12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412 |
- //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines routines for folding instructions into constants.
- //
- // Also, to supplement the basic VMCore ConstantExpr simplifications,
- // this file defines some additional folding routines that can make use of
- // TargetData information. These functions cannot go in VMCore due to library
- // dependency issues.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Instructions.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/Operator.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/FEnv.h"
- #include <cerrno>
- #include <cmath>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Constant Folding internal helper functions
- //===----------------------------------------------------------------------===//
- /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
- /// TargetData. This always returns a non-null constant, but it may be a
- /// ConstantExpr if unfoldable.
- static Constant *FoldBitCast(Constant *C, const Type *DestTy,
- const TargetData &TD) {
-
- // This only handles casts to vectors currently.
- const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
- if (DestVTy == 0)
- return ConstantExpr::getBitCast(C, DestTy);
-
- // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
- // vector so the code below can handle it uniformly.
- if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
- Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
- }
-
- // If this is a bitcast from constant vector -> vector, fold it.
- ConstantVector *CV = dyn_cast<ConstantVector>(C);
- if (CV == 0)
- return ConstantExpr::getBitCast(C, DestTy);
-
- // If the element types match, VMCore can fold it.
- unsigned NumDstElt = DestVTy->getNumElements();
- unsigned NumSrcElt = CV->getNumOperands();
- if (NumDstElt == NumSrcElt)
- return ConstantExpr::getBitCast(C, DestTy);
-
- const Type *SrcEltTy = CV->getType()->getElementType();
- const Type *DstEltTy = DestVTy->getElementType();
-
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
-
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPointTy()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- const Type *DestIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, TD);
- if (!C) return ConstantExpr::getBitCast(C, DestTy);
-
- // Finally, VMCore can handle this now that #elts line up.
- return ConstantExpr::getBitCast(C, DestTy);
- }
-
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- const Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
- // Ask VMCore to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- CV = dyn_cast<ConstantVector>(C);
- if (!CV) // If VMCore wasn't able to fold it, bail out.
- return C;
- }
-
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = TD.isLittleEndian();
-
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Constant::getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
-
- // Zero extend the element to the right size.
- Src = ConstantExpr::getZExt(Src, Elt->getType());
-
- // Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
-
- // Mix it in.
- Elt = ConstantExpr::getOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- } else {
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
-
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
-
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
-
- // Truncate and remember this piece.
- Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
- }
- }
- }
-
- return ConstantVector::get(Result);
- }
- /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
- /// from a global, return the global and the constant. Because of
- /// constantexprs, this function is recursive.
- static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- int64_t &Offset, const TargetData &TD) {
- // Trivial case, constant is the global.
- if ((GV = dyn_cast<GlobalValue>(C))) {
- Offset = 0;
- return true;
- }
-
- // Otherwise, if this isn't a constant expr, bail out.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return false;
-
- // Look through ptr->int and ptr->ptr casts.
- if (CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::BitCast)
- return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
-
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- // Cannot compute this if the element type of the pointer is missing size
- // info.
- if (!cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType()->isSized())
- return false;
-
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
- return false;
-
- // Otherwise, add any offset that our operands provide.
- gep_type_iterator GTI = gep_type_begin(CE);
- for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
- i != e; ++i, ++GTI) {
- ConstantInt *CI = dyn_cast<ConstantInt>(*i);
- if (!CI) return false; // Index isn't a simple constant?
- if (CI->isZero()) continue; // Not adding anything.
-
- if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
- // N = N + Offset
- Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
- } else {
- const SequentialType *SQT = cast<SequentialType>(*GTI);
- Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
- }
- }
- return true;
- }
-
- return false;
- }
- /// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
- /// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
- /// pointer to copy results into and BytesLeft is the number of bytes left in
- /// the CurPtr buffer. TD is the target data.
- static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
- unsigned char *CurPtr, unsigned BytesLeft,
- const TargetData &TD) {
- assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
- "Out of range access");
-
- // If this element is zero or undefined, we can just return since *CurPtr is
- // zero initialized.
