123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126 |
- //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
- // stores that can be put together into vector-stores. Next, it attempts to
- // construct vectorizable tree using the use-def chains. If a profitable tree
- // was found, the SLP vectorizer performs vectorization on the tree.
- //
- // The pass is inspired by the work described in the paper:
- // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/iterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/DOTGraphTraits.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GraphWriter.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Vectorize.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <memory>
- #include <set>
- #include <string>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- using namespace slpvectorizer;
- #define SV_NAME "slp-vectorizer"
- #define DEBUG_TYPE "SLP"
- STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
- static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
- static cl::opt<bool>
- ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
- static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
- static cl::opt<int>
- MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- /// Limits the size of scheduling regions in a block.
- /// It avoid long compile times for _very_ large blocks where vector
- /// instructions are spread over a wide range.
- /// This limit is way higher than needed by real-world functions.
- static cl::opt<int>
- ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
- cl::desc("Limit the size of the SLP scheduling region per block"));
- static cl::opt<int> MinVectorRegSizeOption(
- "slp-min-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- static cl::opt<unsigned> RecursionMaxDepth(
- "slp-recursion-max-depth", cl::init(12), cl::Hidden,
- cl::desc("Limit the recursion depth when building a vectorizable tree"));
- static cl::opt<unsigned> MinTreeSize(
- "slp-min-tree-size", cl::init(3), cl::Hidden,
- cl::desc("Only vectorize small trees if they are fully vectorizable"));
- static cl::opt<bool>
- ViewSLPTree("view-slp-tree", cl::Hidden,
- cl::desc("Display the SLP trees with Graphviz"));
- // Limit the number of alias checks. The limit is chosen so that
- // it has no negative effect on the llvm benchmarks.
- static const unsigned AliasedCheckLimit = 10;
- // Another limit for the alias checks: The maximum distance between load/store
- // instructions where alias checks are done.
- // This limit is useful for very large basic blocks.
- static const unsigned MaxMemDepDistance = 160;
- /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
- /// regions to be handled.
- static const int MinScheduleRegionSize = 16;
- /// \brief Predicate for the element types that the SLP vectorizer supports.
- ///
- /// The most important thing to filter here are types which are invalid in LLVM
- /// vectors. We also filter target specific types which have absolutely no
- /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
- /// avoids spending time checking the cost model and realizing that they will
- /// be inevitably scalarized.
- static bool isValidElementType(Type *Ty) {
- return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
- !Ty->isPPC_FP128Ty();
- }
- /// \returns true if all of the instructions in \p VL are in the same block or
- /// false otherwise.
- static bool allSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return false;
- if (BB != I->getParent())
- return false;
- }
- return true;
- }
- /// \returns True if all of the values in \p VL are constants.
- static bool allConstant(ArrayRef<Value *> VL) {
- for (Value *i : VL)
- if (!isa<Constant>(i))
- return false;
- return true;
- }
- /// \returns True if all of the values in \p VL are identical.
- static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
- }
- /// Checks if the vector of instructions can be represented as a shuffle, like:
- /// %x0 = extractelement <4 x i8> %x, i32 0
- /// %x3 = extractelement <4 x i8> %x, i32 3
- /// %y1 = extractelement <4 x i8> %y, i32 1
- /// %y2 = extractelement <4 x i8> %y, i32 2
- /// %x0x0 = mul i8 %x0, %x0
- /// %x3x3 = mul i8 %x3, %x3
- /// %y1y1 = mul i8 %y1, %y1
- /// %y2y2 = mul i8 %y2, %y2
- /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
- /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
- /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
- /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
- /// ret <4 x i8> %ins4
- /// can be transformed into:
- /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
- /// i32 6>
- /// %2 = mul <4 x i8> %1, %1
- /// ret <4 x i8> %2
- /// We convert this initially to something like:
- /// %x0 = extractelement <4 x i8> %x, i32 0
- /// %x3 = extractelement <4 x i8> %x, i32 3
- /// %y1 = extractelement <4 x i8> %y, i32 1
- /// %y2 = extractelement <4 x i8> %y, i32 2
- /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
- /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
- /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
- /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
- /// %5 = mul <4 x i8> %4, %4
- /// %6 = extractelement <4 x i8> %5, i32 0
- /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
- /// %7 = extractelement <4 x i8> %5, i32 1
- /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
- /// %8 = extractelement <4 x i8> %5, i32 2
- /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
- /// %9 = extractelement <4 x i8> %5, i32 3
- /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
- /// ret <4 x i8> %ins4
- /// InstCombiner transforms this into a shuffle and vector mul
- static Optional<TargetTransformInfo::ShuffleKind>
- isShuffle(ArrayRef<Value *> VL) {
- auto *EI0 = cast<ExtractElementInst>(VL[0]);
- unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
- Value *Vec1 = nullptr;
- Value *Vec2 = nullptr;
- enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute};
- ShuffleMode CommonShuffleMode = Unknown;
- for (unsigned I = 0, E = VL.size(); I < E; ++I) {
- auto *EI = cast<ExtractElementInst>(VL[I]);
- auto *Vec = EI->getVectorOperand();
- // All vector operands must have the same number of vector elements.
- if (Vec->getType()->getVectorNumElements() != Size)
- return None;
- auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
- if (!Idx)
- return None;
- // Undefined behavior if Idx is negative or >= Size.
- if (Idx->getValue().uge(Size))
- continue;
- unsigned IntIdx = Idx->getValue().getZExtValue();
- // We can extractelement from undef vector.
- if (isa<UndefValue>(Vec))
- continue;
- // For correct shuffling we have to have at most 2 different vector operands
- // in all extractelement instructions.
- if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2)
- return None;
- if (CommonShuffleMode == Permute)
- continue;
- // If the extract index is not the same as the operation number, it is a
- // permutation.
- if (IntIdx != I) {
- CommonShuffleMode = Permute;
- continue;
- }
- // Check the shuffle mode for the current operation.
- if (!Vec1)
- Vec1 = Vec;
- else if (Vec != Vec1)
- Vec2 = Vec;
- // Example: shufflevector A, B, <0,5,2,7>
- // I is odd and IntIdx for A == I - FirstAlternate shuffle.
- // I is even and IntIdx for B == I - FirstAlternate shuffle.
- // Example: shufflevector A, B, <4,1,6,3>
- // I is even and IntIdx for A == I - SecondAlternate shuffle.
- // I is odd and IntIdx for B == I - SecondAlternate shuffle.
- const bool IIsEven = I & 1;
- const bool CurrVecIsA = Vec == Vec1;
- const bool IIsOdd = !IIsEven;
- const bool CurrVecIsB = !CurrVecIsA;
- ShuffleMode CurrentShuffleMode =
- ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate
- : SecondAlternate;
- // Common mode is not set or the same as the shuffle mode of the current
- // operation - alternate.
- if (CommonShuffleMode == Unknown)
- CommonShuffleMode = CurrentShuffleMode;
- // Common shuffle mode is not the same as the shuffle mode of the current
- // operation - permutation.
- if (CommonShuffleMode != CurrentShuffleMode)
- CommonShuffleMode = Permute;
- }
- // If we're not crossing lanes in different vectors, consider it as blending.
- if ((CommonShuffleMode == FirstAlternate ||
- CommonShuffleMode == SecondAlternate) &&
- Vec2)
- return TargetTransformInfo::SK_Alternate;
- // If Vec2 was never used, we have a permutation of a single vector, otherwise
- // we have permutation of 2 vectors.
- return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
- : TargetTransformInfo::SK_PermuteSingleSrc;
- }
- ///\returns Opcode that can be clubbed with \p Op to create an alternate
- /// sequence which can later be merged as a ShuffleVector instruction.
- static unsigned getAltOpcode(unsigned Op) {
- switch (Op) {
- case Instruction::FAdd:
- return Instruction::FSub;
- case Instruction::FSub:
- return Instruction::FAdd;
- case Instruction::Add:
- return Instruction::Sub;
- case Instruction::Sub:
- return Instruction::Add;
- default:
- return 0;
- }
- }
- static bool isOdd(unsigned Value) {
- return Value & 1;
- }
- static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode,
- unsigned CheckedOpcode) {
- return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode;
- }
- /// Chooses the correct key for scheduling data. If \p Op has the same (or
- /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
- /// OpValue.
- static Value *isOneOf(Value *OpValue, Value *Op) {
- auto *I = dyn_cast<Instruction>(Op);
- if (!I)
- return OpValue;
- auto *OpInst = cast<Instruction>(OpValue);
- unsigned OpInstOpcode = OpInst->getOpcode();
- unsigned IOpcode = I->getOpcode();
- if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode))
- return Op;
- return OpValue;
- }
- namespace {
- /// Contains data for the instructions going to be vectorized.
- struct RawInstructionsData {
- /// Main Opcode of the instructions going to be vectorized.
- unsigned Opcode = 0;
- /// The list of instructions have some instructions with alternate opcodes.
- bool HasAltOpcodes = false;
- };
- } // end anonymous namespace
- /// Checks the list of the vectorized instructions \p VL and returns info about
- /// this list.
- static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) {
- auto *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return {};
- RawInstructionsData Res;
- unsigned Opcode = I0->getOpcode();
- // Walk through the list of the vectorized instructions
- // in order to check its structure described by RawInstructionsData.
- for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) {
- auto *I = dyn_cast<Instruction>(VL[Cnt]);
- if (!I)
- return {};
- if (Opcode != I->getOpcode())
- Res.HasAltOpcodes = true;
- }
- Res.Opcode = Opcode;
- return Res;
- }
- namespace {
- /// Main data required for vectorization of instructions.
- struct InstructionsState {
- /// The very first instruction in the list with the main opcode.
- Value *OpValue = nullptr;
- /// The main opcode for the list of instructions.
- unsigned Opcode = 0;
- /// Some of the instructions in the list have alternate opcodes.
- bool IsAltShuffle = false;
- InstructionsState() = default;
- InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle)
- : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {}
- };
- } // end anonymous namespace
- /// \returns analysis of the Instructions in \p VL described in
- /// InstructionsState, the Opcode that we suppose the whole list
- /// could be vectorized even if its structure is diverse.
- static InstructionsState getSameOpcode(ArrayRef<Value *> VL) {
- auto Res = getMainOpcode(VL);
- unsigned Opcode = Res.Opcode;
- if (!Res.HasAltOpcodes)
- return InstructionsState(VL[0], Opcode, false);
- auto *OpInst = cast<Instruction>(VL[0]);
- unsigned AltOpcode = getAltOpcode(Opcode);
- // Examine each element in the list instructions VL to determine
- // if some operations there could be considered as an alternative
- // (for example as subtraction relates to addition operation).
- for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
- auto *I = cast<Instruction>(VL[Cnt]);
- unsigned InstOpcode = I->getOpcode();
- if ((Res.HasAltOpcodes &&
- InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) ||
- (!Res.HasAltOpcodes && InstOpcode != Opcode)) {
- return InstructionsState(OpInst, 0, false);
- }
- }
- return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes);
- }
- /// \returns true if all of the values in \p VL have the same type or false
- /// otherwise.
- static bool allSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return false;
- return true;
- }
- /// \returns True if Extract{Value,Element} instruction extracts element Idx.
- static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
- assert(Opcode == Instruction::ExtractElement ||
- Opcode == Instruction::ExtractValue);
- if (Opcode == Instruction::ExtractElement) {
- ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- return CI && CI->getZExtValue() == Idx;
- } else {
- ExtractValueInst *EI = cast<ExtractValueInst>(E);
- return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
- }
- }
- /// \returns True if in-tree use also needs extract. This refers to
- /// possible scalar operand in vectorized instruction.
- static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
- TargetLibraryInfo *TLI) {
- unsigned Opcode = UserInst->getOpcode();
- switch (Opcode) {
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(UserInst);
- return (LI->getPointerOperand() == Scalar);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(UserInst);
- return (SI->getPointerOperand() == Scalar);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(UserInst);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- return (CI->getArgOperand(1) == Scalar);
- }
- LLVM_FALLTHROUGH;
- }
- default:
- return false;
- }
- }
- /// \returns the AA location that is being access by the instruction.
- static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return MemoryLocation::get(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return MemoryLocation::get(LI);
- return MemoryLocation();
- }
- /// \returns True if the instruction is not a volatile or atomic load/store.
- static bool isSimple(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return true;
- }
- namespace llvm {
- namespace slpvectorizer {
- /// Bottom Up SLP Vectorizer.
- class BoUpSLP {
- public:
- using ValueList = SmallVector<Value *, 8>;
- using InstrList = SmallVector<Instruction *, 16>;
- using ValueSet = SmallPtrSet<Value *, 16>;
- using StoreList = SmallVector<StoreInst *, 8>;
- using ExtraValueToDebugLocsMap =
- MapVector<Value *, SmallVector<Instruction *, 2>>;
- BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
- TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
- const DataLayout *DL, OptimizationRemarkEmitter *ORE)
- : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
- DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
- CodeMetrics::collectEphemeralValues(F, AC, EphValues);
- // Use the vector register size specified by the target unless overridden
- // by a command-line option.
- // TODO: It would be better to limit the vectorization factor based on
- // data type rather than just register size. For example, x86 AVX has
- // 256-bit registers, but it does not support integer operations
- // at that width (that requires AVX2).
- if (MaxVectorRegSizeOption.getNumOccurrences())
- MaxVecRegSize = MaxVectorRegSizeOption;
- else
- MaxVecRegSize = TTI->getRegisterBitWidth(true);
- if (MinVectorRegSizeOption.getNumOccurrences())
- MinVecRegSize = MinVectorRegSizeOption;
- else
- MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
- }
- /// \brief Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
- /// Vectorize the tree but with the list of externally used values \p
- /// ExternallyUsedValues. Values in this MapVector can be replaced but the
- /// generated extractvalue instructions.
- Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
- /// \returns the cost incurred by unwanted spills and fills, caused by
- /// holding live values over call sites.
- int getSpillCost();
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
- void buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
- /// into account (anf updating it, if required) list of externally used
- /// values stored in \p ExternallyUsedValues.
- void buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- NumLoadsWantToKeepOrder = 0;
- NumLoadsWantToChangeOrder = 0;
- for (auto &Iter : BlocksSchedules) {
- BlockScheduling *BS = Iter.second.get();
- BS->clear();
- }
- MinBWs.clear();
- }
- unsigned getTreeSize() const { return VectorizableTree.size(); }
- /// \brief Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence(Function &F);
- /// \returns true if it is beneficial to reverse the vector order.
- bool shouldReorder() const {
- return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
- }
- /// \return The vector element size in bits to use when vectorizing the
- /// expression tree ending at \p V. If V is a store, the size is the width of
- /// the stored value. Otherwise, the size is the width of the largest loaded
- /// value reaching V. This method is used by the vectorizer to calculate
- /// vectorization factors.
- unsigned getVectorElementSize(Value *V);
- /// Compute the minimum type sizes required to represent the entries in a
- /// vectorizable tree.
- void computeMinimumValueSizes();
- // \returns maximum vector register size as set by TTI or overridden by cl::opt.
- unsigned getMaxVecRegSize() const {
- return MaxVecRegSize;
- }
- // \returns minimum vector register size as set by cl::opt.
- unsigned getMinVecRegSize() const {
- return MinVecRegSize;
- }
- /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
- ///
- /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
- unsigned canMapToVector(Type *T, const DataLayout &DL) const;
- /// \returns True if the VectorizableTree is both tiny and not fully
- /// vectorizable. We do not vectorize such trees.
- bool isTreeTinyAndNotFullyVectorizable();
- OptimizationRemarkEmitter *getORE() { return ORE; }
- private:
- struct TreeEntry;
- /// Checks if all users of \p I are the part of the vectorization tree.
- bool areAllUsersVectorized(Instruction *I) const;
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int UserIndx = -1,
- int OpdNum = 0);
- /// \returns True if the ExtractElement/ExtractValue instructions in VL can
- /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
- bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
- /// Vectorize a single entry in the tree.\p OpdNum indicate the ordinality of
- /// operand corrsponding to this tree entry \p E for the user tree entry
- /// indicated by \p UserIndx.
- // In other words, "E == TreeEntry[UserIndx].getOperand(OpdNum)".
- Value *vectorizeTree(TreeEntry *E, int OpdNum = 0, int UserIndx = -1);
- /// Vectorize a single entry in the tree, starting in \p VL.\p OpdNum indicate
- /// the ordinality of operand corrsponding to the \p VL of scalar values for the
- /// user indicated by \p UserIndx this \p VL feeds into.
- Value *vectorizeTree(ArrayRef<Value *> VL, int OpdNum = 0, int UserIndx = -1);
- /// \returns the pointer to the vectorized value if \p VL is already
- /// vectorized, or NULL. They may happen in cycles.
- Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const;
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty);
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL);
- /// \brief Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue);
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \returns whether the VectorizableTree is fully vectorizable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree();
- /// \reorder commutative operands in alt shuffle if they result in
- /// vectorized code.
- void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- /// \reorder commutative operands to get better probability of
- /// generating vectorized code.
- void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- struct TreeEntry {
- TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- assert(VL.size() == Scalars.size() && "Invalid size");
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- }
- /// \returns true if the scalars in VL are found in this tree entry.
- bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL,
- ScalarEvolution &SE) const {
- assert(VL.size() == Scalars.size() && "Invalid size");
- SmallVector<Value *, 8> List;
- if (!sortLoadAccesses(VL, DL, SE, List))
- return false;
- return std::equal(List.begin(), List.end(), Scalars.begin());
- }
- /// A vector of scalars.
- ValueList Scalars;
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue = nullptr;
- /// Do we need to gather this sequence ?
- bool NeedToGather = false;
- /// Records optional shuffle mask for the uses of jumbled memory accesses.
- /// For example, a non-empty ShuffleMask[1] represents the permutation of
- /// lanes that operand #1 of this vectorized instruction should undergo
- /// before feeding this vectorized instruction, whereas an empty
- /// ShuffleMask[0] indicates that the lanes of operand #0 of this vectorized
- /// instruction need not be permuted at all.
- SmallVector<SmallVector<unsigned, 4>, 2> ShuffleMask;
- /// Points back to the VectorizableTree.
- ///
- /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
- /// to be a pointer and needs to be able to initialize the child iterator.
- /// Thus we need a reference back to the container to translate the indices
- /// to entries.
- std::vector<TreeEntry> &Container;
- /// The TreeEntry index containing the user of this entry. We can actually
- /// have multiple users so the data structure is not truly a tree.
- SmallVector<int, 1> UserTreeIndices;
- };
- /// Create a new VectorizableTree entry.
- TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
- int &UserTreeIdx, const InstructionsState &S,
- ArrayRef<unsigned> ShuffleMask = None,
- int OpdNum = 0) {
- assert((!Vectorized || S.Opcode != 0) &&
- "Vectorized TreeEntry without opcode");
- VectorizableTree.emplace_back(VectorizableTree);
- int idx = VectorizableTree.size() - 1;
- TreeEntry *Last = &VectorizableTree[idx];
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- TreeEntry *UserTreeEntry = nullptr;
- if (UserTreeIdx != -1)
- UserTreeEntry = &VectorizableTree[UserTreeIdx];
- if (UserTreeEntry && !ShuffleMask.empty()) {
- if ((unsigned)OpdNum >= UserTreeEntry->ShuffleMask.size())
- UserTreeEntry->ShuffleMask.resize(OpdNum + 1);
- assert(UserTreeEntry->ShuffleMask[OpdNum].empty() &&
- "Mask already present");
- using mask = SmallVector<unsigned, 4>;
- mask tempMask(ShuffleMask.begin(), ShuffleMask.end());
- UserTreeEntry->ShuffleMask[OpdNum] = tempMask;
- }
- if (Vectorized) {
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = idx;
- }
- } else {
- MustGather.insert(VL.begin(), VL.end());
- }
- if (UserTreeIdx >= 0)
- Last->UserTreeIndices.push_back(UserTreeIdx);
- UserTreeIdx = idx;
- return Last;
- }
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- std::vector<TreeEntry> VectorizableTree;
- TreeEntry *getTreeEntry(Value *V) {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- const TreeEntry *getTreeEntry(Value *V) const {
- auto I = ScalarToTreeEntry.find(V);
- if (I != ScalarToTreeEntry.end())
- return &VectorizableTree[I->second];
- return nullptr;
- }
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser(Value *S, llvm::User *U, int L)
- : Scalar(S), User(U), Lane(L) {}
- // Which scalar in our function.
- Value *Scalar;
- // Which user that uses the scalar.
- llvm::User *User;
- // Which lane does the scalar belong to.
- int Lane;
- };
- using UserList = SmallVector<ExternalUser, 16>;
- /// Checks if two instructions may access the same memory.
- ///
- /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
- /// is invariant in the calling loop.
- bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
- Instruction *Inst2) {
- // First check if the result is already in the cache.
- AliasCacheKey key = std::make_pair(Inst1, Inst2);
- Optional<bool> &result = AliasCache[key];
- if (result.hasValue()) {
- return result.getValue();
- }
- MemoryLocation Loc2 = getLocation(Inst2, AA);
- bool aliased = true;
- if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
- // Do the alias check.
- aliased = AA->alias(Loc1, Loc2);
- }
- // Store the result in the cache.
- result = aliased;
- return aliased;
- }
- using AliasCacheKey = std::pair<Instruction *, Instruction *>;
- /// Cache for alias results.
- /// TODO: consider moving this to the AliasAnalysis itself.
- DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
- /// Removes an instruction from its block and eventually deletes it.
- /// It's like Instruction::eraseFromParent() except that the actual deletion
- /// is delayed until BoUpSLP is destructed.
- /// This is required to ensure that there are no incorrect collisions in the
- /// AliasCache, which can happen if a new instruction is allocated at the
- /// same address as a previously deleted instruction.
- void eraseInstruction(Instruction *I) {
- I->removeFromParent();
- I->dropAllReferences();
- DeletedInstructions.emplace_back(I);
- }
- /// Temporary store for deleted instructions. Instructions will be deleted
- /// eventually when the BoUpSLP is destructed.
- SmallVector<unique_value, 8> DeletedInstructions;
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User). External User
- /// can be nullptr, it means that this Internal Scalar will be used later,
- /// after vectorization.
- UserList ExternalUses;
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
- /// Contains all scheduling relevant data for an instruction.
- /// A ScheduleData either represents a single instruction or a member of an
- /// instruction bundle (= a group of instructions which is combined into a
- /// vector instruction).
- struct ScheduleData {
- // The initial value for the dependency counters. It means that the
- // dependencies are not calculated yet.
- enum { InvalidDeps = -1 };
- ScheduleData() = default;
- void init(int BlockSchedulingRegionID, Value *OpVal) {
- FirstInBundle = this;
- NextInBundle = nullptr;
- NextLoadStore = nullptr;
- IsScheduled = false;
- SchedulingRegionID = BlockSchedulingRegionID;
- UnscheduledDepsInBundle = UnscheduledDeps;
- clearDependencies();
- OpValue = OpVal;
- }
- /// Returns true if the dependency information has been calculated.
- bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
- /// Returns true for single instructions and for bundle representatives
- /// (= the head of a bundle).
- bool isSchedulingEntity() const { return FirstInBundle == this; }
- /// Returns true if it represents an instruction bundle and not only a
- /// single instruction.
- bool isPartOfBundle() const {
- return NextInBundle != nullptr || FirstInBundle != this;
- }
- /// Returns true if it is ready for scheduling, i.e. it has no more
- /// unscheduled depending instructions/bundles.
- bool isReady() const {
- assert(isSchedulingEntity() &&
- "can't consider non-scheduling entity for ready list");
- return UnscheduledDepsInBundle == 0 && !IsScheduled;
- }
- /// Modifies the number of unscheduled dependencies, also updating it for
- /// the whole bundle.
- int incrementUnscheduledDeps(int Incr) {
- UnscheduledDeps += Incr;
- return FirstInBundle->UnscheduledDepsInBundle += Incr;
- }
- /// Sets the number of unscheduled dependencies to the number of
- /// dependencies.
- void resetUnscheduledDeps() {
- incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
- }
- /// Clears all dependency information.
- void clearDependencies() {
- Dependencies = InvalidDeps;
- resetUnscheduledDeps();
- MemoryDependencies.clear();
- }
- void dump(raw_ostream &os) const {
- if (!isSchedulingEntity()) {
- os << "/ " << *Inst;
- } else if (NextInBundle) {
- os << '[' << *Inst;
- ScheduleData *SD = NextInBundle;
- while (SD) {
- os << ';' << *SD->Inst;
- SD = SD->NextInBundle;
- }
- os << ']';
- } else {
- os << *Inst;
- }
- }
- Instruction *Inst = nullptr;
- /// Points to the head in an instruction bundle (and always to this for
- /// single instructions).
- ScheduleData *FirstInBundle = nullptr;
- /// Single linked list of all instructions in a bundle. Null if it is a
- /// single instruction.
- ScheduleData *NextInBundle = nullptr;
- /// Single linked list of all memory instructions (e.g. load, store, call)
- /// in the block - until the end of the scheduling region.
- ScheduleData *NextLoadStore = nullptr;
- /// The dependent memory instructions.
- /// This list is derived on demand in calculateDependencies().
- SmallVector<ScheduleData *, 4> MemoryDependencies;
- /// This ScheduleData is in the current scheduling region if this matches
- /// the current SchedulingRegionID of BlockScheduling.
- int SchedulingRegionID = 0;
- /// Used for getting a "good" final ordering of instructions.
- int SchedulingPriority = 0;
- /// The number of dependencies. Constitutes of the number of users of the
- /// instruction plus the number of dependent memory instructions (if any).
- /// This value is calculated on demand.
- /// If InvalidDeps, the number of dependencies is not calculated yet.
- int Dependencies = InvalidDeps;
- /// The number of dependencies minus the number of dependencies of scheduled
- /// instructions. As soon as this is zero, the instruction/bundle gets ready
- /// for scheduling.
- /// Note that this is negative as long as Dependencies is not calculated.
- int UnscheduledDeps = InvalidDeps;
- /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
- /// single instructions.
- int UnscheduledDepsInBundle = InvalidDeps;
- /// True if this instruction is scheduled (or considered as scheduled in the
- /// dry-run).
- bool IsScheduled = false;
- /// Opcode of the current instruction in the schedule data.
- Value *OpValue = nullptr;
- };
- #ifndef NDEBUG
- friend inline raw_ostream &operator<<(raw_ostream &os,
- const BoUpSLP::ScheduleData &SD) {
- SD.dump(os);
- return os;
- }
- #endif
- friend struct GraphTraits<BoUpSLP *>;
- friend struct DOTGraphTraits<BoUpSLP *>;
- /// Contains all scheduling data for a basic block.
- struct BlockScheduling {
- BlockScheduling(BasicBlock *BB)
- : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
- void clear() {
- ReadyInsts.clear();
- ScheduleStart = nullptr;
- ScheduleEnd = nullptr;
- FirstLoadStoreInRegion = nullptr;
- LastLoadStoreInRegion = nullptr;
- // Reduce the maximum schedule region size by the size of the
- // previous scheduling run.
- ScheduleRegionSizeLimit -= ScheduleRegionSize;
- if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
- ScheduleRegionSizeLimit = MinScheduleRegionSize;
- ScheduleRegionSize = 0;
- // Make a new scheduling region, i.e. all existing ScheduleData is not
- // in the new region yet.
- ++SchedulingRegionID;
- }
- ScheduleData *getScheduleData(Value *V) {
- ScheduleData *SD = ScheduleDataMap[V];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- return nullptr;
- }
- ScheduleData *getScheduleData(Value *V, Value *Key) {
- if (V == Key)
- return getScheduleData(V);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end()) {
- ScheduleData *SD = I->second[Key];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- }
- return nullptr;
- }
- bool isInSchedulingRegion(ScheduleData *SD) {
- return SD->SchedulingRegionID == SchedulingRegionID;
- }
- /// Marks an instruction as scheduled and puts all dependent ready
- /// instructions into the ready-list.
- template <typename ReadyListType>
- void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
- SD->IsScheduled = true;
- DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- if (BundleMember->Inst != BundleMember->OpValue) {
- BundleMember = BundleMember->NextInBundle;
- continue;
- }
- // Handle the def-use chain dependencies.
- for (Use &U : BundleMember->Inst->operands()) {
- auto *I = dyn_cast<Instruction>(U.get());
- if (!I)
- continue;
- doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
- if (OpDef && OpDef->hasValidDependencies() &&
- OpDef->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after
- // decrementing, so we can put the dependent instruction
- // into the ready list.
- ScheduleData *DepBundle = OpDef->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs()
- << "SLP: gets ready (def): " << *DepBundle << "\n");
- }
- });
- }
- // Handle the memory dependencies.
- for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
- if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle
- << "\n");
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- }
- void doForAllOpcodes(Value *V,
- function_ref<void(ScheduleData *SD)> Action) {
- if (ScheduleData *SD = getScheduleData(V))
- Action(SD);
- auto I = ExtraScheduleDataMap.find(V);
- if (I != ExtraScheduleDataMap.end())
- for (auto &P : I->second)
- if (P.second->SchedulingRegionID == SchedulingRegionID)
- Action(P.second);
- }
- /// Put all instructions into the ReadyList which are ready for scheduling.
- template <typename ReadyListType>
- void initialFillReadyList(ReadyListType &ReadyList) {
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- if (SD->isSchedulingEntity() && SD->isReady()) {
- ReadyList.insert(SD);
- DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
- }
- });
- }
- }
- /// Checks if a bundle of instructions can be scheduled, i.e. has no
- /// cyclic dependencies. This is only a dry-run, no instructions are
- /// actually moved at this stage.
- bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue);
- /// Un-bundles a group of instructions.
- void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
- /// Allocates schedule data chunk.
- ScheduleData *allocateScheduleDataChunks();
- /// Extends the scheduling region so that V is inside the region.
- /// \returns true if the region size is within the limit.
- bool extendSchedulingRegion(Value *V, Value *OpValue);
- /// Initialize the ScheduleData structures for new instructions in the
- /// scheduling region.
- void initScheduleData(Instruction *FromI, Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore);
- /// Updates the dependency information of a bundle and of all instructions/
- /// bundles which depend on the original bundle.
- void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
- BoUpSLP *SLP);
- /// Sets all instruction in the scheduling region to un-scheduled.
- void resetSchedule();
- BasicBlock *BB;
- /// Simple memory allocation for ScheduleData.
- std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
- /// The size of a ScheduleData array in ScheduleDataChunks.
- int ChunkSize;
- /// The allocator position in the current chunk, which is the last entry
- /// of ScheduleDataChunks.
- int ChunkPos;
- /// Attaches ScheduleData to Instruction.
- /// Note that the mapping survives during all vectorization iterations, i.e.
- /// ScheduleData structures are recycled.
- DenseMap<Value *, ScheduleData *> ScheduleDataMap;
- /// Attaches ScheduleData to Instruction with the leading key.
- DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
- ExtraScheduleDataMap;
- struct ReadyList : SmallVector<ScheduleData *, 8> {
- void insert(ScheduleData *SD) { push_back(SD); }
- };
- /// The ready-list for scheduling (only used for the dry-run).
- ReadyList ReadyInsts;
- /// The first instruction of the scheduling region.
- Instruction *ScheduleStart = nullptr;
- /// The first instruction _after_ the scheduling region.
- Instruction *ScheduleEnd = nullptr;
- /// The first memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *FirstLoadStoreInRegion = nullptr;
- /// The last memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *LastLoadStoreInRegion = nullptr;
- /// The current size of the scheduling region.
- int ScheduleRegionSize = 0;
- /// The maximum size allowed for the scheduling region.
- int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
- /// The ID of the scheduling region. For a new vectorization iteration this
- /// is incremented which "removes" all ScheduleData from the region.
- // Make sure that the initial SchedulingRegionID is greater than the
- // initial SchedulingRegionID in ScheduleData (which is 0).
- int SchedulingRegionID = 1;
- };
- /// Attaches the BlockScheduling structures to basic blocks.
- MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
- /// Performs the "real" scheduling. Done before vectorization is actually
- /// performed in a basic block.
- void scheduleBlock(BlockScheduling *BS);
- /// List of users to ignore during scheduling and that don't need extracting.
- ArrayRef<Value *> UserIgnoreList;
- // Number of load bundles that contain consecutive loads.
- int NumLoadsWantToKeepOrder = 0;
- // Number of load bundles that contain consecutive loads in reversed order.
- int NumLoadsWantToChangeOrder = 0;
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- AssumptionCache *AC;
- DemandedBits *DB;
- const DataLayout *DL;
- OptimizationRemarkEmitter *ORE;
- unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
- unsigned MinVecRegSize; // Set by cl::opt (default: 128).
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
- /// A map of scalar integer values to the smallest bit width with which they
- /// can legally be represented. The values map to (width, signed) pairs,
- /// where "width" indicates the minimum bit width and "signed" is True if the
- /// value must be signed-extended, rather than zero-extended, back to its
- /// original width.
- MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
- };
- } // end namespace slpvectorizer
- template <> struct GraphTraits<BoUpSLP *> {
- using TreeEntry = BoUpSLP::TreeEntry;
- /// NodeRef has to be a pointer per the GraphWriter.
- using NodeRef = TreeEntry *;
- /// \brief Add the VectorizableTree to the index iterator to be able to return
- /// TreeEntry pointers.
- struct ChildIteratorType
- : public iterator_adaptor_base<ChildIteratorType,
- SmallVector<int, 1>::iterator> {
- std::vector<TreeEntry> &VectorizableTree;
- ChildIteratorType(SmallVector<int, 1>::iterator W,
- std::vector<TreeEntry> &VT)
- : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
- NodeRef operator*() { return &VectorizableTree[*I]; }
- };
- static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
- static ChildIteratorType child_begin(NodeRef N) {
- return {N->UserTreeIndices.begin(), N->Container};
- }
- static ChildIteratorType child_end(NodeRef N) {
- return {N->UserTreeIndices.end(), N->Container};
- }
- /// For the node iterator we just need to turn the TreeEntry iterator into a
- /// TreeEntry* iterator so that it dereferences to NodeRef.
