.body:
- // i = phi [0, scalar.ph], [i+1, scalar.body]
- // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
- // s2 = a[i]
- // b[i] = s2 - s1
- // br cond, scalar.body, ...
- //
- // In this example, s1 is a recurrence because it's value depends on the
- // previous iteration. In the first phase of vectorization, we created a
- // temporary value for s1. We now complete the vectorization and produce the
- // shorthand vector IR shown below (for VF = 4, UF = 1).
- //
- // vector.ph:
- // v_init = vector(..., ..., ..., a[-1])
- // br vector.body
- //
- // vector.body
- // i = phi [0, vector.ph], [i+4, vector.body]
- // v1 = phi [v_init, vector.ph], [v2, vector.body]
- // v2 = a[i, i+1, i+2, i+3];
- // v3 = vector(v1(3), v2(0, 1, 2))
- // b[i, i+1, i+2, i+3] = v2 - v3
- // br cond, vector.body, middle.block
- //
- // middle.block:
- // x = v2(3)
- // br scalar.ph
- //
- // scalar.ph:
- // s_init = phi [x, middle.block], [a[-1], otherwise]
- // br scalar.body
- //
- // After execution completes the vector loop, we extract the next value of
- // the recurrence (x) to use as the initial value in the scalar loop.
- // Get the original loop preheader and single loop latch.
- auto *Preheader = OrigLoop->getLoopPreheader();
- auto *Latch = OrigLoop->getLoopLatch();
- // Get the initial and previous values of the scalar recurrence.
- auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
- auto *Previous = Phi->getIncomingValueForBlock(Latch);
- // Create a vector from the initial value.
- auto *VectorInit = ScalarInit;
- if (VF > 1) {
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- VectorInit = Builder.CreateInsertElement(
- UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
- Builder.getInt32(VF - 1), "vector.recur.init");
- }
- // We constructed a temporary phi node in the first phase of vectorization.
- // This phi node will eventually be deleted.
- Builder.SetInsertPoint(
- cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
- // Create a phi node for the new recurrence. The current value will either be
- // the initial value inserted into a vector or loop-varying vector value.
- auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
- VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
- // Get the vectorized previous value of the last part UF - 1. It appears last
- // among all unrolled iterations, due to the order of their construction.
- Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
- // Set the insertion point after the previous value if it is an instruction.
- // Note that the previous value may have been constant-folded so it is not
- // guaranteed to be an instruction in the vector loop. Also, if the previous
- // value is a phi node, we should insert after all the phi nodes to avoid
- // breaking basic block verification.
- if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
- isa<PHINode>(PreviousLastPart))
- Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
- else
- Builder.SetInsertPoint(
- &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
- // We will construct a vector for the recurrence by combining the values for
- // the current and previous iterations. This is the required shuffle mask.
- SmallVector<Constant *, 8> ShuffleMask(VF);
- ShuffleMask[0] = Builder.getInt32(VF - 1);
- for (unsigned I = 1; I < VF; ++I)
- ShuffleMask[I] = Builder.getInt32(I + VF - 1);
- // The vector from which to take the initial value for the current iteration
- // (actual or unrolled). Initially, this is the vector phi node.
- Value *Incoming = VecPhi;
- // Shuffle the current and previous vector and update the vector parts.
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
- Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
- auto *Shuffle =
- VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
- ConstantVector::get(ShuffleMask))
- : Incoming;
- PhiPart->replaceAllUsesWith(Shuffle);
- cast<Instruction>(PhiPart)->eraseFromParent();
- VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
- Incoming = PreviousPart;
- }
- // Fix the latch value of the new recurrence in the vector loop.
- VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
- // Extract the last vector element in the middle block. This will be the
- // initial value for the recurrence when jumping to the scalar loop.
- auto *ExtractForScalar = Incoming;
- if (VF > 1) {
- Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
- ExtractForScalar = Builder.CreateExtractElement(
- ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
- }
- // Extract the second last element in the middle block if the
- // Phi is used outside the loop. We need to extract the phi itself
- // and not the last element (the phi update in the current iteration). This
- // will be the value when jumping to the exit block from the LoopMiddleBlock,
- // when the scalar loop is not run at all.
- Value *ExtractForPhiUsedOutsideLoop = nullptr;
- if (VF > 1)
- ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
- Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
- // When loop is unrolled without vectorizing, initialize
- // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
- // `Incoming`. This is analogous to the vectorized case above: extracting the
- // second last element when VF > 1.
- else if (UF > 1)
- ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
- // Fix the initial value of the original recurrence in the scalar loop.
- Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
- auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
- for (auto *BB : predecessors(LoopScalarPreHeader)) {
- auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
- Start->addIncoming(Incoming, BB);
- }
- Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
- Phi->setName("scalar.recur");
- // Finally, fix users of the recurrence outside the loop. The users will need
- // either the last value of the scalar recurrence or the last value of the
- // vector recurrence we extracted in the middle block. Since the loop is in
- // LCSSA form, we just need to find all the phi nodes for the original scalar
- // recurrence in the exit block, and then add an edge for the middle block.
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- if (LCSSAPhi.getIncomingValue(0) == Phi) {
- LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
- }
- }
- }
- void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
- Constant *Zero = Builder.getInt32(0);
- // Get it's reduction variable descriptor.
- assert(Legal->isReductionVariable(Phi) &&
- "Unable to find the reduction variable");
- RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
- RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
- TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
- Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
- RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
- RdxDesc.getMinMaxRecurrenceKind();
- setDebugLocFromInst(Builder, ReductionStartValue);
- // We need to generate a reduction vector from the incoming scalar.
- // To do so, we need to generate the 'identity' vector and override
- // one of the elements with the incoming scalar reduction. We need
- // to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // This is the vector-clone of the value that leaves the loop.
- Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
- // Find the reduction identity variable. Zero for addition, or, xor,
- // one for multiplication, -1 for And.
- Value *Identity;
- Value *VectorStart;
- if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
- RK == RecurrenceDescriptor::RK_FloatMinMax) {
- // MinMax reduction have the start value as their identify.
- if (VF == 1) {
- VectorStart = Identity = ReductionStartValue;
- } else {
- VectorStart = Identity =
- Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
- }
- } else {
- // Handle other reduction kinds:
- Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
- RK, VecTy->getScalarType());
- if (VF == 1) {
- Identity = Iden;
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart = ReductionStartValue;
- } else {
- Identity = ConstantVector::getSplat(VF, Iden);
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- VectorStart =
- Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
- }
- }
- // Fix the vector-loop phi.
- // Reductions do not have to start at zero. They can start with
- // any loop invariant values.
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
- Value *Val = getOrCreateVectorValue(LoopVal, Part);
- // Make sure to add the reduction stat value only to the
- // first unroll part.
- Value *StartVal = (Part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
- cast<PHINode>(VecRdxPhi)
- ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
- }
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
- setDebugLocFromInst(Builder, LoopExitInst);
- // If the vector reduction can be performed in a smaller type, we truncate
- // then extend the loop exit value to enable InstCombine to evaluate the
- // entire expression in the smaller type.
- if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
- Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
- Builder.SetInsertPoint(
- LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
- VectorParts RdxParts(UF);
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
- Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
- : Builder.CreateZExt(Trunc, VecTy);
- for (Value::user_iterator UI = RdxParts[Part]->user_begin();
- UI != RdxParts[Part]->user_end();)
- if (*UI != Trunc) {
- (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
- RdxParts[Part] = Extnd;
- } else {
- ++UI;
- }
- }
- Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
- for (unsigned Part = 0; Part < UF; ++Part) {
- RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
- VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
- }
- }
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
- unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
- setDebugLocFromInst(Builder, ReducedPartRdx);
- for (unsigned Part = 1; Part < UF; ++Part) {
- Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
- if (Op != Instruction::ICmp && Op != Instruction::FCmp)
- // Floating point operations had to be 'fast' to enable the reduction.
- ReducedPartRdx = addFastMathFlag(
- Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
- ReducedPartRdx, "bin.rdx"),
- RdxDesc.getFastMathFlags());
- else
- ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
- RdxPart);
- }
- if (VF > 1) {
- bool NoNaN = Legal->hasFunNoNaNAttr();
- ReducedPartRdx =
- createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
- // If the reduction can be performed in a smaller type, we need to extend
- // the reduction to the wider type before we branch to the original loop.
- if (Phi->getType() != RdxDesc.getRecurrenceType())
- ReducedPartRdx =
- RdxDesc.isSigned()
- ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
- : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
- }
- // Create a phi node that merges control-flow from the backedge-taken check
- // block and the middle block.
- PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
- LoopScalarPreHeader->getTerminator());
- for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
- BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
- BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the
- // PHI nodes in the exit blocks.
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- // All PHINodes need to have a single entry edge, or two if
- // we already fixed them.
- assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
- // We found a reduction value exit-PHI. Update it with the
- // incoming bypass edge.
- if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
- LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
- } // end of the LCSSA phi scan.
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
- Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
- }
- void InnerLoopVectorizer::fixLCSSAPHIs() {
- for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
- if (LCSSAPhi.getNumIncomingValues() == 1) {
- auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
- // Non-instruction incoming values will have only one value.
- unsigned LastLane = 0;
- if (isa<Instruction>(IncomingValue))
- LastLane = Cost->isUniformAfterVectorization(
- cast<Instruction>(IncomingValue), VF)
- ? 0
- : VF - 1;
- // Can be a loop invariant incoming value or the last scalar value to be
- // extracted from the vectorized loop.
- Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
- Value *lastIncomingValue =
- getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
- LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
- }
- }
- }
- void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
- // The basic block and loop containing the predicated instruction.
- auto *PredBB = PredInst->getParent();
- auto *VectorLoop = LI->getLoopFor(PredBB);
- // Initialize a worklist with the operands of the predicated instruction.
- SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
- // Holds instructions that we need to analyze again. An instruction may be
- // reanalyzed if we don't yet know if we can sink it or not.
- SmallVector<Instruction *, 8> InstsToReanalyze;
- // Returns true if a given use occurs in the predicated block. Phi nodes use
- // their operands in their corresponding predecessor blocks.
- auto isBlockOfUsePredicated = [&](Use &U) -> bool {
- auto *I = cast<Instruction>(U.getUser());
- BasicBlock *BB = I->getParent();
- if (auto *Phi = dyn_cast<PHINode>(I))
- BB = Phi->getIncomingBlock(
- PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
- return BB == PredBB;
- };
- // Iteratively sink the scalarized operands of the predicated instruction
- // into the block we created for it. When an instruction is sunk, it's
- // operands are then added to the worklist. The algorithm ends after one pass
- // through the worklist doesn't sink a single instruction.
- bool Changed;
- do {
- // Add the instructions that need to be reanalyzed to the worklist, and
- // reset the changed indicator.
- Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
- InstsToReanalyze.clear();
- Changed = false;
- while (!Worklist.empty()) {
- auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
- // We can't sink an instruction if it is a phi node, is already in the
- // predicated block, is not in the loop, or may have side effects.
- if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
- !VectorLoop->contains(I) || I->mayHaveSideEffects())
- continue;
- // It's legal to sink the instruction if all its uses occur in the
- // predicated block. Otherwise, there's nothing to do yet, and we may
- // need to reanalyze the instruction.
- if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
- InstsToReanalyze.push_back(I);
- continue;
- }
- // Move the instruction to the beginning of the predicated block, and add
- // it's operands to the worklist.
- I->moveBefore(&*PredBB->getFirstInsertionPt());
- Worklist.insert(I->op_begin(), I->op_end());
- // The sinking may have enabled other instructions to be sunk, so we will
- // need to iterate.
- Changed = true;
- }
- } while (Changed);
- }
- void InnerLoopVectorizer::fixNonInductionPHIs() {
- for (PHINode *OrigPhi : OrigPHIsToFix) {
- PHINode *NewPhi =
- cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
- unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
- SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
- predecessors(OrigPhi->getParent()));
- SmallVector<BasicBlock *, 2> VectorBBPredecessors(
- predecessors(NewPhi->getParent()));
- assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
- "Scalar and Vector BB should have the same number of predecessors");
- // The insertion point in Builder may be invalidated by the time we get
- // here. Force the Builder insertion point to something valid so that we do
- // not run into issues during insertion point restore in
- // getOrCreateVectorValue calls below.
- Builder.SetInsertPoint(NewPhi);
- // The predecessor order is preserved and we can rely on mapping between
- // scalar and vector block predecessors.
- for (unsigned i = 0; i < NumIncomingValues; ++i) {
- BasicBlock *NewPredBB = VectorBBPredecessors[i];
- // When looking up the new scalar/vector values to fix up, use incoming
- // values from original phi.
- Value *ScIncV =
- OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
- // Scalar incoming value may need a broadcast
- Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
- NewPhi->addIncoming(NewIncV, NewPredBB);
- }
- }
- }
- void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
- unsigned VF) {
- PHINode *P = cast<PHINode>(PN);
- if (EnableVPlanNativePath) {
- // Currently we enter here in the VPlan-native path for non-induction
- // PHIs where all control flow is uniform. We simply widen these PHIs.
- // Create a vector phi with no operands - the vector phi operands will be
- // set at the end of vector code generation.
- Type *VecTy =
- (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
- Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
- VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
- OrigPHIsToFix.push_back(P);
- return;
- }
- assert(PN->getParent() == OrigLoop->getHeader() &&
- "Non-header phis should have been handled elsewhere");
- // In order to support recurrences we need to be able to vectorize Phi nodes.
- // Phi nodes have cycles, so we need to vectorize them in two stages. This is
- // stage #1: We create a new vector PHI node with no incoming edges. We'll use
- // this value when we vectorize all of the instructions that use the PHI.
- if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
- for (unsigned Part = 0; Part < UF; ++Part) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy =
- (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
- Value *EntryPart = PHINode::Create(
- VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
- VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
- }
- return;
- }
- setDebugLocFromInst(Builder, P);
- // This PHINode must be an induction variable.
- // Make sure that we know about it.
- assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
- InductionDescriptor II = Legal->getInductionVars()->lookup(P);
- const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
- // FIXME: The newly created binary instructions should contain nsw/nuw flags,
- // which can be found from the original scalar operations.
- switch (II.getKind()) {
- case InductionDescriptor::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case InductionDescriptor::IK_IntInduction:
- case InductionDescriptor::IK_FpInduction:
- llvm_unreachable("Integer/fp induction is handled elsewhere.");
- case InductionDescriptor::IK_PtrInduction: {
- // Handle the pointer induction variable case.
- assert(P->getType()->isPointerTy() && "Unexpected type.");
- // This is the normalized GEP that starts counting at zero.