- if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
- return true;
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() > 64 ||
- (CI->getBitWidth() & 7) != 0)
- return false;
-
- uint64_t Val = CI->getZExtValue();
- unsigned IntBytes = unsigned(CI->getBitWidth()/8);
-
- for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
- CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
- ++ByteOffset;
- }
- return true;
- }
-
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isDoubleTy()) {
- C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
- }
- if (CFP->getType()->isFloatTy()){
- C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
- }
- return false;
- }
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- const StructLayout *SL = TD.getStructLayout(CS->getType());
- unsigned Index = SL->getElementContainingOffset(ByteOffset);
- uint64_t CurEltOffset = SL->getElementOffset(Index);
- ByteOffset -= CurEltOffset;
-
- while (1) {
- // If the element access is to the element itself and not to tail padding,
- // read the bytes from the element.
- uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
- if (ByteOffset < EltSize &&
- !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
- BytesLeft, TD))
- return false;
-
- ++Index;
-
- // Check to see if we read from the last struct element, if so we're done.
- if (Index == CS->getType()->getNumElements())
- return true;
- // If we read all of the bytes we needed from this element we're done.
- uint64_t NextEltOffset = SL->getElementOffset(Index);
- if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
- return true;
- // Move to the next element of the struct.
- CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
- BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
- ByteOffset = 0;
- CurEltOffset = NextEltOffset;
- }
- // not reached.
- }
- if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
- uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
- for (; Index != CA->getType()->getNumElements(); ++Index) {
- if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
- BytesLeft, TD))
- return false;
- if (EltSize >= BytesLeft)
- return true;
-
- Offset = 0;
- BytesLeft -= EltSize;
- CurPtr += EltSize;
- }
- return true;
- }
-
- if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
- for (; Index != CV->getType()->getNumElements(); ++Index) {
- if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
- BytesLeft, TD))
- return false;
- if (EltSize >= BytesLeft)
- return true;
-
- Offset = 0;
- BytesLeft -= EltSize;
- CurPtr += EltSize;
- }
- return true;
- }
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
- return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
- BytesLeft, TD);
- }
- // Otherwise, unknown initializer type.
- return false;
- }
- static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
- const TargetData &TD) {
- const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
- const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
-
- // If this isn't an integer load we can't fold it directly.
- if (!IntType) {
- // If this is a float/double load, we can try folding it as an int32/64 load
- // and then bitcast the result. This can be useful for union cases. Note
- // that address spaces don't matter here since we're not going to result in
- // an actual new load.
- const Type *MapTy;
- if (LoadTy->isFloatTy())
- MapTy = Type::getInt32PtrTy(C->getContext());
- else if (LoadTy->isDoubleTy())
- MapTy = Type::getInt64PtrTy(C->getContext());
- else if (LoadTy->isVectorTy()) {
- MapTy = IntegerType::get(C->getContext(),
- TD.getTypeAllocSizeInBits(LoadTy));
- MapTy = PointerType::getUnqual(MapTy);
- } else
- return 0;
- C = FoldBitCast(C, MapTy, TD);
- if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
- return FoldBitCast(Res, LoadTy, TD);
- return 0;
- }
-
- unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
- if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
-
- GlobalValue *GVal;
- int64_t Offset;
- if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
- return 0;
-
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- !GV->getInitializer()->getType()->isSized())
- return 0;
- // If we're loading off the beginning of the global, some bytes may be valid,
- // but we don't try to handle this.
- if (Offset < 0) return 0;
-
- // If we're not accessing anything in this constant, the result is undefined.
- if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
- return UndefValue::get(IntType);
-
- unsigned char RawBytes[32] = {0};
- if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
- BytesLoaded, TD))
- return 0;
- APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[BytesLoaded-1-i];
- }
- return ConstantInt::get(IntType->getContext(), ResultVal);
- }
- /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
- /// produce if it is constant and determinable. If this is not determinable,
- /// return null.
- Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
- const TargetData *TD) {
- // First, try the easy cases:
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- return GV->getInitializer();
- // If the loaded value isn't a constant expr, we can't handle it.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return 0;
-
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (Constant *V =
- ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
- return V;
- }
-
- // Instead of loading constant c string, use corresponding integer value
- // directly if string length is small enough.