- using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
- static nodes_iterator nodes_begin(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.begin());
- }
- static nodes_iterator nodes_end(BoUpSLP *R) {
- return nodes_iterator(R->VectorizableTree.end());
- }
- static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
- };
- template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
- using TreeEntry = BoUpSLP::TreeEntry;
- DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
- std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
- std::string Str;
- raw_string_ostream OS(Str);
- if (isSplat(Entry->Scalars)) {
- OS << "<splat> " << *Entry->Scalars[0];
- return Str;
- }
- for (auto V : Entry->Scalars) {
- OS << *V;
- if (std::any_of(
- R->ExternalUses.begin(), R->ExternalUses.end(),
- [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
- OS << " <extract>";
- OS << "\n";
- }
- return Str;
- }
- static std::string getNodeAttributes(const TreeEntry *Entry,
- const BoUpSLP *) {
- if (Entry->NeedToGather)
- return "color=red";
- return "";
- }
- };
- } // end namespace llvm
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst) {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
- }
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ExtraValueToDebugLocsMap &ExternallyUsedValues,
- ArrayRef<Value *> UserIgnoreLst) {
- deleteTree();
- UserIgnoreList = UserIgnoreLst;
- if (!allSameType(Roots))
- return;
- buildTree_rec(Roots, 0, -1);
- // Collect the values that we need to extract from the tree.
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // Check if the scalar is externally used as an extra arg.
- auto ExtI = ExternallyUsedValues.find(Scalar);
- if (ExtI != ExternallyUsedValues.end()) {
- DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.emplace_back(Scalar, nullptr, Lane);
- continue;
- }
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
- Instruction *UserInst = dyn_cast<Instruction>(U);
- if (!UserInst)
- continue;
- // Skip in-tree scalars that become vectors
- if (TreeEntry *UseEntry = getTreeEntry(U)) {
- Value *UseScalar = UseEntry->Scalars[0];
- // Some in-tree scalars will remain as scalar in vectorized
- // instructions. If that is the case, the one in Lane 0 will
- // be used.
- if (UseScalar != U ||
- !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
- DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
- << ".\n");
- assert(!UseEntry->NeedToGather && "Bad state");
- continue;
- }
- }
- // Ignore users in the user ignore list.
- if (is_contained(UserIgnoreList, UserInst))
- continue;
- DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
- }
- }
- }
- }
- void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
- int UserTreeIdx, int OpdNum) {
- assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
- InstructionsState S = getSameOpcode(VL);
- if (Depth == RecursionMaxDepth) {
- DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- // Don't handle vectors.
- if (S.OpValue->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) {
- DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- // We now know that this is a vector of instructions of the same type from
- // the same block.
- // Don't vectorize ephemeral values.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (EphValues.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is ephemeral.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // Check if this is a duplicate of another entry.
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
- if (E->Scalars[i] != VL[i]) {
- DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // Record the reuse of the tree node. FIXME, currently this is only used to
- // properly draw the graph rather than for the actual vectorization.
- E->UserTreeIndices.push_back(UserTreeIdx);
- DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n");
- return;
- }
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- auto *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- continue;
- if (getTreeEntry(I)) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is already in tree.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // If any of the scalars is marked as a value that needs to stay scalar, then
- // we need to gather the scalars.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (MustGather.count(VL[i])) {
- DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- auto *VL0 = cast<Instruction>(S.OpValue);
- BasicBlock *BB = VL0->getParent();
- if (!DT->isReachableFromEntry(BB)) {
- // Don't go into unreachable blocks. They may contain instructions with
- // dependency cycles which confuse the final scheduling.
- DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- // Check that every instruction appears once in this bundle.
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- for (unsigned j = i + 1; j < e; ++j)
- if (VL[i] == VL[j]) {
- DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- auto &BSRef = BlocksSchedules[BB];
- if (!BSRef)
- BSRef = llvm::make_unique<BlockScheduling>(BB);
- BlockScheduling &BS = *BSRef.get();
- if (!BS.tryScheduleBundle(VL, this, S.OpValue)) {
- DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
- assert((!BS.getScheduleData(VL0) ||
- !BS.getScheduleData(VL0)->isPartOfBundle()) &&
- "tryScheduleBundle should cancelScheduling on failure");
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- unsigned ShuffleOrOp = S.IsAltShuffle ?
- (unsigned) Instruction::ShuffleVector : S.Opcode;
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- TerminatorInst *Term = dyn_cast<TerminatorInst>(
- cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
- if (Term) {
- DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- }
- case Instruction::ExtractValue:
- case Instruction::ExtractElement: {
- bool Reuse = canReuseExtract(VL, VL0);
- if (Reuse) {
- DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
- } else {
- BS.cancelScheduling(VL, VL0);
- }
- newTreeEntry(VL, Reuse, UserTreeIdx, S);
- return;
- }
- case Instruction::Load: {
- // Check that a vectorized load would load the same memory as a scalar
- // load. For example, we don't want to vectorize loads that are smaller
- // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
- // treats loading/storing it as an i8 struct. If we vectorize loads/stores
- // from such a struct, we read/write packed bits disagreeing with the
- // unvectorized version.
- Type *ScalarTy = VL0->getType();
- if (DL->getTypeSizeInBits(ScalarTy) !=
- DL->getTypeAllocSizeInBits(ScalarTy)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
- return;
- }
- // Make sure all loads in the bundle are simple - we can't vectorize
- // atomic or volatile loads.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- LoadInst *L = cast<LoadInst>(VL[i]);
- if (!L->isSimple()) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
- return;
- }
- }
- // Check if the loads are consecutive, reversed, or neither.
- bool Consecutive = true;
- bool ReverseConsecutive = true;
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- Consecutive = false;
- break;
- } else {
- ReverseConsecutive = false;
- }
- }
- if (Consecutive) {
- ++NumLoadsWantToKeepOrder;
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- return;
- }
- // If none of the load pairs were consecutive when checked in order,
- // check the reverse order.
- if (ReverseConsecutive)
- for (unsigned i = VL.size() - 1; i > 0; --i)
- if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
- ReverseConsecutive = false;
- break;
- }
- if (ReverseConsecutive) {
- DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
- ++NumLoadsWantToChangeOrder;
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- if (VL.size() > 2) {
- bool ShuffledLoads = true;
- SmallVector<Value *, 8> Sorted;
- SmallVector<unsigned, 4> Mask;
- if (sortLoadAccesses(VL, *DL, *SE, Sorted, &Mask)) {
- auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end());
- for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) {
- if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) {
- ShuffledLoads = false;
- break;
- }
- }
- // TODO: Tracking how many load wants to have arbitrary shuffled order
- // would be usefull.
- if (ShuffledLoads) {
- DEBUG(dbgs() << "SLP: added a vector of loads which needs "
- "permutation of loaded lanes.\n");
- newTreeEntry(NewVL, true, UserTreeIdx, S,
- makeArrayRef(Mask.begin(), Mask.end()), OpdNum);
- return;
- }
- }
- }
- DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || !isValidElementType(Ty)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Type *ComparedTy = VL0->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0 ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right);
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx, 1);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- case Instruction::GetElementPtr: {
- // We don't combine GEPs with complicated (nested) indexing.
- for (unsigned j = 0; j < VL.size(); ++j) {
- if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // We can't combine several GEPs into one vector if they operate on
- // different types.
- Type *Ty0 = VL0->getOperand(0)->getType();
- for (unsigned j = 0; j < VL.size(); ++j) {
- Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
- if (Ty0 != CurTy) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- // We don't combine GEPs with non-constant indexes.
- for (unsigned j = 0; j < VL.size(); ++j) {
- auto Op = cast<Instruction>(VL[j])->getOperand(1);
- if (!isa<ConstantInt>(Op)) {
- DEBUG(
- dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
- for (unsigned i = 0, e = 2; i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- }
- case Instruction::Store: {
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- ValueList Operands;
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(0));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx);
- return;
- }
- case Instruction::Call: {
- // Check if the calls are all to the same vectorizable intrinsic.
- CallInst *CI = cast<CallInst>(VL0);
- // Check if this is an Intrinsic call or something that can be
- // represented by an intrinsic call
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- if (!isTriviallyVectorizable(ID)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
- return;
- }
- Function *Int = CI->getCalledFunction();
- Value *A1I = nullptr;
- if (hasVectorInstrinsicScalarOpd(ID, 1))
- A1I = CI->getArgOperand(1);
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
- if (!CI2 || CI2->getCalledFunction() != Int ||
- getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
- !CI->hasIdenticalOperandBundleSchema(*CI2)) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
- << "\n");
- return;
- }
- // ctlz,cttz and powi are special intrinsics whose second argument
- // should be same in order for them to be vectorized.
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- Value *A1J = CI2->getArgOperand(1);
- if (A1I != A1J) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
- << " argument "<< A1I<<"!=" << A1J
- << "\n");
- return;
- }
- }
- // Verify that the bundle operands are identical between the two calls.
- if (CI->hasOperandBundles() &&
- !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
- CI->op_begin() + CI->getBundleOperandsEndIndex(),
- CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
- << *VL[i] << '\n');
- return;
- }
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL) {
- CallInst *CI2 = dyn_cast<CallInst>(j);
- Operands.push_back(CI2->getArgOperand(i));
- }
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- }
- case Instruction::ShuffleVector:
- // If this is not an alternate sequence of opcode like add-sub
- // then do not vectorize this instruction.
- if (!S.IsAltShuffle) {
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
- return;
- }
- newTreeEntry(VL, true, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
- // Reorder operands if reordering would enable vectorization.
- if (isa<BinaryOperator>(VL0)) {
- ValueList Left, Right;
- reorderAltShuffleOperands(S.Opcode, VL, Left, Right);
- buildTree_rec(Left, Depth + 1, UserTreeIdx);
- buildTree_rec(Right, Depth + 1, UserTreeIdx, 1);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (Value *j : VL)
- Operands.push_back(cast<Instruction>(j)->getOperand(i));
- buildTree_rec(Operands, Depth + 1, UserTreeIdx, i);
- }
- return;
- default:
- BS.cancelScheduling(VL, VL0);
- newTreeEntry(VL, false, UserTreeIdx, S);
- DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
- }
- unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
- unsigned N;
- Type *EltTy;
- auto *ST = dyn_cast<StructType>(T);
- if (ST) {
- N = ST->getNumElements();
- EltTy = *ST->element_begin();
- } else {
- N = cast<ArrayType>(T)->getNumElements();
- EltTy = cast<ArrayType>(T)->getElementType();
- }
- if (!isValidElementType(EltTy))
- return 0;
- uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
- if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
- return 0;
- if (ST) {
- // Check that struct is homogeneous.
- for (const auto *Ty : ST->elements())
- if (Ty != EltTy)
- return 0;
- }
- return N;
- }
- bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const {
- Instruction *E0 = cast<Instruction>(OpValue);
- assert(E0->getOpcode() == Instruction::ExtractElement ||
- E0->getOpcode() == Instruction::ExtractValue);
- assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *Vec = E0->getOperand(0);
- // We have to extract from a vector/aggregate with the same number of elements.
- unsigned NElts;
- if (E0->getOpcode() == Instruction::ExtractValue) {
- const DataLayout &DL = E0->getModule()->getDataLayout();
- NElts = canMapToVector(Vec->getType(), DL);
- if (!NElts)
- return false;
- // Check if load can be rewritten as load of vector.
- LoadInst *LI = dyn_cast<LoadInst>(Vec);
- if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
- return false;
- } else {
- NElts = Vec->getType()->getVectorNumElements();
- }
- if (NElts != VL.size())
- return false;
- // Check that all of the indices extract from the correct offset.
- for (unsigned I = 0, E = VL.size(); I < E; ++I) {
- Instruction *Inst = cast<Instruction>(VL[I]);
- if (!matchExtractIndex(Inst, I, Inst->getOpcode()))
- return false;
- if (Inst->getOperand(0) != Vec)
- return false;
- }
- return true;
- }
- bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
- return I->hasOneUse() ||
- std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
- return ScalarToTreeEntry.count(U) > 0;
- });
- }
- int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
- ScalarTy = CI->getOperand(0)->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // If we have computed a smaller type for the expression, update VecTy so
- // that the costs will be accurate.
- if (MinBWs.count(VL[0]))
- VecTy = VectorType::get(
- IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) {
- Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
- if (ShuffleKind.hasValue()) {
- int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
- for (auto *V : VL) {
- // If all users of instruction are going to be vectorized and this
- // instruction itself is not going to be vectorized, consider this
- // instruction as dead and remove its cost from the final cost of the
- // vectorized tree.
- if (areAllUsersVectorized(cast<Instruction>(V)) &&
- !ScalarToTreeEntry.count(V)) {
- auto *IO = cast<ConstantInt>(
- cast<ExtractElementInst>(V)->getIndexOperand());
- Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- IO->getZExtValue());
- }
- }
- return Cost;
- }
- }
- return getGatherCost(E->Scalars);
- }
- InstructionsState S = getSameOpcode(VL);
- assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
- Instruction *VL0 = cast<Instruction>(S.OpValue);
- unsigned ShuffleOrOp = S.IsAltShuffle ?
- (unsigned) Instruction::ShuffleVector : S.Opcode;
- switch (ShuffleOrOp) {
- case Instruction::PHI:
- return 0;
- case Instruction::ExtractValue:
- case Instruction::ExtractElement:
- if (canReuseExtract(VL, S.OpValue)) {
- int DeadCost = 0;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Instruction *E = cast<Instruction>(VL[i]);
- // If all users are going to be vectorized, instruction can be
- // considered as dead.
- // The same, if have only one user, it will be vectorized for sure.
- if (areAllUsersVectorized(E))
- // Take credit for instruction that will become dead.
- DeadCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
- }
- return -DeadCost;
- }
- return getGatherCost(VecTy);
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy, VL0);
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select: {
- // Calculate the cost of this instruction.
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- int ScalarCost = VecTy->getNumElements() *
- TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
- int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0);
- return VecCost - ScalarCost;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_None;
- // If all operands are exactly the same ConstantInt then set the
- // operand kind to OK_UniformConstantValue.
- // If instead not all operands are constants, then set the operand kind
- // to OK_AnyValue. If all operands are constants but not the same,
- // then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt = nullptr;
- for (unsigned i = 0; i < VL.size(); ++i) {
- const Instruction *I = cast<Instruction>(VL[i]);
- if (!isa<ConstantInt>(I->getOperand(1))) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- break;
- }
- if (i == 0) {
- CInt = cast<ConstantInt>(I->getOperand(1));
- continue;
- }
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
- CInt != cast<ConstantInt>(I->getOperand(1)))
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- }
- // FIXME: Currently cost of model modification for division by power of
- // 2 is handled for X86 and AArch64. Add support for other targets.
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
- CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- SmallVector<const Value *, 4> Operands(VL0->operand_values());
- int ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
- Op2VP, Operands);
- int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK,
- Op1VP, Op2VP, Operands);
- return VecCost - ScalarCost;
- }
- case Instruction::GetElementPtr: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- int ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
- int VecCost =
- TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
- return VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
- VecTy, alignment, 0, VL0);
- return VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
- VecTy, alignment, 0, VL0);
- return VecStCost - ScalarStCost;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- // Calculate the cost of the scalar and vector calls.
- SmallVector<Type*, 4> ScalarTys;
- for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
- ScalarTys.push_back(CI->getArgOperand(op)->getType());
- FastMathFlags FMF;
- if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
- FMF = FPMO->getFastMathFlags();
- int ScalarCallCost = VecTy->getNumElements() *
- TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
- SmallVector<Value *, 4> Args(CI->arg_operands());
- int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
- VecTy->getNumElements());
- DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
- << " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *CI << "\n");
- return VecCallCost - ScalarCallCost;
- }
- case Instruction::ShuffleVector: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_AnyValue;
- int ScalarCost = 0;
- int VecCost = 0;
- for (Value *i : VL) {
- Instruction *I = cast<Instruction>(i);
- if (!I)
- break;
- ScalarCost +=
- TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
- }
- // VecCost is equal to sum of the cost of creating 2 vectors
- // and the cost of creating shuffle.
- Instruction *I0 = cast<Instruction>(VL[0]);
- VecCost =
- TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
- Instruction *I1 = cast<Instruction>(VL[1]);
- VecCost +=
- TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
- VecCost +=
- TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
- return VecCost - ScalarCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
- }
- bool BoUpSLP::isFullyVectorizableTinyTree() {
- DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
- VectorizableTree.size() << " is fully vectorizable .\n");
- // We only handle trees of heights 1 and 2.
- if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
- return true;
- if (VectorizableTree.size() != 2)
- return false;
- // Handle splat and all-constants stores.
- if (!VectorizableTree[0].NeedToGather &&
- (allConstant(VectorizableTree[1].Scalars) ||
- isSplat(VectorizableTree[1].Scalars)))
- return true;
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
- return false;
- return true;
- }
- bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
- // We can vectorize the tree if its size is greater than or equal to the
- // minimum size specified by the MinTreeSize command line option.
- if (VectorizableTree.size() >= MinTreeSize)
- return false;
- // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
- // can vectorize it if we can prove it fully vectorizable.
- if (isFullyVectorizableTinyTree())
- return false;
- assert(VectorizableTree.empty()
- ? ExternalUses.empty()
- : true && "We shouldn't have any external users");
- // Otherwise, we can't vectorize the tree. It is both tiny and not fully
- // vectorizable.
