12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627 |
- //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the TargetLowering class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Target/TargetAsmInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtarget.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- using namespace llvm;
- namespace llvm {
- TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
- bool isLocal = GV->hasLocalLinkage();
- bool isDeclaration = GV->isDeclaration();
- // FIXME: what should we do for protected and internal visibility?
- // For variables, is internal different from hidden?
- bool isHidden = GV->hasHiddenVisibility();
- if (reloc == Reloc::PIC_) {
- if (isLocal || isHidden)
- return TLSModel::LocalDynamic;
- else
- return TLSModel::GeneralDynamic;
- } else {
- if (!isDeclaration || isHidden)
- return TLSModel::LocalExec;
- else
- return TLSModel::InitialExec;
- }
- }
- }
- /// InitLibcallNames - Set default libcall names.
- ///
- static void InitLibcallNames(const char **Names) {
- Names[RTLIB::SHL_I16] = "__ashlhi3";
- Names[RTLIB::SHL_I32] = "__ashlsi3";
- Names[RTLIB::SHL_I64] = "__ashldi3";
- Names[RTLIB::SHL_I128] = "__ashlti3";
- Names[RTLIB::SRL_I16] = "__lshrhi3";
- Names[RTLIB::SRL_I32] = "__lshrsi3";
- Names[RTLIB::SRL_I64] = "__lshrdi3";
- Names[RTLIB::SRL_I128] = "__lshrti3";
- Names[RTLIB::SRA_I16] = "__ashrhi3";
- Names[RTLIB::SRA_I32] = "__ashrsi3";
- Names[RTLIB::SRA_I64] = "__ashrdi3";
- Names[RTLIB::SRA_I128] = "__ashrti3";
- Names[RTLIB::MUL_I16] = "__mulhi3";
- Names[RTLIB::MUL_I32] = "__mulsi3";
- Names[RTLIB::MUL_I64] = "__muldi3";
- Names[RTLIB::MUL_I128] = "__multi3";
- Names[RTLIB::SDIV_I16] = "__divhi3";
- Names[RTLIB::SDIV_I32] = "__divsi3";
- Names[RTLIB::SDIV_I64] = "__divdi3";
- Names[RTLIB::SDIV_I128] = "__divti3";
- Names[RTLIB::UDIV_I16] = "__udivhi3";
- Names[RTLIB::UDIV_I32] = "__udivsi3";
- Names[RTLIB::UDIV_I64] = "__udivdi3";
- Names[RTLIB::UDIV_I128] = "__udivti3";
- Names[RTLIB::SREM_I16] = "__modhi3";
- Names[RTLIB::SREM_I32] = "__modsi3";
- Names[RTLIB::SREM_I64] = "__moddi3";
- Names[RTLIB::SREM_I128] = "__modti3";
- Names[RTLIB::UREM_I16] = "__umodhi3";
- Names[RTLIB::UREM_I32] = "__umodsi3";
- Names[RTLIB::UREM_I64] = "__umoddi3";
- Names[RTLIB::UREM_I128] = "__umodti3";
- Names[RTLIB::NEG_I32] = "__negsi2";
- Names[RTLIB::NEG_I64] = "__negdi2";
- Names[RTLIB::ADD_F32] = "__addsf3";
- Names[RTLIB::ADD_F64] = "__adddf3";
- Names[RTLIB::ADD_F80] = "__addxf3";
- Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
- Names[RTLIB::SUB_F32] = "__subsf3";
- Names[RTLIB::SUB_F64] = "__subdf3";
- Names[RTLIB::SUB_F80] = "__subxf3";
- Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
- Names[RTLIB::MUL_F32] = "__mulsf3";
- Names[RTLIB::MUL_F64] = "__muldf3";
- Names[RTLIB::MUL_F80] = "__mulxf3";
- Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
- Names[RTLIB::DIV_F32] = "__divsf3";
- Names[RTLIB::DIV_F64] = "__divdf3";
- Names[RTLIB::DIV_F80] = "__divxf3";
- Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
- Names[RTLIB::REM_F32] = "fmodf";
- Names[RTLIB::REM_F64] = "fmod";
- Names[RTLIB::REM_F80] = "fmodl";
- Names[RTLIB::REM_PPCF128] = "fmodl";
- Names[RTLIB::POWI_F32] = "__powisf2";
- Names[RTLIB::POWI_F64] = "__powidf2";
- Names[RTLIB::POWI_F80] = "__powixf2";
- Names[RTLIB::POWI_PPCF128] = "__powitf2";
- Names[RTLIB::SQRT_F32] = "sqrtf";
- Names[RTLIB::SQRT_F64] = "sqrt";
- Names[RTLIB::SQRT_F80] = "sqrtl";
- Names[RTLIB::SQRT_PPCF128] = "sqrtl";
- Names[RTLIB::LOG_F32] = "logf";
- Names[RTLIB::LOG_F64] = "log";
- Names[RTLIB::LOG_F80] = "logl";
- Names[RTLIB::LOG_PPCF128] = "logl";
- Names[RTLIB::LOG2_F32] = "log2f";
- Names[RTLIB::LOG2_F64] = "log2";
- Names[RTLIB::LOG2_F80] = "log2l";
- Names[RTLIB::LOG2_PPCF128] = "log2l";
- Names[RTLIB::LOG10_F32] = "log10f";
- Names[RTLIB::LOG10_F64] = "log10";
- Names[RTLIB::LOG10_F80] = "log10l";
- Names[RTLIB::LOG10_PPCF128] = "log10l";
- Names[RTLIB::EXP_F32] = "expf";
- Names[RTLIB::EXP_F64] = "exp";
- Names[RTLIB::EXP_F80] = "expl";
- Names[RTLIB::EXP_PPCF128] = "expl";
- Names[RTLIB::EXP2_F32] = "exp2f";
- Names[RTLIB::EXP2_F64] = "exp2";
- Names[RTLIB::EXP2_F80] = "exp2l";
- Names[RTLIB::EXP2_PPCF128] = "exp2l";
- Names[RTLIB::SIN_F32] = "sinf";
- Names[RTLIB::SIN_F64] = "sin";
- Names[RTLIB::SIN_F80] = "sinl";
- Names[RTLIB::SIN_PPCF128] = "sinl";
- Names[RTLIB::COS_F32] = "cosf";
- Names[RTLIB::COS_F64] = "cos";
- Names[RTLIB::COS_F80] = "cosl";
- Names[RTLIB::COS_PPCF128] = "cosl";
- Names[RTLIB::POW_F32] = "powf";
- Names[RTLIB::POW_F64] = "pow";
- Names[RTLIB::POW_F80] = "powl";
- Names[RTLIB::POW_PPCF128] = "powl";
- Names[RTLIB::CEIL_F32] = "ceilf";
- Names[RTLIB::CEIL_F64] = "ceil";
- Names[RTLIB::CEIL_F80] = "ceill";
- Names[RTLIB::CEIL_PPCF128] = "ceill";
- Names[RTLIB::TRUNC_F32] = "truncf";
- Names[RTLIB::TRUNC_F64] = "trunc";
- Names[RTLIB::TRUNC_F80] = "truncl";
- Names[RTLIB::TRUNC_PPCF128] = "truncl";
- Names[RTLIB::RINT_F32] = "rintf";
- Names[RTLIB::RINT_F64] = "rint";
- Names[RTLIB::RINT_F80] = "rintl";
- Names[RTLIB::RINT_PPCF128] = "rintl";
- Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
- Names[RTLIB::NEARBYINT_F64] = "nearbyint";
- Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
- Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
- Names[RTLIB::FLOOR_F32] = "floorf";
- Names[RTLIB::FLOOR_F64] = "floor";
- Names[RTLIB::FLOOR_F80] = "floorl";
- Names[RTLIB::FLOOR_PPCF128] = "floorl";
- Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
- Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
- Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
- Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
- Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
- Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
- Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
- Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
- Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
- Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
- Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
- Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
- Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
- Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
- Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
- Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
- Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
- Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
- Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
- Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
- Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
- Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
- Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
- Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
- Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
- Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
- Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
- Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
- Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
- Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
- Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
- Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
- Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
- Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
- Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
- Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
- Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
- Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
- Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
- Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
- Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
- Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
- Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
- Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
- Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
- Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
- Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
- Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
- Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
- Names[RTLIB::OEQ_F32] = "__eqsf2";
- Names[RTLIB::OEQ_F64] = "__eqdf2";
- Names[RTLIB::UNE_F32] = "__nesf2";
- Names[RTLIB::UNE_F64] = "__nedf2";
- Names[RTLIB::OGE_F32] = "__gesf2";
- Names[RTLIB::OGE_F64] = "__gedf2";
- Names[RTLIB::OLT_F32] = "__ltsf2";
- Names[RTLIB::OLT_F64] = "__ltdf2";
- Names[RTLIB::OLE_F32] = "__lesf2";
- Names[RTLIB::OLE_F64] = "__ledf2";
- Names[RTLIB::OGT_F32] = "__gtsf2";
- Names[RTLIB::OGT_F64] = "__gtdf2";
- Names[RTLIB::UO_F32] = "__unordsf2";
- Names[RTLIB::UO_F64] = "__unorddf2";
- Names[RTLIB::O_F32] = "__unordsf2";
- Names[RTLIB::O_F64] = "__unorddf2";
- Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
- }
- /// getFPEXT - Return the FPEXT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::f64)
- return FPEXT_F32_F64;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPROUND - Return the FPROUND_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
- if (RetVT == MVT::f32) {
- if (OpVT == MVT::f64)
- return FPROUND_F64_F32;
- if (OpVT == MVT::f80)
- return FPROUND_F80_F32;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F32;
- } else if (RetVT == MVT::f64) {
- if (OpVT == MVT::f80)
- return FPROUND_F80_F64;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F64;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::i8)
- return FPTOSINT_F32_I8;
- if (RetVT == MVT::i16)
- return FPTOSINT_F32_I16;
- if (RetVT == MVT::i32)
- return FPTOSINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F80_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOSINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::i8)
- return FPTOUINT_F32_I8;
- if (RetVT == MVT::i16)
- return FPTOUINT_F32_I16;
- if (RetVT == MVT::i32)
- return FPTOUINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F80_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOUINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I32_F32;
- else if (RetVT == MVT::f64)
- return SINTTOFP_I32_F64;
- else if (RetVT == MVT::f80)
- return SINTTOFP_I32_F80;
- else if (RetVT == MVT::ppcf128)
- return SINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I64_F32;
- else if (RetVT == MVT::f64)
- return SINTTOFP_I64_F64;
- else if (RetVT == MVT::f80)
- return SINTTOFP_I64_F80;
- else if (RetVT == MVT::ppcf128)
- return SINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I128_F32;
- else if (RetVT == MVT::f64)
- return SINTTOFP_I128_F64;
- else if (RetVT == MVT::f80)
- return SINTTOFP_I128_F80;
- else if (RetVT == MVT::ppcf128)
- return SINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I32_F32;
- else if (RetVT == MVT::f64)
- return UINTTOFP_I32_F64;
- else if (RetVT == MVT::f80)
- return UINTTOFP_I32_F80;
- else if (RetVT == MVT::ppcf128)
- return UINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I64_F32;
- else if (RetVT == MVT::f64)
- return UINTTOFP_I64_F64;
- else if (RetVT == MVT::f80)
- return UINTTOFP_I64_F80;
- else if (RetVT == MVT::ppcf128)
- return UINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I128_F32;
- else if (RetVT == MVT::f64)
- return UINTTOFP_I128_F64;
- else if (RetVT == MVT::f80)
- return UINTTOFP_I128_F80;
- else if (RetVT == MVT::ppcf128)
- return UINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// InitCmpLibcallCCs - Set default comparison libcall CC.
- ///
- static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
- memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
- CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
- CCs[RTLIB::UNE_F32] = ISD::SETNE;
- CCs[RTLIB::UNE_F64] = ISD::SETNE;
- CCs[RTLIB::OGE_F32] = ISD::SETGE;
- CCs[RTLIB::OGE_F64] = ISD::SETGE;
- CCs[RTLIB::OLT_F32] = ISD::SETLT;
- CCs[RTLIB::OLT_F64] = ISD::SETLT;
- CCs[RTLIB::OLE_F32] = ISD::SETLE;
- CCs[RTLIB::OLE_F64] = ISD::SETLE;
- CCs[RTLIB::OGT_F32] = ISD::SETGT;
- CCs[RTLIB::OGT_F64] = ISD::SETGT;
- CCs[RTLIB::UO_F32] = ISD::SETNE;
- CCs[RTLIB::UO_F64] = ISD::SETNE;
- CCs[RTLIB::O_F32] = ISD::SETEQ;
- CCs[RTLIB::O_F64] = ISD::SETEQ;
- }
- TargetLowering::TargetLowering(TargetMachine &tm)
- : TM(tm), TD(TM.getTargetData()) {
- // All operations default to being supported.
- memset(OpActions, 0, sizeof(OpActions));
- memset(LoadExtActions, 0, sizeof(LoadExtActions));
- memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
- memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
- memset(ConvertActions, 0, sizeof(ConvertActions));
- memset(CondCodeActions, 0, sizeof(CondCodeActions));
- // Set default actions for various operations.
- for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
- // Default all indexed load / store to expand.
- for (unsigned IM = (unsigned)ISD::PRE_INC;
- IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
- setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
- }
-
- // These operations default to expand.
- setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
- }
- // Most targets ignore the @llvm.prefetch intrinsic.
- setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-
- // ConstantFP nodes default to expand. Targets can either change this to
- // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
- // to optimize expansions for certain constants.
- setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
- // These library functions default to expand.
- setOperationAction(ISD::FLOG , MVT::f64, Expand);
- setOperationAction(ISD::FLOG2, MVT::f64, Expand);
- setOperationAction(ISD::FLOG10,MVT::f64, Expand);
- setOperationAction(ISD::FEXP , MVT::f64, Expand);
- setOperationAction(ISD::FEXP2, MVT::f64, Expand);
- setOperationAction(ISD::FLOG , MVT::f32, Expand);
- setOperationAction(ISD::FLOG2, MVT::f32, Expand);
- setOperationAction(ISD::FLOG10,MVT::f32, Expand);
- setOperationAction(ISD::FEXP , MVT::f32, Expand);
- setOperationAction(ISD::FEXP2, MVT::f32, Expand);
- // Default ISD::TRAP to expand (which turns it into abort).