- std::string Str;
- if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
- unsigned StrLen = Str.length();
- const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
- unsigned NumBits = Ty->getPrimitiveSizeInBits();
- // Replace load with immediate integer if the result is an integer or fp
- // value.
- if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
- (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
- APInt StrVal(NumBits, 0);
- APInt SingleChar(NumBits, 0);
- if (TD->isLittleEndian()) {
- for (signed i = StrLen-1; i >= 0; i--) {
- SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
- StrVal = (StrVal << 8) | SingleChar;
- }
- } else {
- for (unsigned i = 0; i < StrLen; i++) {
- SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
- StrVal = (StrVal << 8) | SingleChar;
- }
- // Append NULL at the end.
- SingleChar = 0;
- StrVal = (StrVal << 8) | SingleChar;
- }
-
- Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
- if (Ty->isFloatingPointTy())
- Res = ConstantExpr::getBitCast(Res, Ty);
- return Res;
- }
- }
-
- // If this load comes from anywhere in a constant global, and if the global
- // is all undef or zero, we know what it loads.
- if (GlobalVariable *GV =
- dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
- if (GV->getInitializer()->isNullValue())
- return Constant::getNullValue(ResTy);
- if (isa<UndefValue>(GV->getInitializer()))
- return UndefValue::get(ResTy);
- }
- }
-
- // Try hard to fold loads from bitcasted strange and non-type-safe things. We
- // currently don't do any of this for big endian systems. It can be
- // generalized in the future if someone is interested.
- if (TD && TD->isLittleEndian())
- return FoldReinterpretLoadFromConstPtr(CE, *TD);
- return 0;
- }
- static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
- if (LI->isVolatile()) return 0;
-
- if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
- return ConstantFoldLoadFromConstPtr(C, TD);
- return 0;
- }
- /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
- /// Attempt to symbolically evaluate the result of a binary operator merging
- /// these together. If target data info is available, it is provided as TD,
- /// otherwise TD is null.
- static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1, const TargetData *TD){
- // SROA
-
- // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
- // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
- // bits.
-
-
- // If the constant expr is something like &A[123] - &A[4].f, fold this into a
- // constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub && TD) {
- GlobalValue *GV1, *GV2;
- int64_t Offs1, Offs2;
-
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
- GV1 == GV2) {
- // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- return ConstantInt::get(Op0->getType(), Offs1-Offs2);
- }
- }
-
- return 0;
- }
- /// CastGEPIndices - If array indices are not pointer-sized integers,
- /// explicitly cast them so that they aren't implicitly casted by the
- /// getelementptr.
- static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
- const Type *ResultTy,
- const TargetData *TD) {
- if (!TD) return 0;
- const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
- bool Any = false;
- SmallVector<Constant*, 32> NewIdxs;
- for (unsigned i = 1; i != NumOps; ++i) {
- if ((i == 1 ||
- !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
- reinterpret_cast<Value *const *>(Ops+1),
- i-1))) &&
- Ops[i]->getType() != IntPtrTy) {
- Any = true;
- NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
- true,
- IntPtrTy,
- true),
- Ops[i], IntPtrTy));
- } else
- NewIdxs.push_back(Ops[i]);
- }
- if (!Any) return 0;
- Constant *C =
- ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
- C = Folded;
- return C;
- }
- /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
- /// constant expression, do so.