- return true;
- }
- int BoUpSLP::getSpillCost() {
- // Walk from the bottom of the tree to the top, tracking which values are
- // live. When we see a call instruction that is not part of our tree,
- // query TTI to see if there is a cost to keeping values live over it
- // (for example, if spills and fills are required).
- unsigned BundleWidth = VectorizableTree.front().Scalars.size();
- int Cost = 0;
- SmallPtrSet<Instruction*, 4> LiveValues;
- Instruction *PrevInst = nullptr;
- for (const auto &N : VectorizableTree) {
- Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
- if (!Inst)
- continue;
- if (!PrevInst) {
- PrevInst = Inst;
- continue;
- }
- // Update LiveValues.
- LiveValues.erase(PrevInst);
- for (auto &J : PrevInst->operands()) {
- if (isa<Instruction>(&*J) && getTreeEntry(&*J))
- LiveValues.insert(cast<Instruction>(&*J));
- }
- DEBUG(
- dbgs() << "SLP: #LV: " << LiveValues.size();
- for (auto *X : LiveValues)
- dbgs() << " " << X->getName();
- dbgs() << ", Looking at ";
- Inst->dump();
- );
- // Now find the sequence of instructions between PrevInst and Inst.
- BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
- PrevInstIt =
- PrevInst->getIterator().getReverse();
- while (InstIt != PrevInstIt) {
- if (PrevInstIt == PrevInst->getParent()->rend()) {
- PrevInstIt = Inst->getParent()->rbegin();
- continue;
- }
- if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
- SmallVector<Type*, 4> V;
- for (auto *II : LiveValues)
- V.push_back(VectorType::get(II->getType(), BundleWidth));
- Cost += TTI->getCostOfKeepingLiveOverCall(V);
- }
- ++PrevInstIt;
- }
- PrevInst = Inst;
- }
- return Cost;
- }
- int BoUpSLP::getTreeCost() {
- int Cost = 0;
- DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
- VectorizableTree.size() << ".\n");
- unsigned BundleWidth = VectorizableTree[0].Scalars.size();
- for (TreeEntry &TE : VectorizableTree) {
- int C = getEntryCost(&TE);
- DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
- << *TE.Scalars[0] << ".\n");
- Cost += C;
- }
- SmallSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (ExternalUser &EU : ExternalUses) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(EU.Scalar).second)
- continue;
- // Uses by ephemeral values are free (because the ephemeral value will be
- // removed prior to code generation, and so the extraction will be
- // removed as well).
- if (EphValues.count(EU.User))
- continue;
- // If we plan to rewrite the tree in a smaller type, we will need to sign
- // extend the extracted value back to the original type. Here, we account
- // for the extract and the added cost of the sign extend if needed.
- auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto Extend =
- MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
- VecTy = VectorType::get(MinTy, BundleWidth);
- ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
- VecTy, EU.Lane);
- } else {
- ExtractCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
- }
- }
- int SpillCost = getSpillCost();
- Cost += SpillCost + ExtractCost;
- std::string Str;
- {
- raw_string_ostream OS(Str);
- OS << "SLP: Spill Cost = " << SpillCost << ".\n"
- << "SLP: Extract Cost = " << ExtractCost << ".\n"
- << "SLP: Total Cost = " << Cost << ".\n";
- }
- DEBUG(dbgs() << Str);
- if (ViewSLPTree)
- ViewGraph(this, "SLP" + F->getName(), false, Str);
- return Cost;
- }
- int BoUpSLP::getGatherCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
- }
- int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getGatherCost(VecTy);
- }
- // Reorder commutative operations in alternate shuffle if the resulting vectors
- // are consecutive loads. This would allow us to vectorize the tree.
- // If we have something like-
- // load a[0] - load b[0]
- // load b[1] + load a[1]
- // load a[2] - load b[2]
- // load a[3] + load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize this
- // code.
- void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- // Push left and right operands of binary operation into Left and Right
- unsigned AltOpcode = getAltOpcode(Opcode);
- (void)AltOpcode;
- for (Value *V : VL) {
- auto *I = cast<Instruction>(V);
- assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) &&
- "Incorrect instruction in vector");
- Left.push_back(I->getOperand(0));
- Right.push_back(I->getOperand(1));
- }
- // Reorder if we have a commutative operation and consecutive access
- // are on either side of the alternate instructions.
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (VL2->isCommutative() &&
- isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (VL2->isCommutative() &&
- isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- }
- }
- // Return true if I should be commuted before adding it's left and right
- // operands to the arrays Left and Right.
- //
- // The vectorizer is trying to either have all elements one side being
- // instruction with the same opcode to enable further vectorization, or having
- // a splat to lower the vectorizing cost.
- static bool shouldReorderOperands(
- int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
- ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
- bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
- VLeft = I.getOperand(0);
- VRight = I.getOperand(1);
- // If we have "SplatRight", try to see if commuting is needed to preserve it.
- if (SplatRight) {
- if (VRight == Right[i - 1])
- // Preserve SplatRight
- return false;
- if (VLeft == Right[i - 1]) {
- // Commuting would preserve SplatRight, but we don't want to break
- // SplatLeft either, i.e. preserve the original order if possible.
- // (FIXME: why do we care?)
- if (SplatLeft && VLeft == Left[i - 1])
- return false;
- return true;
- }
- }
- // Symmetrically handle Right side.
- if (SplatLeft) {
- if (VLeft == Left[i - 1])
- // Preserve SplatLeft
- return false;
- if (VRight == Left[i - 1])
- return true;
- }
- Instruction *ILeft = dyn_cast<Instruction>(VLeft);
- Instruction *IRight = dyn_cast<Instruction>(VRight);
- // If we have "AllSameOpcodeRight", try to see if the left operands preserves
- // it and not the right, in this case we want to commute.
- if (AllSameOpcodeRight) {
- unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
- if (IRight && RightPrevOpcode == IRight->getOpcode())
- // Do not commute, a match on the right preserves AllSameOpcodeRight
- return false;
- if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
- // We have a match and may want to commute, but first check if there is
- // not also a match on the existing operands on the Left to preserve
- // AllSameOpcodeLeft, i.e. preserve the original order if possible.
- // (FIXME: why do we care?)
- if (AllSameOpcodeLeft && ILeft &&
- cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
- return false;
- return true;
- }
- }
- // Symmetrically handle Left side.
- if (AllSameOpcodeLeft) {
- unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
- if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
- return false;
- if (IRight && LeftPrevOpcode == IRight->getOpcode())
- return true;
- }
- return false;
- }
- void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
- ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- if (!VL.empty()) {
- // Peel the first iteration out of the loop since there's nothing
- // interesting to do anyway and it simplifies the checks in the loop.
- auto *I = cast<Instruction>(VL[0]);
- Value *VLeft = I->getOperand(0);
- Value *VRight = I->getOperand(1);
- if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
- // Favor having instruction to the right. FIXME: why?
- std::swap(VLeft, VRight);
- Left.push_back(VLeft);
- Right.push_back(VRight);
- }
- // Keep track if we have instructions with all the same opcode on one side.
- bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
- bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
- // Keep track if we have one side with all the same value (broadcast).
- bool SplatLeft = true;
- bool SplatRight = true;
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- Instruction *I = cast<Instruction>(VL[i]);
- assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
- (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
- "Can only process commutative instruction");
- // Commute to favor either a splat or maximizing having the same opcodes on
- // one side.
- Value *VLeft;
- Value *VRight;
- if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
- AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
- VRight)) {
- Left.push_back(VRight);
- Right.push_back(VLeft);
- } else {
- Left.push_back(VLeft);
- Right.push_back(VRight);
- }
- // Update Splat* and AllSameOpcode* after the insertion.
- SplatRight = SplatRight && (Right[i - 1] == Right[i]);
- SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
- AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
- (cast<Instruction>(Left[i - 1])->getOpcode() ==
- cast<Instruction>(Left[i])->getOpcode());
- AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
- (cast<Instruction>(Right[i - 1])->getOpcode() ==
- cast<Instruction>(Right[i])->getOpcode());
- }
- // If one operand end up being broadcast, return this operand order.
- if (SplatRight || SplatLeft)
- return;
- // Finally check if we can get longer vectorizable chain by reordering
- // without breaking the good operand order detected above.
- // E.g. If we have something like-
- // load a[0] load b[0]
- // load b[1] load a[1]
- // load a[2] load b[2]
- // load a[3] load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize
- // this code and we still retain AllSameOpcode property.
- // FIXME: This load reordering might break AllSameOpcode in some rare cases
- // such as-
- // add a[0],c[0] load b[0]
- // add a[1],c[2] load b[1]
- // b[2] load b[2]
- // add a[3],c[3] load b[3]
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- if (isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- if (isConsecutiveAccess(L, L1, *DL, *SE)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- // else unchanged
- }
- }
- void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) {
- // Get the basic block this bundle is in. All instructions in the bundle
- // should be in this block.
- auto *Front = cast<Instruction>(OpValue);
- auto *BB = Front->getParent();
- const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode();
- const unsigned AltOpcode = getAltOpcode(Opcode);
- assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
- return !sameOpcodeOrAlt(Opcode, AltOpcode,
- cast<Instruction>(V)->getOpcode()) ||
- cast<Instruction>(V)->getParent() == BB;
- }));
- // The last instruction in the bundle in program order.
- Instruction *LastInst = nullptr;
- // Find the last instruction. The common case should be that BB has been
- // scheduled, and the last instruction is VL.back(). So we start with
- // VL.back() and iterate over schedule data until we reach the end of the
- // bundle. The end of the bundle is marked by null ScheduleData.
- if (BlocksSchedules.count(BB)) {
- auto *Bundle =
- BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back()));
- if (Bundle && Bundle->isPartOfBundle())
- for (; Bundle; Bundle = Bundle->NextInBundle)
- if (Bundle->OpValue == Bundle->Inst)
- LastInst = Bundle->Inst;
- }
- // LastInst can still be null at this point if there's either not an entry
- // for BB in BlocksSchedules or there's no ScheduleData available for
- // VL.back(). This can be the case if buildTree_rec aborts for various
- // reasons (e.g., the maximum recursion depth is reached, the maximum region
- // size is reached, etc.). ScheduleData is initialized in the scheduling
- // "dry-run".
- //
- // If this happens, we can still find the last instruction by brute force. We
- // iterate forwards from Front (inclusive) until we either see all
- // instructions in the bundle or reach the end of the block. If Front is the
- // last instruction in program order, LastInst will be set to Front, and we
- // will visit all the remaining instructions in the block.
- //
- // One of the reasons we exit early from buildTree_rec is to place an upper
- // bound on compile-time. Thus, taking an additional compile-time hit here is
- // not ideal. However, this should be exceedingly rare since it requires that
- // we both exit early from buildTree_rec and that the bundle be out-of-order
- // (causing us to iterate all the way to the end of the block).
- if (!LastInst) {
- SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
- for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
- if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode()))
- LastInst = &I;
- if (Bundle.empty())
- break;
- }
- }
- // Set the insertion point after the last instruction in the bundle. Set the
- // debug location to Front.
- Builder.SetInsertPoint(BB, ++LastInst->getIterator());
- Builder.SetCurrentDebugLocation(Front->getDebugLoc());
- }
- Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
- // Add to our 'need-to-extract' list.
- if (TreeEntry *E = getTreeEntry(VL[i])) {
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
- return Vec;
- }
- Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const {
- if (const TreeEntry *En = getTreeEntry(OpValue)) {
- if (En->isSame(VL) && En->VectorizedValue)
- return En->VectorizedValue;
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int OpdNum, int UserIndx) {
- InstructionsState S = getSameOpcode(VL);
- if (S.Opcode) {
- if (TreeEntry *E = getTreeEntry(S.OpValue)) {
- TreeEntry *UserTreeEntry = nullptr;
- if (UserIndx != -1)
- UserTreeEntry = &VectorizableTree[UserIndx];
- if (E->isSame(VL) ||
- (UserTreeEntry &&
- (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() &&
- !UserTreeEntry->ShuffleMask[OpdNum].empty() &&
- E->isFoundJumbled(VL, *DL, *SE)))
- return vectorizeTree(E, OpdNum, UserIndx);
- }
- }
- Type *ScalarTy = S.OpValue->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- return Gather(VL, VecTy);
- }
- Value *BoUpSLP::vectorizeTree(TreeEntry *E, int OpdNum, int UserIndx) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
- TreeEntry *UserTreeEntry = nullptr;
- if (E->VectorizedValue) {
- DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
- InstructionsState S = getSameOpcode(E->Scalars);
- Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars, VL0);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- assert(ScalarToTreeEntry.count(E->Scalars[0]) &&
- "Expected user tree entry, missing!");
- int CurrIndx = ScalarToTreeEntry[E->Scalars[0]];
- unsigned ShuffleOrOp = S.IsAltShuffle ?
- (unsigned) Instruction::ShuffleVector : S.Opcode;
- switch (ShuffleOrOp) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- E->VectorizedValue = NewPhi;
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallSet<BasicBlock*, 4> VisitedBBs;
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB).second) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
- // Prepare the operand vector.
- for (Value *V : E->Scalars)
- Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(Operands, i, CurrIndx);
- NewPhi->addIncoming(Vec, IBB);
- }
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return NewPhi;
- }
- case Instruction::ExtractElement: {
- if (canReuseExtract(E->Scalars, VL0)) {
- Value *V = VL0->getOperand(0);
- E->VectorizedValue = V;
- return V;
- }
- setInsertPointAfterBundle(E->Scalars, VL0);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ExtractValue: {
- if (canReuseExtract(E->Scalars, VL0)) {
- LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
- Builder.SetInsertPoint(LI);
- PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
- Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
- LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
- E->VectorizedValue = V;
- return propagateMetadata(V, E->Scalars);
- }
- setInsertPointAfterBundle(E->Scalars, VL0);
- auto *V = Gather(E->Scalars, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (Value *V : E->Scalars)
- INVL.push_back(cast<Instruction>(V)->getOperand(0));
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *InVec = vectorizeTree(INVL, 0, CurrIndx);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- ValueList LHSV, RHSV;
- for (Value *V : E->Scalars) {
- LHSV.push_back(cast<Instruction>(V)->getOperand(0));
- RHSV.push_back(cast<Instruction>(V)->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *L = vectorizeTree(LHSV, 0, CurrIndx);
- Value *R = vectorizeTree(RHSV, 1, CurrIndx);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (S.Opcode == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Select: {
- ValueList TrueVec, FalseVec, CondVec;
- for (Value *V : E->Scalars) {
- CondVec.push_back(cast<Instruction>(V)->getOperand(0));
- TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
- FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
- }
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *Cond = vectorizeTree(CondVec, 0, CurrIndx);
- Value *True = vectorizeTree(TrueVec, 1, CurrIndx);
- Value *False = vectorizeTree(FalseVec, 2, CurrIndx);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- Value *V = Builder.CreateSelect(Cond, True, False);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
- reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL,
- RHSVL);
- else
- for (Value *V : E->Scalars) {
- auto *I = cast<Instruction>(V);
- LHSVL.push_back(I->getOperand(0));
- RHSVL.push_back(I->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx);
- Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- Value *V = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- setInsertPointAfterBundle(E->Scalars, VL0);
- if (UserIndx != -1)
- UserTreeEntry = &VectorizableTree[UserIndx];
- bool isJumbled = false;
- LoadInst *LI = NULL;
- if (UserTreeEntry &&
- (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() &&
- !UserTreeEntry->ShuffleMask[OpdNum].empty()) {
- isJumbled = true;
- LI = cast<LoadInst>(E->Scalars[0]);
- } else {
- LI = cast<LoadInst>(VL0);
- }
- Type *ScalarLoadTy = LI->getType();
- unsigned AS = LI->getPointerAddressSpace();
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- Value *PO = LI->getPointerOperand();
- if (getTreeEntry(PO))
- ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecPtr);
- if (!Alignment) {
- Alignment = DL->getABITypeAlignment(ScalarLoadTy);
- }
- LI->setAlignment(Alignment);
- E->VectorizedValue = LI;
- ++NumVectorInstructions;
- propagateMetadata(LI, E->Scalars);
- if (isJumbled) {
- SmallVector<Constant *, 8> Mask;
- for (unsigned LaneEntry : UserTreeEntry->ShuffleMask[OpdNum])
- Mask.push_back(Builder.getInt32(LaneEntry));
- // Generate shuffle for jumbled memory access
- Value *Undef = UndefValue::get(VecTy);
- Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef,
- ConstantVector::get(Mask));
- E->VectorizedValue = Shuf;
- ++NumVectorInstructions;
- return Shuf;
- }
- return LI;
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
- ValueList ScalarStoreValues;
- for (Value *V : E->Scalars)
- ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand());
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *VecValue = vectorizeTree(ScalarStoreValues, 0, CurrIndx);
- Value *ScalarPtr = SI->getPointerOperand();
- Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
- StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
- // The pointer operand uses an in-tree scalar, so add the new BitCast to
- // ExternalUses to make sure that an extract will be generated in the
- // future.