- Value *PtrInd = Induction;
- PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
- // Determine the number of scalars we need to generate for each unroll
- // iteration. If the instruction is uniform, we only need to generate the
- // first lane. Otherwise, we generate all VF values.
- unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
- // These are the scalar results. Notice that we don't generate vector GEPs
- // because scalar GEPs result in better code.
- for (unsigned Part = 0; Part < UF; ++Part) {
- for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
- Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
- Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
- Value *SclrGep =
- emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
- SclrGep->setName("next.gep");
- VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
- }
- }
- return;
- }
- }
- }
- /// A helper function for checking whether an integer division-related
- /// instruction may divide by zero (in which case it must be predicated if
- /// executed conditionally in the scalar code).
- /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
- /// Non-zero divisors that are non compile-time constants will not be
- /// converted into multiplication, so we will still end up scalarizing
- /// the division, but can do so w/o predication.
- static bool mayDivideByZero(Instruction &I) {
- assert((I.getOpcode() == Instruction::UDiv ||
- I.getOpcode() == Instruction::SDiv ||
- I.getOpcode() == Instruction::URem ||
- I.getOpcode() == Instruction::SRem) &&
- "Unexpected instruction");
- Value *Divisor = I.getOperand(1);
- auto *CInt = dyn_cast<ConstantInt>(Divisor);
- return !CInt || CInt->isZero();
- }
- void InnerLoopVectorizer::widenInstruction(Instruction &I) {
- switch (I.getOpcode()) {
- case Instruction::Br:
- case Instruction::PHI:
- llvm_unreachable("This instruction is handled by a different recipe.");
- case Instruction::GetElementPtr: {
- // Construct a vector GEP by widening the operands of the scalar GEP as
- // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
- // results in a vector of pointers when at least one operand of the GEP
- // is vector-typed. Thus, to keep the representation compact, we only use
- // vector-typed operands for loop-varying values.
- auto *GEP = cast<GetElementPtrInst>(&I);
- if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
- // If we are vectorizing, but the GEP has only loop-invariant operands,
- // the GEP we build (by only using vector-typed operands for
- // loop-varying values) would be a scalar pointer. Thus, to ensure we
- // produce a vector of pointers, we need to either arbitrarily pick an
- // operand to broadcast, or broadcast a clone of the original GEP.
- // Here, we broadcast a clone of the original.
- //
- // TODO: If at some point we decide to scalarize instructions having
- // loop-invariant operands, this special case will no longer be
- // required. We would add the scalarization decision to
- // collectLoopScalars() and teach getVectorValue() to broadcast
- // the lane-zero scalar value.
- auto *Clone = Builder.Insert(GEP->clone());
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
- VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
- addMetadata(EntryPart, GEP);
- }
- } else {
- // If the GEP has at least one loop-varying operand, we are sure to
- // produce a vector of pointers. But if we are only unrolling, we want
- // to produce a scalar GEP for each unroll part. Thus, the GEP we
- // produce with the code below will be scalar (if VF == 1) or vector
- // (otherwise). Note that for the unroll-only case, we still maintain
- // values in the vector mapping with initVector, as we do for other
- // instructions.
- for (unsigned Part = 0; Part < UF; ++Part) {
- // The pointer operand of the new GEP. If it's loop-invariant, we
- // won't broadcast it.
- auto *Ptr =
- OrigLoop->isLoopInvariant(GEP->getPointerOperand())
- ? GEP->getPointerOperand()
- : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
- // Collect all the indices for the new GEP. If any index is
- // loop-invariant, we won't broadcast it.
- SmallVector<Value *, 4> Indices;
- for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
- if (OrigLoop->isLoopInvariant(U.get()))
- Indices.push_back(U.get());
- else
- Indices.push_back(getOrCreateVectorValue(U.get(), Part));
- }
- // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
- // but it should be a vector, otherwise.
- auto *NewGEP =
- GEP->isInBounds()
- ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
- Indices)
- : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
- assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
- "NewGEP is not a pointer vector");
- VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
- addMetadata(NewGEP, GEP);
- }
- }
- break;
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen binops.
- auto *BinOp = cast<BinaryOperator>(&I);
- setDebugLocFromInst(Builder, BinOp);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
- Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
- if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
- VecOp->copyIRFlags(BinOp);
- // Use this vector value for all users of the original instruction.
- VectorLoopValueMap.setVectorValue(&I, Part, V);
- addMetadata(V, BinOp);
- }
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- auto *SE = PSE.getSE();
- bool InvariantCond =
- SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
- setDebugLocFromInst(Builder, &I);
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
- auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
- Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
- Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
- Value *Sel =
- Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
- VectorLoopValueMap.setVectorValue(&I, Part, Sel);
- addMetadata(Sel, &I);
- }
- break;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (I.getOpcode() == Instruction::FCmp);
- auto *Cmp = dyn_cast<CmpInst>(&I);
- setDebugLocFromInst(Builder, Cmp);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
- Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
- Value *C = nullptr;
- if (FCmp) {
- // Propagate fast math flags.
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- Builder.setFastMathFlags(Cmp->getFastMathFlags());
- C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
- } else {
- C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
- }
- VectorLoopValueMap.setVectorValue(&I, Part, C);
- addMetadata(C, &I);
- }
- break;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- auto *CI = dyn_cast<CastInst>(&I);
- setDebugLocFromInst(Builder, CI);
- /// Vectorize casts.
- Type *DestTy =
- (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
- Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
- VectorLoopValueMap.setVectorValue(&I, Part, Cast);
- addMetadata(Cast, &I);
- }
- break;
- }
- case Instruction::Call: {
- // Ignore dbg intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- break;
- setDebugLocFromInst(Builder, &I);
- Module *M = I.getParent()->getParent()->getParent();
- auto *CI = cast<CallInst>(&I);
- StringRef FnName = CI->getCalledFunction()->getName();
- Function *F = CI->getCalledFunction();
- Type *RetTy = ToVectorTy(CI->getType(), VF);
- SmallVector<Type *, 4> Tys;
- for (Value *ArgOperand : CI->arg_operands())
- Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // The flag shows whether we use Intrinsic or a usual Call for vectorized
- // version of the instruction.
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool NeedToScalarize;
- unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
- bool UseVectorIntrinsic =
- ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
- assert((UseVectorIntrinsic || !NeedToScalarize) &&
- "Instruction should be scalarized elsewhere.");
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value *, 4> Args;
- for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
- Value *Arg = CI->getArgOperand(i);
- // Some intrinsics have a scalar argument - don't replace it with a
- // vector.
- if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
- Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
- Args.push_back(Arg);
- }
- Function *VectorF;
- if (UseVectorIntrinsic) {
- // Use vector version of the intrinsic.
- Type *TysForDecl[] = {CI->getType()};
- if (VF > 1)
- TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
- VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
- } else {
- // Use vector version of the library call.
- StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
- assert(!VFnName.empty() && "Vector function name is empty.");
- VectorF = M->getFunction(VFnName);
- if (!VectorF) {
- // Generate a declaration
- FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
- VectorF =
- Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
- VectorF->copyAttributesFrom(F);
- }
- }
- assert(VectorF && "Can't create vector function.");
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
- if (isa<FPMathOperator>(V))
- V->copyFastMathFlags(CI);
- VectorLoopValueMap.setVectorValue(&I, Part, V);
- addMetadata(V, &I);
- }
- break;
- }
- default:
- // This instruction is not vectorized by simple widening.
- LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
- llvm_unreachable("Unhandled instruction!");
- } // end of switch.
- }
- void InnerLoopVectorizer::updateAnalysis() {
- // Forget the original basic block.
- PSE.getSE()->forgetLoop(OrigLoop);
- // DT is not kept up-to-date for outer loop vectorization
- if (EnableVPlanNativePath)
- return;
- // Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
- "Entry does not dominate exit.");
- DT->addNewBlock(LoopMiddleBlock,
- LI->getLoopFor(LoopVectorBody)->getLoopLatch());
- DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
- DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
- DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
- assert(DT->verify(DominatorTree::VerificationLevel::Fast));
- }
- void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
- // We should not collect Scalars more than once per VF. Right now, this
- // function is called from collectUniformsAndScalars(), which already does
- // this check. Collecting Scalars for VF=1 does not make any sense.
- assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
- "This function should not be visited twice for the same VF");
- SmallSetVector<Instruction *, 8> Worklist;
- // These sets are used to seed the analysis with pointers used by memory
- // accesses that will remain scalar.
- SmallSetVector<Instruction *, 8> ScalarPtrs;
- SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
- // A helper that returns true if the use of Ptr by MemAccess will be scalar.
- // The pointer operands of loads and stores will be scalar as long as the
- // memory access is not a gather or scatter operation. The value operand of a
- // store will remain scalar if the store is scalarized.
- auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
- InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- if (auto *Store = dyn_cast<StoreInst>(MemAccess))
- if (Ptr == Store->getValueOperand())
- return WideningDecision == CM_Scalarize;
- assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
- "Ptr is neither a value or pointer operand");
- return WideningDecision != CM_GatherScatter;
- };
- // A helper that returns true if the given value is a bitcast or
- // getelementptr instruction contained in the loop.
- auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
- return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
- isa<GetElementPtrInst>(V)) &&
- !TheLoop->isLoopInvariant(V);
- };
- // A helper that evaluates a memory access's use of a pointer. If the use
- // will be a scalar use, and the pointer is only used by memory accesses, we
- // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
- // PossibleNonScalarPtrs.
- auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
- // We only care about bitcast and getelementptr instructions contained in
- // the loop.
- if (!isLoopVaryingBitCastOrGEP(Ptr))
- return;
- // If the pointer has already been identified as scalar (e.g., if it was
- // also identified as uniform), there's nothing to do.
- auto *I = cast<Instruction>(Ptr);
- if (Worklist.count(I))
- return;
- // If the use of the pointer will be a scalar use, and all users of the
- // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
- // place the pointer in PossibleNonScalarPtrs.
- if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
- return isa<LoadInst>(U) || isa<StoreInst>(U);
- }))
- ScalarPtrs.insert(I);
- else
- PossibleNonScalarPtrs.insert(I);
- };
- // We seed the scalars analysis with three classes of instructions: (1)
- // instructions marked uniform-after-vectorization, (2) bitcast and
- // getelementptr instructions used by memory accesses requiring a scalar use,
- // and (3) pointer induction variables and their update instructions (we
- // currently only scalarize these).
- //
- // (1) Add to the worklist all instructions that have been identified as
- // uniform-after-vectorization.
- Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
- // (2) Add to the worklist all bitcast and getelementptr instructions used by
- // memory accesses requiring a scalar use. The pointer operands of loads and
- // stores will be scalar as long as the memory accesses is not a gather or
- // scatter operation. The value operand of a store will remain scalar if the
- // store is scalarized.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- if (auto *Load = dyn_cast<LoadInst>(&I)) {
- evaluatePtrUse(Load, Load->getPointerOperand());
- } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
- evaluatePtrUse(Store, Store->getPointerOperand());
- evaluatePtrUse(Store, Store->getValueOperand());
- }
- }
- for (auto *I : ScalarPtrs)
- if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
- Worklist.insert(I);
- }
- // (3) Add to the worklist all pointer induction variables and their update
- // instructions.
- //
- // TODO: Once we are able to vectorize pointer induction variables we should
- // no longer insert them into the worklist here.
- auto *Latch = TheLoop->getLoopLatch();
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
- continue;
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
- << "\n");
- }
- // Insert the forced scalars.
- // FIXME: Currently widenPHIInstruction() often creates a dead vector
- // induction variable when the PHI user is scalarized.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (ForcedScalar != ForcedScalars.end())
- for (auto *I : ForcedScalar->second)
- Worklist.insert(I);
- // Expand the worklist by looking through any bitcasts and getelementptr
- // instructions we've already identified as scalar. This is similar to the
- // expansion step in collectLoopUniforms(); however, here we're only
- // expanding to include additional bitcasts and getelementptr instructions.
- unsigned Idx = 0;
- while (Idx != Worklist.size()) {
- Instruction *Dst = Worklist[Idx++];
- if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
- continue;
- auto *Src = cast<Instruction>(Dst->getOperand(0));
- if (llvm::all_of(Src->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return !TheLoop->contains(J) || Worklist.count(J) ||
- ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
- isScalarUse(J, Src));
- })) {
- Worklist.insert(Src);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
- }
- }
- // An induction variable will remain scalar if all users of the induction
- // variable and induction variable update remain scalar.
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- // We already considered pointer induction variables, so there's no reason
- // to look at their users again.
- //
- // TODO: Once we are able to vectorize pointer induction variables we
- // should no longer skip over them here.
- if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
- continue;
- // Determine if all users of the induction variable are scalar after
- // vectorization.
- auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
- });
- if (!ScalarInd)
- continue;
- // Determine if all users of the induction variable update instruction are
- // scalar after vectorization.
- auto ScalarIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
- });
- if (!ScalarIndUpdate)
- continue;
- // The induction variable and its update instruction will remain scalar.
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
- << "\n");
- }
- Scalars[VF].insert(Worklist.begin(), Worklist.end());
- }
- bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
- if (!blockNeedsPredication(I->getParent()))
- return false;
- switch(I->getOpcode()) {
- default:
- break;
- case Instruction::Load:
- case Instruction::Store: {
- if (!Legal->isMaskRequired(I))
- return false;
- auto *Ptr = getLoadStorePointerOperand(I);
- auto *Ty = getMemInstValueType(I);
- // We have already decided how to vectorize this instruction, get that
- // result.
- if (VF > 1) {
- InstWidening WideningDecision = getWideningDecision(I, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- return WideningDecision == CM_Scalarize;
- }
- return isa<LoadInst>(I) ?
- !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
- : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::SRem:
- case Instruction::URem:
- return mayDivideByZero(*I);
- }
- return false;
- }
- bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
- unsigned VF) {
- assert(isAccessInterleaved(I) && "Expecting interleaved access.");
- assert(getWideningDecision(I, VF) == CM_Unknown &&
- "Decision should not be set yet.");
- auto *Group = getInterleavedAccessGroup(I);
- assert(Group && "Must have a group.");
- // Check if masking is required.
- // A Group may need masking for one of two reasons: it resides in a block that
- // needs predication, or it was decided to use masking to deal with gaps.
- bool PredicatedAccessRequiresMasking =
- Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
- bool AccessWithGapsRequiresMasking =
- Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed;
- if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
- return true;
- // If masked interleaving is required, we expect that the user/target had
- // enabled it, because otherwise it either wouldn't have been created or
- // it should have been invalidated by the CostModel.
