123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844 |
- //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions determines the possibility of performing constant
- // folding.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Instructions.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/MathExtras.h"
- #include <cerrno>
- #include <cmath>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Constant Folding internal helper functions
- //===----------------------------------------------------------------------===//
- /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
- /// from a global, return the global and the constant. Because of
- /// constantexprs, this function is recursive.
- static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- int64_t &Offset, const TargetData &TD) {
- // Trivial case, constant is the global.
- if ((GV = dyn_cast<GlobalValue>(C))) {
- Offset = 0;
- return true;
- }
-
- // Otherwise, if this isn't a constant expr, bail out.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return false;
-
- // Look through ptr->int and ptr->ptr casts.
- if (CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::BitCast)
- return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
-
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- // Cannot compute this if the element type of the pointer is missing size
- // info.
- if (!cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType()->isSized())
- return false;
-
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
- return false;
-
- // Otherwise, add any offset that our operands provide.
- gep_type_iterator GTI = gep_type_begin(CE);
- for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
- i != e; ++i, ++GTI) {
- ConstantInt *CI = dyn_cast<ConstantInt>(*i);
- if (!CI) return false; // Index isn't a simple constant?
- if (CI->getZExtValue() == 0) continue; // Not adding anything.
-
- if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
- // N = N + Offset
- Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
- } else {
- const SequentialType *SQT = cast<SequentialType>(*GTI);
- Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
- }
- }
- return true;
- }
-
- return false;
- }
- /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
- /// Attempt to symbolically evaluate the result of a binary operator merging
- /// these together. If target data info is available, it is provided as TD,
- /// otherwise TD is null.
- static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1, const TargetData *TD,
- LLVMContext *Context){
- // SROA
-
- // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
- // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
- // bits.
-
-
- // If the constant expr is something like &A[123] - &A[4].f, fold this into a
- // constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub && TD) {
- GlobalValue *GV1, *GV2;
- int64_t Offs1, Offs2;
-
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
- GV1 == GV2) {
- // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
- }
- }
-
- return 0;
- }
- /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
- /// constant expression, do so.
- static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
- const Type *ResultTy,
- LLVMContext *Context,
- const TargetData *TD) {
- Constant *Ptr = Ops[0];
- if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
- return 0;
-
- uint64_t BasePtr = 0;
- if (!Ptr->isNullValue()) {
- // If this is a inttoptr from a constant int, we can fold this as the base,
- // otherwise we can't.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getZExtValue();
-
- if (BasePtr == 0)
- return 0;
- }
- // If this is a constant expr gep that is effectively computing an
- // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
- for (unsigned i = 1; i != NumOps; ++i)
- if (!isa<ConstantInt>(Ops[i]))
- return false;
-
- uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
- (Value**)Ops+1, NumOps-1);
- Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
- return Context->getConstantExprIntToPtr(C, ResultTy);
- }
- /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
- /// targetdata. Return 0 if unfoldable.
- static Constant *FoldBitCast(Constant *C, const Type *DestTy,
- const TargetData &TD, LLVMContext *Context) {
- // If this is a bitcast from constant vector -> vector, fold it.
- if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
- // If the element types match, VMCore can fold it.
- unsigned NumDstElt = DestVTy->getNumElements();
- unsigned NumSrcElt = CV->getNumOperands();
- if (NumDstElt == NumSrcElt)
- return 0;
-
- const Type *SrcEltTy = CV->getType()->getElementType();
- const Type *DstEltTy = DestVTy->getElementType();
-
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
-
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPoint()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- const Type *DestIVTy = Context->getVectorType(
- Context->getIntegerType(FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, TD, Context);
- if (!C) return 0;
-
- // Finally, VMCore can handle this now that #elts line up.
- return Context->getConstantExprBitCast(C, DestTy);
- }
-
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPoint()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- const Type *SrcIVTy = Context->getVectorType(
- Context->getIntegerType(FPWidth), NumSrcElt);
- // Ask VMCore to do the conversion now that #elts line up.