- if (getTreeEntry(ScalarPtr))
- ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
- S->setAlignment(Alignment);
- E->VectorizedValue = S;
- ++NumVectorInstructions;
- return propagateMetadata(S, E->Scalars);
- }
- case Instruction::GetElementPtr: {
- setInsertPointAfterBundle(E->Scalars, VL0);
- ValueList Op0VL;
- for (Value *V : E->Scalars)
- Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
- Value *Op0 = vectorizeTree(Op0VL, 0, CurrIndx);
- std::vector<Value *> OpVecs;
- for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
- ++j) {
- ValueList OpVL;
- for (Value *V : E->Scalars)
- OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
- Value *OpVec = vectorizeTree(OpVL, j, CurrIndx);
- OpVecs.push_back(OpVec);
- }
- Value *V = Builder.CreateGEP(
- cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- setInsertPointAfterBundle(E->Scalars, VL0);
- Function *FI;
- Intrinsic::ID IID = Intrinsic::not_intrinsic;
- Value *ScalarArg = nullptr;
- if (CI && (FI = CI->getCalledFunction())) {
- IID = FI->getIntrinsicID();
- }
- std::vector<Value *> OpVecs;
- for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
- ValueList OpVL;
- // ctlz,cttz and powi are special intrinsics whose second argument is
- // a scalar. This argument should not be vectorized.
- if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
- CallInst *CEI = cast<CallInst>(VL0);
- ScalarArg = CEI->getArgOperand(j);
- OpVecs.push_back(CEI->getArgOperand(j));
- continue;
- }
- for (Value *V : E->Scalars) {
- CallInst *CEI = cast<CallInst>(V);
- OpVL.push_back(CEI->getArgOperand(j));
- }
- Value *OpVec = vectorizeTree(OpVL, j, CurrIndx);
- DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
- OpVecs.push_back(OpVec);
- }
- Module *M = F->getParent();
- Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
- Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
- Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
- // The scalar argument uses an in-tree scalar so we add the new vectorized
- // call to ExternalUses list to make sure that an extract will be
- // generated in the future.
- if (ScalarArg && getTreeEntry(ScalarArg))
- ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::ShuffleVector: {
- ValueList LHSVL, RHSVL;
- assert(Instruction::isBinaryOp(S.Opcode) &&
- "Invalid Shuffle Vector Operand");
- reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL);
- setInsertPointAfterBundle(E->Scalars, VL0);
- Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx);
- Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx);
- if (Value *V = alreadyVectorized(E->Scalars, VL0))
- return V;
- // Create a vector of LHS op1 RHS
- Value *V0 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
- unsigned AltOpcode = getAltOpcode(S.Opcode);
- // Create a vector of LHS op2 RHS
- Value *V1 = Builder.CreateBinOp(
- static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS);
- // Create shuffle to take alternate operations from the vector.
- // Also, gather up odd and even scalar ops to propagate IR flags to
- // each vector operation.
- ValueList OddScalars, EvenScalars;
- unsigned e = E->Scalars.size();
- SmallVector<Constant *, 8> Mask(e);
- for (unsigned i = 0; i < e; ++i) {
- if (isOdd(i)) {
- Mask[i] = Builder.getInt32(e + i);
- OddScalars.push_back(E->Scalars[i]);
- } else {
- Mask[i] = Builder.getInt32(i);
- EvenScalars.push_back(E->Scalars[i]);
- }
- }
- Value *ShuffleMask = ConstantVector::get(Mask);
- propagateIRFlags(V0, EvenScalars);
- propagateIRFlags(V1, OddScalars);
- Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree() {
- ExtraValueToDebugLocsMap ExternallyUsedValues;
- return vectorizeTree(ExternallyUsedValues);
- }
- Value *
- BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
- // All blocks must be scheduled before any instructions are inserted.
- for (auto &BSIter : BlocksSchedules) {
- scheduleBlock(BSIter.second.get());
- }
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
- // If the vectorized tree can be rewritten in a smaller type, we truncate the
- // vectorized root. InstCombine will then rewrite the entire expression. We
- // sign extend the extracted values below.
- auto *ScalarRoot = VectorizableTree[0].Scalars[0];
- if (MinBWs.count(ScalarRoot)) {
- if (auto *I = dyn_cast<Instruction>(VectorRoot))
- Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
- auto BundleWidth = VectorizableTree[0].Scalars.size();
- auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
- auto *VecTy = VectorType::get(MinTy, BundleWidth);
- auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
- VectorizableTree[0].VectorizedValue = Trunc;
- }
- DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
- // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
- // specified by ScalarType.
- auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
- if (!MinBWs.count(ScalarRoot))
- return Ex;
- if (MinBWs[ScalarRoot].second)
- return Builder.CreateSExt(Ex, ScalarType);
- return Builder.CreateZExt(Ex, ScalarType);
- };
- // Extract all of the elements with the external uses.
- for (const auto &ExternalUse : ExternalUses) {
- Value *Scalar = ExternalUse.Scalar;
- llvm::User *User = ExternalUse.User;
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (User && !is_contained(Scalar->users(), User))
- continue;
- TreeEntry *E = getTreeEntry(Scalar);
- assert(E && "Invalid scalar");
- assert((!E->NeedToGather) && "Extracting from a gather list");
- Value *Vec = dyn_cast<ShuffleVectorInst>(E->VectorizedValue);
- if (Vec && dyn_cast<LoadInst>(cast<Instruction>(Vec)->getOperand(0))) {
- Vec = cast<Instruction>(E->VectorizedValue)->getOperand(0);
- } else {
- Vec = E->VectorizedValue;
- }
- assert(Vec && "Can't find vectorizable value");
- Value *Lane = Builder.getInt32(ExternalUse.Lane);
- // If User == nullptr, the Scalar is used as extra arg. Generate
- // ExtractElement instruction and update the record for this scalar in
- // ExternallyUsedValues.
- if (!User) {
- assert(ExternallyUsedValues.count(Scalar) &&
- "Scalar with nullptr as an external user must be registered in "
- "ExternallyUsedValues map");
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
- auto &Locs = ExternallyUsedValues[Scalar];
- ExternallyUsedValues.insert({Ex, Locs});
- ExternallyUsedValues.erase(Scalar);
- continue;
- }
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (auto *VecI = dyn_cast<Instruction>(Vec)) {
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- TerminatorInst *IncomingTerminator =
- PH->getIncomingBlock(i)->getTerminator();
- if (isa<CatchSwitchInst>(IncomingTerminator)) {
- Builder.SetInsertPoint(VecI->getParent(),
- std::next(VecI->getIterator()));
- } else {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- }
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(&F->getEntryBlock().front());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- Ex = extend(ScalarRoot, Ex, Scalar->getType());
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
- // For each vectorized value:
- for (TreeEntry &EIdx : VectorizableTree) {
- TreeEntry *Entry = &EIdx;
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
- #ifndef NDEBUG
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
- // It is legal to replace users in the ignorelist by undef.
- assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
- "Replacing out-of-tree value with undef");
- }
- #endif
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- eraseInstruction(cast<Instruction>(Scalar));
- }
- }
- Builder.ClearInsertionPoint();
- return VectorizableTree[0].VectorizedValue;
- }
- void BoUpSLP::optimizeGatherSequence(Function &F) {
- DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (Instruction *it : GatherSeq) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
- if (!Insert)
- continue;
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(Insert->getParent());
- if (!L)
- continue;
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
- Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
- if (CurrVec && L->contains(CurrVec))
- continue;
- if (NewElem && L->contains(NewElem))
- continue;
- // We can hoist this instruction. Move it to the pre-header.
- Insert->moveBefore(PreHeader->getTerminator());
- }
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- ReversePostOrderTraversal<Function *> RPOT(&F);
- for (auto BB : RPOT) {
- // Traverse CSEBlocks by RPOT order.
- if (!CSEBlocks.count(BB))
- continue;
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = &*it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (Instruction *v : Visited) {
- if (In->isIdenticalTo(v) &&
- DT->dominates(v->getParent(), In->getParent())) {
- In->replaceAllUsesWith(v);
- eraseInstruction(In);
- In = nullptr;
- break;
- }
- }
- if (In) {
- assert(!is_contained(Visited, In));
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
- }
- // Groups the instructions to a bundle (which is then a single scheduling entity)
- // and schedules instructions until the bundle gets ready.
- bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
- BoUpSLP *SLP, Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return true;
- // Initialize the instruction bundle.
- Instruction *OldScheduleEnd = ScheduleEnd;
- ScheduleData *PrevInBundle = nullptr;
- ScheduleData *Bundle = nullptr;
- bool ReSchedule = false;
- DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n");
- // Make sure that the scheduling region contains all
- // instructions of the bundle.
- for (Value *V : VL) {
- if (!extendSchedulingRegion(V, OpValue))
- return false;
- }
- for (Value *V : VL) {
- ScheduleData *BundleMember = getScheduleData(V);
- assert(BundleMember &&
- "no ScheduleData for bundle member (maybe not in same basic block)");
- if (BundleMember->IsScheduled) {
- // A bundle member was scheduled as single instruction before and now
- // needs to be scheduled as part of the bundle. We just get rid of the
- // existing schedule.
- DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
- << " was already scheduled\n");
- ReSchedule = true;
- }
- assert(BundleMember->isSchedulingEntity() &&
- "bundle member already part of other bundle");
- if (PrevInBundle) {
- PrevInBundle->NextInBundle = BundleMember;
- } else {
- Bundle = BundleMember;
- }
- BundleMember->UnscheduledDepsInBundle = 0;
- Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
- // Group the instructions to a bundle.
- BundleMember->FirstInBundle = Bundle;
- PrevInBundle = BundleMember;
- }
- if (ScheduleEnd != OldScheduleEnd) {
- // The scheduling region got new instructions at the lower end (or it is a
- // new region for the first bundle). This makes it necessary to
- // recalculate all dependencies.
- // It is seldom that this needs to be done a second time after adding the
- // initial bundle to the region.
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [](ScheduleData *SD) {
- SD->clearDependencies();
- });
- }
- ReSchedule = true;
- }
- if (ReSchedule) {
- resetSchedule();
- initialFillReadyList(ReadyInsts);
- }
- DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
- << BB->getName() << "\n");
- calculateDependencies(Bundle, true, SLP);
- // Now try to schedule the new bundle. As soon as the bundle is "ready" it
- // means that there are no cyclic dependencies and we can schedule it.
- // Note that's important that we don't "schedule" the bundle yet (see
- // cancelScheduling).
- while (!Bundle->isReady() && !ReadyInsts.empty()) {
- ScheduleData *pickedSD = ReadyInsts.back();
- ReadyInsts.pop_back();
- if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
- schedule(pickedSD, ReadyInsts);
- }
- }
- if (!Bundle->isReady()) {
- cancelScheduling(VL, OpValue);
- return false;
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
- Value *OpValue) {
- if (isa<PHINode>(OpValue))
- return;
- ScheduleData *Bundle = getScheduleData(OpValue);
- DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
- assert(!Bundle->IsScheduled &&
- "Can't cancel bundle which is already scheduled");
- assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
- "tried to unbundle something which is not a bundle");
- // Un-bundle: make single instructions out of the bundle.
- ScheduleData *BundleMember = Bundle;
- while (BundleMember) {
- assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
- BundleMember->FirstInBundle = BundleMember;
- ScheduleData *Next = BundleMember->NextInBundle;
- BundleMember->NextInBundle = nullptr;
- BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
- if (BundleMember->UnscheduledDepsInBundle == 0) {
- ReadyInsts.insert(BundleMember);
- }
- BundleMember = Next;
- }
- }
- BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
- // Allocate a new ScheduleData for the instruction.
- if (ChunkPos >= ChunkSize) {
- ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
- ChunkPos = 0;
- }
- return &(ScheduleDataChunks.back()[ChunkPos++]);
- }
- bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
- Value *OpValue) {
- if (getScheduleData(V, isOneOf(OpValue, V)))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- assert(I && "bundle member must be an instruction");
- assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
- auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool {
- ScheduleData *ISD = getScheduleData(I);
- if (!ISD)
- return false;
- assert(isInSchedulingRegion(ISD) &&
- "ScheduleData not in scheduling region");
- ScheduleData *SD = allocateScheduleDataChunks();
- SD->Inst = I;
- SD->init(SchedulingRegionID, OpValue);
- ExtraScheduleDataMap[I][OpValue] = SD;
- return true;
- };
- if (CheckSheduleForI(I))
- return true;
- if (!ScheduleStart) {
- // It's the first instruction in the new region.
- initScheduleData(I, I->getNextNode(), nullptr, nullptr);
- ScheduleStart = I;
- ScheduleEnd = I->getNextNode();
- if (isOneOf(OpValue, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
- return true;
- }
- // Search up and down at the same time, because we don't know if the new
- // instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter =
- ++ScheduleStart->getIterator().getReverse();
- BasicBlock::reverse_iterator UpperEnd = BB->rend();
- BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
- BasicBlock::iterator LowerEnd = BB->end();
- while (true) {
- if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
- DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
- return false;
- }
- if (UpIter != UpperEnd) {
- if (&*UpIter == I) {
- initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
- ScheduleStart = I;
- if (isOneOf(OpValue, I) != I)
- CheckSheduleForI(I);
- DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
- return true;
- }
- UpIter++;
- }
- if (DownIter != LowerEnd) {
- if (&*DownIter == I) {
- initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
- nullptr);
- ScheduleEnd = I->getNextNode();
- if (isOneOf(OpValue, I) != I)
- CheckSheduleForI(I);
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
- return true;
- }
- DownIter++;
- }
- assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
- "instruction not found in block");
- }
- return true;
- }
- void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
- Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore) {
- ScheduleData *CurrentLoadStore = PrevLoadStore;
- for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
- ScheduleData *SD = ScheduleDataMap[I];
- if (!SD) {
- SD = allocateScheduleDataChunks();
- ScheduleDataMap[I] = SD;
- SD->Inst = I;
- }
- assert(!isInSchedulingRegion(SD) &&
- "new ScheduleData already in scheduling region");
- SD->init(SchedulingRegionID, I);
- if (I->mayReadOrWriteMemory() &&
- (!isa<IntrinsicInst>(I) ||
- cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
- // Update the linked list of memory accessing instructions.
- if (CurrentLoadStore) {
- CurrentLoadStore->NextLoadStore = SD;
- } else {
- FirstLoadStoreInRegion = SD;
- }
- CurrentLoadStore = SD;
- }
- }
- if (NextLoadStore) {
- if (CurrentLoadStore)
- CurrentLoadStore->NextLoadStore = NextLoadStore;
- } else {
- LastLoadStoreInRegion = CurrentLoadStore;
- }
- }
- void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
- bool InsertInReadyList,
- BoUpSLP *SLP) {
- assert(SD->isSchedulingEntity());
- SmallVector<ScheduleData *, 10> WorkList;
- WorkList.push_back(SD);
- while (!WorkList.empty()) {
- ScheduleData *SD = WorkList.back();
- WorkList.pop_back();
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- assert(isInSchedulingRegion(BundleMember));
- if (!BundleMember->hasValidDependencies()) {
- DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
- BundleMember->Dependencies = 0;
- BundleMember->resetUnscheduledDeps();
- // Handle def-use chain dependencies.
- if (BundleMember->OpValue != BundleMember->Inst) {
- ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- for (User *U : BundleMember->Inst->users()) {
- if (isa<Instruction>(U)) {
- ScheduleData *UseSD = getScheduleData(U);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled)
- BundleMember->incrementUnscheduledDeps(1);
- if (!DestBundle->hasValidDependencies())
- WorkList.push_back(DestBundle);
- }
- } else {
- // I'm not sure if this can ever happen. But we need to be safe.
- // This lets the instruction/bundle never be scheduled and
- // eventually disable vectorization.
- BundleMember->Dependencies++;
- BundleMember->incrementUnscheduledDeps(1);
- }
- }
- }
- // Handle the memory dependencies.
- ScheduleData *DepDest = BundleMember->NextLoadStore;
- if (DepDest) {
- Instruction *SrcInst = BundleMember->Inst;
- MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
- bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
- unsigned numAliased = 0;
- unsigned DistToSrc = 1;
- while (DepDest) {
- assert(isInSchedulingRegion(DepDest));
- // We have two limits to reduce the complexity:
- // 1) AliasedCheckLimit: It's a small limit to reduce calls to
- // SLP->isAliased (which is the expensive part in this loop).
- // 2) MaxMemDepDistance: It's for very large blocks and it aborts
- // the whole loop (even if the loop is fast, it's quadratic).
- // It's important for the loop break condition (see below) to
- // check this limit even between two read-only instructions.
- if (DistToSrc >= MaxMemDepDistance ||
- ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
- (numAliased >= AliasedCheckLimit ||
- SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
- // We increment the counter only if the locations are aliased
- // (instead of counting all alias checks). This gives a better
- // balance between reduced runtime and accurate dependencies.
- numAliased++;
- DepDest->MemoryDependencies.push_back(BundleMember);
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = DepDest->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- DepDest = DepDest->NextLoadStore;
- // Example, explaining the loop break condition: Let's assume our
- // starting instruction is i0 and MaxMemDepDistance = 3.
- //
- // +--------v--v--v
- // i0,i1,i2,i3,i4,i5,i6,i7,i8
- // +--------^--^--^
- //
- // MaxMemDepDistance let us stop alias-checking at i3 and we add
- // dependencies from i0 to i3,i4,.. (even if they are not aliased).