- assert(useMaskedInterleavedAccesses(TTI) &&
- "Masked interleave-groups for predicated accesses are not enabled.");
- auto *Ty = getMemInstValueType(I);
- return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty)
- : TTI.isLegalMaskedStore(Ty);
- }
- bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
- unsigned VF) {
- // Get and ensure we have a valid memory instruction.
- LoadInst *LI = dyn_cast<LoadInst>(I);
- StoreInst *SI = dyn_cast<StoreInst>(I);
- assert((LI || SI) && "Invalid memory instruction");
- auto *Ptr = getLoadStorePointerOperand(I);
- // In order to be widened, the pointer should be consecutive, first of all.
- if (!Legal->isConsecutivePtr(Ptr))
- return false;
- // If the instruction is a store located in a predicated block, it will be
- // scalarized.
- if (isScalarWithPredication(I))
- return false;
- // If the instruction's allocated size doesn't equal it's type size, it
- // requires padding and will be scalarized.
- auto &DL = I->getModule()->getDataLayout();
- auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
- if (hasIrregularType(ScalarTy, DL, VF))
- return false;
- return true;
- }
- void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
- // We should not collect Uniforms more than once per VF. Right now,
- // this function is called from collectUniformsAndScalars(), which
- // already does this check. Collecting Uniforms for VF=1 does not make any
- // sense.
- assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
- "This function should not be visited twice for the same VF");
- // Visit the list of Uniforms. If we'll not find any uniform value, we'll
- // not analyze again. Uniforms.count(VF) will return 1.
- Uniforms[VF].clear();
- // We now know that the loop is vectorizable!
- // Collect instructions inside the loop that will remain uniform after
- // vectorization.
- // Global values, params and instructions outside of current loop are out of
- // scope.
- auto isOutOfScope = [&](Value *V) -> bool {
- Instruction *I = dyn_cast<Instruction>(V);
- return (!I || !TheLoop->contains(I));
- };
- SetVector<Instruction *> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
- // Start with the conditional branch. If the branch condition is an
- // instruction contained in the loop that is only used by the branch, it is
- // uniform.
- auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
- if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
- Worklist.insert(Cmp);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
- }
- // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
- // are pointers that are treated like consecutive pointers during
- // vectorization. The pointer operands of interleaved accesses are an
- // example.
- SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
- // Holds pointer operands of instructions that are possibly non-uniform.
- SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
- auto isUniformDecision = [&](Instruction *I, unsigned VF) {
- InstWidening WideningDecision = getWideningDecision(I, VF);
- assert(WideningDecision != CM_Unknown &&
- "Widening decision should be ready at this moment");
- return (WideningDecision == CM_Widen ||
- WideningDecision == CM_Widen_Reverse ||
- WideningDecision == CM_Interleave);
- };
- // Iterate over the instructions in the loop, and collect all
- // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
- // that a consecutive-like pointer operand will be scalarized, we collect it
- // in PossibleNonUniformPtrs instead. We use two sets here because a single
- // getelementptr instruction can be used by both vectorized and scalarized
- // memory instructions. For example, if a loop loads and stores from the same
- // location, but the store is conditional, the store will be scalarized, and
- // the getelementptr won't remain uniform.
- for (auto *BB : TheLoop->blocks())
- for (auto &I : *BB) {
- // If there's no pointer operand, there's nothing to do.
- auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
- if (!Ptr)
- continue;
- // True if all users of Ptr are memory accesses that have Ptr as their
- // pointer operand.
- auto UsersAreMemAccesses =
- llvm::all_of(Ptr->users(), [&](User *U) -> bool {
- return getLoadStorePointerOperand(U) == Ptr;
- });
- // Ensure the memory instruction will not be scalarized or used by
- // gather/scatter, making its pointer operand non-uniform. If the pointer
- // operand is used by any instruction other than a memory access, we
- // conservatively assume the pointer operand may be non-uniform.
- if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
- PossibleNonUniformPtrs.insert(Ptr);
- // If the memory instruction will be vectorized and its pointer operand
- // is consecutive-like, or interleaving - the pointer operand should
- // remain uniform.
- else
- ConsecutiveLikePtrs.insert(Ptr);
- }
- // Add to the Worklist all consecutive and consecutive-like pointers that
- // aren't also identified as possibly non-uniform.
- for (auto *V : ConsecutiveLikePtrs)
- if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) {
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
- Worklist.insert(V);
- }
- // Expand Worklist in topological order: whenever a new instruction
- // is added , its users should be already inside Worklist. It ensures
- // a uniform instruction will only be used by uniform instructions.
- unsigned idx = 0;
- while (idx != Worklist.size()) {
- Instruction *I = Worklist[idx++];
- for (auto OV : I->operand_values()) {
- // isOutOfScope operands cannot be uniform instructions.
- if (isOutOfScope(OV))
- continue;
- // First order recurrence Phi's should typically be considered
- // non-uniform.
- auto *OP = dyn_cast<PHINode>(OV);
- if (OP && Legal->isFirstOrderRecurrence(OP))
- continue;
- // If all the users of the operand are uniform, then add the
- // operand into the uniform worklist.
- auto *OI = cast<Instruction>(OV);
- if (llvm::all_of(OI->users(), [&](User *U) -> bool {
- auto *J = cast<Instruction>(U);
- return Worklist.count(J) ||
- (OI == getLoadStorePointerOperand(J) &&
- isUniformDecision(J, VF));
- })) {
- Worklist.insert(OI);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
- }
- }
- }
- // Returns true if Ptr is the pointer operand of a memory access instruction
- // I, and I is known to not require scalarization.
- auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
- return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
- };
- // For an instruction to be added into Worklist above, all its users inside
- // the loop should also be in Worklist. However, this condition cannot be
- // true for phi nodes that form a cyclic dependence. We must process phi
- // nodes separately. An induction variable will remain uniform if all users
- // of the induction variable and induction variable update remain uniform.
- // The code below handles both pointer and non-pointer induction variables.
- for (auto &Induction : *Legal->getInductionVars()) {
- auto *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- // Determine if all users of the induction variable are uniform after
- // vectorization.
- auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, Ind);
- });
- if (!UniformInd)
- continue;
- // Determine if all users of the induction variable update instruction are
- // uniform after vectorization.
- auto UniformIndUpdate =
- llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- auto *I = cast<Instruction>(U);
- return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
- isVectorizedMemAccessUse(I, IndUpdate);
- });
- if (!UniformIndUpdate)
- continue;
- // The induction variable and its update instruction will remain uniform.
- Worklist.insert(Ind);
- Worklist.insert(IndUpdate);
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
- LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate
- << "\n");
- }
- Uniforms[VF].insert(Worklist.begin(), Worklist.end());
- }
- Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
- if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
- // TODO: It may by useful to do since it's still likely to be dynamically
- // uniform if the target can skip.
- LLVM_DEBUG(
- dbgs() << "LV: Not inserting runtime ptr check for divergent target");
- ORE->emit(
- createMissedAnalysis("CantVersionLoopWithDivergentTarget")
- << "runtime pointer checks needed. Not enabled for divergent target");
- return None;
- }
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
- if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
- return computeFeasibleMaxVF(OptForSize, TC);
- if (Legal->getRuntimePointerChecking()->Need) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime pointer checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
- return None;
- }
- if (!PSE.getUnionPredicate().getPredicates().empty()) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime SCEV checks needed. Enable vectorization of this "
- "loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n");
- return None;
- }
- // FIXME: Avoid specializing for stride==1 instead of bailing out.
- if (!Legal->getLAI()->getSymbolicStrides().empty()) {
- ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
- << "runtime stride == 1 checks needed. Enable vectorization of "
- "this loop with '#pragma clang loop vectorize(enable)' when "
- "compiling with -Os/-Oz");
- LLVM_DEBUG(
- dbgs()
- << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n");
- return None;
- }
- // If we optimize the program for size, avoid creating the tail loop.
- LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
- if (TC == 1) {
- ORE->emit(createMissedAnalysis("SingleIterationLoop")
- << "loop trip count is one, irrelevant for vectorization");
- LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n");
- return None;
- }
- // Record that scalar epilogue is not allowed.
- LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
- IsScalarEpilogueAllowed = !OptForSize;
- // We don't create an epilogue when optimizing for size.
- // Invalidate interleave groups that require an epilogue if we can't mask
- // the interleave-group.
- if (!useMaskedInterleavedAccesses(TTI))
- InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
- unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
- if (TC > 0 && TC % MaxVF == 0) {
- LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
- return MaxVF;
- }
- // If we don't know the precise trip count, or if the trip count that we
- // found modulo the vectorization factor is not zero, try to fold the tail
- // by masking.
- // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
- if (Legal->canFoldTailByMasking()) {
- FoldTailByMasking = true;
- return MaxVF;
- }
- if (TC == 0) {
- ORE->emit(
- createMissedAnalysis("UnknownLoopCountComplexCFG")
- << "unable to calculate the loop count due to complex control flow");
- return None;
- }
- ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
- << "cannot optimize for size and vectorize at the same time. "
- "Enable vectorization of this loop with '#pragma clang loop "
- "vectorize(enable)' when compiling with -Os/-Oz");
- return None;
- }
- unsigned
- LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
- unsigned ConstTripCount) {
- MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
- unsigned SmallestType, WidestType;
- std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
- unsigned WidestRegister = TTI.getRegisterBitWidth(true);
- // Get the maximum safe dependence distance in bits computed by LAA.
- // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
- // the memory accesses that is most restrictive (involved in the smallest
- // dependence distance).
- unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
- WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
- unsigned MaxVectorSize = WidestRegister / WidestType;
- LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
- << " / " << WidestType << " bits.\n");
- LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
- << WidestRegister << " bits.\n");
- assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
- " into one vector!");
- if (MaxVectorSize == 0) {
- LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
- MaxVectorSize = 1;
- return MaxVectorSize;
- } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
- isPowerOf2_32(ConstTripCount)) {
- // We need to clamp the VF to be the ConstTripCount. There is no point in
- // choosing a higher viable VF as done in the loop below.
- LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
- << ConstTripCount << "\n");
- MaxVectorSize = ConstTripCount;
- return MaxVectorSize;
- }
- unsigned MaxVF = MaxVectorSize;
- if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
- (MaximizeBandwidth && !OptForSize)) {
- // Collect all viable vectorization factors larger than the default MaxVF
- // (i.e. MaxVectorSize).
- SmallVector<unsigned, 8> VFs;
- unsigned NewMaxVectorSize = WidestRegister / SmallestType;
- for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
- VFs.push_back(VS);
- // For each VF calculate its register usage.
- auto RUs = calculateRegisterUsage(VFs);
- // Select the largest VF which doesn't require more registers than existing
- // ones.
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
- for (int i = RUs.size() - 1; i >= 0; --i) {
- if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
- MaxVF = VFs[i];
- break;
- }
- }
- if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
- if (MaxVF < MinVF) {
- LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
- << ") with target's minimum: " << MinVF << '\n');
- MaxVF = MinVF;
- }
- }
- }
- return MaxVF;
- }
- VectorizationFactor
- LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
- float Cost = expectedCost(1).first;
- const float ScalarCost = Cost;
- unsigned Width = 1;
- LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
- bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
- if (ForceVectorization && MaxVF > 1) {
- // Ignore scalar width, because the user explicitly wants vectorization.
- // Initialize cost to max so that VF = 2 is, at least, chosen during cost
- // evaluation.
- Cost = std::numeric_limits<float>::max();
- }
- for (unsigned i = 2; i <= MaxVF; i *= 2) {
- // Notice that the vector loop needs to be executed less times, so
- // we need to divide the cost of the vector loops by the width of
- // the vector elements.
- VectorizationCostTy C = expectedCost(i);
- float VectorCost = C.first / (float)i;
- LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
- << " costs: " << (int)VectorCost << ".\n");
- if (!C.second && !ForceVectorization) {
- LLVM_DEBUG(
- dbgs() << "LV: Not considering vector loop of width " << i
- << " because it will not generate any vector instructions.\n");
- continue;
- }
- if (VectorCost < Cost) {
- Cost = VectorCost;
- Width = i;
- }
- }
- if (!EnableCondStoresVectorization && NumPredStores) {
- ORE->emit(createMissedAnalysis("ConditionalStore")
- << "store that is conditionally executed prevents vectorization");
- LLVM_DEBUG(
- dbgs() << "LV: No vectorization. There are conditional stores.\n");
- Width = 1;
- Cost = ScalarCost;
- }
- LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
- << "LV: Vectorization seems to be not beneficial, "
- << "but was forced by a user.\n");
- LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
- VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
- return Factor;
- }
- std::pair<unsigned, unsigned>
- LoopVectorizationCostModel::getSmallestAndWidestTypes() {
- unsigned MinWidth = -1U;
- unsigned MaxWidth = 8;
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Type *T = I.getType();
- // Skip ignored values.
- if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
- continue;
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
- continue;
- // Examine PHI nodes that are reduction variables. Update the type to
- // account for the recurrence type.
- if (auto *PN = dyn_cast<PHINode>(&I)) {
- if (!Legal->isReductionVariable(PN))
- continue;
- RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
- T = RdxDesc.getRecurrenceType();
- }
- // Examine the stored values.
- if (auto *ST = dyn_cast<StoreInst>(&I))
- T = ST->getValueOperand()->getType();
- // Ignore loaded pointer types and stored pointer types that are not
- // vectorizable.
- //
- // FIXME: The check here attempts to predict whether a load or store will
- // be vectorized. We only know this for certain after a VF has
- // been selected. Here, we assume that if an access can be
- // vectorized, it will be. We should also look at extending this
- // optimization to non-pointer types.
- //
- if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
- !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
- continue;
- MinWidth = std::min(MinWidth,
- (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
- MaxWidth = std::max(MaxWidth,
- (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
- }
- }
- return {MinWidth, MaxWidth};
- }
- unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
- unsigned VF,
- unsigned LoopCost) {
- // -- The interleave heuristics --
- // We interleave the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example, frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the interleave count:
- // 1. If the code has reductions, then we interleave to break the cross
- // iteration dependency.
- // 2. If the loop is really small, then we interleave to reduce the loop
- // overhead.
- // 3. We don't interleave if we think that we will spill registers to memory
- // due to the increased register pressure.
- // When we optimize for size, we don't interleave.
- if (OptForSize)
- return 1;
- // We used the distance for the interleave count.
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- return 1;
- // Do not interleave loops with a relatively small trip count.
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
- if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
- return 1;
- unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
- LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
- << " registers\n");
- if (VF == 1) {
- if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumScalarRegs;
- } else {
- if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
- TargetNumRegisters = ForceTargetNumVectorRegs;
- }
- RegisterUsage R = calculateRegisterUsage({VF})[0];
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
- // We calculate the interleave count using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the interleaved instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills. All of this is rounded down if necessary to be
- // a power of two. We want power of two interleave count to simplify any
- // addressing operations or alignment considerations.