- setOperationAction(ISD::TRAP, MVT::Other, Expand);
-
- IsLittleEndian = TD->isLittleEndian();
- UsesGlobalOffsetTable = false;
- ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
- ShiftAmtHandling = Undefined;
- memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
- memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
- maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
- allowUnalignedMemoryAccesses = false;
- benefitFromCodePlacementOpt = false;
- UseUnderscoreSetJmp = false;
- UseUnderscoreLongJmp = false;
- SelectIsExpensive = false;
- IntDivIsCheap = false;
- Pow2DivIsCheap = false;
- StackPointerRegisterToSaveRestore = 0;
- ExceptionPointerRegister = 0;
- ExceptionSelectorRegister = 0;
- BooleanContents = UndefinedBooleanContent;
- SchedPreferenceInfo = SchedulingForLatency;
- JumpBufSize = 0;
- JumpBufAlignment = 0;
- IfCvtBlockSizeLimit = 2;
- IfCvtDupBlockSizeLimit = 0;
- PrefLoopAlignment = 0;
- InitLibcallNames(LibcallRoutineNames);
- InitCmpLibcallCCs(CmpLibcallCCs);
- // Tell Legalize whether the assembler supports DEBUG_LOC.
- const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
- if (!TASM || !TASM->hasDotLocAndDotFile())
- setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
- }
- TargetLowering::~TargetLowering() {}
- /// computeRegisterProperties - Once all of the register classes are added,
- /// this allows us to compute derived properties we expose.
- void TargetLowering::computeRegisterProperties() {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
- // Everything defaults to needing one register.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- NumRegistersForVT[i] = 1;
- RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
- }
- // ...except isVoid, which doesn't need any registers.
- NumRegistersForVT[MVT::isVoid] = 0;
- // Find the largest integer register class.
- unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
- for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
- assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
- // Every integer value type larger than this largest register takes twice as
- // many registers to represent as the previous ValueType.
- for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
- MVT EVT = (MVT::SimpleValueType)ExpandedReg;
- if (!EVT.isInteger())
- break;
- NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
- RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
- TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction(EVT, Expand);
- }
- // Inspect all of the ValueType's smaller than the largest integer
- // register to see which ones need promotion.
- unsigned LegalIntReg = LargestIntReg;
- for (unsigned IntReg = LargestIntReg - 1;
- IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
- if (isTypeLegal(IVT)) {
- LegalIntReg = IntReg;
- } else {
- RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
- (MVT::SimpleValueType)LegalIntReg;
- ValueTypeActions.setTypeAction(IVT, Promote);
- }
- }
- // ppcf128 type is really two f64's.
- if (!isTypeLegal(MVT::ppcf128)) {
- NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
- TransformToType[MVT::ppcf128] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
- }
- // Decide how to handle f64. If the target does not have native f64 support,
- // expand it to i64 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
- RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
- TransformToType[MVT::f64] = MVT::i64;
- ValueTypeActions.setTypeAction(MVT::f64, Expand);
- }
- // Decide how to handle f32. If the target does not have native support for
- // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
- if (!isTypeLegal(MVT::f32)) {
- if (isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
- TransformToType[MVT::f32] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::f32, Promote);
- } else {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
- TransformToType[MVT::f32] = MVT::i32;
- ValueTypeActions.setTypeAction(MVT::f32, Expand);
- }
- }
-
- // Loop over all of the vector value types to see which need transformations.
- for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
- if (!isTypeLegal(VT)) {
- MVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- NumRegistersForVT[i] =
- getVectorTypeBreakdown(VT,
- IntermediateVT, NumIntermediates,
- RegisterVT);
- RegisterTypeForVT[i] = RegisterVT;
-
- // Determine if there is a legal wider type.
- bool IsLegalWiderType = false;
- MVT EltVT = VT.getVectorElementType();
- unsigned NElts = VT.getVectorNumElements();
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
- if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
- SVT.getVectorNumElements() > NElts) {
- TransformToType[i] = SVT;
- ValueTypeActions.setTypeAction(VT, Promote);
- IsLegalWiderType = true;
- break;
- }
- }
- if (!IsLegalWiderType) {
- MVT NVT = VT.getPow2VectorType();
- if (NVT == VT) {
- // Type is already a power of 2. The default action is to split.
- TransformToType[i] = MVT::Other;
- ValueTypeActions.setTypeAction(VT, Expand);
- } else {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, Promote);
- }
- }
- }
- }
- }
- const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
- return NULL;
- }
- MVT TargetLowering::getSetCCResultType(MVT VT) const {
- return getValueType(TD->getIntPtrType());
- }
- /// getVectorTypeBreakdown - Vector types are broken down into some number of
- /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
- /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
- /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
- ///
- /// This method returns the number of registers needed, and the VT for each
- /// register. It also returns the VT and quantity of the intermediate values
- /// before they are promoted/expanded.
- ///
- unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
- MVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const {
- // Figure out the right, legal destination reg to copy into.
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType();
-
- unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
-
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
- NumIntermediates = NumVectorRegs;
-
- MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
- if (!isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
- MVT DestVT = getRegisterType(NewVT);
- RegisterVT = DestVT;
- if (DestVT.bitsLT(NewVT)) {
- // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
- } else {
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
- }
-
- return 1;
- }
- /// getWidenVectorType: given a vector type, returns the type to widen to
- /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
- /// If there is no vector type that we want to widen to, returns MVT::Other
- /// When and where to widen is target dependent based on the cost of
- /// scalarizing vs using the wider vector type.
- MVT TargetLowering::getWidenVectorType(MVT VT) const {
- assert(VT.isVector());
- if (isTypeLegal(VT))
- return VT;
-
- // Default is not to widen until moved to LegalizeTypes
- return MVT::Other;
- }
- /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
- /// function arguments in the caller parameter area. This is the actual
- /// alignment, not its logarithm.
- unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
- return TD->getCallFrameTypeAlignment(Ty);
- }
- SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- if (usesGlobalOffsetTable())
- return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
- return Table;
- }
- bool
- TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- // Assume that everything is safe in static mode.
- if (getTargetMachine().getRelocationModel() == Reloc::Static)
- return true;
- // In dynamic-no-pic mode, assume that known defined values are safe.
- if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
- GA &&
- !GA->getGlobal()->isDeclaration() &&
- !GA->getGlobal()->isWeakForLinker())
- return true;
- // Otherwise assume nothing is safe.
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Optimization Methods
- //===----------------------------------------------------------------------===//
- /// ShrinkDemandedConstant - Check to see if the specified operand of the
- /// specified instruction is a constant integer. If so, check to see if there
- /// are any bits set in the constant that are not demanded. If so, shrink the
- /// constant and return true.
- bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
- const APInt &Demanded) {
- DebugLoc dl = Op.getDebugLoc();
- // FIXME: ISD::SELECT, ISD::SELECT_CC
- switch (Op.getOpcode()) {
- default: break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR: {
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!C) return false;
- if (Op.getOpcode() == ISD::XOR &&
- (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
- return false;
- // if we can expand it to have all bits set, do it
- if (C->getAPIntValue().intersects(~Demanded)) {
- MVT VT = Op.getValueType();
- SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
- DAG.getConstant(Demanded &
- C->getAPIntValue(),
- VT));
- return CombineTo(Op, New);
- }
- break;
- }
- }
- return false;
- }
- /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
- /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
- /// cast, but it could be generalized for targets with other types of
- /// implicit widening casts.
- bool
- TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
- unsigned BitWidth,
- const APInt &Demanded,
- DebugLoc dl) {
- assert(Op.getNumOperands() == 2 &&
- "ShrinkDemandedOp only supports binary operators!");
- assert(Op.getNode()->getNumValues() == 1 &&
- "ShrinkDemandedOp only supports nodes with one result!");
- // Don't do this if the node has another user, which may require the
- // full value.