- // Previously we already added dependencies from i3 to i6,i7,i8
- // (because of MaxMemDepDistance). As we added a dependency from
- // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
- // and we can abort this loop at i6.
- if (DistToSrc >= 2 * MaxMemDepDistance)
- break;
- DistToSrc++;
- }
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- if (InsertInReadyList && SD->isReady()) {
- ReadyInsts.push_back(SD);
- DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
- }
- }
- }
- void BoUpSLP::BlockScheduling::resetSchedule() {
- assert(ScheduleStart &&
- "tried to reset schedule on block which has not been scheduled");
- for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- doForAllOpcodes(I, [&](ScheduleData *SD) {
- assert(isInSchedulingRegion(SD) &&
- "ScheduleData not in scheduling region");
- SD->IsScheduled = false;
- SD->resetUnscheduledDeps();
- });
- }
- ReadyInsts.clear();
- }
- void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
- if (!BS->ScheduleStart)
- return;
- DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
- BS->resetSchedule();
- // For the real scheduling we use a more sophisticated ready-list: it is
- // sorted by the original instruction location. This lets the final schedule
- // be as close as possible to the original instruction order.
- struct ScheduleDataCompare {
- bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
- return SD2->SchedulingPriority < SD1->SchedulingPriority;
- }
- };
- std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
- // Ensure that all dependency data is updated and fill the ready-list with
- // initial instructions.
- int Idx = 0;
- int NumToSchedule = 0;
- for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
- I = I->getNextNode()) {
- BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
- assert(SD->isPartOfBundle() ==
- (getTreeEntry(SD->Inst) != nullptr) &&
- "scheduler and vectorizer bundle mismatch");
- SD->FirstInBundle->SchedulingPriority = Idx++;
- if (SD->isSchedulingEntity()) {
- BS->calculateDependencies(SD, false, this);
- NumToSchedule++;
- }
- });
- }
- BS->initialFillReadyList(ReadyInsts);
- Instruction *LastScheduledInst = BS->ScheduleEnd;
- // Do the "real" scheduling.
- while (!ReadyInsts.empty()) {
- ScheduleData *picked = *ReadyInsts.begin();
- ReadyInsts.erase(ReadyInsts.begin());
- // Move the scheduled instruction(s) to their dedicated places, if not
- // there yet.
- ScheduleData *BundleMember = picked;
- while (BundleMember) {
- Instruction *pickedInst = BundleMember->Inst;
- if (LastScheduledInst->getNextNode() != pickedInst) {
- BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
- pickedInst);
- }
- LastScheduledInst = pickedInst;
- BundleMember = BundleMember->NextInBundle;
- }
- BS->schedule(picked, ReadyInsts);
- NumToSchedule--;
- }
- assert(NumToSchedule == 0 && "could not schedule all instructions");
- // Avoid duplicate scheduling of the block.
- BS->ScheduleStart = nullptr;
- }
- unsigned BoUpSLP::getVectorElementSize(Value *V) {
- // If V is a store, just return the width of the stored value without
- // traversing the expression tree. This is the common case.
- if (auto *Store = dyn_cast<StoreInst>(V))
- return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
- // If V is not a store, we can traverse the expression tree to find loads
- // that feed it. The type of the loaded value may indicate a more suitable
- // width than V's type. We want to base the vector element size on the width
- // of memory operations where possible.
- SmallVector<Instruction *, 16> Worklist;
- SmallPtrSet<Instruction *, 16> Visited;
- if (auto *I = dyn_cast<Instruction>(V))
- Worklist.push_back(I);
- // Traverse the expression tree in bottom-up order looking for loads. If we
- // encounter an instruciton we don't yet handle, we give up.
- auto MaxWidth = 0u;
- auto FoundUnknownInst = false;
- while (!Worklist.empty() && !FoundUnknownInst) {
- auto *I = Worklist.pop_back_val();
- Visited.insert(I);
- // We should only be looking at scalar instructions here. If the current
- // instruction has a vector type, give up.
- auto *Ty = I->getType();
- if (isa<VectorType>(Ty))
- FoundUnknownInst = true;
- // If the current instruction is a load, update MaxWidth to reflect the
- // width of the loaded value.
- else if (isa<LoadInst>(I))
- MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
- // Otherwise, we need to visit the operands of the instruction. We only
- // handle the interesting cases from buildTree here. If an operand is an
- // instruction we haven't yet visited, we add it to the worklist.
- else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
- for (Use &U : I->operands())
- if (auto *J = dyn_cast<Instruction>(U.get()))
- if (!Visited.count(J))
- Worklist.push_back(J);
- }
- // If we don't yet handle the instruction, give up.
- else
- FoundUnknownInst = true;
- }
- // If we didn't encounter a memory access in the expression tree, or if we
- // gave up for some reason, just return the width of V.
- if (!MaxWidth || FoundUnknownInst)
- return DL->getTypeSizeInBits(V->getType());
- // Otherwise, return the maximum width we found.
- return MaxWidth;
- }
- // Determine if a value V in a vectorizable expression Expr can be demoted to a
- // smaller type with a truncation. We collect the values that will be demoted
- // in ToDemote and additional roots that require investigating in Roots.
- static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
- SmallVectorImpl<Value *> &ToDemote,
- SmallVectorImpl<Value *> &Roots) {
- // We can always demote constants.
- if (isa<Constant>(V)) {
- ToDemote.push_back(V);
- return true;
- }
- // If the value is not an instruction in the expression with only one use, it
- // cannot be demoted.
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !I->hasOneUse() || !Expr.count(I))
- return false;
- switch (I->getOpcode()) {
- // We can always demote truncations and extensions. Since truncations can
- // seed additional demotion, we save the truncated value.
- case Instruction::Trunc:
- Roots.push_back(I->getOperand(0));
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- break;
- // We can demote certain binary operations if we can demote both of their
- // operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
- return false;
- break;
- // We can demote selects if we can demote their true and false values.
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
- !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
- return false;
- break;
- }
- // We can demote phis if we can demote all their incoming operands. Note that
- // we don't need to worry about cycles since we ensure single use above.
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
- return false;
- break;
- }
- // Otherwise, conservatively give up.
- default:
- return false;
- }
- // Record the value that we can demote.
- ToDemote.push_back(V);
- return true;
- }
- void BoUpSLP::computeMinimumValueSizes() {
- // If there are no external uses, the expression tree must be rooted by a
- // store. We can't demote in-memory values, so there is nothing to do here.
- if (ExternalUses.empty())
- return;
- // We only attempt to truncate integer expressions.
- auto &TreeRoot = VectorizableTree[0].Scalars;
- auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
- if (!TreeRootIT)
- return;
- // If the expression is not rooted by a store, these roots should have
- // external uses. We will rely on InstCombine to rewrite the expression in
- // the narrower type. However, InstCombine only rewrites single-use values.
- // This means that if a tree entry other than a root is used externally, it
- // must have multiple uses and InstCombine will not rewrite it. The code
- // below ensures that only the roots are used externally.
- SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
- for (auto &EU : ExternalUses)
- if (!Expr.erase(EU.Scalar))
- return;
- if (!Expr.empty())
- return;
- // Collect the scalar values of the vectorizable expression. We will use this
- // context to determine which values can be demoted. If we see a truncation,
- // we mark it as seeding another demotion.
- for (auto &Entry : VectorizableTree)
- Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
- // Ensure the roots of the vectorizable tree don't form a cycle. They must
- // have a single external user that is not in the vectorizable tree.
- for (auto *Root : TreeRoot)
- if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
- return;
- // Conservatively determine if we can actually truncate the roots of the
- // expression. Collect the values that can be demoted in ToDemote and
- // additional roots that require investigating in Roots.
- SmallVector<Value *, 32> ToDemote;
- SmallVector<Value *, 4> Roots;
- for (auto *Root : TreeRoot)
- if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
- return;
- // The maximum bit width required to represent all the values that can be
- // demoted without loss of precision. It would be safe to truncate the roots
- // of the expression to this width.
- auto MaxBitWidth = 8u;
- // We first check if all the bits of the roots are demanded. If they're not,
- // we can truncate the roots to this narrower type.
- for (auto *Root : TreeRoot) {
- auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
- MaxBitWidth = std::max<unsigned>(
- Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
- }
- // True if the roots can be zero-extended back to their original type, rather
- // than sign-extended. We know that if the leading bits are not demanded, we
- // can safely zero-extend. So we initialize IsKnownPositive to True.
- bool IsKnownPositive = true;
- // If all the bits of the roots are demanded, we can try a little harder to
- // compute a narrower type. This can happen, for example, if the roots are
- // getelementptr indices. InstCombine promotes these indices to the pointer
- // width. Thus, all their bits are technically demanded even though the
- // address computation might be vectorized in a smaller type.
- //
- // We start by looking at each entry that can be demoted. We compute the
- // maximum bit width required to store the scalar by using ValueTracking to
- // compute the number of high-order bits we can truncate.
- if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
- MaxBitWidth = 8u;
- // Determine if the sign bit of all the roots is known to be zero. If not,
- // IsKnownPositive is set to False.
- IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
- KnownBits Known = computeKnownBits(R, *DL);
- return Known.isNonNegative();
- });
- // Determine the maximum number of bits required to store the scalar
- // values.
- for (auto *Scalar : ToDemote) {
- auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
- auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
- MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
- }
- // If we can't prove that the sign bit is zero, we must add one to the
- // maximum bit width to account for the unknown sign bit. This preserves
- // the existing sign bit so we can safely sign-extend the root back to the
- // original type. Otherwise, if we know the sign bit is zero, we will
- // zero-extend the root instead.
- //
- // FIXME: This is somewhat suboptimal, as there will be cases where adding
- // one to the maximum bit width will yield a larger-than-necessary
- // type. In general, we need to add an extra bit only if we can't
- // prove that the upper bit of the original type is equal to the
- // upper bit of the proposed smaller type. If these two bits are the
- // same (either zero or one) we know that sign-extending from the
- // smaller type will result in the same value. Here, since we can't
- // yet prove this, we are just making the proposed smaller type
- // larger to ensure correctness.
- if (!IsKnownPositive)
- ++MaxBitWidth;
- }
- // Round MaxBitWidth up to the next power-of-two.
- if (!isPowerOf2_64(MaxBitWidth))
- MaxBitWidth = NextPowerOf2(MaxBitWidth);
- // If the maximum bit width we compute is less than the with of the roots'
- // type, we can proceed with the narrowing. Otherwise, do nothing.
- if (MaxBitWidth >= TreeRootIT->getBitWidth())
- return;
- // If we can truncate the root, we must collect additional values that might
- // be demoted as a result. That is, those seeded by truncations we will
- // modify.
- while (!Roots.empty())
- collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
- // Finally, map the values we can demote to the maximum bit with we computed.
- for (auto *Scalar : ToDemote)
- MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
- }
- namespace {
- /// The SLPVectorizer Pass.
- struct SLPVectorizer : public FunctionPass {
- SLPVectorizerPass Impl;
- /// Pass identification, replacement for typeid
- static char ID;
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- return false;
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<DemandedBitsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
- };
- } // end anonymous namespace
- PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
- auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
- auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
- auto *AA = &AM.getResult<AAManager>(F);
- auto *LI = &AM.getResult<LoopAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
- auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<AAManager>();
- PA.preserve<GlobalsAA>();
- return PA;
- }
- bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
- TargetTransformInfo *TTI_,
- TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
- LoopInfo *LI_, DominatorTree *DT_,
- AssumptionCache *AC_, DemandedBits *DB_,
- OptimizationRemarkEmitter *ORE_) {
- SE = SE_;
- TTI = TTI_;
- TLI = TLI_;
- AA = AA_;
- LI = LI_;
- DT = DT_;
- AC = AC_;
- DB = DB_;
- DL = &F.getParent()->getDataLayout();
- Stores.clear();
- GEPs.clear();
- bool Changed = false;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
- DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
- // Use the bottom up slp vectorizer to construct chains that start with
- // store instructions.
- BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
- // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
- // delete instructions.
- // Scan the blocks in the function in post order.
- for (auto BB : post_order(&F.getEntryBlock())) {
- collectSeedInstructions(BB);
- // Vectorize trees that end at stores.
- if (!Stores.empty()) {
- DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
- << " underlying objects.\n");
- Changed |= vectorizeStoreChains(R);
- }
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
- // Vectorize the index computations of getelementptr instructions. This
- // is primarily intended to catch gather-like idioms ending at
- // non-consecutive loads.
- if (!GEPs.empty()) {
- DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
- << " underlying objects.\n");
- Changed |= vectorizeGEPIndices(BB, R);
- }
- }
- if (Changed) {
- R.optimizeGatherSequence(F);
- DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- DEBUG(verifyFunction(F));
- }
- return Changed;
- }
- /// \brief Check that the Values in the slice in VL array are still existent in
- /// the WeakTrackingVH array.
- /// Vectorization of part of the VL array may cause later values in the VL array
- /// to become invalid. We track when this has happened in the WeakTrackingVH
- /// array.
- static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
- ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
- unsigned SliceSize) {
- VL = VL.slice(SliceBegin, SliceSize);
- VH = VH.slice(SliceBegin, SliceSize);
- return !std::equal(VL.begin(), VL.end(), VH.begin());
- }
- bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
- unsigned VecRegSize) {
- unsigned ChainLen = Chain.size();
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- unsigned Sz = R.getVectorElementSize(Chain[0]);
- unsigned VF = VecRegSize / Sz;
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i < e; ++i) {
- if (i + VF > e)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
- R.buildTree(Operands);
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- using namespace ore;
- R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
- cast<StoreInst>(Chain[i]))
- << "Stores SLP vectorized with cost " << NV("Cost", Cost)
- << " and with tree size "
- << NV("TreeSize", R.getTreeSize()));
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
- BoUpSLP &R) {
- SetVector<StoreInst *> Heads;
- SmallDenseSet<StoreInst *> Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
- // Do a quadratic search on all of the given stores in reverse order and find
- // all of the pairs of stores that follow each other.
- SmallVector<unsigned, 16> IndexQueue;
- unsigned E = Stores.size();
- IndexQueue.resize(E - 1);
- for (unsigned I = E; I > 0; --I) {
- unsigned Idx = I - 1;
- // If a store has multiple consecutive store candidates, search Stores
- // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
- // This is because usually pairing with immediate succeeding or preceding
- // candidate create the best chance to find slp vectorization opportunity.
- unsigned Offset = 1;
- unsigned Cnt = 0;
- for (unsigned J = 0; J < E - 1; ++J, ++Offset) {
- if (Idx >= Offset) {
- IndexQueue[Cnt] = Idx - Offset;
- ++Cnt;
- }
- if (Idx + Offset < E) {
- IndexQueue[Cnt] = Idx + Offset;
- ++Cnt;
- }
- }
- for (auto K : IndexQueue) {
- if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) {
- Tails.insert(Stores[Idx]);
- Heads.insert(Stores[K]);
- ConsecutiveChain[Stores[K]] = Stores[Idx];
- break;
- }
- }
- }
- // For stores that start but don't end a link in the chain:
- for (auto *SI : llvm::reverse(Heads)) {
- if (Tails.count(SI))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- StoreInst *I = SI;
- // Collect the chain into a list.
- while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- // FIXME: Is division-by-2 the correct step? Should we assert that the
- // register size is a power-of-2?
- for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
- Size /= 2) {
- if (vectorizeStoreChain(Operands, R, Size)) {
- // Mark the vectorized stores so that we don't vectorize them again.
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed = true;
- break;
- }
- }
- }
- return Changed;
- }
- void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
- // Initialize the collections. We will make a single pass over the block.
- Stores.clear();
- GEPs.clear();
- // Visit the store and getelementptr instructions in BB and organize them in
- // Stores and GEPs according to the underlying objects of their pointer
- // operands.
- for (Instruction &I : *BB) {
- // Ignore store instructions that are volatile or have a pointer operand
- // that doesn't point to a scalar type.
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isSimple())
- continue;
- if (!isValidElementType(SI->getValueOperand()->getType()))
- continue;
- Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
- }
- // Ignore getelementptr instructions that have more than one index, a
- // constant index, or a pointer operand that doesn't point to a scalar
- // type.
- else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- auto Idx = GEP->idx_begin()->get();
- if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
- continue;
- if (!isValidElementType(Idx->getType()))
- continue;
- if (GEP->getType()->isVectorTy())
- continue;
- GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
- }
- }
- }
- bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R, None, true);
- }
- bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector,
- bool AllowReorder,
- bool NeedExtraction) {
- if (VL.size() < 2)
- return false;
- DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()
- << ".\n");
- // Check that all of the parts are scalar instructions of the same type.