- // We also want power of two interleave counts to ensure that the induction
- // variable of the vector loop wraps to zero, when tail is folded by masking;
- // this currently happens when OptForSize, in which case IC is set to 1 above.
- unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
- R.MaxLocalUsers);
- // Don't count the induction variable as interleaved.
- if (EnableIndVarRegisterHeur)
- IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
- std::max(1U, (R.MaxLocalUsers - 1)));
- // Clamp the interleave ranges to reasonable counts.
- unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
- // Check if the user has overridden the max.
- if (VF == 1) {
- if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
- } else {
- if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
- MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
- }
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0)
- LoopCost = expectedCost(VF).first;
- // Clamp the calculated IC to be between the 1 and the max interleave count
- // that the target allows.
- if (IC > MaxInterleaveCount)
- IC = MaxInterleaveCount;
- else if (IC < 1)
- IC = 1;
- // Interleave if we vectorized this loop and there is a reduction that could
- // benefit from interleaving.
- if (VF > 1 && !Legal->getReductionVars()->empty()) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
- return IC;
- }
- // Note that if we've already vectorized the loop we will have done the
- // runtime check and so interleaving won't require further checks.
- bool InterleavingRequiresRuntimePointerCheck =
- (VF == 1 && Legal->getRuntimePointerChecking()->Need);
- // We want to interleave small loops in order to reduce the loop overhead and
- // potentially expose ILP opportunities.
- LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
- if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and interleave until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- unsigned SmallIC =
- std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
- // Interleave until store/load ports (estimated by max interleave count) are
- // saturated.
- unsigned NumStores = Legal->getNumStores();
- unsigned NumLoads = Legal->getNumLoads();
- unsigned StoresIC = IC / (NumStores ? NumStores : 1);
- unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
- // If we have a scalar reduction (vector reductions are already dealt with
- // by this point), we can increase the critical path length if the loop
- // we're interleaving is inside another loop. Limit, by default to 2, so the
- // critical path only gets increased by one reduction operation.
- if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
- unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
- SmallIC = std::min(SmallIC, F);
- StoresIC = std::min(StoresIC, F);
- LoadsIC = std::min(LoadsIC, F);
- }
- if (EnableLoadStoreRuntimeInterleave &&
- std::max(StoresIC, LoadsIC) > SmallIC) {
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving to saturate store or load ports.\n");
- return std::max(StoresIC, LoadsIC);
- }
- LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
- return SmallIC;
- }
- // Interleave if this is a large loop (small loops are already dealt with by
- // this point) that could benefit from interleaving.
- bool HasReductions = !Legal->getReductionVars()->empty();
- if (TTI.enableAggressiveInterleaving(HasReductions)) {
- LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
- return IC;
- }
- LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
- return 1;
- }
- SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
- LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- RegisterUsage RU;
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- using IntervalMap = DenseMap<Instruction *, unsigned>;
- // Maps instruction to its index.
- SmallVector<Instruction *, 64> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallPtrSet<Instruction *, 8> Ends;
- // Saves the list of values that are used in the loop but are
- // defined outside the loop, such as arguments and constants.
- SmallPtrSet<Value *, 8> LoopInvariants;
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- IdxToInstr.push_back(&I);
- // Save the end location of each USE.
- for (Value *U : I.operands()) {
- auto *Instr = dyn_cast<Instruction>(U);
- // Ignore non-instruction values such as arguments, constants, etc.
- if (!Instr)
- continue;
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
- // Overwrite previous end points.
- EndPoint[Instr] = IdxToInstr.size();
- Ends.insert(Instr);
- }
- }
- }
- // Saves the list of intervals that end with the index in 'key'.
- using InstrList = SmallVector<Instruction *, 2>;
- DenseMap<unsigned, InstrList> TransposeEnds;
- // Transpose the EndPoints to a list of values that end at each index.
- for (auto &Interval : EndPoint)
- TransposeEnds[Interval.second].push_back(Interval.first);
- SmallPtrSet<Instruction *, 8> OpenIntervals;
- // Get the size of the widest register.
- unsigned MaxSafeDepDist = -1U;
- if (Legal->getMaxSafeDepDistBytes() != -1U)
- MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
- unsigned WidestRegister =
- std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
- const DataLayout &DL = TheFunction->getParent()->getDataLayout();
- SmallVector<RegisterUsage, 8> RUs(VFs.size());
- SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
- LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
- // A lambda that gets the register usage for the given type and VF.
- auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
- if (Ty->isTokenTy())
- return 0U;
- unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
- return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
- };
- for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
- Instruction *I = IdxToInstr[i];
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (Instruction *ToRemove : List)
- OpenIntervals.erase(ToRemove);
- // Ignore instructions that are never used within the loop.
- if (Ends.find(I) == Ends.end())
- continue;
- // Skip ignored values.
- if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
- continue;
- // For each VF find the maximum usage of registers.
- for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
- if (VFs[j] == 1) {
- MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
- continue;
- }
- collectUniformsAndScalars(VFs[j]);
- // Count the number of live intervals.
- unsigned RegUsage = 0;
- for (auto Inst : OpenIntervals) {
- // Skip ignored values for VF > 1.
- if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() ||
- isScalarAfterVectorization(Inst, VFs[j]))
- continue;
- RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
- }
- MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
- }
- LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
- << OpenIntervals.size() << '\n');
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
- for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
- unsigned Invariant = 0;
- if (VFs[i] == 1)
- Invariant = LoopInvariants.size();
- else {
- for (auto Inst : LoopInvariants)
- Invariant += GetRegUsage(Inst->getType(), VFs[i]);
- }
- LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
- LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
- LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant
- << '\n');
- RU.LoopInvariantRegs = Invariant;
- RU.MaxLocalUsers = MaxUsages[i];
- RUs[i] = RU;
- }
- return RUs;
- }
- bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
- // TODO: Cost model for emulated masked load/store is completely
- // broken. This hack guides the cost model to use an artificially
- // high enough value to practically disable vectorization with such
- // operations, except where previously deployed legality hack allowed
- // using very low cost values. This is to avoid regressions coming simply
- // from moving "masked load/store" check from legality to cost model.
- // Masked Load/Gather emulation was previously never allowed.
- // Limited number of Masked Store/Scatter emulation was allowed.
- assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
- return isa<LoadInst>(I) ||
- (isa<StoreInst>(I) &&
- NumPredStores > NumberOfStoresToPredicate);
- }
- void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
- // If we aren't vectorizing the loop, or if we've already collected the
- // instructions to scalarize, there's nothing to do. Collection may already
- // have occurred if we have a user-selected VF and are now computing the
- // expected cost for interleaving.
- if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
- return;
- // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
- // not profitable to scalarize any instructions, the presence of VF in the
- // map will indicate that we've analyzed it already.
- ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
- // Find all the instructions that are scalar with predication in the loop and
- // determine if it would be better to not if-convert the blocks they are in.
- // If so, we also record the instructions to scalarize.
- for (BasicBlock *BB : TheLoop->blocks()) {
- if (!blockNeedsPredication(BB))
- continue;
- for (Instruction &I : *BB)
- if (isScalarWithPredication(&I)) {
- ScalarCostsTy ScalarCosts;
- // Do not apply discount logic if hacked cost is needed
- // for emulated masked memrefs.
- if (!useEmulatedMaskMemRefHack(&I) &&
- computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
- ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
- // Remember that BB will remain after vectorization.
- PredicatedBBsAfterVectorization.insert(BB);
- }
- }
- }
- int LoopVectorizationCostModel::computePredInstDiscount(
- Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
- unsigned VF) {
- assert(!isUniformAfterVectorization(PredInst, VF) &&
- "Instruction marked uniform-after-vectorization will be predicated");
- // Initialize the discount to zero, meaning that the scalar version and the
- // vector version cost the same.
- int Discount = 0;
- // Holds instructions to analyze. The instructions we visit are mapped in
- // ScalarCosts. Those instructions are the ones that would be scalarized if
- // we find that the scalar version costs less.
- SmallVector<Instruction *, 8> Worklist;
- // Returns true if the given instruction can be scalarized.
- auto canBeScalarized = [&](Instruction *I) -> bool {
- // We only attempt to scalarize instructions forming a single-use chain
- // from the original predicated block that would otherwise be vectorized.
- // Although not strictly necessary, we give up on instructions we know will
- // already be scalar to avoid traversing chains that are unlikely to be
- // beneficial.
- if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
- isScalarAfterVectorization(I, VF))
- return false;
- // If the instruction is scalar with predication, it will be analyzed
- // separately. We ignore it within the context of PredInst.
- if (isScalarWithPredication(I))
- return false;
- // If any of the instruction's operands are uniform after vectorization,
- // the instruction cannot be scalarized. This prevents, for example, a
- // masked load from being scalarized.
- //
- // We assume we will only emit a value for lane zero of an instruction
- // marked uniform after vectorization, rather than VF identical values.
- // Thus, if we scalarize an instruction that uses a uniform, we would
- // create uses of values corresponding to the lanes we aren't emitting code
- // for. This behavior can be changed by allowing getScalarValue to clone
- // the lane zero values for uniforms rather than asserting.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (isUniformAfterVectorization(J, VF))
- return false;
- // Otherwise, we can scalarize the instruction.
- return true;
- };
- // Returns true if an operand that cannot be scalarized must be extracted
- // from a vector. We will account for this scalarization overhead below. Note
- // that the non-void predicated instructions are placed in their own blocks,
- // and their return values are inserted into vectors. Thus, an extract would
- // still be required.
- auto needsExtract = [&](Instruction *I) -> bool {
- return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
- };
- // Compute the expected cost discount from scalarizing the entire expression
- // feeding the predicated instruction. We currently only consider expressions
- // that are single-use instruction chains.
- Worklist.push_back(PredInst);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- // If we've already analyzed the instruction, there's nothing to do.
- if (ScalarCosts.find(I) != ScalarCosts.end())
- continue;
- // Compute the cost of the vector instruction. Note that this cost already
- // includes the scalarization overhead of the predicated instruction.
- unsigned VectorCost = getInstructionCost(I, VF).first;
- // Compute the cost of the scalarized instruction. This cost is the cost of
- // the instruction as if it wasn't if-converted and instead remained in the
- // predicated block. We will scale this cost by block probability after
- // computing the scalarization overhead.
- unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
- // Compute the scalarization overhead of needed insertelement instructions
- // and phi nodes.
- if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
- ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
- true, false);
- ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
- }
- // Compute the scalarization overhead of needed extractelement
- // instructions. For each of the instruction's operands, if the operand can
- // be scalarized, add it to the worklist; otherwise, account for the
- // overhead.
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get())) {
- assert(VectorType::isValidElementType(J->getType()) &&
- "Instruction has non-scalar type");
- if (canBeScalarized(J))
- Worklist.push_back(J);
- else if (needsExtract(J))
- ScalarCost += TTI.getScalarizationOverhead(
- ToVectorTy(J->getType(),VF), false, true);
- }
- // Scale the total scalar cost by block probability.
- ScalarCost /= getReciprocalPredBlockProb();
- // Compute the discount. A non-negative discount means the vector version
- // of the instruction costs more, and scalarizing would be beneficial.
- Discount += VectorCost - ScalarCost;
- ScalarCosts[I] = ScalarCost;
- }
- return Discount;
- }
- LoopVectorizationCostModel::VectorizationCostTy
- LoopVectorizationCostModel::expectedCost(unsigned VF) {
- VectorizationCostTy Cost;
- // For each block.
- for (BasicBlock *BB : TheLoop->blocks()) {
- VectorizationCostTy BlockCost;
- // For each instruction in the old loop.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- // Skip ignored values.
- if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
- (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
- continue;
- VectorizationCostTy C = getInstructionCost(&I, VF);
- // Check if we should override the cost.
- if (ForceTargetInstructionCost.getNumOccurrences() > 0)
- C.first = ForceTargetInstructionCost;
- BlockCost.first += C.first;
- BlockCost.second |= C.second;
- LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
- << " for VF " << VF << " For instruction: " << I
- << '\n');
- }
- // If we are vectorizing a predicated block, it will have been
- // if-converted. This means that the block's instructions (aside from
- // stores and instructions that may divide by zero) will now be
- // unconditionally executed. For the scalar case, we may not always execute
- // the predicated block. Thus, scale the block's cost by the probability of
- // executing it.
- if (VF == 1 && blockNeedsPredication(BB))
- BlockCost.first /= getReciprocalPredBlockProb();
- Cost.first += BlockCost.first;
- Cost.second |= BlockCost.second;
- }
- return Cost;
- }
- /// Gets Address Access SCEV after verifying that the access pattern
- /// is loop invariant except the induction variable dependence.
- ///
- /// This SCEV can be sent to the Target in order to estimate the address
- /// calculation cost.
- static const SCEV *getAddressAccessSCEV(
- Value *Ptr,
- LoopVectorizationLegality *Legal,
- PredicatedScalarEvolution &PSE,
- const Loop *TheLoop) {
- auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep)
- return nullptr;
- // We are looking for a gep with all loop invariant indices except for one
- // which should be an induction variable.
- auto SE = PSE.getSE();
- unsigned NumOperands = Gep->getNumOperands();
- for (unsigned i = 1; i < NumOperands; ++i) {
- Value *Opd = Gep->getOperand(i);
- if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
- !Legal->isInductionVariable(Opd))
- return nullptr;
- }
- // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
- return PSE.getSCEV(Ptr);
- }
- static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
- return Legal->hasStride(I->getOperand(0)) ||
- Legal->hasStride(I->getOperand(1));
- }
- unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
- unsigned VF) {
- assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
- Type *ValTy = getMemInstValueType(I);
- auto SE = PSE.getSE();
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
- // Figure out whether the access is strided and get the stride value
- // if it's known in compile time
- const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
- // Get the cost of the scalar memory instruction and address computation.
- unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
- // Don't pass *I here, since it is scalar but will actually be part of a
- // vectorized loop where the user of it is a vectorized instruction.
- Cost += VF *
- TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
- AS);
- // Get the overhead of the extractelement and insertelement instructions
- // we might create due to scalarization.
- Cost += getScalarizationOverhead(I, VF, TTI);
- // If we have a predicated store, it may not be executed for each vector
- // lane. Scale the cost by the probability of executing the predicated
- // block.
- if (isPredicatedInst(I)) {
- Cost /= getReciprocalPredBlockProb();
- if (useEmulatedMaskMemRefHack(I))
- // Artificially setting to a high enough value to practically disable
- // vectorization with such operations.