- if (!Op.getNode()->hasOneUse())
- return false;
- // Search for the smallest integer type with free casts to and from
- // Op's type. For expedience, just check power-of-2 integer types.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
- if (!isPowerOf2_32(SmallVTBits))
- SmallVTBits = NextPowerOf2(SmallVTBits);
- for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
- if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
- TLI.isZExtFree(SmallVT, Op.getValueType())) {
- // We found a type with free casts.
- SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
- Op.getNode()->getOperand(0)),
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
- Op.getNode()->getOperand(1)));
- SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
- return CombineTo(Op, Z);
- }
- }
- return false;
- }
- /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
- /// DemandedMask bits of the result of Op are ever used downstream. If we can
- /// use this information to simplify Op, create a new simplified DAG node and
- /// return true, returning the original and new nodes in Old and New. Otherwise,
- /// analyze the expression and return a mask of KnownOne and KnownZero bits for
- /// the expression (used to simplify the caller). The KnownZero/One bits may
- /// only be accurate for those bits in the DemandedMask.
- bool TargetLowering::SimplifyDemandedBits(SDValue Op,
- const APInt &DemandedMask,
- APInt &KnownZero,
- APInt &KnownOne,
- TargetLoweringOpt &TLO,
- unsigned Depth) const {
- unsigned BitWidth = DemandedMask.getBitWidth();
- assert(Op.getValueSizeInBits() == BitWidth &&
- "Mask size mismatches value type size!");
- APInt NewMask = DemandedMask;
- DebugLoc dl = Op.getDebugLoc();
- // Don't know anything.
- KnownZero = KnownOne = APInt(BitWidth, 0);
- // Other users may use these bits.
- if (!Op.getNode()->hasOneUse()) {
- if (Depth != 0) {
- // If not at the root, Just compute the KnownZero/KnownOne bits to
- // simplify things downstream.
- TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
- return false;
- }
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the NewMask to all bits.
- NewMask = APInt::getAllOnesValue(BitWidth);
- } else if (DemandedMask == 0) {
- // Not demanding any bits from Op.
- if (Op.getOpcode() != ISD::UNDEF)
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
- return false;
- } else if (Depth == 6) { // Limit search depth.
- return false;
- }
- APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
- switch (Op.getOpcode()) {
- case ISD::Constant:
- // We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
- KnownZero = ~KnownOne & NewMask;
- return false; // Don't fall through, will infinitely loop.
- case ISD::AND:
- // If the RHS is a constant, check to see if the LHS would be zero without
- // using the bits from the RHS. Below, we use knowledge about the RHS to
- // simplify the LHS, here we're using information from the LHS to simplify
- // the RHS.
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- APInt LHSZero, LHSOne;
- TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
- LHSZero, LHSOne, Depth+1);
- // If the LHS already has zeros where RHSC does, this and is dead.
- if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- // If any of the set bits in the RHS are known zero on the LHS, shrink
- // the constant.
- if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
- return true;
- }
-
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
- KnownZero2, KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known one on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
- // If the RHS is a constant, see if we can simplify it.
- if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- break;
- case ISD::OR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
- KnownZero2, KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If the RHS is a constant, see if we can simplify it.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- break;
- case ISD::XOR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if ((KnownZero & NewMask) == NewMask)
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((KnownZero2 & NewMask) == NewMask)
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // If all of the unknown bits are known to be zero on one side or the other
- // (but not both) turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
- Op.getOperand(0),
- Op.getOperand(1)));
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
-
- // If all of the demanded bits on one side are known, and all of the set
- // bits on that side are also known to be set on the other side, turn this
- // into an AND, as we know the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
- if ((KnownOne & KnownOne2) == KnownOne) {
- MVT VT = Op.getValueType();
- SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
- Op.getOperand(0), ANDC));
- }
- }
-
- // If the RHS is a constant, see if we can simplify it.
- // for XOR, we prefer to force bits to 1 if they will make a -1.
- // if we can't force bits, try to shrink constant
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- APInt Expanded = C->getAPIntValue() | (~NewMask);
- // if we can expand it to have all bits set, do it
- if (Expanded.isAllOnesValue()) {
- if (Expanded != C->getAPIntValue()) {
- MVT VT = Op.getValueType();
- SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
- TLO.DAG.getConstant(Expanded, VT));
- return TLO.CombineTo(Op, New);
- }
- // if it already has all the bits set, nothing to change
- // but don't shrink either!
- } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
- return true;
- }
- }
- KnownZero = KnownZeroOut;
- KnownOne = KnownOneOut;
- break;
- case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
-
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
-
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SHL:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- SDValue InOp = Op.getOperand(0);
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
- // single shift. We can do this if the bottom bits (which are shifted
- // out) are never demanded.
- if (InOp.getOpcode() == ISD::SRL &&
- isa<ConstantSDNode>(InOp.getOperand(1))) {
- if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
- unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
- unsigned Opc = ISD::SHL;
- int Diff = ShAmt-C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SRL;
- }
-
- SDValue NewSA =
- TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
- MVT VT = Op.getValueType();
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
- InOp.getOperand(0), NewSA));
- }
- }
-
- if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- KnownZero <<= SA->getZExtValue();
- KnownOne <<= SA->getZExtValue();
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
- }
- break;
- case ISD::SRL:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- MVT VT = Op.getValueType();
- unsigned ShAmt = SA->getZExtValue();
- unsigned VTSize = VT.getSizeInBits();
- SDValue InOp = Op.getOperand(0);
-
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
- // single shift. We can do this if the top bits (which are shifted out)
- // are never demanded.
- if (InOp.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(InOp.getOperand(1))) {
- if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
- unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
- unsigned Opc = ISD::SRL;
- int Diff = ShAmt-C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SHL;
- }
-
- SDValue NewSA =
- TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
- InOp.getOperand(0), NewSA));
- }
- }
-
- // Compute the new bits that are at the top now.
- if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- KnownZero |= HighBits; // High bits known zero.
- }
- break;
- case ISD::SRA:
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedMask == 1)
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
- Op.getOperand(0), Op.getOperand(1)));
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- MVT VT = Op.getValueType();
- unsigned ShAmt = SA->getZExtValue();
-
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- APInt InDemandedMask = (NewMask << ShAmt);
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- if (HighBits.intersects(NewMask))
- InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
-
- if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
-
- // Handle the sign bit, adjusted to where it is now in the mask.
- APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
-
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
- Op.getOperand(0),
- Op.getOperand(1)));
- } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
- KnownOne |= HighBits;
- }
- }
- break;
- case ISD::SIGN_EXTEND_INREG: {
- MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth,
- BitWidth - EVT.getSizeInBits()) &
- NewMask;
-
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if (NewBits == 0)
- return TLO.CombineTo(Op, Op.getOperand(0));
- APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
- InSignBit.zext(BitWidth);
- APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
- EVT.getSizeInBits()) &
- NewMask;
-
- // Since the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InputDemandedBits |= InSignBit;
- if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
-
- // If the input sign bit is known zero, convert this into a zero extension.
- if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op,
- TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
-
- if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
- }
- break;
- }
- case ISD::ZERO_EXTEND: {
- unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
- APInt InMask = NewMask;
- InMask.trunc(OperandBitWidth);
-
- // If none of the top bits are demanded, convert this into an any_extend.
- APInt NewBits =
- APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
- if (!NewBits.intersects(NewMask))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
-
- if (SimplifyDemandedBits(Op.getOperand(0), InMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
- KnownZero |= NewBits;
- break;
- }
- case ISD::SIGN_EXTEND: {
- MVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
- APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
- APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
- APInt NewBits = ~InMask & NewMask;
-
- // If none of the top bits are demanded, convert this into an any_extend.