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- unsigned Opcode0 = I0->getOpcode();
- unsigned Sz = R.getVectorElementSize(I0);
- unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
- unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
- if (MaxVF < 2) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "SmallVF", I0)
- << "Cannot SLP vectorize list: vectorization factor "
- << "less than 2 is not supported";
- });
- return false;
- }
- for (Value *V : VL) {
- Type *Ty = V->getType();
- if (!isValidElementType(Ty)) {
- // NOTE: the following will give user internal llvm type name, which may not be useful
- R.getORE()->emit([&]() {
- std::string type_str;
- llvm::raw_string_ostream rso(type_str);
- Ty->print(rso);
- return OptimizationRemarkMissed(
- SV_NAME, "UnsupportedType", I0)
- << "Cannot SLP vectorize list: type "
- << rso.str() + " is unsupported by vectorizer";
- });
- return false;
- }
- Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return false;
- if (Inst->getOpcode() != Opcode0) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "InequableTypes", I0)
- << "Cannot SLP vectorize list: not all of the "
- << "parts of scalar instructions are of the same type: "
- << ore::NV("Instruction1Opcode", I0) << " and "
- << ore::NV("Instruction2Opcode", Inst);
- });
- return false;
- }
- }
- bool Changed = false;
- bool CandidateFound = false;
- int MinCost = SLPCostThreshold;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
- unsigned NextInst = 0, MaxInst = VL.size();
- for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
- VF /= 2) {
- // No actual vectorization should happen, if number of parts is the same as
- // provided vectorization factor (i.e. the scalar type is used for vector
- // code during codegen).
- auto *VecTy = VectorType::get(VL[0]->getType(), VF);
- if (TTI->getNumberOfParts(VecTy) == VF)
- continue;
- for (unsigned I = NextInst; I < MaxInst; ++I) {
- unsigned OpsWidth = 0;
- if (I + VF > MaxInst)
- OpsWidth = MaxInst - I;
- else
- OpsWidth = VF;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
- ArrayRef<Value *> EmptyArray;
- ArrayRef<Value *> BuildVectorSlice;
- if (!BuildVector.empty())
- BuildVectorSlice = BuildVector.slice(I, OpsWidth);
- R.buildTree(Ops, NeedExtraction ? EmptyArray : BuildVectorSlice);
- // TODO: check if we can allow reordering for more cases.
- if (AllowReorder && R.shouldReorder()) {
- // Conceptually, there is nothing actually preventing us from trying to
- // reorder a larger list. In fact, we do exactly this when vectorizing
- // reductions. However, at this point, we only expect to get here when
- // there are exactly two operations.
- assert(Ops.size() == 2);
- assert(BuildVectorSlice.empty());
- Value *ReorderedOps[] = {Ops[1], Ops[0]};
- R.buildTree(ReorderedOps, None);
- }
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
- CandidateFound = true;
- MinCost = std::min(MinCost, Cost);
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
- cast<Instruction>(Ops[0]))
- << "SLP vectorized with cost " << ore::NV("Cost", Cost)
- << " and with tree size "
- << ore::NV("TreeSize", R.getTreeSize()));
- Value *VectorizedRoot = R.vectorizeTree();
- // Reconstruct the build vector by extracting the vectorized root. This
- // way we handle the case where some elements of the vector are
- // undefined.
- // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
- if (!BuildVectorSlice.empty()) {
- // The insert point is the last build vector instruction. The
- // vectorized root will precede it. This guarantees that we get an
- // instruction. The vectorized tree could have been constant folded.
- Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
- unsigned VecIdx = 0;
- for (auto &V : BuildVectorSlice) {
- IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
- ++BasicBlock::iterator(InsertAfter));
- Instruction *I = cast<Instruction>(V);
- assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
- Instruction *Extract =
- cast<Instruction>(Builder.CreateExtractElement(
- VectorizedRoot, Builder.getInt32(VecIdx++)));
- I->setOperand(1, Extract);
- I->moveAfter(Extract);
- InsertAfter = I;
- }
- }
- // Move to the next bundle.
- I += VF - 1;
- NextInst = I + 1;
- Changed = true;
- }
- }
- }
- if (!Changed && CandidateFound) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "NotBeneficial", I0)
- << "List vectorization was possible but not beneficial with cost "
- << ore::NV("Cost", MinCost) << " >= "
- << ore::NV("Treshold", -SLPCostThreshold);
- });
- } else if (!Changed) {
- R.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "NotPossible", I0)
- << "Cannot SLP vectorize list: vectorization was impossible"
- << " with available vectorization factors";
- });
- }
- return Changed;
- }
- bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
- if (!I)
- return false;
- if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
- return false;
- Value *P = I->getParent();
- // Vectorize in current basic block only.
- auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
- auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
- if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
- return false;
- // Try to vectorize V.
- if (tryToVectorizePair(Op0, Op1, R))
- return true;
- auto *A = dyn_cast<BinaryOperator>(Op0);
- auto *B = dyn_cast<BinaryOperator>(Op1);
- // Try to skip B.
- if (B && B->hasOneUse()) {
- auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
- return true;
- if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
- return true;
- }
- // Try to skip A.
- if (A && A->hasOneUse()) {
- auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
- return true;
- if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
- return true;
- }
- return false;
- }
- /// \brief Generate a shuffle mask to be used in a reduction tree.
- ///
- /// \param VecLen The length of the vector to be reduced.
- /// \param NumEltsToRdx The number of elements that should be reduced in the
- /// vector.
- /// \param IsPairwise Whether the reduction is a pairwise or splitting
- /// reduction. A pairwise reduction will generate a mask of
- /// <0,2,...> or <1,3,..> while a splitting reduction will generate
- /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
- /// \param IsLeft True will generate a mask of even elements, odd otherwise.
- static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
- return ConstantVector::get(ShuffleMask);
- }
- namespace {
- /// Model horizontal reductions.
- ///
- /// A horizontal reduction is a tree of reduction operations (currently add and
- /// fadd) that has operations that can be put into a vector as its leaf.
- /// For example, this tree:
- ///
- /// mul mul mul mul
- /// \ / \ /
- /// + +
- /// \ /
- /// +
- /// This tree has "mul" as its reduced values and "+" as its reduction
- /// operations. A reduction might be feeding into a store or a binary operation
- /// feeding a phi.
- /// ...
- /// \ /
- /// +
- /// |
- /// phi +=
- ///
- /// Or:
- /// ...
- /// \ /
- /// +
- /// |
- /// *p =
- ///
- class HorizontalReduction {
- using ReductionOpsType = SmallVector<Value *, 16>;
- using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
- ReductionOpsListType ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- // Use map vector to make stable output.
- MapVector<Instruction *, Value *> ExtraArgs;
- /// Kind of the reduction data.
- enum ReductionKind {
- RK_None, /// Not a reduction.
- RK_Arithmetic, /// Binary reduction data.
- RK_Min, /// Minimum reduction data.
- RK_UMin, /// Unsigned minimum reduction data.
- RK_Max, /// Maximum reduction data.
- RK_UMax, /// Unsigned maximum reduction data.
- };
- /// Contains info about operation, like its opcode, left and right operands.
- class OperationData {
- /// Opcode of the instruction.
- unsigned Opcode = 0;
- /// Left operand of the reduction operation.
- Value *LHS = nullptr;
- /// Right operand of the reduction operation.
- Value *RHS = nullptr;
- /// Kind of the reduction operation.
- ReductionKind Kind = RK_None;
- /// True if float point min/max reduction has no NaNs.
- bool NoNaN = false;
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable() const {
- return LHS && RHS &&
- // We currently only support adds && min/max reductions.
- ((Kind == RK_Arithmetic &&
- (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) ||
- ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- (Kind == RK_Min || Kind == RK_Max)) ||
- (Opcode == Instruction::ICmp &&
- (Kind == RK_UMin || Kind == RK_UMax)));
- }
- /// Creates reduction operation with the current opcode.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- Value *Cmp;
- switch (Kind) {
- case RK_Arithmetic:
- return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
- Name);
- case RK_Min:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
- : Builder.CreateFCmpOLT(LHS, RHS);
- break;
- case RK_Max:
- Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
- : Builder.CreateFCmpOGT(LHS, RHS);
- break;
- case RK_UMin:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpULT(LHS, RHS);
- break;
- case RK_UMax:
- assert(Opcode == Instruction::ICmp && "Expected integer types.");
- Cmp = Builder.CreateICmpUGT(LHS, RHS);
- break;
- case RK_None:
- llvm_unreachable("Unknown reduction operation.");
- }
- return Builder.CreateSelect(Cmp, LHS, RHS, Name);
- }
- public:
- explicit OperationData() = default;
- /// Construction for reduced values. They are identified by opcode only and
- /// don't have associated LHS/RHS values.
- explicit OperationData(Value *V) {
- if (auto *I = dyn_cast<Instruction>(V))
- Opcode = I->getOpcode();
- }
- /// Constructor for reduction operations with opcode and its left and
- /// right operands.
- OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
- bool NoNaN = false)
- : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
- assert(Kind != RK_None && "One of the reduction operations is expected.");
- }
- explicit operator bool() const { return Opcode; }
- /// Get the index of the first operand.
- unsigned getFirstOperandIndex() const {
- assert(!!*this && "The opcode is not set.");
- switch (Kind) {
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 1;
- case RK_Arithmetic:
- case RK_None:
- break;
- }
- return 0;
- }
- /// Total number of operands in the reduction operation.
- unsigned getNumberOfOperands() const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return 2;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return 3;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Checks if the operation has the same parent as \p P.
- bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- if (!IsRedOp)
- return I->getParent() == P;
- switch (Kind) {
- case RK_Arithmetic:
- // Arithmetic reduction operation must be used once only.
- return I->getParent() == P;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax: {
- // SelectInst must be used twice while the condition op must have single
- // use only.
- auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
- return I->getParent() == P && Cmp && Cmp->getParent() == P;
- }
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Expected number of uses for reduction operations/reduced values.
- bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->hasOneUse();
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- return I->hasNUses(2) &&
- (!IsReductionOp ||
- cast<SelectInst>(I)->getCondition()->hasOneUse());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Initializes the list of reduction operations.
- void initReductionOps(ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps.assign(1, ReductionOpsType());
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps.assign(2, ReductionOpsType());
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
- /// Add all reduction operations for the reduction instruction \p I.
- void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
- assert(Kind != RK_None && !!*this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- ReductionOps[0].emplace_back(I);
- break;
- case RK_Min:
- case RK_UMin:
- case RK_Max:
- case RK_UMax:
- ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
- ReductionOps[1].emplace_back(I);
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- }
- /// Checks if instruction is associative and can be vectorized.
- bool isAssociative(Instruction *I) const {
- assert(Kind != RK_None && *this && LHS && RHS &&
- "Expected reduction operation.");
- switch (Kind) {
- case RK_Arithmetic:
- return I->isAssociative();
- case RK_Min:
- case RK_Max:
- return Opcode == Instruction::ICmp ||
- cast<Instruction>(I->getOperand(0))->isFast();
- case RK_UMin:
- case RK_UMax:
- assert(Opcode == Instruction::ICmp &&
- "Only integer compare operation is expected.");
- return true;
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Checks if the reduction operation can be vectorized.
- bool isVectorizable(Instruction *I) const {
- return isVectorizable() && isAssociative(I);
- }
- /// Checks if two operation data are both a reduction op or both a reduced
- /// value.
- bool operator==(const OperationData &OD) {
- assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
- "One of the comparing operations is incorrect.");
- return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
- }
- bool operator!=(const OperationData &OD) { return !(*this == OD); }
- void clear() {
- Opcode = 0;
- LHS = nullptr;
- RHS = nullptr;
- Kind = RK_None;
- NoNaN = false;
- }
- /// Get the opcode of the reduction operation.
- unsigned getOpcode() const {
- assert(isVectorizable() && "Expected vectorizable operation.");
- return Opcode;
- }
- /// Get kind of reduction data.
- ReductionKind getKind() const { return Kind; }
- Value *getLHS() const { return LHS; }
- Value *getRHS() const { return RHS; }
- Type *getConditionType() const {
- switch (Kind) {
- case RK_Arithmetic:
- return nullptr;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- return CmpInst::makeCmpResultType(LHS->getType());
- case RK_None:
- break;
- }
- llvm_unreachable("Reduction kind is not set");
- }
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p ReductionOps.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- const ReductionOpsListType &ReductionOps) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, ReductionOps[0]);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op))
- propagateIRFlags(SI->getCondition(), ReductionOps[0]);
- propagateIRFlags(Op, ReductionOps[1]);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
- /// Creates reduction operation with the current opcode with the IR flags
- /// from \p I.
- Value *createOp(IRBuilder<> &Builder, const Twine &Name,
- Instruction *I) const {
- assert(isVectorizable() &&
- "Expected add|fadd or min/max reduction operation.");
- auto *Op = createOp(Builder, Name);
- switch (Kind) {
- case RK_Arithmetic:
- propagateIRFlags(Op, I);
- return Op;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- if (auto *SI = dyn_cast<SelectInst>(Op)) {
- propagateIRFlags(SI->getCondition(),
- cast<SelectInst>(I)->getCondition());
- }
- propagateIRFlags(Op, I);
- return Op;
- case RK_None:
- break;
- }
- llvm_unreachable("Unknown reduction operation.");
- }
- TargetTransformInfo::ReductionFlags getFlags() const {
- TargetTransformInfo::ReductionFlags Flags;
- Flags.NoNaN = NoNaN;
- switch (Kind) {
- case RK_Arithmetic:
- break;
- case RK_Min:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = false;
- break;
- case RK_Max:
- Flags.IsSigned = Opcode == Instruction::ICmp;
- Flags.IsMaxOp = true;
- break;
- case RK_UMin:
- Flags.IsSigned = false;
- Flags.IsMaxOp = false;
- break;
- case RK_UMax:
- Flags.IsSigned = false;
- Flags.IsMaxOp = true;
- break;
- case RK_None:
- llvm_unreachable("Reduction kind is not set");
- }
- return Flags;
- }
- };
- Instruction *ReductionRoot = nullptr;
- /// The operation data of the reduction operation.
- OperationData ReductionData;
- /// The operation data of the values we perform a reduction on.
- OperationData ReducedValueData;
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction = false;
- /// Checks if the ParentStackElem.first should be marked as a reduction
- /// operation with an extra argument or as extra argument itself.
- void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
- Value *ExtraArg) {
- if (ExtraArgs.count(ParentStackElem.first)) {
- ExtraArgs[ParentStackElem.first] = nullptr;
- // We ran into something like:
- // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
- // The whole ParentStackElem.first should be considered as an extra value
- // in this case.
- // Do not perform analysis of remaining operands of ParentStackElem.first
- // instruction, this whole instruction is an extra argument.
- ParentStackElem.second = ParentStackElem.first->getNumOperands();
- } else {
- // We ran into something like:
- // ParentStackElem.first += ... + ExtraArg + ...
- ExtraArgs[ParentStackElem.first] = ExtraArg;
- }
- }
- static OperationData getOperationData(Value *V) {
- if (!V)
- return OperationData();
- Value *LHS;
- Value *RHS;
- if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
- return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
- RK_Arithmetic);
- }
- if (auto *Select = dyn_cast<SelectInst>(V)) {
- // Look for a min/max pattern.
- if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
- } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
- } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Min,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
- } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
- } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
- m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
- return OperationData(
- Instruction::FCmp, LHS, RHS, RK_Max,
- cast<Instruction>(Select->getCondition())->hasNoNaNs());
- }
- }
- return OperationData(V);
- }
- public:
- HorizontalReduction() = default;
- /// \brief Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
- assert((!Phi || is_contained(Phi->operands(), B)) &&
- "Thi phi needs to use the binary operator");
- ReductionData = getOperationData(B);
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (ReductionData.getLHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getRHS());
- ReductionData = getOperationData(B);
- } else if (ReductionData.getRHS() == Phi) {
- Phi = nullptr;
- B = dyn_cast<Instruction>(ReductionData.getLHS());
- ReductionData = getOperationData(B);
- }
- }
- if (!ReductionData.isVectorizable(B))
- return false;
- Type *Ty = B->getType();
- if (!isValidElementType(Ty))
- return false;
- ReducedValueData.clear();
- ReductionRoot = B;
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators.
- SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
- ReductionData.initReductionOps(ReductionOps);
- while (!Stack.empty()) {
- Instruction *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- OperationData OpData = getOperationData(TreeN);
- bool IsReducedValue = OpData != ReductionData;
- // Postorder vist.
- if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
- if (IsReducedValue)
- ReducedVals.push_back(TreeN);
- else {
- auto I = ExtraArgs.find(TreeN);
- if (I != ExtraArgs.end() && !I->second) {
- // Check if TreeN is an extra argument of its parent operation.
- if (Stack.size() <= 1) {
- // TreeN can't be an extra argument as it is a root reduction
- // operation.
- return false;
- }
- // Yes, TreeN is an extra argument, do not add it to a list of
- // reduction operations.
- // Stack[Stack.size() - 2] always points to the parent operation.
- markExtraArg(Stack[Stack.size() - 2], TreeN);
- ExtraArgs.erase(TreeN);
- } else
- ReductionData.addReductionOps(TreeN, ReductionOps);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- if (NextV != Phi) {
- auto *I = dyn_cast<Instruction>(NextV);
- OpData = getOperationData(I);
- // Continue analysis if the next operand is a reduction operation or
- // (possibly) a reduced value. If the reduced value opcode is not set,
- // the first met operation != reduction operation is considered as the
- // reduced value class.
- if (I && (!ReducedValueData || OpData == ReducedValueData ||
- OpData == ReductionData)) {
- const bool IsReductionOperation = OpData == ReductionData;
- // Only handle trees in the current basic block.