- Cost = 3000000;
- }
- return Cost;
- }
- unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Stride should be 1 or -1 for consecutive memory access");
- unsigned Cost = 0;
- if (Legal->isMaskRequired(I))
- Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- else
- Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
- bool Reverse = ConsecutiveStride < 0;
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- return Cost;
- }
- unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- if (isa<LoadInst>(I)) {
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
- TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
- }
- StoreInst *SI = cast<StoreInst>(I);
- bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
- (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
- Instruction::ExtractElement,
- VectorTy, VF - 1));
- }
- unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned Alignment = getLoadStoreAlignment(I);
- Value *Ptr = getLoadStorePointerOperand(I);
- return TTI.getAddressComputationCost(VectorTy) +
- TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
- Legal->isMaskRequired(I), Alignment);
- }
- unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
- unsigned VF) {
- Type *ValTy = getMemInstValueType(I);
- Type *VectorTy = ToVectorTy(ValTy, VF);
- unsigned AS = getLoadStoreAddressSpace(I);
- auto Group = getInterleavedAccessGroup(I);
- assert(Group && "Fail to get an interleaved access group.");
- unsigned InterleaveFactor = Group->getFactor();
- Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
- // Holds the indices of existing members in an interleaved load group.
- // An interleaved store group doesn't need this as it doesn't allow gaps.
- SmallVector<unsigned, 4> Indices;
- if (isa<LoadInst>(I)) {
- for (unsigned i = 0; i < InterleaveFactor; i++)
- if (Group->getMember(i))
- Indices.push_back(i);
- }
- // Calculate the cost of the whole interleaved group.
- bool UseMaskForGaps =
- Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed;
- unsigned Cost = TTI.getInterleavedMemoryOpCost(
- I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
- Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps);
- if (Group->isReverse()) {
- // TODO: Add support for reversed masked interleaved access.
- assert(!Legal->isMaskRequired(I) &&
- "Reverse masked interleaved access not supported.");
- Cost += Group->getNumMembers() *
- TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- }
- return Cost;
- }
- unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
- unsigned VF) {
- // Calculate scalar cost only. Vectorization cost should be ready at this
- // moment.
- if (VF == 1) {
- Type *ValTy = getMemInstValueType(I);
- unsigned Alignment = getLoadStoreAlignment(I);
- unsigned AS = getLoadStoreAddressSpace(I);
- return TTI.getAddressComputationCost(ValTy) +
- TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
- }
- return getWideningCost(I, VF);
- }
- LoopVectorizationCostModel::VectorizationCostTy
- LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (isUniformAfterVectorization(I, VF))
- VF = 1;
- if (VF > 1 && isProfitableToScalarize(I, VF))
- return VectorizationCostTy(InstsToScalarize[VF][I], false);
- // Forced scalars do not have any scalarization overhead.
- auto ForcedScalar = ForcedScalars.find(VF);
- if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
- auto InstSet = ForcedScalar->second;
- if (InstSet.find(I) != InstSet.end())
- return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
- }
- Type *VectorTy;
- unsigned C = getInstructionCost(I, VF, VectorTy);
- bool TypeNotScalarized =
- VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
- return VectorizationCostTy(C, TypeNotScalarized);
- }
- void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
- if (VF == 1)
- return;
- NumPredStores = 0;
- for (BasicBlock *BB : TheLoop->blocks()) {
- // For each instruction in the old loop.
- for (Instruction &I : *BB) {
- Value *Ptr = getLoadStorePointerOperand(&I);
- if (!Ptr)
- continue;
- // TODO: We should generate better code and update the cost model for
- // predicated uniform stores. Today they are treated as any other
- // predicated store (see added test cases in
- // invariant-store-vectorization.ll).
- if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
- NumPredStores++;
- if (Legal->isUniform(Ptr) &&
- // Conditional loads and stores should be scalarized and predicated.
- // isScalarWithPredication cannot be used here since masked
- // gather/scatters are not considered scalar with predication.
- !Legal->blockNeedsPredication(I.getParent())) {
- // TODO: Avoid replicating loads and stores instead of
- // relying on instcombine to remove them.
- // Load: Scalar load + broadcast
- // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
- unsigned Cost = getUniformMemOpCost(&I, VF);
- setWideningDecision(&I, VF, CM_Scalarize, Cost);
- continue;
- }
- // We assume that widening is the best solution when possible.
- if (memoryInstructionCanBeWidened(&I, VF)) {
- unsigned Cost = getConsecutiveMemOpCost(&I, VF);
- int ConsecutiveStride =
- Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
- assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
- "Expected consecutive stride.");
- InstWidening Decision =
- ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
- setWideningDecision(&I, VF, Decision, Cost);
- continue;
- }
- // Choose between Interleaving, Gather/Scatter or Scalarization.
- unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
- unsigned NumAccesses = 1;
- if (isAccessInterleaved(&I)) {
- auto Group = getInterleavedAccessGroup(&I);
- assert(Group && "Fail to get an interleaved access group.");
- // Make one decision for the whole group.
- if (getWideningDecision(&I, VF) != CM_Unknown)
- continue;
- NumAccesses = Group->getNumMembers();
- if (interleavedAccessCanBeWidened(&I, VF))
- InterleaveCost = getInterleaveGroupCost(&I, VF);
- }
- unsigned GatherScatterCost =
- isLegalGatherOrScatter(&I)
- ? getGatherScatterCost(&I, VF) * NumAccesses
- : std::numeric_limits<unsigned>::max();
- unsigned ScalarizationCost =
- getMemInstScalarizationCost(&I, VF) * NumAccesses;
- // Choose better solution for the current VF,
- // write down this decision and use it during vectorization.
- unsigned Cost;
- InstWidening Decision;
- if (InterleaveCost <= GatherScatterCost &&
- InterleaveCost < ScalarizationCost) {
- Decision = CM_Interleave;
- Cost = InterleaveCost;
- } else if (GatherScatterCost < ScalarizationCost) {
- Decision = CM_GatherScatter;
- Cost = GatherScatterCost;
- } else {
- Decision = CM_Scalarize;
- Cost = ScalarizationCost;
- }
- // If the instructions belongs to an interleave group, the whole group
- // receives the same decision. The whole group receives the cost, but
- // the cost will actually be assigned to one instruction.
- if (auto Group = getInterleavedAccessGroup(&I))
- setWideningDecision(Group, VF, Decision, Cost);
- else
- setWideningDecision(&I, VF, Decision, Cost);
- }
- }
- // Make sure that any load of address and any other address computation
- // remains scalar unless there is gather/scatter support. This avoids
- // inevitable extracts into address registers, and also has the benefit of
- // activating LSR more, since that pass can't optimize vectorized
- // addresses.
- if (TTI.prefersVectorizedAddressing())
- return;
- // Start with all scalar pointer uses.
- SmallPtrSet<Instruction *, 8> AddrDefs;
- for (BasicBlock *BB : TheLoop->blocks())
- for (Instruction &I : *BB) {
- Instruction *PtrDef =
- dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
- if (PtrDef && TheLoop->contains(PtrDef) &&
- getWideningDecision(&I, VF) != CM_GatherScatter)
- AddrDefs.insert(PtrDef);
- }
- // Add all instructions used to generate the addresses.
- SmallVector<Instruction *, 4> Worklist;
- for (auto *I : AddrDefs)
- Worklist.push_back(I);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- for (auto &Op : I->operands())
- if (auto *InstOp = dyn_cast<Instruction>(Op))
- if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
- AddrDefs.insert(InstOp).second)
- Worklist.push_back(InstOp);
- }
- for (auto *I : AddrDefs) {
- if (isa<LoadInst>(I)) {
- // Setting the desired widening decision should ideally be handled in
- // by cost functions, but since this involves the task of finding out
- // if the loaded register is involved in an address computation, it is
- // instead changed here when we know this is the case.
- InstWidening Decision = getWideningDecision(I, VF);
- if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
- // Scalarize a widened load of address.
- setWideningDecision(I, VF, CM_Scalarize,
- (VF * getMemoryInstructionCost(I, 1)));
- else if (auto Group = getInterleavedAccessGroup(I)) {
- // Scalarize an interleave group of address loads.
- for (unsigned I = 0; I < Group->getFactor(); ++I) {
- if (Instruction *Member = Group->getMember(I))
- setWideningDecision(Member, VF, CM_Scalarize,
- (VF * getMemoryInstructionCost(Member, 1)));
- }
- }
- } else
- // Make sure I gets scalarized and a cost estimate without
- // scalarization overhead.
- ForcedScalars[VF].insert(I);
- }
- }
- unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
- unsigned VF,
- Type *&VectorTy) {
- Type *RetTy = I->getType();
- if (canTruncateToMinimalBitwidth(I, VF))
- RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
- VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
- auto SE = PSE.getSE();
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because the cost of GEPs in
- // vectorized code depends on whether the corresponding memory instruction
- // is scalarized or not. Therefore, we handle GEPs with the memory
- // instruction cost.
- return 0;
- case Instruction::Br: {
- // In cases of scalarized and predicated instructions, there will be VF
- // predicated blocks in the vectorized loop. Each branch around these
- // blocks requires also an extract of its vector compare i1 element.
- bool ScalarPredicatedBB = false;
- BranchInst *BI = cast<BranchInst>(I);
- if (VF > 1 && BI->isConditional() &&
- (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
- PredicatedBBsAfterVectorization.end() ||
- PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
- PredicatedBBsAfterVectorization.end()))
- ScalarPredicatedBB = true;
- if (ScalarPredicatedBB) {
- // Return cost for branches around scalarized and predicated blocks.
- Type *Vec_i1Ty =
- VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
- return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
- (TTI.getCFInstrCost(Instruction::Br) * VF));
- } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
- // The back-edge branch will remain, as will all scalar branches.
- return TTI.getCFInstrCost(Instruction::Br);
- else
- // This branch will be eliminated by if-conversion.
- return 0;
- // Note: We currently assume zero cost for an unconditional branch inside
- // a predicated block since it will become a fall-through, although we
- // may decide in the future to call TTI for all branches.
- }
- case Instruction::PHI: {
- auto *Phi = cast<PHINode>(I);
- // First-order recurrences are replaced by vector shuffles inside the loop.
- // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
- if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
- return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
- VectorTy, VF - 1, VectorType::get(RetTy, 1));
- // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
- // converted into select instructions. We require N - 1 selects per phi
- // node, where N is the number of incoming values.
- if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
- return (Phi->getNumIncomingValues() - 1) *
- TTI.getCmpSelInstrCost(
- Instruction::Select, ToVectorTy(Phi->getType(), VF),
- ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
- return TTI.getCFInstrCost(Instruction::PHI);
- }
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- // If we have a predicated instruction, it may not be executed for each
- // vector lane. Get the scalarization cost and scale this amount by the
- // probability of executing the predicated block. If the instruction is not
- // predicated, we fall through to the next case.
- if (VF > 1 && isScalarWithPredication(I)) {
- unsigned Cost = 0;
- // These instructions have a non-void type, so account for the phi nodes
- // that we will create. This cost is likely to be zero. The phi node
- // cost, if any, should be scaled by the block probability because it
- // models a copy at the end of each predicated block.
- Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
- // The cost of the non-predicated instruction.
- Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
- // The cost of insertelement and extractelement instructions needed for
- // scalarization.
- Cost += getScalarizationOverhead(I, VF, TTI);
- // Scale the cost by the probability of executing the predicated blocks.
- // This assumes the predicated block for each vector lane is equally
- // likely.
- return Cost / getReciprocalPredBlockProb();
- }
- LLVM_FALLTHROUGH;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Since we will replace the stride by 1 the multiplication should go away.
- if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
- return 0;
- // Certain instructions can be cheaper to vectorize if they have a constant
- // second vector operand. One example of this are shifts on x86.
- Value *Op2 = I->getOperand(1);
- TargetTransformInfo::OperandValueProperties Op2VP;
- TargetTransformInfo::OperandValueKind Op2VK =
- TTI.getOperandInfo(Op2, Op2VP);
- if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
- Op2VK = TargetTransformInfo::OK_UniformValue;
- SmallVector<const Value *, 4> Operands(I->operand_values());
- unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
- return N * TTI.getArithmeticInstrCost(
- I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
- Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands);
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (!ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
- if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
- ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
- }
- case Instruction::Store:
- case Instruction::Load: {
- unsigned Width = VF;
- if (Width > 1) {
- InstWidening Decision = getWideningDecision(I, Width);
- assert(Decision != CM_Unknown &&
- "CM decision should be taken at this point");
- if (Decision == CM_Scalarize)
- Width = 1;
- }
- VectorTy = ToVectorTy(getMemInstValueType(I), Width);
- return getMemoryInstructionCost(I, VF);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- // We optimize the truncation of induction variables having constant
- // integer steps. The cost of these truncations is the same as the scalar
- // operation.
- if (isOptimizableIVTruncate(I, VF)) {
- auto *Trunc = cast<TruncInst>(I);
- return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
- Trunc->getSrcTy(), Trunc);
- }
- Type *SrcScalarTy = I->getOperand(0)->getType();
- Type *SrcVecTy =
- VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
- if (canTruncateToMinimalBitwidth(I, VF)) {
- // This cast is going to be shrunk. This may remove the cast or it might
- // turn it into slightly different cast. For example, if MinBW == 16,
- // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
- //
- // Calculate the modified src and dest types.
- Type *MinVecTy = VectorTy;
- if (I->getOpcode() == Instruction::Trunc) {
- SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- } else if (I->getOpcode() == Instruction::ZExt ||
- I->getOpcode() == Instruction::SExt) {
- SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
- VectorTy =
- smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
- }
- }
- unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
- return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
- }
- case Instruction::Call: {
- bool NeedToScalarize;
- CallInst *CI = cast<CallInst>(I);
- unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
- if (getVectorIntrinsicIDForCall(CI, TLI))
- return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
- return CallCost;
- }
- default:
- // The cost of executing VF copies of the scalar instruction. This opcode
- // is unknown. Assume that it is the same as 'mul'.
- return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
- getScalarizationOverhead(I, VF, TTI);
- } // end of switch.
- }
- char LoopVectorize::ID = 0;
- static const char lv_name[] = "Loop Vectorization";
- INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
- INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
- INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createLoopVectorizePass() { return new LoopVectorize(); }
- Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
- bool VectorizeOnlyWhenForced) {
- return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
- }
- } // end namespace llvm
- bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
- // Check if the pointer operand of a load or store instruction is
- // consecutive.