- if (NewBits == 0)
- return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
-
- // Since some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- APInt InDemandedBits = InMask & NewMask;
- InDemandedBits |= InSignBit;
- InDemandedBits.trunc(InBits);
-
- if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
-
- // If the sign bit is known zero, convert this to a zero extend.
- if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
-
- // If the sign bit is known one, the top bits match.
- if (KnownOne.intersects(InSignBit)) {
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Otherwise, top bits aren't known.
- KnownOne &= ~NewBits;
- KnownZero &= ~NewBits;
- }
- break;
- }
- case ISD::ANY_EXTEND: {
- unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
- APInt InMask = NewMask;
- InMask.trunc(OperandBitWidth);
- if (SimplifyDemandedBits(Op.getOperand(0), InMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
- break;
- }
- case ISD::TRUNCATE: {
- // Simplify the input, using demanded bit information, and compute the known
- // zero/one bits live out.
- APInt TruncMask = NewMask;
- TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- KnownZero.trunc(BitWidth);
- KnownOne.trunc(BitWidth);
-
- // If the input is only used by this truncate, see if we can shrink it based
- // on the known demanded bits.
- if (Op.getOperand(0).getNode()->hasOneUse()) {
- SDValue In = Op.getOperand(0);
- unsigned InBitWidth = In.getValueSizeInBits();
- switch (In.getOpcode()) {
- default: break;
- case ISD::SRL:
- // Shrink SRL by a constant if none of the high bits shifted in are
- // demanded.
- if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
- APInt HighBits = APInt::getHighBitsSet(InBitWidth,
- InBitWidth - BitWidth);
- HighBits = HighBits.lshr(ShAmt->getZExtValue());
- HighBits.trunc(BitWidth);
-
- if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
- // None of the shifted in bits are needed. Add a truncate of the
- // shift input, then shift it.
- SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
- Op.getValueType(),
- In.getOperand(0));
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
- Op.getValueType(),
- NewTrunc,
- In.getOperand(1)));
- }
- }
- break;
- }
- }
-
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- break;
- }
- case ISD::AssertZext: {
- MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth,
- VT.getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero |= ~InMask & NewMask;
- break;
- }
- case ISD::BIT_CONVERT:
- #if 0
- // If this is an FP->Int bitcast and if the sign bit is the only thing that
- // is demanded, turn this into a FGETSIGN.
- if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
- MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
- !MVT::isVector(Op.getOperand(0).getValueType())) {
- // Only do this xform if FGETSIGN is valid or if before legalize.
- if (!TLO.AfterLegalize ||
- isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
- // Make a FGETSIGN + SHL to move the sign bit into the appropriate
- // place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
- Op.getOperand(0));
- unsigned ShVal = Op.getValueType().getSizeInBits()-1;
- SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
- Sign, ShAmt));
- }
- }
- #endif
- break;
- case ISD::ADD:
- case ISD::MUL:
- case ISD::SUB: {
- // Add, Sub, and Mul don't demand any bits in positions beyond that
- // of the highest bit demanded of them.
- APInt LoMask = APInt::getLowBitsSet(BitWidth,
- BitWidth - NewMask.countLeadingZeros());
- if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- // See if the operation should be performed at a smaller bit width.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- }
- // FALL THROUGH
- default:
- // Just use ComputeMaskedBits to compute output bits.
- TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
- break;
- }
-
- // If we know the value of all of the demanded bits, return this as a
- // constant.
- if ((NewMask & (KnownZero|KnownOne)) == NewMask)
- return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
-
- return false;
- }
- /// computeMaskedBitsForTargetNode - Determine which of the bits specified
- /// in Mask are known to be either zero or one and return them in the
- /// KnownZero/KnownOne bitsets.
- void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
- const APInt &Mask,
- APInt &KnownZero,
- APInt &KnownOne,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use MaskedValueIsZero if you don't know whether Op"
- " is a target node!");
- KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
- }
- /// ComputeNumSignBitsForTargetNode - This method can be implemented by
- /// targets that want to expose additional information about sign bits to the
- /// DAG Combiner.
- unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use ComputeNumSignBits if you don't know whether Op"
- " is a target node!");
- return 1;
- }
- /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
- /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
- /// determine which bit is set.
- ///
- static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
- // A left-shift of a constant one will have exactly one bit set, because
- // shifting the bit off the end is undefined.
- if (Val.getOpcode() == ISD::SHL)
- if (ConstantSDNode *C =
- dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
- if (C->getAPIntValue() == 1)
- return true;
- // Similarly, a right-shift of a constant sign-bit will have exactly
- // one bit set.
- if (Val.getOpcode() == ISD::SRL)
- if (ConstantSDNode *C =
- dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
- if (C->getAPIntValue().isSignBit())
- return true;
- // More could be done here, though the above checks are enough
- // to handle some common cases.
- // Fall back to ComputeMaskedBits to catch other known cases.
- MVT OpVT = Val.getValueType();
- unsigned BitWidth = OpVT.getSizeInBits();
- APInt Mask = APInt::getAllOnesValue(BitWidth);
- APInt KnownZero, KnownOne;
- DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
- return (KnownZero.countPopulation() == BitWidth - 1) &&
- (KnownOne.countPopulation() == 1);
- }
- /// SimplifySetCC - Try to simplify a setcc built with the specified operands
- /// and cc. If it is unable to simplify it, return a null SDValue.
- SDValue
- TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI, DebugLoc dl) const {
- SelectionDAG &DAG = DCI.DAG;
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return DAG.getConstant(0, VT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return DAG.getConstant(1, VT);
- }
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- if (isa<ConstantSDNode>(N0.getNode())) {
- return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
- } else {
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- N0.getOperand(1).getOpcode() == ISD::Constant) {
- unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
- Zero, Cond);
- }
- }
- // If the LHS is '(and load, const)', the RHS is 0,
- // the test is for equality or unsigned, and all 1 bits of the const are
- // in the same partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- uint64_t bestMask = 0;
- unsigned bestWidth = 0, bestOffset = 0;
- if (!Lod->isVolatile() && Lod->isUnindexed() &&
- // FIXME: This uses getZExtValue() below so it only works on i64 and
- // below.
- N0.getValueType().getSizeInBits() <= 64) {
- unsigned origWidth = N0.getValueType().getSizeInBits();
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- uint64_t newMask = (1ULL << width) - 1;
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if ((newMask & Mask) == Mask) {
- if (!TD->isLittleEndian())
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- else
- bestOffset = (uint64_t)offset * (width/8);
- bestMask = Mask >> (offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask = newMask << width;
- }
- }
- }
- if (bestWidth) {
- MVT newVT = MVT::getIntegerVT(bestWidth);
- if (newVT.isRound()) {
- MVT PtrType = Lod->getOperand(1).getValueType();
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
- DAG.getConstant(bestOffset, PtrType));
- unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
- SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
- Lod->getSrcValue(),
- Lod->getSrcValueOffset() + bestOffset,
- false, NewAlign);
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask, newVT)),
- DAG.getConstant(0LL, newVT), Cond);
- }
- }
- }
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ: return DAG.getConstant(0, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE: return DAG.getConstant(1, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), VT);
- default:
- break;
- }
- }
- // Otherwise, we can perform the comparison with the low bits.
- switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE:
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(APInt(C1).trunc(InSize),
- N0.getOperand(0).getValueType()),
- Cond);
- default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- MVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
- // If the extended part has any inconsistent bits, it cannot ever
- // compare equal. In other words, they have to be all ones or all
- // zeros.