- C = Context->getConstantExprBitCast(C, SrcIVTy);
- CV = dyn_cast<ConstantVector>(C);
- if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
- }
-
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = TD.isLittleEndian();
-
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Context->getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
- if (!Src) return 0; // Reject constantexpr elements.
-
- // Zero extend the element to the right size.
- Src = Context->getConstantExprZExt(Src, Elt->getType());
-
- // Shift it to the right place, depending on endianness.
- Src = Context->getConstantExprShl(Src,
- Context->getConstantInt(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
-
- // Mix it in.
- Elt = Context->getConstantExprOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- } else {
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
-
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
- if (!Src) return 0; // Reject constantexpr elements.
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = Context->getConstantExprLShr(Src,
- Context->getConstantInt(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- // Truncate and remember this piece.
- Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
- }
- }
- }
-
- return Context->getConstantVector(Result.data(), Result.size());
- }
- }
-
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding public APIs
- //===----------------------------------------------------------------------===//
- /// ConstantFoldInstruction - Attempt to constant fold the specified
- /// instruction. If successful, the constant result is returned, if not, null
- /// is returned. Note that this function can only fail when attempting to fold
- /// instructions like loads and stores, which have no constant expression form.
- ///
- Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
- const TargetData *TD) {
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- if (PN->getNumIncomingValues() == 0)
- return Context->getUndef(PN->getType());
- Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
- if (Result == 0) return 0;
- // Handle PHI nodes specially here...
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
- return 0; // Not all the same incoming constants...
- // If we reach here, all incoming values are the same constant.
- return Result;
- }
- // Scan the operand list, checking to see if they are all constants, if so,
- // hand off to ConstantFoldInstOperands.
- SmallVector<Constant*, 8> Ops;
- for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (Constant *Op = dyn_cast<Constant>(*i))
- Ops.push_back(Op);
- else
- return 0; // All operands not constant!
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(),
- Ops.data(), Ops.size(),
- Context, TD);
- else
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Ops.data(), Ops.size(), Context, TD);
- }
- /// ConstantFoldConstantExpression - Attempt to fold the constant expression
- /// using the specified TargetData. If successful, the constant result is
- /// result is returned, if not, null is returned.
- Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
- LLVMContext *Context,
- const TargetData *TD) {
- SmallVector<Constant*, 8> Ops;
- for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
- Ops.push_back(cast<Constant>(*i));
- if (CE->isCompare())
- return ConstantFoldCompareInstOperands(CE->getPredicate(),
- Ops.data(), Ops.size(),
- Context, TD);
- else
- return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
- Ops.data(), Ops.size(), Context, TD);
- }
- /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
- /// specified opcode and operands. If successful, the constant result is
- /// returned, if not, null is returned. Note that this function can fail when
- /// attempting to fold instructions like loads and stores, which have no
- /// constant expression form.
- ///
- Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
- Constant* const* Ops, unsigned NumOps,
- LLVMContext *Context,
- const TargetData *TD) {
- // Handle easy binops first.
- if (Instruction::isBinaryOp(Opcode)) {
- if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
- Context))
- return C;
-
- return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
- }
-
- switch (Opcode) {
- default: return 0;
- case Instruction::Call:
- if (Function *F = dyn_cast<Function>(Ops[0]))
- if (canConstantFoldCallTo(F))
- return ConstantFoldCall(F, Ops+1, NumOps-1);
- return 0;
- case Instruction::ICmp:
- case Instruction::FCmp:
- LLVM_UNREACHABLE("This function is invalid for compares: no predicate specified");
- case Instruction::PtrToInt:
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
- if (TD && CE->getOpcode() == Instruction::IntToPtr) {
- Constant *Input = CE->getOperand(0);
- unsigned InWidth = Input->getType()->getScalarSizeInBits();
- if (TD->getPointerSizeInBits() < InWidth) {
- Constant *Mask =
- Context->getConstantInt(APInt::getLowBitsSet(InWidth,
- TD->getPointerSizeInBits()));
- Input = Context->getConstantExprAnd(Input, Mask);
- }
- // Do a zext or trunc to get to the dest size.