- if (auto *Ptr = getLoadStorePointerOperand(Inst))
- return Legal->isConsecutivePtr(Ptr);
- return false;
- }
- void LoopVectorizationCostModel::collectValuesToIgnore() {
- // Ignore ephemeral values.
- CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
- // Ignore type-promoting instructions we identified during reduction
- // detection.
- for (auto &Reduction : *Legal->getReductionVars()) {
- RecurrenceDescriptor &RedDes = Reduction.second;
- SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
- // Ignore type-casting instructions we identified during induction
- // detection.
- for (auto &Induction : *Legal->getInductionVars()) {
- InductionDescriptor &IndDes = Induction.second;
- const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
- VecValuesToIgnore.insert(Casts.begin(), Casts.end());
- }
- }
- // TODO: we could return a pair of values that specify the max VF and
- // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
- // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
- // doesn't have a cost model that can choose which plan to execute if
- // more than one is generated.
- static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
- LoopVectorizationCostModel &CM) {
- unsigned WidestType;
- std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
- return WidestVectorRegBits / WidestType;
- }
- VectorizationFactor
- LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
- unsigned UserVF) {
- unsigned VF = UserVF;
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- if (!OrigLoop->empty()) {
- // If the user doesn't provide a vectorization factor, determine a
- // reasonable one.
- if (!UserVF) {
- VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
- LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
- // Make sure we have a VF > 1 for stress testing.
- if (VPlanBuildStressTest && VF < 2) {
- LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
- << "overriding computed VF.\n");
- VF = 4;
- }
- }
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
- assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
- LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
- << " to build VPlans.\n");
- buildVPlans(VF, VF);
- // For VPlan build stress testing, we bail out after VPlan construction.
- if (VPlanBuildStressTest)
- return VectorizationFactor::Disabled();
- return {VF, 0};
- }
- LLVM_DEBUG(
- dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
- "VPlan-native path.\n");
- return VectorizationFactor::Disabled();
- }
- Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize,
- unsigned UserVF) {
- assert(OrigLoop->empty() && "Inner loop expected.");
- Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
- if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
- return None;
- // Invalidate interleave groups if all blocks of loop will be predicated.
- if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
- !useMaskedInterleavedAccesses(*TTI)) {
- LLVM_DEBUG(
- dbgs()
- << "LV: Invalidate all interleaved groups due to fold-tail by masking "
- "which requires masked-interleaved support.\n");
- CM.InterleaveInfo.reset();
- }
- if (UserVF) {
- LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
- assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- CM.selectUserVectorizationFactor(UserVF);
- buildVPlansWithVPRecipes(UserVF, UserVF);
- LLVM_DEBUG(printPlans(dbgs()));
- return {{UserVF, 0}};
- }
- unsigned MaxVF = MaybeMaxVF.getValue();
- assert(MaxVF != 0 && "MaxVF is zero.");
- for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
- // Collect Uniform and Scalar instructions after vectorization with VF.
- CM.collectUniformsAndScalars(VF);
- // Collect the instructions (and their associated costs) that will be more
- // profitable to scalarize.
- if (VF > 1)
- CM.collectInstsToScalarize(VF);
- }
- buildVPlansWithVPRecipes(1, MaxVF);
- LLVM_DEBUG(printPlans(dbgs()));
- if (MaxVF == 1)
- return VectorizationFactor::Disabled();
- // Select the optimal vectorization factor.
- return CM.selectVectorizationFactor(MaxVF);
- }
- void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
- LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
- << '\n');
- BestVF = VF;
- BestUF = UF;
- erase_if(VPlans, [VF](const VPlanPtr &Plan) {
- return !Plan->hasVF(VF);
- });
- assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
- }
- void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
- DominatorTree *DT) {
- // Perform the actual loop transformation.
- // 1. Create a new empty loop. Unlink the old loop and connect the new one.
- VPCallbackILV CallbackILV(ILV);
- VPTransformState State{BestVF, BestUF, LI,
- DT, ILV.Builder, ILV.VectorLoopValueMap,
- &ILV, CallbackILV};
- State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
- State.TripCount = ILV.getOrCreateTripCount(nullptr);
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
- // 2. Copy and widen instructions from the old loop into the new loop.
- assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
- VPlans.front()->execute(&State);
- // 3. Fix the vectorized code: take care of header phi's, live-outs,
- // predication, updating analyses.
- ILV.fixVectorizedLoop();
- }
- void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
- SmallPtrSetImpl<Instruction *> &DeadInstructions) {
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- // We create new control-flow for the vectorized loop, so the original
- // condition will be dead after vectorization if it's only used by the
- // branch.
- auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
- if (Cmp && Cmp->hasOneUse())
- DeadInstructions.insert(Cmp);
- // We create new "steps" for induction variable updates to which the original
- // induction variables map. An original update instruction will be dead if
- // all its users except the induction variable are dead.
- for (auto &Induction : *Legal->getInductionVars()) {
- PHINode *Ind = Induction.first;
- auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
- if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
- return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
- DeadInstructions.end();
- }))
- DeadInstructions.insert(IndUpdate);
- // We record as "Dead" also the type-casting instructions we had identified
- // during induction analysis. We don't need any handling for them in the
- // vectorized loop because we have proven that, under a proper runtime
- // test guarding the vectorized loop, the value of the phi, and the casted
- // value of the phi, are the same. The last instruction in this casting chain
- // will get its scalar/vector/widened def from the scalar/vector/widened def
- // of the respective phi node. Any other casts in the induction def-use chain
- // have no other uses outside the phi update chain, and will be ignored.
- InductionDescriptor &IndDes = Induction.second;
- const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
- DeadInstructions.insert(Casts.begin(), Casts.end());
- }
- }
- Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
- Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
- Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
- Instruction::BinaryOps BinOp) {
- // When unrolling and the VF is 1, we only need to add a simple scalar.
- Type *Ty = Val->getType();
- assert(!Ty->isVectorTy() && "Val must be a scalar");
- if (Ty->isFloatingPointTy()) {
- Constant *C = ConstantFP::get(Ty, (double)StartIdx);
- // Floating point operations had to be 'fast' to enable the unrolling.
- Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
- return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
- }
- Constant *C = ConstantInt::get(Ty, StartIdx);
- return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
- }
- static void AddRuntimeUnrollDisableMetaData(Loop *L) {
- SmallVector<Metadata *, 4> MDs;
- // Reserve first location for self reference to the LoopID metadata node.
- MDs.push_back(nullptr);
- bool IsUnrollMetadata = false;
- MDNode *LoopID = L->getLoopID();
- if (LoopID) {
- // First find existing loop unrolling disable metadata.
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD) {
- const auto *S = dyn_cast<MDString>(MD->getOperand(0));
- IsUnrollMetadata =
- S && S->getString().startswith("llvm.loop.unroll.disable");
- }
- MDs.push_back(LoopID->getOperand(i));
- }
- }
- if (!IsUnrollMetadata) {
- // Add runtime unroll disable metadata.
- LLVMContext &Context = L->getHeader()->getContext();
- SmallVector<Metadata *, 1> DisableOperands;
- DisableOperands.push_back(
- MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
- MDNode *DisableNode = MDNode::get(Context, DisableOperands);
- MDs.push_back(DisableNode);
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- L->setLoopID(NewLoopID);
- }
- }
- bool LoopVectorizationPlanner::getDecisionAndClampRange(
- const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
- assert(Range.End > Range.Start && "Trying to test an empty VF range.");
- bool PredicateAtRangeStart = Predicate(Range.Start);
- for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
- if (Predicate(TmpVF) != PredicateAtRangeStart) {
- Range.End = TmpVF;
- break;
- }
- return PredicateAtRangeStart;
- }
- /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
- /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
- /// of VF's starting at a given VF and extending it as much as possible. Each
- /// vectorization decision can potentially shorten this sub-range during
- /// buildVPlan().
- void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
- for (unsigned VF = MinVF; VF < MaxVF + 1;) {
- VFRange SubRange = {VF, MaxVF + 1};
- VPlans.push_back(buildVPlan(SubRange));
- VF = SubRange.End;
- }
- }
- VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
- VPlanPtr &Plan) {
- assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
- // Look for cached value.
- std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
- EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
- if (ECEntryIt != EdgeMaskCache.end())
- return ECEntryIt->second;
- VPValue *SrcMask = createBlockInMask(Src, Plan);
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
- if (!BI->isConditional())
- return EdgeMaskCache[Edge] = SrcMask;
- VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
- assert(EdgeMask && "No Edge Mask found for condition");
- if (BI->getSuccessor(0) != Dst)
- EdgeMask = Builder.createNot(EdgeMask);
- if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
- EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
- return EdgeMaskCache[Edge] = EdgeMask;
- }
- VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
- // Look for cached value.
- BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
- if (BCEntryIt != BlockMaskCache.end())
- return BCEntryIt->second;
- // All-one mask is modelled as no-mask following the convention for masked
- // load/store/gather/scatter. Initialize BlockMask to no-mask.
- VPValue *BlockMask = nullptr;
- if (OrigLoop->getHeader() == BB) {
- if (!CM.blockNeedsPredication(BB))
- return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
- // Introduce the early-exit compare IV <= BTC to form header block mask.
- // This is used instead of IV < TC because TC may wrap, unlike BTC.
- VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction());
- VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
- BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
- return BlockMaskCache[BB] = BlockMask;
- }
- // This is the block mask. We OR all incoming edges.
- for (auto *Predecessor : predecessors(BB)) {
- VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
- if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
- return BlockMaskCache[BB] = EdgeMask;
- if (!BlockMask) { // BlockMask has its initialized nullptr value.
- BlockMask = EdgeMask;
- continue;
- }
- BlockMask = Builder.createOr(BlockMask, EdgeMask);
- }
- return BlockMaskCache[BB] = BlockMask;
- }
- VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I,
- VFRange &Range,
- VPlanPtr &Plan) {
- const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I);
- if (!IG)
- return nullptr;
- // Now check if IG is relevant for VF's in the given range.
- auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
- return [=](unsigned VF) -> bool {
- return (VF >= 2 && // Query is illegal for VF == 1
- CM.getWideningDecision(I, VF) ==
- LoopVectorizationCostModel::CM_Interleave);
- };
- };
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range))
- return nullptr;
- // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
- // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
- // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
- assert(I == IG->getInsertPos() &&
- "Generating a recipe for an adjunct member of an interleave group");
- VPValue *Mask = nullptr;
- if (Legal->isMaskRequired(I))
- Mask = createBlockInMask(I->getParent(), Plan);
- return new VPInterleaveRecipe(IG, Mask);
- }
- VPWidenMemoryInstructionRecipe *
- VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
- VPlanPtr &Plan) {
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- return nullptr;
- auto willWiden = [&](unsigned VF) -> bool {
- if (VF == 1)
- return false;
- if (CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF))
- return false;
- LoopVectorizationCostModel::InstWidening Decision =
- CM.getWideningDecision(I, VF);
- assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
- "CM decision should be taken at this point.");
- assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
- "Interleave memory opportunity should be caught earlier.");
- return Decision != LoopVectorizationCostModel::CM_Scalarize;
- };
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
- return nullptr;
- VPValue *Mask = nullptr;
- if (Legal->isMaskRequired(I))
- Mask = createBlockInMask(I->getParent(), Plan);
- return new VPWidenMemoryInstructionRecipe(*I, Mask);
- }
- VPWidenIntOrFpInductionRecipe *
- VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
- if (PHINode *Phi = dyn_cast<PHINode>(I)) {
- // Check if this is an integer or fp induction. If so, build the recipe that
- // produces its scalar and vector values.
- InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
- if (II.getKind() == InductionDescriptor::IK_IntInduction ||
- II.getKind() == InductionDescriptor::IK_FpInduction)
- return new VPWidenIntOrFpInductionRecipe(Phi);
- return nullptr;
- }
- // Optimize the special case where the source is a constant integer
- // induction variable. Notice that we can only optimize the 'trunc' case
- // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
- // (c) other casts depend on pointer size.
- // Determine whether \p K is a truncation based on an induction variable that
- // can be optimized.
- auto isOptimizableIVTruncate =
- [&](Instruction *K) -> std::function<bool(unsigned)> {
- return
- [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
- };
- if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
- isOptimizableIVTruncate(I), Range))
- return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
- cast<TruncInst>(I));
- return nullptr;
- }
- VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
- PHINode *Phi = dyn_cast<PHINode>(I);
- if (!Phi || Phi->getParent() == OrigLoop->getHeader())
- return nullptr;
- // We know that all PHIs in non-header blocks are converted into selects, so
- // we don't have to worry about the insertion order and we can just use the
- // builder. At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- SmallVector<VPValue *, 2> Masks;
- unsigned NumIncoming = Phi->getNumIncomingValues();
- for (unsigned In = 0; In < NumIncoming; In++) {
- VPValue *EdgeMask =
- createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
- assert((EdgeMask || NumIncoming == 1) &&
- "Multiple predecessors with one having a full mask");
- if (EdgeMask)
- Masks.push_back(EdgeMask);
- }
- return new VPBlendRecipe(Phi, Masks);
- }
- bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
- VFRange &Range) {
- bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
- if (IsPredicated)
- return false;
- auto IsVectorizableOpcode = [](unsigned Opcode) {
- switch (Opcode) {
- case Instruction::Add:
- case Instruction::And:
- case Instruction::AShr:
- case Instruction::BitCast:
- case Instruction::Br:
- case Instruction::Call:
- case Instruction::FAdd:
- case Instruction::FCmp:
- case Instruction::FDiv:
- case Instruction::FMul:
- case Instruction::FPExt:
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::FPTrunc:
- case Instruction::FRem:
- case Instruction::FSub:
- case Instruction::GetElementPtr:
- case Instruction::ICmp:
- case Instruction::IntToPtr:
- case Instruction::Load:
- case Instruction::LShr:
- case Instruction::Mul:
- case Instruction::Or:
- case Instruction::PHI:
- case Instruction::PtrToInt:
- case Instruction::SDiv:
- case Instruction::Select:
- case Instruction::SExt:
- case Instruction::Shl:
- case Instruction::SIToFP:
- case Instruction::SRem:
- case Instruction::Store:
- case Instruction::Sub:
- case Instruction::Trunc:
- case Instruction::UDiv:
- case Instruction::UIToFP:
- case Instruction::URem:
- case Instruction::Xor:
- case Instruction::ZExt:
- return true;
- }
- return false;
- };
- if (!IsVectorizableOpcode(I->getOpcode()))
- return false;
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
- ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
- return false;
- }
- auto willWiden = [&](unsigned VF) -> bool {
- if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
- CM.isProfitableToScalarize(I, VF)))
- return false;
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // The following case may be scalarized depending on the VF.