- static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
- const Type *ResultTy,
- const TargetData *TD) {
- Constant *Ptr = Ops[0];
- if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
- return 0;
-
- const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
- // If this is a constant expr gep that is effectively computing an
- // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
- for (unsigned i = 1; i != NumOps; ++i)
- if (!isa<ConstantInt>(Ops[i])) {
-
- // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
- // "inttoptr (sub (ptrtoint Ptr), V)"
- if (NumOps == 2 &&
- cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
- assert((CE == 0 || CE->getType() == IntPtrTy) &&
- "CastGEPIndices didn't canonicalize index types!");
- if (CE && CE->getOpcode() == Instruction::Sub &&
- CE->getOperand(0)->isNullValue()) {
- Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
- Res = ConstantExpr::getSub(Res, CE->getOperand(1));
- Res = ConstantExpr::getIntToPtr(Res, ResultTy);
- if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
- Res = ConstantFoldConstantExpression(ResCE, TD);
- return Res;
- }
- }
- return 0;
- }
-
- unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
- APInt Offset = APInt(BitWidth,
- TD->getIndexedOffset(Ptr->getType(),
- (Value**)Ops+1, NumOps-1));
- Ptr = cast<Constant>(Ptr->stripPointerCasts());
- // If this is a GEP of a GEP, fold it all into a single GEP.
- while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
- // Do not try the incorporate the sub-GEP if some index is not a number.
- bool AllConstantInt = true;
- for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
- if (!isa<ConstantInt>(NestedOps[i])) {
- AllConstantInt = false;
- break;
- }
- if (!AllConstantInt)
- break;
- Ptr = cast<Constant>(GEP->getOperand(0));
- Offset += APInt(BitWidth,
- TD->getIndexedOffset(Ptr->getType(),
- (Value**)NestedOps.data(),
- NestedOps.size()));
- Ptr = cast<Constant>(Ptr->stripPointerCasts());
- }
- // If the base value for this address is a literal integer value, fold the
- // getelementptr to the resulting integer value casted to the pointer type.
- APInt BasePtr(BitWidth, 0);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getValue().zextOrTrunc(BitWidth);
- if (Ptr->isNullValue() || BasePtr != 0) {
- Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
- return ConstantExpr::getIntToPtr(C, ResultTy);
- }
- // Otherwise form a regular getelementptr. Recompute the indices so that
- // we eliminate over-indexing of the notional static type array bounds.
- // This makes it easy to determine if the getelementptr is "inbounds".
- // Also, this helps GlobalOpt do SROA on GlobalVariables.
- const Type *Ty = Ptr->getType();
- SmallVector<Constant*, 32> NewIdxs;
- do {
- if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
- if (ATy->isPointerTy()) {
- // The only pointer indexing we'll do is on the first index of the GEP.
- if (!NewIdxs.empty())
- break;
-
- // Only handle pointers to sized types, not pointers to functions.
- if (!ATy->getElementType()->isSized())
- return 0;
- }
-
- // Determine which element of the array the offset points into.
- APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
- const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
- if (ElemSize == 0)
- // The element size is 0. This may be [0 x Ty]*, so just use a zero
- // index for this level and proceed to the next level to see if it can
- // accommodate the offset.
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
- else {
- // The element size is non-zero divide the offset by the element
- // size (rounding down), to compute the index at this level.
- APInt NewIdx = Offset.udiv(ElemSize);
- Offset -= NewIdx * ElemSize;
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
- }
- Ty = ATy->getElementType();
- } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- // Determine which field of the struct the offset points into. The
- // getZExtValue is at least as safe as the StructLayout API because we
- // know the offset is within the struct at this point.
- const StructLayout &SL = *TD->getStructLayout(STy);
- unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
- NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
- ElIdx));
- Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
- Ty = STy->getTypeAtIndex(ElIdx);
- } else {
- // We've reached some non-indexable type.
- break;
- }
- } while (Ty != cast<PointerType>(ResultTy)->getElementType());
- // If we haven't used up the entire offset by descending the static
- // type, then the offset is pointing into the middle of an indivisible
- // member, so we can't simplify it.
- if (Offset != 0)
- return 0;
- // Create a GEP.
- Constant *C =
- ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
- assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
- "Computed GetElementPtr has unexpected type!");
- // If we ended up indexing a member with a type that doesn't match
- // the type of what the original indices indexed, add a cast.
- if (Ty != cast<PointerType>(ResultTy)->getElementType())
- C = FoldBitCast(C, ResultTy, *TD);
- return C;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding public APIs
- //===----------------------------------------------------------------------===//
- /// ConstantFoldInstruction - Try to constant fold the specified instruction.