- APInt ExtBits =
- APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
- if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
- return DAG.getConstant(Cond == ISD::SETNE, VT);
-
- SDValue ZextOp;
- MVT Op0Ty = N0.getOperand(0).getValueType();
- if (Op0Ty == ExtSrcTy) {
- ZextOp = N0.getOperand(0);
- } else {
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
- DAG.getConstant(Imm, Op0Ty));
- }
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & APInt::getLowBitsSet(
- ExtDstTyBits,
- ExtSrcTyBits),
- ExtDstTy),
- Cond);
- } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
-
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
- if (TrueWhenTrue)
- return N0;
-
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
- N0.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
-
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR)
- Val = N0.getOperand(0);
- else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- }
- }
-
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
- } else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
- }
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
- // X >= C0 --> X > (C0-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1-1, N1.getValueType()),
- (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
- }
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
- // X <= C0 --> X < (C0+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1+1, N1.getValueType()),
- (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
- }
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
- return DAG.getConstant(0, VT); // X < MIN --> false
- if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
- return DAG.getConstant(1, VT); // X >= MIN --> true
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
- return DAG.getConstant(0, VT); // X > MAX --> false
- if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
- return DAG.getConstant(1, VT); // X <= MAX --> true
- // Canonicalize setgt X, Min --> setne X, Min
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // Canonicalize setlt X, Max --> setne X, Max
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setult X, 1, turn it into seteq X, 0
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, N0.getValueType()),
- ISD::SETEQ);
- // If we have setugt X, Max-1, turn it into seteq X, Max
- else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, N0.getValueType()),
- ISD::SETEQ);
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
- // SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
- C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, N1.getValueType()),
- ISD::SETLT);
- // SETULT X, SINTMIN -> SETGT X, -1
- if (Cond == ISD::SETULT &&
- C1 == APInt::getSignedMinValue(OperandBitSize)) {
- SDValue ConstMinusOne =
- DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
- N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
- }
- // Fold bit comparisons when we can.
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS =
- dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- MVT ShiftTy = DCI.isBeforeLegalize() ?
- getPointerTy() : getShiftAmountTy();
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- if (isPowerOf2_64(AndRHS->getZExtValue())) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
- ShiftTy));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(C1.logBase2(), ShiftTy));
- }
- }
- }
- }
- } else if (isa<ConstantSDNode>(N0.getNode())) {
- // Ensure that the constant occurs on the RHS.
- return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
- }
- if (isa<ConstantFPSDNode>(N0.getNode())) {
- // Constant fold or commute setcc.
- SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
- if (O.getNode()) return O;
- } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
- // If the RHS of an FP comparison is a constant, simplify it away in
- // some cases.
- if (CFP->getValueAPF().isNaN()) {
- // If an operand is known to be a nan, we can fold it.
- switch (ISD::getUnorderedFlavor(Cond)) {
- default: LLVM_UNREACHABLE("Unknown flavor!");
- case 0: // Known false.
- return DAG.getConstant(0, VT);
- case 1: // Known true.
- return DAG.getConstant(1, VT);
- case 2: // Undefined.
- return DAG.getUNDEF(VT);
- }
- }
-
- // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
- // constant if knowing that the operand is non-nan is enough. We prefer to
- // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
- // materialize 0.0.
- if (Cond == ISD::SETO || Cond == ISD::SETUO)
- return DAG.getSetCC(dl, VT, N0, N0, Cond);
- }
- if (N0 == N1) {
- // We can always fold X == X for integer setcc's.
- if (N0.getValueType().isInteger())
- return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
- unsigned UOF = ISD::getUnorderedFlavor(Cond);
- if (UOF == 2) // FP operators that are undefined on NaNs.
- return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
- if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
- return DAG.getConstant(UOF, VT);
- // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
- // if it is not already.
- ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
- if (NewCond != Cond)
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getValueType().isInteger()) {
- if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
- N0.getOpcode() == ISD::XOR) {
- // Simplify (X+Y) == (X+Z) --> Y == Z
- if (N0.getOpcode() == N1.getOpcode()) {
- if (N0.getOperand(0) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
- if (N0.getOperand(1) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
- if (DAG.isCommutativeBinOp(N0.getOpcode())) {
- // If X op Y == Y op X, try other combinations.
- if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
- Cond);
- if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
- Cond);
- }
- }
-
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
- if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- // Turn (X+C1) == C2 --> X == C2-C1
- if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(RHSC->getAPIntValue()-
- LHSR->getAPIntValue(),
- N0.getValueType()), Cond);
- }
-
- // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
- if (N0.getOpcode() == ISD::XOR)
- // If we know that all of the inverted bits are zero, don't bother
- // performing the inversion.
- if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
- return
- DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(LHSR->getAPIntValue() ^
- RHSC->getAPIntValue(),
- N0.getValueType()),
- Cond);
- }
-
- // Turn (C1-X) == C2 --> X == C1-C2
- if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
- if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
- return
- DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(SUBC->getAPIntValue() -
- RHSC->getAPIntValue(),
- N0.getValueType()),
- Cond);
- }
- }
- }
- // Simplify (X+Z) == X --> Z == 0
- if (N0.getOperand(0) == N1)
- return DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(0, N0.getValueType()), Cond);
- if (N0.getOperand(1) == N1) {
- if (DAG.isCommutativeBinOp(N0.getOpcode()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(0, N0.getValueType()), Cond);
- else if (N0.getNode()->hasOneUse()) {
- assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
- // (Z-X) == X --> Z == X<<1
- SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
- N1,
- DAG.getConstant(1, getShiftAmountTy()));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
- }
- }
- }
- if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
- N1.getOpcode() == ISD::XOR) {
- // Simplify X == (X+Z) --> Z == 0
- if (N1.getOperand(0) == N0) {
- return DAG.getSetCC(dl, VT, N1.getOperand(1),
- DAG.getConstant(0, N1.getValueType()), Cond);
- } else if (N1.getOperand(1) == N0) {
- if (DAG.isCommutativeBinOp(N1.getOpcode())) {
- return DAG.getSetCC(dl, VT, N1.getOperand(0),
- DAG.getConstant(0, N1.getValueType()), Cond);
- } else if (N1.getNode()->hasOneUse()) {
- assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
- // X == (Z-X) --> X<<1 == Z
- SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
- DAG.getConstant(1, getShiftAmountTy()));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
- }
- }
- }
- // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
- // Note that where y is variable and is known to have at most
- // one bit set (for example, if it is z&1) we cannot do this;
- // the expressions are not equivalent when y==0.
- if (N0.getOpcode() == ISD::AND)
- if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
- if (ValueHasExactlyOneBitSet(N1, DAG)) {
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, Zero, Cond);
- }
- }
- if (N1.getOpcode() == ISD::AND)
- if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
- if (ValueHasExactlyOneBitSet(N0, DAG)) {
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N1, Zero, Cond);
- }
- }
- }
- // Fold away ALL boolean setcc's.
- SDValue Temp;
- if (N0.getValueType() == MVT::i1 && foldBooleans) {
- switch (Cond) {
- default: LLVM_UNREACHABLE("Unknown integer setcc!");
- case ISD::SETEQ: // X == Y -> ~(X^Y)
- Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
- N0 = DAG.getNOT(dl, Temp, MVT::i1);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETNE: // X != Y --> (X^Y)
- N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
- break;
- case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
- case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
- Temp = DAG.getNOT(dl, N0, MVT::i1);
- N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
- case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
- Temp = DAG.getNOT(dl, N1, MVT::i1);
- N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
- case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
- Temp = DAG.getNOT(dl, N0, MVT::i1);
- N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
- case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
- Temp = DAG.getNOT(dl, N1, MVT::i1);
- N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
- break;
- }
- if (VT != MVT::i1) {
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(N0.getNode());
- // FIXME: If running after legalize, we probably can't do this.