- // The flag shows whether we use Intrinsic or a usual Call for vectorized
- // version of the instruction.
- // Is it beneficial to perform intrinsic call compared to lib call?
- bool NeedToScalarize;
- unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
- bool UseVectorIntrinsic =
- ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
- return UseVectorIntrinsic || !NeedToScalarize;
- }
- if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
- assert(CM.getWideningDecision(I, VF) ==
- LoopVectorizationCostModel::CM_Scalarize &&
- "Memory widening decisions should have been taken care by now");
- return false;
- }
- return true;
- };
- if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
- return false;
- // Success: widen this instruction. We optimize the common case where
- // consecutive instructions can be represented by a single recipe.
- if (!VPBB->empty()) {
- VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
- if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
- return true;
- }
- VPBB->appendRecipe(new VPWidenRecipe(I));
- return true;
- }
- VPBasicBlock *VPRecipeBuilder::handleReplication(
- Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
- DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
- VPlanPtr &Plan) {
- bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
- Range);
- bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
- [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
- auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
- // Find if I uses a predicated instruction. If so, it will use its scalar
- // value. Avoid hoisting the insert-element which packs the scalar value into
- // a vector value, as that happens iff all users use the vector value.
- for (auto &Op : I->operands())
- if (auto *PredInst = dyn_cast<Instruction>(Op))
- if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
- PredInst2Recipe[PredInst]->setAlsoPack(false);
- // Finalize the recipe for Instr, first if it is not predicated.
- if (!IsPredicated) {
- LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
- VPBB->appendRecipe(Recipe);
- return VPBB;
- }
- LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
- assert(VPBB->getSuccessors().empty() &&
- "VPBB has successors when handling predicated replication.");
- // Record predicated instructions for above packing optimizations.
- PredInst2Recipe[I] = Recipe;
- VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
- VPBlockUtils::insertBlockAfter(Region, VPBB);
- auto *RegSucc = new VPBasicBlock();
- VPBlockUtils::insertBlockAfter(RegSucc, Region);
- return RegSucc;
- }
- VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
- VPRecipeBase *PredRecipe,
- VPlanPtr &Plan) {
- // Instructions marked for predication are replicated and placed under an
- // if-then construct to prevent side-effects.
- // Generate recipes to compute the block mask for this region.
- VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
- // Build the triangular if-then region.
- std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
- assert(Instr->getParent() && "Predicated instruction not in any basic block");
- auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
- auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
- auto *PHIRecipe =
- Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
- auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
- auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
- VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
- // Note: first set Entry as region entry and then connect successors starting
- // from it in order, to propagate the "parent" of each VPBasicBlock.
- VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
- VPBlockUtils::connectBlocks(Pred, Exit);
- return Region;
- }
- bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
- VPlanPtr &Plan, VPBasicBlock *VPBB) {
- VPRecipeBase *Recipe = nullptr;
- // Check if Instr should belong to an interleave memory recipe, or already
- // does. In the latter case Instr is irrelevant.
- if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- // Check if Instr is a memory operation that should be widened.
- if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- // Check if Instr should form some PHI recipe.
- if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- if ((Recipe = tryToBlend(Instr, Plan))) {
- VPBB->appendRecipe(Recipe);
- return true;
- }
- if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
- VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
- return true;
- }
- // Check if Instr is to be widened by a general VPWidenRecipe, after
- // having first checked for specific widening recipes that deal with
- // Interleave Groups, Inductions and Phi nodes.
- if (tryToWiden(Instr, VPBB, Range))
- return true;
- return false;
- }
- void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
- unsigned MaxVF) {
- assert(OrigLoop->empty() && "Inner loop expected.");
- // Collect conditions feeding internal conditional branches; they need to be
- // represented in VPlan for it to model masking.
- SmallPtrSet<Value *, 1> NeedDef;
- auto *Latch = OrigLoop->getLoopLatch();
- for (BasicBlock *BB : OrigLoop->blocks()) {
- if (BB == Latch)
- continue;
- BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
- if (Branch && Branch->isConditional())
- NeedDef.insert(Branch->getCondition());
- }
- // If the tail is to be folded by masking, the primary induction variable
- // needs to be represented in VPlan for it to model early-exit masking.
- if (CM.foldTailByMasking())
- NeedDef.insert(Legal->getPrimaryInduction());
- // Collect instructions from the original loop that will become trivially dead
- // in the vectorized loop. We don't need to vectorize these instructions. For
- // example, original induction update instructions can become dead because we
- // separately emit induction "steps" when generating code for the new loop.
- // Similarly, we create a new latch condition when setting up the structure
- // of the new loop, so the old one can become dead.
- SmallPtrSet<Instruction *, 4> DeadInstructions;
- collectTriviallyDeadInstructions(DeadInstructions);
- for (unsigned VF = MinVF; VF < MaxVF + 1;) {
- VFRange SubRange = {VF, MaxVF + 1};
- VPlans.push_back(
- buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions));
- VF = SubRange.End;
- }
- }
- LoopVectorizationPlanner::VPlanPtr
- LoopVectorizationPlanner::buildVPlanWithVPRecipes(
- VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
- SmallPtrSetImpl<Instruction *> &DeadInstructions) {
- // Hold a mapping from predicated instructions to their recipes, in order to
- // fix their AlsoPack behavior if a user is determined to replicate and use a
- // scalar instead of vector value.
- DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
- DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
- DenseMap<Instruction *, Instruction *> SinkAfterInverse;
- // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
- VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
- auto Plan = llvm::make_unique<VPlan>(VPBB);
- VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder);
- // Represent values that will have defs inside VPlan.
- for (Value *V : NeedDef)
- Plan->addVPValue(V);
- // Scan the body of the loop in a topological order to visit each basic block
- // after having visited its predecessor basic blocks.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
- for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
- // Relevant instructions from basic block BB will be grouped into VPRecipe
- // ingredients and fill a new VPBasicBlock.
- unsigned VPBBsForBB = 0;
- auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
- VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
- VPBB = FirstVPBBForBB;
- Builder.setInsertPoint(VPBB);
- std::vector<Instruction *> Ingredients;
- // Organize the ingredients to vectorize from current basic block in the
- // right order.
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- Instruction *Instr = &I;
- // First filter out irrelevant instructions, to ensure no recipes are
- // built for them.
- if (isa<BranchInst>(Instr) ||
- DeadInstructions.find(Instr) != DeadInstructions.end())
- continue;
- // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
- // member of the IG, do not construct any Recipe for it.
- const InterleaveGroup<Instruction> *IG =
- CM.getInterleavedAccessGroup(Instr);
- if (IG && Instr != IG->getInsertPos() &&
- Range.Start >= 2 && // Query is illegal for VF == 1
- CM.getWideningDecision(Instr, Range.Start) ==
- LoopVectorizationCostModel::CM_Interleave) {
- auto SinkCandidate = SinkAfterInverse.find(Instr);
- if (SinkCandidate != SinkAfterInverse.end())
- Ingredients.push_back(SinkCandidate->second);
- continue;
- }
- // Move instructions to handle first-order recurrences, step 1: avoid
- // handling this instruction until after we've handled the instruction it
- // should follow.
- auto SAIt = SinkAfter.find(Instr);
- if (SAIt != SinkAfter.end()) {
- LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after"
- << *SAIt->second
- << " to vectorize a 1st order recurrence.\n");
- SinkAfterInverse[SAIt->second] = Instr;
- continue;
- }
- Ingredients.push_back(Instr);
- // Move instructions to handle first-order recurrences, step 2: push the
- // instruction to be sunk at its insertion point.
- auto SAInvIt = SinkAfterInverse.find(Instr);
- if (SAInvIt != SinkAfterInverse.end())
- Ingredients.push_back(SAInvIt->second);
- }
- // Introduce each ingredient into VPlan.
- for (Instruction *Instr : Ingredients) {
- if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
- continue;
- // Otherwise, if all widening options failed, Instruction is to be
- // replicated. This may create a successor for VPBB.
- VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
- Instr, Range, VPBB, PredInst2Recipe, Plan);
- if (NextVPBB != VPBB) {
- VPBB = NextVPBB;
- VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
- : "");
- }
- }
- }
- // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
- // may also be empty, such as the last one VPBB, reflecting original
- // basic-blocks with no recipes.
- VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
- assert(PreEntry->empty() && "Expecting empty pre-entry block.");
- VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
- VPBlockUtils::disconnectBlocks(PreEntry, Entry);
- delete PreEntry;
- std::string PlanName;
- raw_string_ostream RSO(PlanName);
- unsigned VF = Range.Start;
- Plan->addVF(VF);
- RSO << "Initial VPlan for VF={" << VF;
- for (VF *= 2; VF < Range.End; VF *= 2) {
- Plan->addVF(VF);
- RSO << "," << VF;
- }
- RSO << "},UF>=1";
- RSO.flush();
- Plan->setName(PlanName);
- return Plan;
- }
- LoopVectorizationPlanner::VPlanPtr
- LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
- // Outer loop handling: They may require CFG and instruction level
- // transformations before even evaluating whether vectorization is profitable.
- // Since we cannot modify the incoming IR, we need to build VPlan upfront in
- // the vectorization pipeline.
- assert(!OrigLoop->empty());
- assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
- // Create new empty VPlan
- auto Plan = llvm::make_unique<VPlan>();
- // Build hierarchical CFG
- VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
- HCFGBuilder.buildHierarchicalCFG();
- for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
- Plan->addVF(VF);
- if (EnableVPlanPredication) {
- VPlanPredicator VPP(*Plan);
- VPP.predicate();
- // Avoid running transformation to recipes until masked code generation in
- // VPlan-native path is in place.
- return Plan;
- }
- SmallPtrSet<Instruction *, 1> DeadInstructions;
- VPlanHCFGTransforms::VPInstructionsToVPRecipes(
- Plan, Legal->getInductionVars(), DeadInstructions);
- return Plan;
- }
- Value* LoopVectorizationPlanner::VPCallbackILV::
- getOrCreateVectorValues(Value *V, unsigned Part) {
- return ILV.getOrCreateVectorValue(V, Part);
- }
- void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
- O << " +\n"
- << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
- IG->getInsertPos()->printAsOperand(O, false);
- if (User) {
- O << ", ";
- User->getOperand(0)->printAsOperand(O);
- }
- O << "\\l\"";
- for (unsigned i = 0; i < IG->getFactor(); ++i)
- if (Instruction *I = IG->getMember(i))
- O << " +\n"
- << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
- }
- void VPWidenRecipe::execute(VPTransformState &State) {
- for (auto &Instr : make_range(Begin, End))
- State.ILV->widenInstruction(Instr);
- }
- void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Int or FP induction being replicated.");
- State.ILV->widenIntOrFpInduction(IV, Trunc);
- }
- void VPWidenPHIRecipe::execute(VPTransformState &State) {
- State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
- }
- void VPBlendRecipe::execute(VPTransformState &State) {
- State.ILV->setDebugLocFromInst(State.Builder, Phi);
- // We know that all PHIs in non-header blocks are converted into
- // selects, so we don't have to worry about the insertion order and we
- // can just use the builder.
- // At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- unsigned NumIncoming = Phi->getNumIncomingValues();
- assert((User || NumIncoming == 1) &&
- "Multiple predecessors with predecessors having a full mask");
- // Generate a sequence of selects of the form:
- // SELECT(Mask3, In3,
- // SELECT(Mask2, In2,
- // ( ...)))
- InnerLoopVectorizer::VectorParts Entry(State.UF);
- for (unsigned In = 0; In < NumIncoming; ++In) {
- for (unsigned Part = 0; Part < State.UF; ++Part) {
- // We might have single edge PHIs (blocks) - use an identity
- // 'select' for the first PHI operand.
- Value *In0 =
- State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
- if (In == 0)
- Entry[Part] = In0; // Initialize with the first incoming value.
- else {
- // Select between the current value and the previous incoming edge
- // based on the incoming mask.
- Value *Cond = State.get(User->getOperand(In), Part);
- Entry[Part] =
- State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
- }
- }
- }
- for (unsigned Part = 0; Part < State.UF; ++Part)
- State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
- }
- void VPInterleaveRecipe::execute(VPTransformState &State) {
- assert(!State.Instance && "Interleave group being replicated.");
- if (!User)
- return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
- // Last (and currently only) operand is a mask.
- InnerLoopVectorizer::VectorParts MaskValues(State.UF);
- VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
- for (unsigned Part = 0; Part < State.UF; ++Part)
- MaskValues[Part] = State.get(Mask, Part);
- State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues);
- }
- void VPReplicateRecipe::execute(VPTransformState &State) {
- if (State.Instance) { // Generate a single instance.
- State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
- // Insert scalar instance packing it into a vector.
- if (AlsoPack && State.VF > 1) {
- // If we're constructing lane 0, initialize to start from undef.
- if (State.Instance->Lane == 0) {
- Value *Undef =
- UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
- State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
- }
- State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
- }
- return;
- }
- // Generate scalar instances for all VF lanes of all UF parts, unless the
- // instruction is uniform inwhich case generate only the first lane for each
- // of the UF parts.
- unsigned EndLane = IsUniform ? 1 : State.VF;
- for (unsigned Part = 0; Part < State.UF; ++Part)
- for (unsigned Lane = 0; Lane < EndLane; ++Lane)
- State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
- }
- void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
- assert(State.Instance && "Branch on Mask works only on single instance.");
- unsigned Part = State.Instance->Part;
- unsigned Lane = State.Instance->Lane;
- Value *ConditionBit = nullptr;
- if (!User) // Block in mask is all-one.
- ConditionBit = State.Builder.getTrue();
- else {
- VPValue *BlockInMask = User->getOperand(0);
- ConditionBit = State.get(BlockInMask, Part);
- if (ConditionBit->getType()->isVectorTy())
- ConditionBit = State.Builder.CreateExtractElement(
- ConditionBit, State.Builder.getInt32(Lane));
- }
- // Replace the temporary unreachable terminator with a new conditional branch,
- // whose two destinations will be set later when they are created.
- auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
- assert(isa<UnreachableInst>(CurrentTerminator) &&
- "Expected to replace unreachable terminator with conditional branch.");
- auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
- CondBr->setSuccessor(0, nullptr);
- ReplaceInstWithInst(CurrentTerminator, CondBr);
- }
- void VPPredInstPHIRecipe::execute(VPTransformState &State) {
- assert(State.Instance && "Predicated instruction PHI works per instance.");
- Instruction *ScalarPredInst = cast<Instruction>(
- State.ValueMap.getScalarValue(PredInst, *State.Instance));
- BasicBlock *PredicatedBB = ScalarPredInst->getParent();
- BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
- assert(PredicatingBB && "Predicated block has no single predecessor.");
- // By current pack/unpack logic we need to generate only a single phi node: if
- // a vector value for the predicated instruction exists at this point it means
- // the instruction has vector users only, and a phi for the vector value is
- // needed. In this case the recipe of the predicated instruction is marked to
- // also do that packing, thereby "hoisting" the insert-element sequence.