- /// If successful, the constant result is returned, if not, null is returned.
- /// Note that this fails if not all of the operands are constant. Otherwise,
- /// this function can only fail when attempting to fold instructions like loads
- /// and stores, which have no constant expression form.
- Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
- // Handle PHI nodes quickly here...
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- Constant *CommonValue = 0;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Incoming = PN->getIncomingValue(i);
- // If the incoming value is undef then skip it. Note that while we could
- // skip the value if it is equal to the phi node itself we choose not to
- // because that would break the rule that constant folding only applies if
- // all operands are constants.
- if (isa<UndefValue>(Incoming))
- continue;
- // If the incoming value is not a constant, or is a different constant to
- // the one we saw previously, then give up.
- Constant *C = dyn_cast<Constant>(Incoming);
- if (!C || (CommonValue && C != CommonValue))
- return 0;
- CommonValue = C;
- }
- // If we reach here, all incoming values are the same constant or undef.
- return CommonValue ? CommonValue : UndefValue::get(PN->getType());
- }
- // Scan the operand list, checking to see if they are all constants, if so,
- // hand off to ConstantFoldInstOperands.
- SmallVector<Constant*, 8> Ops;
- for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (Constant *Op = dyn_cast<Constant>(*i))
- Ops.push_back(Op);
- else
- return 0; // All operands not constant!
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
- TD);
-
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- return ConstantFoldLoadInst(LI, TD);
- if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
- return ConstantExpr::getInsertValue(
- cast<Constant>(IVI->getAggregateOperand()),
- cast<Constant>(IVI->getInsertedValueOperand()),
- IVI->idx_begin(), IVI->getNumIndices());
- if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
- return ConstantExpr::getExtractValue(
- cast<Constant>(EVI->getAggregateOperand()),
- EVI->idx_begin(), EVI->getNumIndices());
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Ops.data(), Ops.size(), TD);
- }
- /// ConstantFoldConstantExpression - Attempt to fold the constant expression
- /// using the specified TargetData. If successful, the constant result is
- /// result is returned, if not, null is returned.
- Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
- const TargetData *TD) {
- SmallVector<Constant*, 8> Ops;
- for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
- i != e; ++i) {
- Constant *NewC = cast<Constant>(*i);
- // Recursively fold the ConstantExpr's operands.
- if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
- NewC = ConstantFoldConstantExpression(NewCE, TD);
- Ops.push_back(NewC);
- }
- if (CE->isCompare())
- return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
- TD);
- return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
- Ops.data(), Ops.size(), TD);
- }
- /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
- /// specified opcode and operands. If successful, the constant result is
- /// returned, if not, null is returned. Note that this function can fail when
- /// attempting to fold instructions like loads and stores, which have no
- /// constant expression form.
- ///
- /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
- /// information, due to only being passed an opcode and operands. Constant
- /// folding using this function strips this information.
- ///
- Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
- Constant* const* Ops, unsigned NumOps,
- const TargetData *TD) {
- // Handle easy binops first.
- if (Instruction::isBinaryOp(Opcode)) {
- if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
- return C;
-
- return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
- }
-
- switch (Opcode) {
- default: return 0;
- case Instruction::ICmp:
- case Instruction::FCmp: assert(0 && "Invalid for compares");
- case Instruction::Call:
- if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
- if (canConstantFoldCallTo(F))
- return ConstantFoldCall(F, Ops, NumOps - 1);
- return 0;
- case Instruction::PtrToInt:
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
- if (TD && CE->getOpcode() == Instruction::IntToPtr) {
- Constant *Input = CE->getOperand(0);
- unsigned InWidth = Input->getType()->getScalarSizeInBits();
- if (TD->getPointerSizeInBits() < InWidth) {
- Constant *Mask =
- ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
- TD->getPointerSizeInBits()));
- Input = ConstantExpr::getAnd(Input, Mask);
- }
- // Do a zext or trunc to get to the dest size.