- N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
- }
- return N0;
- }
- // Could not fold it.
- return SDValue();
- }
- /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
- /// node is a GlobalAddress + offset.
- bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
- int64_t &Offset) const {
- if (isa<GlobalAddressSDNode>(N)) {
- GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
- GA = GASD->getGlobal();
- Offset += GASD->getOffset();
- return true;
- }
- if (N->getOpcode() == ISD::ADD) {
- SDValue N1 = N->getOperand(0);
- SDValue N2 = N->getOperand(1);
- if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
- if (V) {
- Offset += V->getSExtValue();
- return true;
- }
- } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
- if (V) {
- Offset += V->getSExtValue();
- return true;
- }
- }
- }
- return false;
- }
- /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
- /// location that is 'Dist' units away from the location that the 'Base' load
- /// is loading from.
- bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
- unsigned Bytes, int Dist,
- const MachineFrameInfo *MFI) const {
- if (LD->getChain() != Base->getChain())
- return false;
- MVT VT = LD->getValueType(0);
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
- SDValue Loc = LD->getOperand(1);
- SDValue BaseLoc = Base->getOperand(1);
- if (Loc.getOpcode() == ISD::FrameIndex) {
- if (BaseLoc.getOpcode() != ISD::FrameIndex)
- return false;
- int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
- int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
- int FS = MFI->getObjectSize(FI);
- int BFS = MFI->getObjectSize(BFI);
- if (FS != BFS || FS != (int)Bytes) return false;
- return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
- }
- if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
- if (V && (V->getSExtValue() == Dist*Bytes))
- return true;
- }
- GlobalValue *GV1 = NULL;
- GlobalValue *GV2 = NULL;
- int64_t Offset1 = 0;
- int64_t Offset2 = 0;
- bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
- bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
- if (isGA1 && isGA2 && GV1 == GV2)
- return Offset1 == (Offset2 + Dist*Bytes);
- return false;
- }
- SDValue TargetLowering::
- PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
- // Default implementation: no optimization.
- return SDValue();
- }
- //===----------------------------------------------------------------------===//
- // Inline Assembler Implementation Methods
- //===----------------------------------------------------------------------===//
- TargetLowering::ConstraintType
- TargetLowering::getConstraintType(const std::string &Constraint) const {
- // FIXME: lots more standard ones to handle.
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'r': return C_RegisterClass;
- case 'm': // memory
- case 'o': // offsetable
- case 'V': // not offsetable
- return C_Memory;
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': // Relocatable Constant
- case 'X': // Allow ANY value.
- case 'I': // Target registers.
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- return C_Other;
- }
- }
-
- if (Constraint.size() > 1 && Constraint[0] == '{' &&
- Constraint[Constraint.size()-1] == '}')
- return C_Register;
- return C_Unknown;
- }
- /// LowerXConstraint - try to replace an X constraint, which matches anything,
- /// with another that has more specific requirements based on the type of the
- /// corresponding operand.
- const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
- if (ConstraintVT.isInteger())
- return "r";
- if (ConstraintVT.isFloatingPoint())
- return "f"; // works for many targets
- return 0;
- }
- /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
- /// vector. If it is invalid, don't add anything to Ops.
- void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- char ConstraintLetter,
- bool hasMemory,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- switch (ConstraintLetter) {
- default: break;
- case 'X': // Allows any operand; labels (basic block) use this.
- if (Op.getOpcode() == ISD::BasicBlock) {
- Ops.push_back(Op);
- return;
- }
- // fall through
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': { // Relocatable Constant
- // These operands are interested in values of the form (GV+C), where C may
- // be folded in as an offset of GV, or it may be explicitly added. Also, it
- // is possible and fine if either GV or C are missing.
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
-
- // If we have "(add GV, C)", pull out GV/C
- if (Op.getOpcode() == ISD::ADD) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
- if (C == 0 || GA == 0) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
- }
- if (C == 0 || GA == 0)
- C = 0, GA = 0;
- }
-
- // If we find a valid operand, map to the TargetXXX version so that the
- // value itself doesn't get selected.
- if (GA) { // Either &GV or &GV+C
- if (ConstraintLetter != 'n') {
- int64_t Offs = GA->getOffset();
- if (C) Offs += C->getZExtValue();
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
- Op.getValueType(), Offs));
- return;
- }
- }
- if (C) { // just C, no GV.
- // Simple constants are not allowed for 's'.
- if (ConstraintLetter != 's') {
- // gcc prints these as sign extended. Sign extend value to 64 bits
- // now; without this it would get ZExt'd later in
- // ScheduleDAGSDNodes::EmitNode, which is very generic.
- Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
- MVT::i64));
- return;
- }
- }
- break;
- }
- }
- }
- std::vector<unsigned> TargetLowering::
- getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
- return std::vector<unsigned>();
- }
- std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
- getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
- if (Constraint[0] != '{')
- return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
- assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
- // Remove the braces from around the name.
- std::string RegName(Constraint.begin()+1, Constraint.end()-1);
- // Figure out which register class contains this reg.
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
- for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
- E = RI->regclass_end(); RCI != E; ++RCI) {
- const TargetRegisterClass *RC = *RCI;
-
- // If none of the the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- bool isLegal = false;
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (isTypeLegal(*I)) {
- isLegal = true;
- break;
- }
- }
-
- if (!isLegal) continue;
-
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
- I != E; ++I) {
- if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
- return std::make_pair(*I, RC);
- }
- }
-
- return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
- }
- //===----------------------------------------------------------------------===//
- // Constraint Selection.
- /// isMatchingInputConstraint - Return true of this is an input operand that is
- /// a matching constraint like "4".
- bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return isdigit(ConstraintCode[0]);
- }
- /// getMatchedOperand - If this is an input matching constraint, this method
- /// returns the output operand it matches.
- unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return atoi(ConstraintCode.c_str());
- }
- /// getConstraintGenerality - Return an integer indicating how general CT
- /// is.
- static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
- switch (CT) {
- default: LLVM_UNREACHABLE("Unknown constraint type!");
- case TargetLowering::C_Other:
- case TargetLowering::C_Unknown:
- return 0;
- case TargetLowering::C_Register:
- return 1;
- case TargetLowering::C_RegisterClass:
- return 2;
- case TargetLowering::C_Memory:
- return 3;
- }
- }
- /// ChooseConstraint - If there are multiple different constraints that we
- /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
- /// This is somewhat tricky: constraints fall into four classes:
- /// Other -> immediates and magic values
- /// Register -> one specific register
- /// RegisterClass -> a group of regs
- /// Memory -> memory
- /// Ideally, we would pick the most specific constraint possible: if we have
- /// something that fits into a register, we would pick it. The problem here
- /// is that if we have something that could either be in a register or in
- /// memory that use of the register could cause selection of *other*
- /// operands to fail: they might only succeed if we pick memory. Because of
- /// this the heuristic we use is:
- ///
- /// 1) If there is an 'other' constraint, and if the operand is valid for
- /// that constraint, use it. This makes us take advantage of 'i'
- /// constraints when available.
- /// 2) Otherwise, pick the most general constraint present. This prefers
- /// 'm' over 'r', for example.