- // Otherwise, a phi node for the scalar value is needed.
- unsigned Part = State.Instance->Part;
- if (State.ValueMap.hasVectorValue(PredInst, Part)) {
- Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
- InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
- PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
- VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
- VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
- State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
- } else {
- Type *PredInstType = PredInst->getType();
- PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
- Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
- Phi->addIncoming(ScalarPredInst, PredicatedBB);
- State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
- }
- }
- void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
- if (!User)
- return State.ILV->vectorizeMemoryInstruction(&Instr);
- // Last (and currently only) operand is a mask.
- InnerLoopVectorizer::VectorParts MaskValues(State.UF);
- VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
- for (unsigned Part = 0; Part < State.UF; ++Part)
- MaskValues[Part] = State.get(Mask, Part);
- State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
- }
- // Process the loop in the VPlan-native vectorization path. This path builds
- // VPlan upfront in the vectorization pipeline, which allows to apply
- // VPlan-to-VPlan transformations from the very beginning without modifying the
- // input LLVM IR.
- static bool processLoopInVPlanNativePath(
- Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
- LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
- TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
- assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
- Function *F = L->getHeader()->getParent();
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
- LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
- &Hints, IAI);
- // Use the planner for outer loop vectorization.
- // TODO: CM is not used at this point inside the planner. Turn CM into an
- // optional argument if we don't need it in the future.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM);
- // Get user vectorization factor.
- const unsigned UserVF = Hints.getWidth();
- // Check the function attributes and profiles to find out if this function
- // should be optimized for size.
- bool OptForSize =
- Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- (F->hasOptSize() ||
- llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI));
- // Plan how to best vectorize, return the best VF and its cost.
- const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF);
- // If we are stress testing VPlan builds, do not attempt to generate vector
- // code. Masked vector code generation support will follow soon.
- // Also, do not attempt to vectorize if no vector code will be produced.
- if (VPlanBuildStressTest || EnableVPlanPredication ||
- VectorizationFactor::Disabled() == VF)
- return false;
- LVP.setBestPlan(VF.Width, 1);
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
- &CM);
- LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
- << L->getHeader()->getParent()->getName() << "\"\n");
- LVP.executePlan(LB, DT);
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
- }
- bool LoopVectorizePass::processLoop(Loop *L) {
- assert((EnableVPlanNativePath || L->empty()) &&
- "VPlan-native path is not enabled. Only process inner loops.");
- #ifndef NDEBUG
- const std::string DebugLocStr = getDebugLocString(L);
- #endif /* NDEBUG */
- LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
- << L->getHeader()->getParent()->getName() << "\" from "
- << DebugLocStr << "\n");
- LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
- LLVM_DEBUG(
- dbgs() << "LV: Loop hints:"
- << " force="
- << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
- ? "disabled"
- : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
- ? "enabled"
- : "?"))
- << " width=" << Hints.getWidth()
- << " unroll=" << Hints.getInterleave() << "\n");
- // Function containing loop
- Function *F = L->getHeader()->getParent();
- // Looking at the diagnostic output is the only way to determine if a loop
- // was vectorized (other than looking at the IR or machine code), so it
- // is important to generate an optimization remark for each loop. Most of
- // these messages are generated as OptimizationRemarkAnalysis. Remarks
- // generated as OptimizationRemark and OptimizationRemarkMissed are
- // less verbose reporting vectorized loops and unvectorized loops that may
- // benefit from vectorization, respectively.
- if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
- LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
- return false;
- }
- PredicatedScalarEvolution PSE(*SE, *L);
- // Check if it is legal to vectorize the loop.
- LoopVectorizationRequirements Requirements(*ORE);
- LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
- &Requirements, &Hints, DB, AC);
- if (!LVL.canVectorize(EnableVPlanNativePath)) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- // Check the function attributes and profiles to find out if this function
- // should be optimized for size.
- bool OptForSize =
- Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
- (F->hasOptSize() ||
- llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI));
- // Entrance to the VPlan-native vectorization path. Outer loops are processed
- // here. They may require CFG and instruction level transformations before
- // even evaluating whether vectorization is profitable. Since we cannot modify
- // the incoming IR, we need to build VPlan upfront in the vectorization
- // pipeline.
- if (!L->empty())
- return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
- ORE, BFI, PSI, Hints);
- assert(L->empty() && "Inner loop expected.");
- // Check the loop for a trip count threshold: vectorize loops with a tiny trip
- // count by optimizing for size, to minimize overheads.
- // Prefer constant trip counts over profile data, over upper bound estimate.
- unsigned ExpectedTC = 0;
- bool HasExpectedTC = false;
- if (const SCEVConstant *ConstExits =
- dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
- const APInt &ExitsCount = ConstExits->getAPInt();
- // We are interested in small values for ExpectedTC. Skip over those that
- // can't fit an unsigned.
- if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
- ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
- HasExpectedTC = true;
- }
- }
- // ExpectedTC may be large because it's bound by a variable. Check
- // profiling information to validate we should vectorize.
- if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
- auto EstimatedTC = getLoopEstimatedTripCount(L);
- if (EstimatedTC) {
- ExpectedTC = *EstimatedTC;
- HasExpectedTC = true;
- }
- }
- if (!HasExpectedTC) {
- ExpectedTC = SE->getSmallConstantMaxTripCount(L);
- HasExpectedTC = (ExpectedTC > 0);
- }
- if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
- LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
- << "This loop is worth vectorizing only if no scalar "
- << "iteration overheads are incurred.");
- if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
- LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
- else {
- LLVM_DEBUG(dbgs() << "\n");
- // Loops with a very small trip count are considered for vectorization
- // under OptForSize, thereby making sure the cost of their loop body is
- // dominant, free of runtime guards and scalar iteration overheads.
- OptForSize = true;
- }
- }
- // Check the function attributes to see if implicit floats are allowed.
- // FIXME: This check doesn't seem possibly correct -- what if the loop is
- // an integer loop and the vector instructions selected are purely integer
- // vector instructions?
- if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
- LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
- "attribute is used.\n");
- ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
- "NoImplicitFloat", L)
- << "loop not vectorized due to NoImplicitFloat attribute");
- Hints.emitRemarkWithHints();
- return false;
- }
- // Check if the target supports potentially unsafe FP vectorization.
- // FIXME: Add a check for the type of safety issue (denormal, signaling)
- // for the target we're vectorizing for, to make sure none of the
- // additional fp-math flags can help.
- if (Hints.isPotentiallyUnsafe() &&
- TTI->isFPVectorizationPotentiallyUnsafe()) {
- LLVM_DEBUG(
- dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
- ORE->emit(
- createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
- << "loop not vectorized due to unsafe FP support.");
- Hints.emitRemarkWithHints();
- return false;
- }
- bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
- InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
- // If an override option has been passed in for interleaved accesses, use it.
- if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
- UseInterleaved = EnableInterleavedMemAccesses;
- // Analyze interleaved memory accesses.
- if (UseInterleaved) {
- IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
- }
- // Use the cost model.
- LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
- &Hints, IAI);
- CM.collectValuesToIgnore();
- // Use the planner for vectorization.
- LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
- // Get user vectorization factor.
- unsigned UserVF = Hints.getWidth();
- // Plan how to best vectorize, return the best VF and its cost.
- Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF);
- VectorizationFactor VF = VectorizationFactor::Disabled();
- unsigned IC = 1;
- unsigned UserIC = Hints.getInterleave();
- if (MaybeVF) {
- VF = *MaybeVF;
- // Select the interleave count.
- IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
- }
- // Identify the diagnostic messages that should be produced.
- std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
- bool VectorizeLoop = true, InterleaveLoop = true;
- if (Requirements.doesNotMeet(F, L, Hints)) {
- LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
- "requirements.\n");
- Hints.emitRemarkWithHints();
- return false;
- }
- if (VF.Width == 1) {
- LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- VecDiagMsg = std::make_pair(
- "VectorizationNotBeneficial",
- "the cost-model indicates that vectorization is not beneficial");
- VectorizeLoop = false;
- }
- if (!MaybeVF && UserIC > 1) {
- // Tell the user interleaving was avoided up-front, despite being explicitly
- // requested.
- LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
- "interleaving should be avoided up front\n");
- IntDiagMsg = std::make_pair(
- "InterleavingAvoided",
- "Ignoring UserIC, because interleaving was avoided up front");
- InterleaveLoop = false;
- } else if (IC == 1 && UserIC <= 1) {
- // Tell the user interleaving is not beneficial.
- LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
- IntDiagMsg = std::make_pair(
- "InterleavingNotBeneficial",
- "the cost-model indicates that interleaving is not beneficial");
- InterleaveLoop = false;
- if (UserIC == 1) {
- IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
- IntDiagMsg.second +=
- " and is explicitly disabled or interleave count is set to 1";
- }
- } else if (IC > 1 && UserIC == 1) {
- // Tell the user interleaving is beneficial, but it explicitly disabled.
- LLVM_DEBUG(
- dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
- IntDiagMsg = std::make_pair(
- "InterleavingBeneficialButDisabled",
- "the cost-model indicates that interleaving is beneficial "
- "but is explicitly disabled or interleave count is set to 1");
- InterleaveLoop = false;
- }
- // Override IC if user provided an interleave count.
- IC = UserIC > 0 ? UserIC : IC;
- // Emit diagnostic messages, if any.
- const char *VAPassName = Hints.vectorizeAnalysisPassName();
- if (!VectorizeLoop && !InterleaveLoop) {
- // Do not vectorize or interleaving the loop.
- ORE->emit([&]() {
- return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- ORE->emit([&]() {
- return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- return false;
- } else if (!VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << VecDiagMsg.second;
- });
- } else if (VectorizeLoop && !InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- ORE->emit([&]() {
- return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
- L->getStartLoc(), L->getHeader())
- << IntDiagMsg.second;
- });
- } else if (VectorizeLoop && InterleaveLoop) {
- LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
- << ") in " << DebugLocStr << '\n');
- LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
- }
- LVP.setBestPlan(VF.Width, IC);
- using namespace ore;
- bool DisableRuntimeUnroll = false;
- MDNode *OrigLoopID = L->getLoopID();
- if (!VectorizeLoop) {
- assert(IC > 1 && "interleave count should not be 1 or 0");
- // If we decided that it is not legal to vectorize the loop, then
- // interleave it.
- InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
- &CM);
- LVP.executePlan(Unroller, DT);
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
- L->getHeader())
- << "interleaved loop (interleaved count: "
- << NV("InterleaveCount", IC) << ")";
- });
- } else {
- // If we decided that it is *legal* to vectorize the loop, then do it.
- InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
- &LVL, &CM);
- LVP.executePlan(LB, DT);
- ++LoopsVectorized;
- // Add metadata to disable runtime unrolling a scalar loop when there are
- // no runtime checks about strides and memory. A scalar loop that is
- // rarely used is not worth unrolling.
- if (!LB.areSafetyChecksAdded())
- DisableRuntimeUnroll = true;
- // Report the vectorization decision.
- ORE->emit([&]() {
- return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
- L->getHeader())
- << "vectorized loop (vectorization width: "
- << NV("VectorizationFactor", VF.Width)
- << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
- });
- }
- Optional<MDNode *> RemainderLoopID =
- makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
- LLVMLoopVectorizeFollowupEpilogue});
- if (RemainderLoopID.hasValue()) {
- L->setLoopID(RemainderLoopID.getValue());
- } else {
- if (DisableRuntimeUnroll)
- AddRuntimeUnrollDisableMetaData(L);
- // Mark the loop as already vectorized to avoid vectorizing again.
- Hints.setAlreadyVectorized();
- }
- LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
- }
- bool LoopVectorizePass::runImpl(
- Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
- DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
- DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
- std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
- OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
- SE = &SE_;
- LI = &LI_;
- TTI = &TTI_;
- DT = &DT_;
- BFI = &BFI_;
- TLI = TLI_;
- AA = &AA_;
- AC = &AC_;
- GetLAA = &GetLAA_;
- DB = &DB_;
- ORE = &ORE_;
- PSI = PSI_;
- // Don't attempt if
- // 1. the target claims to have no vector registers, and
- // 2. interleaving won't help ILP.
- //
- // The second condition is necessary because, even if the target has no
- // vector registers, loop vectorization may still enable scalar
- // interleaving.
- if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
- return false;
- bool Changed = false;
- // The vectorizer requires loops to be in simplified form.
- // Since simplification may add new inner loops, it has to run before the
- // legality and profitability checks. This means running the loop vectorizer
- // will simplify all loops, regardless of whether anything end up being
- // vectorized.
- for (auto &L : *LI)
- Changed |=
- simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
- // Build up a worklist of inner-loops to vectorize. This is necessary as
- // the act of vectorizing or partially unrolling a loop creates new loops
- // and can invalidate iterators across the loops.
- SmallVector<Loop *, 8> Worklist;
- for (Loop *L : *LI)
- collectSupportedLoops(*L, LI, ORE, Worklist);
- LoopsAnalyzed += Worklist.size();
- // Now walk the identified inner loops.
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- // For the inner loops we actually process, form LCSSA to simplify the
- // transform.
- Changed |= formLCSSARecursively(*L, *DT, LI, SE);
- Changed |= processLoop(L);
- }
- // Process each loop nest in the function.
- return Changed;
- }
- PreservedAnalyses LoopVectorizePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- MemorySSA *MSSA = EnableMSSALoopDependency
- ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
- : nullptr;
- auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
- std::function<const LoopAccessInfo &(Loop &)> GetLAA =
- [&](Loop &L) -> const LoopAccessInfo & {
- LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
- return LAM.getResult<LoopAccessAnalysis>(L, AR);
- };
- const ModuleAnalysisManager &MAM =
- AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
- ProfileSummaryInfo *PSI =
- MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- bool Changed =
- runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- // We currently do not preserve loopinfo/dominator analyses with outer loop
- // vectorization. Until this is addressed, mark these analyses as preserved
- // only for non-VPlan-native path.
- // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
- if (!EnableVPlanNativePath) {
- PA.preserve<LoopAnalysis>();
- PA.preserve<DominatorTreeAnalysis>();
- }
- PA.preserve<BasicAA>();
- PA.preserve<GlobalsAA>();
- return PA;
- }
|