- return Context->getConstantExprIntegerCast(Input, DestTy, false);
- }
- }
- return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size. This requires knowing the width of a
- // pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
- if (TD &&
- TD->getPointerSizeInBits() <=
- CE->getType()->getScalarSizeInBits()) {
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Constant *Input = CE->getOperand(0);
- Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
- return C ? C : Context->getConstantExprBitCast(Input, DestTy);
- }
- // If there's a constant offset added to the integer value before
- // it is casted back to a pointer, see if the expression can be
- // converted into a GEP.
- if (CE->getOpcode() == Instruction::Add)
- if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
- if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
- if (R->getOpcode() == Instruction::PtrToInt)
- if (GlobalVariable *GV =
- dyn_cast<GlobalVariable>(R->getOperand(0))) {
- const PointerType *GVTy = cast<PointerType>(GV->getType());
- if (const ArrayType *AT =
- dyn_cast<ArrayType>(GVTy->getElementType())) {
- const Type *ElTy = AT->getElementType();
- uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
- APInt PSA(L->getValue().getBitWidth(), AllocSize);
- if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
- L->getValue().urem(PSA) == 0) {
- APInt ElemIdx = L->getValue().udiv(PSA);
- if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
- AT->getNumElements()))) {
- Constant *Index[] = {
- Context->getNullValue(CE->getType()),
- Context->getConstantInt(ElemIdx)
- };
- return
- Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
- }
- }
- }
- }
- }
- }
- return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
- case Instruction::BitCast:
- if (TD)
- if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
- return C;
- return Context->getConstantExprBitCast(Ops[0], DestTy);
- case Instruction::Select:
- return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
- case Instruction::InsertElement:
- return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
- case Instruction::GetElementPtr:
- if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
- return C;
-
- return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
- }
- }
- /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
- /// instruction (icmp/fcmp) with the specified operands. If it fails, it
- /// returns a constant expression of the specified operands.
- ///
- Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
- Constant*const * Ops,
- unsigned NumOps,
- LLVMContext *Context,
- const TargetData *TD) {
- // fold: icmp (inttoptr x), null -> icmp x, 0
- // fold: icmp (ptrtoint x), 0 -> icmp x, null
- // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
- // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
- //
- // ConstantExpr::getCompare cannot do this, because it doesn't have TD
- // around to know if bit truncation is happening.
- if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
- if (TD && Ops[1]->isNullValue()) {
- const Type *IntPtrTy = TD->getIntPtrType();
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
- Context, TD);
- }
-
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
- // FIXME!
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
- Context, TD);
- }
- }
-
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
- if (TD && CE0->getOpcode() == CE1->getOpcode()) {
- const Type *IntPtrTy = TD->getIntPtrType();
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
- IntPtrTy, false);
- Constant *NewOps[] = { C0, C1 };
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
- Context, TD);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if ((CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
- Constant *NewOps[] = {
- CE0->getOperand(0), CE1->getOperand(0)
- };
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
- Context, TD);
- }
- }
- }
- }
- return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
- }
- /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
- /// getelementptr constantexpr, return the constant value being addressed by the
- /// constant expression, or null if something is funny and we can't decide.
- Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
- ConstantExpr *CE,
- LLVMContext *Context) {
- if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
- return 0; // Do not allow stepping over the value!
-
- // Loop over all of the operands, tracking down which value we are
- // addressing...
- gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
- for (++I; I != E; ++I)
- if (const StructType *STy = dyn_cast<StructType>(*I)) {
- ConstantInt *CU = cast<ConstantInt>(I.getOperand());
- assert(CU->getZExtValue() < STy->getNumElements() &&
- "Struct index out of range!");
- unsigned El = (unsigned)CU->getZExtValue();
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- C = CS->getOperand(El);
- } else if (isa<ConstantAggregateZero>(C)) {
- C = Context->getNullValue(STy->getElementType(El));
- } else if (isa<UndefValue>(C)) {
- C = Context->getUndef(STy->getElementType(El));
- } else {
- return 0;
- }
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
- if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
- if (CI->getZExtValue() >= ATy->getNumElements())
- return 0;
- if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
- C = CA->getOperand(CI->getZExtValue());
- else if (isa<ConstantAggregateZero>(C))
- C = Context->getNullValue(ATy->getElementType());
- else if (isa<UndefValue>(C))
- C = Context->getUndef(ATy->getElementType());
- else
- return 0;
- } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
- if (CI->getZExtValue() >= PTy->getNumElements())
- return 0;
- if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
- C = CP->getOperand(CI->getZExtValue());
- else if (isa<ConstantAggregateZero>(C))
- C = Context->getNullValue(PTy->getElementType());
- else if (isa<UndefValue>(C))
- C = Context->getUndef(PTy->getElementType());
- else
- return 0;
- } else {
- return 0;
- }
- } else {
- return 0;
- }
- return C;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding for Calls
- //
- /// canConstantFoldCallTo - Return true if its even possible to fold a call to
- /// the specified function.
- bool
- llvm::canConstantFoldCallTo(const Function *F) {
- switch (F->getIntrinsicID()) {
- case Intrinsic::sqrt:
- case Intrinsic::powi:
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- return true;
- default: break;
- }
- if (!F->hasName()) return false;
- const char *Str = F->getNameStart();
- unsigned Len = F->getNameLen();
-
- // In these cases, the check of the length is required. We don't want to
- // return true for a name like "cos\0blah" which strcmp would return equal to
- // "cos", but has length 8.
- switch (Str[0]) {
- default: return false;
- case 'a':
- if (Len == 4)
- return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
- !strcmp(Str, "atan");
- else if (Len == 5)
- return !strcmp(Str, "atan2");
- return false;
- case 'c':
- if (Len == 3)
- return !strcmp(Str, "cos");
- else if (Len == 4)
- return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
- !strcmp(Str, "cosh");
- return false;
- case 'e':
- if (Len == 3)
- return !strcmp(Str, "exp");
- return false;
- case 'f':
- if (Len == 4)
- return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
- else if (Len == 5)
- return !strcmp(Str, "floor");
- return false;
- break;
- case 'l':
- if (Len == 3 && !strcmp(Str, "log"))
- return true;
- if (Len == 5 && !strcmp(Str, "log10"))
- return true;
- return false;
- case 'p':
- if (Len == 3 && !strcmp(Str, "pow"))
- return true;
- return false;
- case 's':
- if (Len == 3)
- return !strcmp(Str, "sin");
- if (Len == 4)
- return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
- !strcmp(Str, "sinf");
- if (Len == 5)
- return !strcmp(Str, "sqrtf");
- return false;
- case 't':
- if (Len == 3 && !strcmp(Str, "tan"))
- return true;
- else if (Len == 4 && !strcmp(Str, "tanh"))
- return true;
- return false;
- }
- }
- static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
- const Type *Ty, LLVMContext *Context) {
- errno = 0;
- V = NativeFP(V);
- if (errno != 0) {
- errno = 0;
- return 0;
- }
-
- if (Ty == Type::FloatTy)
- return Context->getConstantFP(APFloat((float)V));
- if (Ty == Type::DoubleTy)
- return Context->getConstantFP(APFloat(V));
- LLVM_UNREACHABLE("Can only constant fold float/double");
- return 0; // dummy return to suppress warning
- }
- static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
- double V, double W,
- const Type *Ty,
- LLVMContext *Context) {
- errno = 0;
- V = NativeFP(V, W);
- if (errno != 0) {
- errno = 0;
- return 0;
- }
-
- if (Ty == Type::FloatTy)
- return Context->getConstantFP(APFloat((float)V));
- if (Ty == Type::DoubleTy)
- return Context->getConstantFP(APFloat(V));
- LLVM_UNREACHABLE("Can only constant fold float/double");
- return 0; // dummy return to suppress warning
- }
- /// ConstantFoldCall - Attempt to constant fold a call to the specified function
- /// with the specified arguments, returning null if unsuccessful.