- return ConstantExpr::getIntegerCast(Input, DestTy, false);
- }
- }
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size. This requires knowing the width of a
- // pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
- if (TD &&
- TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
- CE->getOpcode() == Instruction::PtrToInt)
- return FoldBitCast(CE->getOperand(0), DestTy, *TD);
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::BitCast:
- if (TD)
- return FoldBitCast(Ops[0], DestTy, *TD);
- return ConstantExpr::getBitCast(Ops[0], DestTy);
- case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
- case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
- case Instruction::GetElementPtr:
- if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
- return C;
- if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
- return C;
-
- return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
- }
- }
- /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
- /// instruction (icmp/fcmp) with the specified operands. If it fails, it
- /// returns a constant expression of the specified operands.
- ///
- Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
- Constant *Ops0, Constant *Ops1,
- const TargetData *TD) {
- // fold: icmp (inttoptr x), null -> icmp x, 0
- // fold: icmp (ptrtoint x), 0 -> icmp x, null
- // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
- // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
- //
- // ConstantExpr::getCompare cannot do this, because it doesn't have TD
- // around to know if bit truncation is happening.
- if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
- if (TD && Ops1->isNullValue()) {
- const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
- }
-
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
- }
- }
-
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
- if (TD && CE0->getOpcode() == CE1->getOpcode()) {
- const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
- IntPtrTy, false);
- return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if ((CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
- return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
- CE1->getOperand(0), TD);
- }
- }
-
- // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
- // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
- if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
- CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
- Constant *LHS =
- ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
- Constant *RHS =
- ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
- unsigned OpC =
- Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- Constant *Ops[] = { LHS, RHS };
- return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
- }
- }
-
- return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
- }
- /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
- /// getelementptr constantexpr, return the constant value being addressed by the
- /// constant expression, or null if something is funny and we can't decide.
- Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
- ConstantExpr *CE) {
- if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
- return 0; // Do not allow stepping over the value!
-
- // Loop over all of the operands, tracking down which value we are
- // addressing...
- gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
- for (++I; I != E; ++I)
- if (const StructType *STy = dyn_cast<StructType>(*I)) {
- ConstantInt *CU = cast<ConstantInt>(I.getOperand());
- assert(CU->getZExtValue() < STy->getNumElements() &&
- "Struct index out of range!");
- unsigned El = (unsigned)CU->getZExtValue();
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- C = CS->getOperand(El);
- } else if (isa<ConstantAggregateZero>(C)) {
- C = Constant::getNullValue(STy->getElementType(El));
- } else if (isa<UndefValue>(C)) {
- C = UndefValue::get(STy->getElementType(El));
- } else {
- return 0;
- }
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
- if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
- if (CI->getZExtValue() >= ATy->getNumElements())
- return 0;
- if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
- C = CA->getOperand(CI->getZExtValue());
- else if (isa<ConstantAggregateZero>(C))
- C = Constant::getNullValue(ATy->getElementType());
- else if (isa<UndefValue>(C))
- C = UndefValue::get(ATy->getElementType());
- else
- return 0;
- } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
- if (CI->getZExtValue() >= VTy->getNumElements())
- return 0;
- if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
- C = CP->getOperand(CI->getZExtValue());
- else if (isa<ConstantAggregateZero>(C))
- C = Constant::getNullValue(VTy->getElementType());
- else if (isa<UndefValue>(C))
- C = UndefValue::get(VTy->getElementType());
- else
- return 0;
- } else {
- return 0;
- }
- } else {
- return 0;
- }
- return C;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding for Calls
- //
- /// canConstantFoldCallTo - Return true if its even possible to fold a call to
- /// the specified function.
- bool
- llvm::canConstantFoldCallTo(const Function *F) {
- switch (F->getIntrinsicID()) {
- case Intrinsic::sqrt:
- case Intrinsic::powi:
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::convert_from_fp16:
- case Intrinsic::convert_to_fp16:
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- return true;
- default:
- return false;
- case 0: break;
- }
- if (!F->hasName()) return false;
- StringRef Name = F->getName();
-
- // In these cases, the check of the length is required. We don't want to
- // return true for a name like "cos\0blah" which strcmp would return equal to
- // "cos", but has length 8.