- ///
- static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
- bool hasMemory, const TargetLowering &TLI,
- SDValue Op, SelectionDAG *DAG) {
- assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
- unsigned BestIdx = 0;
- TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
- int BestGenerality = -1;
-
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
- TargetLowering::ConstraintType CType =
- TLI.getConstraintType(OpInfo.Codes[i]);
-
- // If this is an 'other' constraint, see if the operand is valid for it.
- // For example, on X86 we might have an 'rI' constraint. If the operand
- // is an integer in the range [0..31] we want to use I (saving a load
- // of a register), otherwise we must use 'r'.
- if (CType == TargetLowering::C_Other && Op.getNode()) {
- assert(OpInfo.Codes[i].size() == 1 &&
- "Unhandled multi-letter 'other' constraint");
- std::vector<SDValue> ResultOps;
- TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
- ResultOps, *DAG);
- if (!ResultOps.empty()) {
- BestType = CType;
- BestIdx = i;
- break;
- }
- }
-
- // This constraint letter is more general than the previous one, use it.
- int Generality = getConstraintGenerality(CType);
- if (Generality > BestGenerality) {
- BestType = CType;
- BestIdx = i;
- BestGenerality = Generality;
- }
- }
-
- OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
- OpInfo.ConstraintType = BestType;
- }
- /// ComputeConstraintToUse - Determines the constraint code and constraint
- /// type to use for the specific AsmOperandInfo, setting
- /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
- void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- bool hasMemory,
- SelectionDAG *DAG) const {
- assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
-
- // Single-letter constraints ('r') are very common.
- if (OpInfo.Codes.size() == 1) {
- OpInfo.ConstraintCode = OpInfo.Codes[0];
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- } else {
- ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
- }
-
- // 'X' matches anything.
- if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
- // Look through bitcasts over functions. In the context of an asm
- // argument we don't care about bitcasting function types; the parameters
- // to the function, if any, will have been handled elsewhere.
- Value *v = OpInfo.CallOperandVal;
- ConstantExpr *CE = NULL;
- while ((CE = dyn_cast<ConstantExpr>(v)) &&
- CE->getOpcode()==Instruction::BitCast)
- v = CE->getOperand(0);
- if (!isa<Function>(v))
- v = OpInfo.CallOperandVal;
- // Labels and constants are handled elsewhere ('X' is the only thing
- // that matches labels). For Functions, the type here is the type of
- // the result, which is not what we want to look at; leave them alone
- // (minus any bitcasts).
- if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
- OpInfo.CallOperandVal = v;
- return;
- }
-
- // Otherwise, try to resolve it to something we know about by looking at
- // the actual operand type.
- if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
- OpInfo.ConstraintCode = Repl;
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Loop Strength Reduction hooks
- //===----------------------------------------------------------------------===//
- /// isLegalAddressingMode - Return true if the addressing mode represented
- /// by AM is legal for this target, for a load/store of the specified type.
- bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- const Type *Ty) const {
- // The default implementation of this implements a conservative RISCy, r+r and
- // r+i addr mode.
- // Allows a sign-extended 16-bit immediate field.
- if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
- return false;
-
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
-
- // Only support r+r,
- switch (AM.Scale) {
- case 0: // "r+i" or just "i", depending on HasBaseReg.
- break;
- case 1:
- if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
- return false;
- // Otherwise we have r+r or r+i.
- break;
- case 2:
- if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
- return false;
- // Allow 2*r as r+r.
- break;
- }
-
- return true;
- }
- /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number. See:
- /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
- SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
- std::vector<SDNode*>* Created) const {
- MVT VT = N->getValueType(0);
- DebugLoc dl= N->getDebugLoc();
-
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
-
- APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
- APInt::ms magics = d.magic();
-
- // Multiply the numerator (operand 0) by the magic value
- // FIXME: We should support doing a MUL in a wider type
- SDValue Q;
- if (isOperationLegalOrCustom(ISD::MULHS, VT))
- Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
- DAG.getConstant(magics.m, VT));
- else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
- Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
- N->getOperand(0),
- DAG.getConstant(magics.m, VT)).getNode(), 1);
- else
- return SDValue(); // No mulhs or equvialent
- // If d > 0 and m < 0, add the numerator
- if (d.isStrictlyPositive() && magics.m.isNegative()) {
- Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // If d < 0 and m > 0, subtract the numerator.
- if (d.isNegative() && magics.m.isStrictlyPositive()) {
- Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // Shift right algebraic if shift value is nonzero
- if (magics.s > 0) {
- Q = DAG.getNode(ISD::SRA, dl, VT, Q,
- DAG.getConstant(magics.s, getShiftAmountTy()));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // Extract the sign bit and add it to the quotient
- SDValue T =
- DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
- getShiftAmountTy()));
- if (Created)
- Created->push_back(T.getNode());
- return DAG.getNode(ISD::ADD, dl, VT, Q, T);
- }
- /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number. See:
- /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
- SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
- std::vector<SDNode*>* Created) const {
- MVT VT = N->getValueType(0);
- DebugLoc dl = N->getDebugLoc();
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
- // FIXME: We should use a narrower constant when the upper
- // bits are known to be zero.
- ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
- APInt::mu magics = N1C->getAPIntValue().magicu();
- // Multiply the numerator (operand 0) by the magic value
- // FIXME: We should support doing a MUL in a wider type
- SDValue Q;
- if (isOperationLegalOrCustom(ISD::MULHU, VT))
- Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
- DAG.getConstant(magics.m, VT));
- else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
- Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
- N->getOperand(0),
- DAG.getConstant(magics.m, VT)).getNode(), 1);
- else
- return SDValue(); // No mulhu or equvialent
- if (Created)
- Created->push_back(Q.getNode());
- if (magics.a == 0) {
- assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- return DAG.getNode(ISD::SRL, dl, VT, Q,
- DAG.getConstant(magics.s, getShiftAmountTy()));
- } else {
- SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
- if (Created)
- Created->push_back(NPQ.getNode());
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
- DAG.getConstant(1, getShiftAmountTy()));
- if (Created)
- Created->push_back(NPQ.getNode());
- NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- if (Created)
- Created->push_back(NPQ.getNode());
- return DAG.getNode(ISD::SRL, dl, VT, NPQ,
- DAG.getConstant(magics.s-1, getShiftAmountTy()));
- }
- }
- /// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
- /// node that don't prevent tail call optimization.
- static SDValue IgnoreHarmlessInstructions(SDValue node) {
- // Found call return.
- if (node.getOpcode() == ISD::CALL) return node;
- // Ignore MERGE_VALUES. Will have at least one operand.
- if (node.getOpcode() == ISD::MERGE_VALUES)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- // Ignore ANY_EXTEND node.
- if (node.getOpcode() == ISD::ANY_EXTEND)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- if (node.getOpcode() == ISD::TRUNCATE)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- // Any other node type.
- return node;
- }
- bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
- SDValue Ret) {
- unsigned NumOps = Ret.getNumOperands();
- // ISD::CALL results:(value0, ..., valuen, chain)
- // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
- // Value return:
- // Check that operand of the RET node sources from the CALL node. The RET node
- // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
- // value.
- // Also we need to check that there is no code in between the call and the
- // return. Hence we also check that the incomming chain to the return sources
- // from the outgoing chain of the call.
- if (NumOps > 1 &&
- IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
- Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
- return true;
- // void return: The RET node has the chain result value of the CALL node as
- // input.
- if (NumOps == 1 &&
- Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
- return true;
- return false;
- }
|