- Constant *
- llvm::ConstantFoldCall(Function *F,
- Constant* const* Operands, unsigned NumOperands) {
- if (!F->hasName()) return 0;
- LLVMContext *Context = F->getContext();
- const char *Str = F->getNameStart();
- unsigned Len = F->getNameLen();
-
- const Type *Ty = F->getReturnType();
- if (NumOperands == 1) {
- if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
- return 0;
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
- Op->getValueAPF().convertToDouble();
- switch (Str[0]) {
- case 'a':
- if (Len == 4 && !strcmp(Str, "acos"))
- return ConstantFoldFP(acos, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "asin"))
- return ConstantFoldFP(asin, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "atan"))
- return ConstantFoldFP(atan, V, Ty, Context);
- break;
- case 'c':
- if (Len == 4 && !strcmp(Str, "ceil"))
- return ConstantFoldFP(ceil, V, Ty, Context);
- else if (Len == 3 && !strcmp(Str, "cos"))
- return ConstantFoldFP(cos, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "cosh"))
- return ConstantFoldFP(cosh, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "cosf"))
- return ConstantFoldFP(cos, V, Ty, Context);
- break;
- case 'e':
- if (Len == 3 && !strcmp(Str, "exp"))
- return ConstantFoldFP(exp, V, Ty, Context);
- break;
- case 'f':
- if (Len == 4 && !strcmp(Str, "fabs"))
- return ConstantFoldFP(fabs, V, Ty, Context);
- else if (Len == 5 && !strcmp(Str, "floor"))
- return ConstantFoldFP(floor, V, Ty, Context);
- break;
- case 'l':
- if (Len == 3 && !strcmp(Str, "log") && V > 0)
- return ConstantFoldFP(log, V, Ty, Context);
- else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
- return ConstantFoldFP(log10, V, Ty, Context);
- else if (!strcmp(Str, "llvm.sqrt.f32") ||
- !strcmp(Str, "llvm.sqrt.f64")) {
- if (V >= -0.0)
- return ConstantFoldFP(sqrt, V, Ty, Context);
- else // Undefined
- return Context->getNullValue(Ty);
- }
- break;
- case 's':
- if (Len == 3 && !strcmp(Str, "sin"))
- return ConstantFoldFP(sin, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "sinh"))
- return ConstantFoldFP(sinh, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty, Context);
- else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "sinf"))
- return ConstantFoldFP(sin, V, Ty, Context);
- break;
- case 't':
- if (Len == 3 && !strcmp(Str, "tan"))
- return ConstantFoldFP(tan, V, Ty, Context);
- else if (Len == 4 && !strcmp(Str, "tanh"))
- return ConstantFoldFP(tanh, V, Ty, Context);
- break;
- default:
- break;
- }
- } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
- return Context->getConstantInt(Op->getValue().byteSwap());
- else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
- return Context->getConstantInt(Ty, Op->getValue().countPopulation());
- else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
- return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
- else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
- return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
- }
- } else if (NumOperands == 2) {
- if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
- return 0;
- double Op1V = Ty==Type::FloatTy ?
- (double)Op1->getValueAPF().convertToFloat():
- Op1->getValueAPF().convertToDouble();
- if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- double Op2V = Ty==Type::FloatTy ?
- (double)Op2->getValueAPF().convertToFloat():
- Op2->getValueAPF().convertToDouble();
- if (Len == 3 && !strcmp(Str, "pow")) {
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
- } else if (Len == 4 && !strcmp(Str, "fmod")) {
- return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
- } else if (Len == 5 && !strcmp(Str, "atan2")) {
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
- }
- } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (!strcmp(Str, "llvm.powi.f32")) {
- return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- } else if (!strcmp(Str, "llvm.powi.f64")) {
- return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
- (int)Op2C->getZExtValue())));
- }
- }
- }
- }
- return 0;
- }
|