- switch (Name[0]) {
- default: return false;
- case 'a':
- return Name == "acos" || Name == "asin" ||
- Name == "atan" || Name == "atan2";
- case 'c':
- return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
- case 'e':
- return Name == "exp" || Name == "exp2";
- case 'f':
- return Name == "fabs" || Name == "fmod" || Name == "floor";
- case 'l':
- return Name == "log" || Name == "log10";
- case 'p':
- return Name == "pow";
- case 's':
- return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
- Name == "sinf" || Name == "sqrtf";
- case 't':
- return Name == "tan" || Name == "tanh";
- }
- }
- static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
- const Type *Ty) {
- sys::llvm_fenv_clearexcept();
- V = NativeFP(V);
- if (sys::llvm_fenv_testexcept()) {
- sys::llvm_fenv_clearexcept();
- return 0;
- }
-
- if (Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(), APFloat((float)V));
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold float/double");
- return 0; // dummy return to suppress warning
- }
- static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
- double V, double W, const Type *Ty) {
- sys::llvm_fenv_clearexcept();
- V = NativeFP(V, W);
- if (sys::llvm_fenv_testexcept()) {
- sys::llvm_fenv_clearexcept();
- return 0;
- }
-
- if (Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(), APFloat((float)V));
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold float/double");
- return 0; // dummy return to suppress warning
- }
- /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
- /// conversion of a constant floating point. If roundTowardZero is false, the
- /// default IEEE rounding is used (toward nearest, ties to even). This matches
- /// the behavior of the non-truncating SSE instructions in the default rounding
- /// mode. The desired integer type Ty is used to select how many bits are
- /// available for the result. Returns null if the conversion cannot be
- /// performed, otherwise returns the Constant value resulting from the
- /// conversion.
- static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
- const Type *Ty) {
- assert(Op && "Called with NULL operand");
- APFloat Val(Op->getValueAPF());
- // All of these conversion intrinsics form an integer of at most 64bits.
- unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
- assert(ResultWidth <= 64 &&
- "Can only constant fold conversions to 64 and 32 bit ints");
- uint64_t UIntVal;
- bool isExact = false;
- APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
- : APFloat::rmNearestTiesToEven;
- APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
- /*isSigned=*/true, mode,
- &isExact);
- if (status != APFloat::opOK && status != APFloat::opInexact)
- return 0;
- return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
- }
- /// ConstantFoldCall - Attempt to constant fold a call to the specified function
- /// with the specified arguments, returning null if unsuccessful.
- Constant *
- llvm::ConstantFoldCall(Function *F,
- Constant *const *Operands, unsigned NumOperands) {
- if (!F->hasName()) return 0;
- StringRef Name = F->getName();
- const Type *Ty = F->getReturnType();
- if (NumOperands == 1) {
- if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
- APFloat Val(Op->getValueAPF());
- bool lost = false;
- Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
- return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
- }
- if (!Ty->isFloatTy() && !Ty->isDoubleTy())
- return 0;
- /// We only fold functions with finite arguments. Folding NaN and inf is
- /// likely to be aborted with an exception anyway, and some host libms
- /// have known errors raising exceptions.
- if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
- return 0;
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
- Op->getValueAPF().convertToDouble();
- switch (Name[0]) {
- case 'a':
- if (Name == "acos")
- return ConstantFoldFP(acos, V, Ty);
- else if (Name == "asin")
- return ConstantFoldFP(asin, V, Ty);
- else if (Name == "atan")
- return ConstantFoldFP(atan, V, Ty);
- break;
- case 'c':
- if (Name == "ceil")
- return ConstantFoldFP(ceil, V, Ty);
- else if (Name == "cos")
- return ConstantFoldFP(cos, V, Ty);
- else if (Name == "cosh")
- return ConstantFoldFP(cosh, V, Ty);
- else if (Name == "cosf")
- return ConstantFoldFP(cos, V, Ty);
- break;
- case 'e':
- if (Name == "exp")
- return ConstantFoldFP(exp, V, Ty);
-
- if (Name == "exp2") {
- // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
- // C99 library.