- if (!ReductionData.hasSameParent(I, B->getParent(),
- IsReductionOperation)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- // Each tree node needs to have minimal number of users except for the
- // ultimate reduction.
- if (!ReductionData.hasRequiredNumberOfUses(I,
- OpData == ReductionData) &&
- I != B) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- if (IsReductionOperation) {
- // We need to be able to reassociate the reduction operations.
- if (!OpData.isAssociative(I)) {
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- }
- } else if (ReducedValueData &&
- ReducedValueData != OpData) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- // I is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), I);
- continue;
- } else if (!ReducedValueData)
- ReducedValueData = OpData;
- Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
- continue;
- }
- }
- // NextV is an extra argument for TreeN (its parent operation).
- markExtraArg(Stack.back(), NextV);
- }
- return true;
- }
- /// \brief Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
- // If there is a sufficient number of reduction values, reduce
- // to a nearby power-of-2. Can safely generate oversized
- // vectors and rely on the backend to split them to legal sizes.
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < 4)
- return false;
- unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
- Value *VectorizedTree = nullptr;
- IRBuilder<> Builder(ReductionRoot);
- FastMathFlags Unsafe;
- Unsafe.setFast();
- Builder.setFastMathFlags(Unsafe);
- unsigned i = 0;
- BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
- // The same extra argument may be used several time, so log each attempt
- // to use it.
- for (auto &Pair : ExtraArgs)
- ExternallyUsedValues[Pair.second].push_back(Pair.first);
- SmallVector<Value *, 16> IgnoreList;
- for (auto &V : ReductionOps)
- IgnoreList.append(V.begin(), V.end());
- while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
- auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
- V.buildTree(VL, ExternallyUsedValues, IgnoreList);
- if (V.shouldReorder()) {
- SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
- V.buildTree(Reversed, ExternallyUsedValues, IgnoreList);
- }
- if (V.isTreeTinyAndNotFullyVectorizable())
- break;
- V.computeMinimumValueSizes();
- // Estimate cost.
- int Cost =
- V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
- if (Cost >= -SLPCostThreshold) {
- V.getORE()->emit([&]() {
- return OptimizationRemarkMissed(
- SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
- << "Vectorizing horizontal reduction is possible"
- << "but not beneficial with cost "
- << ore::NV("Cost", Cost) << " and threshold "
- << ore::NV("Threshold", -SLPCostThreshold);
- });
- break;
- }
- DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
- << ". (HorRdx)\n");
- V.getORE()->emit([&]() {
- return OptimizationRemark(
- SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
- << "Vectorized horizontal reduction with cost "
- << ore::NV("Cost", Cost) << " and with tree size "
- << ore::NV("TreeSize", V.getTreeSize());
- });
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
- // Emit a reduction.
- Value *ReducedSubTree =
- emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, ReducedSubTree,
- ReductionData.getKind());
- VectorizedTree =
- VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- } else
- VectorizedTree = ReducedSubTree;
- i += ReduxWidth;
- ReduxWidth = PowerOf2Floor(NumReducedVals - i);
- }
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- auto *I = cast<Instruction>(ReducedVals[i]);
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, I,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
- }
- for (auto &Pair : ExternallyUsedValues) {
- assert(!Pair.second.empty() &&
- "At least one DebugLoc must be inserted");
- // Add each externally used value to the final reduction.
- for (auto *I : Pair.second) {
- Builder.SetCurrentDebugLocation(I->getDebugLoc());
- OperationData VectReductionData(ReductionData.getOpcode(),
- VectorizedTree, Pair.first,
- ReductionData.getKind());
- VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
- }
- }
- // Update users.
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != nullptr;
- }
- unsigned numReductionValues() const {
- return ReducedVals.size();
- }
- private:
- /// \brief Calculate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
- unsigned ReduxWidth) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
- int PairwiseRdxCost;
- int SplittingRdxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- PairwiseRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/true);
- SplittingRdxCost =
- TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
- /*IsPairwiseForm=*/false);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax: {
- Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
- bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
- ReductionData.getKind() == RK_UMax;
- PairwiseRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/true, IsUnsigned);
- SplittingRdxCost =
- TTI->getMinMaxReductionCost(VecTy, VecCondTy,
- /*IsPairwiseForm=*/false, IsUnsigned);
- break;
- }
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
- int ScalarReduxCost;
- switch (ReductionData.getKind()) {
- case RK_Arithmetic:
- ScalarReduxCost =
- TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
- break;
- case RK_Min:
- case RK_Max:
- case RK_UMin:
- case RK_UMax:
- ScalarReduxCost =
- TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
- TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
- CmpInst::makeCmpResultType(ScalarTy));
- break;
- case RK_None:
- llvm_unreachable("Expected arithmetic or min/max reduction operation");
- }
- ScalarReduxCost *= (ReduxWidth - 1);
- DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
- return VecReduxCost - ScalarReduxCost;
- }
- /// \brief Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
- unsigned ReduxWidth, const TargetTransformInfo *TTI) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
- if (!IsPairwiseReduction)
- return createSimpleTargetReduction(
- Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
- ReductionData.getFlags(), ReductionOps.back());
- Value *TmpVec = VectorizedValue;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
- RightShuf, ReductionData.getKind());
- TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- };
- } // end anonymous namespace
- /// \brief Recognize construction of vectors like
- /// %ra = insertelement <4 x float> undef, float %s0, i32 0
- /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
- /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
- /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
- /// starting from the last insertelement instruction.
- ///
- /// Returns true if it matches
- static bool findBuildVector(InsertElementInst *LastInsertElem,
- SmallVectorImpl<Value *> &BuildVector,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- Value *V = nullptr;
- do {
- BuildVector.push_back(LastInsertElem);
- BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
- V = LastInsertElem->getOperand(0);
- if (isa<UndefValue>(V))
- break;
- LastInsertElem = dyn_cast<InsertElementInst>(V);
- if (!LastInsertElem || !LastInsertElem->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVector.begin(), BuildVector.end());
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
- }
- /// \brief Like findBuildVector, but looks for construction of aggregate.
- ///
- /// \return true if it matches.
- static bool findBuildAggregate(InsertValueInst *IV,
- SmallVectorImpl<Value *> &BuildVector,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- Value *V;
- do {
- BuildVector.push_back(IV);
- BuildVectorOpds.push_back(IV->getInsertedValueOperand());
- V = IV->getAggregateOperand();
- if (isa<UndefValue>(V))
- break;
- IV = dyn_cast<InsertValueInst>(V);
- if (!IV || !IV->hasOneUse())
- return false;
- } while (true);
- std::reverse(BuildVector.begin(), BuildVector.end());
- std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
- return true;
- }
- static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
- }
- /// \brief Try and get a reduction value from a phi node.
- ///
- /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
- /// if they come from either \p ParentBB or a containing loop latch.
- ///
- /// \returns A candidate reduction value if possible, or \code nullptr \endcode
- /// if not possible.
- static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
- BasicBlock *ParentBB, LoopInfo *LI) {
- // There are situations where the reduction value is not dominated by the
- // reduction phi. Vectorizing such cases has been reported to cause
- // miscompiles. See PR25787.
- auto DominatedReduxValue = [&](Value *R) {
- return (
- dyn_cast<Instruction>(R) &&
- DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
- };
- Value *Rdx = nullptr;
- // Return the incoming value if it comes from the same BB as the phi node.
- if (P->getIncomingBlock(0) == ParentBB) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == ParentBB) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- // Otherwise, check whether we have a loop latch to look at.
- Loop *BBL = LI->getLoopFor(ParentBB);
- if (!BBL)
- return nullptr;
- BasicBlock *BBLatch = BBL->getLoopLatch();
- if (!BBLatch)
- return nullptr;
- // There is a loop latch, return the incoming value if it comes from
- // that. This reduction pattern occasionally turns up.
- if (P->getIncomingBlock(0) == BBLatch) {
- Rdx = P->getIncomingValue(0);
- } else if (P->getIncomingBlock(1) == BBLatch) {
- Rdx = P->getIncomingValue(1);
- }
- if (Rdx && DominatedReduxValue(Rdx))
- return Rdx;
- return nullptr;
- }
- /// Attempt to reduce a horizontal reduction.
- /// If it is legal to match a horizontal reduction feeding the phi node \a P
- /// with reduction operators \a Root (or one of its operands) in a basic block
- /// \a BB, then check if it can be done. If horizontal reduction is not found
- /// and root instruction is a binary operation, vectorization of the operands is
- /// attempted.
- /// \returns true if a horizontal reduction was matched and reduced or operands
- /// of one of the binary instruction were vectorized.
- /// \returns false if a horizontal reduction was not matched (or not possible)
- /// or no vectorization of any binary operation feeding \a Root instruction was
- /// performed.
- static bool tryToVectorizeHorReductionOrInstOperands(
- PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI,
- const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
- if (!ShouldVectorizeHor)
- return false;
- if (!Root)
- return false;
- if (Root->getParent() != BB || isa<PHINode>(Root))
- return false;
- // Start analysis starting from Root instruction. If horizontal reduction is
- // found, try to vectorize it. If it is not a horizontal reduction or
- // vectorization is not possible or not effective, and currently analyzed
- // instruction is a binary operation, try to vectorize the operands, using
- // pre-order DFS traversal order. If the operands were not vectorized, repeat
- // the same procedure considering each operand as a possible root of the
- // horizontal reduction.
- // Interrupt the process if the Root instruction itself was vectorized or all
- // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
- SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
- SmallSet<Value *, 8> VisitedInstrs;
- bool Res = false;
- while (!Stack.empty()) {
- Value *V;
- unsigned Level;
- std::tie(V, Level) = Stack.pop_back_val();
- if (!V)
- continue;
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- continue;
- auto *BI = dyn_cast<BinaryOperator>(Inst);
- auto *SI = dyn_cast<SelectInst>(Inst);
- if (BI || SI) {
- HorizontalReduction HorRdx;
- if (HorRdx.matchAssociativeReduction(P, Inst)) {
- if (HorRdx.tryToReduce(R, TTI)) {
- Res = true;
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- if (P && BI) {
- Inst = dyn_cast<Instruction>(BI->getOperand(0));
- if (Inst == P)
- Inst = dyn_cast<Instruction>(BI->getOperand(1));
- if (!Inst) {
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- continue;
- }
- }
- }
- // Set P to nullptr to avoid re-analysis of phi node in
- // matchAssociativeReduction function unless this is the root node.
- P = nullptr;
- if (Vectorize(Inst, R)) {
- Res = true;
- continue;
- }
- // Try to vectorize operands.
- // Continue analysis for the instruction from the same basic block only to
- // save compile time.
- if (++Level < RecursionMaxDepth)
- for (auto *Op : Inst->operand_values())
- if (VisitedInstrs.insert(Op).second)
- if (auto *I = dyn_cast<Instruction>(Op))
- if (!isa<PHINode>(I) && I->getParent() == BB)
- Stack.emplace_back(Op, Level);
- }
- return Res;
- }
- bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
- BasicBlock *BB, BoUpSLP &R,
- TargetTransformInfo *TTI) {
- if (!V)
- return false;
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
- if (!isa<BinaryOperator>(I))
- P = nullptr;
- // Try to match and vectorize a horizontal reduction.
- auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
- return tryToVectorize(I, R);
- };
- return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
- ExtraVectorization);
- }
- bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
- BasicBlock *BB, BoUpSLP &R) {
- const DataLayout &DL = BB->getModule()->getDataLayout();
- if (!R.canMapToVector(IVI->getType(), DL))
- return false;
- SmallVector<Value *, 16> BuildVector;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds))
- return false;
- DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
- // Aggregate value is unlikely to be processed in vector register, we need to
- // extract scalars into scalar registers, so NeedExtraction is set true.
- return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false, true);
- }
- bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
- BasicBlock *BB, BoUpSLP &R) {
- SmallVector<Value *, 16> BuildVector;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildVector(IEI, BuildVector, BuildVectorOpds))
- return false;
- // Vectorize starting with the build vector operands ignoring the BuildVector
- // instructions for the purpose of scheduling and user extraction.
- return tryToVectorizeList(BuildVectorOpds, R, BuildVector);
- }
- bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
- BoUpSLP &R) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
- return true;
- bool OpsChanged = false;
- for (int Idx = 0; Idx < 2; ++Idx) {
- OpsChanged |=
- vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
- }
- return OpsChanged;
- }
- bool SLPVectorizerPass::vectorizeSimpleInstructions(
- SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
- bool OpsChanged = false;
- for (auto &VH : reverse(Instructions)) {
- auto *I = dyn_cast_or_null<Instruction>(VH);
- if (!I)
- continue;
- if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
- OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
- else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
- OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
- else if (auto *CI = dyn_cast<CmpInst>(I))
- OpsChanged |= vectorizeCmpInst(CI, BB, R);
- }
- Instructions.clear();
- return OpsChanged;
- }
- bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallSet<Value *, 16> VisitedInstrs;
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (Instruction &I : *BB) {
- PHINode *P = dyn_cast<PHINode>(&I);
- if (!P)
- break;
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
- // Sort by type.
- std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
- // The order in which the phi nodes appear in the program does not matter.
- // So allow tryToVectorizeList to reorder them if it is beneficial. This
- // is done when there are exactly two elements since tryToVectorizeList
- // asserts that there are only two values when AllowReorder is true.
- bool AllowReorder = NumElts == 2;
- if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
- None, AllowReorder)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
- VisitedInstrs.clear();
- SmallVector<WeakVH, 8> PostProcessInstructions;
- SmallDenseSet<Instruction *, 4> KeyNodes;
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(&*it).second) {
- if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
- vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
- // Try to match and vectorize a horizontal reduction.
- if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
- TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
- // Ran into an instruction without users, like terminator, or function call
- // with ignored return value, store. Ignore unused instructions (basing on
- // instruction type, except for CallInst and InvokeInst).
- if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
- isa<InvokeInst>(it))) {
- KeyNodes.insert(&*it);
- bool OpsChanged = false;
- if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
- for (auto *V : it->operand_values()) {
- // Try to match and vectorize a horizontal reduction.
- OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
- }
- }
- // Start vectorization of post-process list of instructions from the
- // top-tree instructions to try to vectorize as many instructions as
- // possible.
- OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
- if (OpsChanged) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
- isa<InsertValueInst>(it))
- PostProcessInstructions.push_back(&*it);
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
- auto Changed = false;
- for (auto &Entry : GEPs) {
- // If the getelementptr list has fewer than two elements, there's nothing
- // to do.
- if (Entry.second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
- << Entry.second.size() << ".\n");
- // We process the getelementptr list in chunks of 16 (like we do for
- // stores) to minimize compile-time.
- for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
- auto Len = std::min<unsigned>(BE - BI, 16);
- auto GEPList = makeArrayRef(&Entry.second[BI], Len);
- // Initialize a set a candidate getelementptrs. Note that we use a
- // SetVector here to preserve program order. If the index computations
- // are vectorizable and begin with loads, we want to minimize the chance
- // of having to reorder them later.
- SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
- // Some of the candidates may have already been vectorized after we
- // initially collected them. If so, the WeakTrackingVHs will have
- // nullified the
- // values, so remove them from the set of candidates.
- Candidates.remove(nullptr);
- // Remove from the set of candidates all pairs of getelementptrs with
- // constant differences. Such getelementptrs are likely not good
- // candidates for vectorization in a bottom-up phase since one can be
- // computed from the other. We also ensure all candidate getelementptr
- // indices are unique.
- for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
- auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
- if (!Candidates.count(GEPI))
- continue;
- auto *SCEVI = SE->getSCEV(GEPList[I]);
- for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
- auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
- auto *SCEVJ = SE->getSCEV(GEPList[J]);
- if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
- Candidates.remove(GEPList[I]);
- Candidates.remove(GEPList[J]);
- } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
- Candidates.remove(GEPList[J]);
- }
- }
- }
- // We break out of the above computation as soon as we know there are
- // fewer than two candidates remaining.
- if (Candidates.size() < 2)
- continue;
- // Add the single, non-constant index of each candidate to the bundle. We
- // ensured the indices met these constraints when we originally collected
- // the getelementptrs.
- SmallVector<Value *, 16> Bundle(Candidates.size());
- auto BundleIndex = 0u;
- for (auto *V : Candidates) {
- auto *GEP = cast<GetElementPtrInst>(V);
- auto *GEPIdx = GEP->idx_begin()->get();
- assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
- Bundle[BundleIndex++] = GEPIdx;
- }
- // Try and vectorize the indices. We are currently only interested in
- // gather-like cases of the form:
- //
- // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
- //
- // where the loads of "a", the loads of "b", and the subtractions can be
- // performed in parallel. It's likely that detecting this pattern in a
- // bottom-up phase will be simpler and less costly than building a
- // full-blown top-down phase beginning at the consecutive loads.
- Changed |= tryToVectorizeList(Bundle, R);
- }
- }
- return Changed;
- }
- bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
- ++it) {
- if (it->second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
- // Process the stores in chunks of 16.
- // TODO: The limit of 16 inhibits greater vectorization factors.
- // For example, AVX2 supports v32i8. Increasing this limit, however,
- // may cause a significant compile-time increase.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
- }
- }
- return Changed;
- }
- char SLPVectorizer::ID = 0;
- static const char lv_name[] = "SLP Vectorizer";
- INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
- Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
|