- return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
- }
- break;
- case 'f':
- if (Name == "fabs")
- return ConstantFoldFP(fabs, V, Ty);
- else if (Name == "floor")
- return ConstantFoldFP(floor, V, Ty);
- break;
- case 'l':
- if (Name == "log" && V > 0)
- return ConstantFoldFP(log, V, Ty);
- else if (Name == "log10" && V > 0)
- return ConstantFoldFP(log10, V, Ty);
- else if (F->getIntrinsicID() == Intrinsic::sqrt &&
- (Ty->isFloatTy() || Ty->isDoubleTy())) {
- if (V >= -0.0)
- return ConstantFoldFP(sqrt, V, Ty);
- else // Undefined
- return Constant::getNullValue(Ty);
- }
- break;
- case 's':
- if (Name == "sin")
- return ConstantFoldFP(sin, V, Ty);
- else if (Name == "sinh")
- return ConstantFoldFP(sinh, V, Ty);
- else if (Name == "sqrt" && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Name == "sqrtf" && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Name == "sinf")
- return ConstantFoldFP(sin, V, Ty);
- break;
- case 't':
- if (Name == "tan")
- return ConstantFoldFP(tan, V, Ty);
- else if (Name == "tanh")
- return ConstantFoldFP(tanh, V, Ty);
- break;
- default:
- break;
- }
- return 0;
- }
- if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- switch (F->getIntrinsicID()) {
- case Intrinsic::bswap:
- return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
- case Intrinsic::ctpop:
- return ConstantInt::get(Ty, Op->getValue().countPopulation());
- case Intrinsic::cttz:
- return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
- case Intrinsic::ctlz:
- return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
- case Intrinsic::convert_from_fp16: {
- APFloat Val(Op->getValue());
- bool lost = false;
- APFloat::opStatus status =
- Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
- // Conversion is always precise.
- (void)status;
- assert(status == APFloat::opOK && !lost &&
- "Precision lost during fp16 constfolding");
- return ConstantFP::get(F->getContext(), Val);
- }
- default:
- return 0;
- }
- }
- if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
- switch (F->getIntrinsicID()) {
- default: break;
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
- return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
- return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
- }
- }
- if (isa<UndefValue>(Operands[0])) {
- if (F->getIntrinsicID() == Intrinsic::bswap)
- return Operands[0];
- return 0;
- }
- return 0;
- }
- if (NumOperands == 2) {
- if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (!Ty->isFloatTy() && !Ty->isDoubleTy())
- return 0;
- double Op1V = Ty->isFloatTy() ?
- (double)Op1->getValueAPF().convertToFloat() :
- Op1->getValueAPF().convertToDouble();
- if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (Op2->getType() != Op1->getType())
- return 0;
-
- double Op2V = Ty->isFloatTy() ?
- (double)Op2->getValueAPF().convertToFloat():
- Op2->getValueAPF().convertToDouble();
- if (Name == "pow")
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- if (Name == "fmod")
- return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
- if (Name == "atan2")
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
- } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
- return ConstantFP::get(F->getContext(),
- APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
- return ConstantFP::get(F->getContext(),
- APFloat((double)std::pow((double)Op1V,
- (int)Op2C->getZExtValue())));
- }
- return 0;
- }
-
-
- if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
- if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
- switch (F->getIntrinsicID()) {
- default: break;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow: {
- APInt Res;
- bool Overflow;
- switch (F->getIntrinsicID()) {
- default: assert(0 && "Invalid case");
- case Intrinsic::sadd_with_overflow:
- Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::uadd_with_overflow:
- Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::ssub_with_overflow:
- Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::usub_with_overflow:
- Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::smul_with_overflow:
- Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::umul_with_overflow:
- Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
- break;
- }
- Constant *Ops[] = {
- ConstantInt::get(F->getContext(), Res),
- ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
- };
- return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
- }
- }
- }
-
- return 0;
- }
- return 0;
- }
- return 0;
- }
|