123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377 |
- //===-- Execution.cpp - Implement code to simulate the program ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the actual instruction interpreter.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "interpreter"
- #include "Interpreter.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Instructions.h"
- #include "llvm/ParameterAttributes.h"
- #include "llvm/CodeGen/IntrinsicLowering.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include <algorithm>
- #include <cmath>
- #include <cstring>
- using namespace llvm;
- STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
- static Interpreter *TheEE = 0;
- //===----------------------------------------------------------------------===//
- // Various Helper Functions
- //===----------------------------------------------------------------------===//
- static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
- // Determine if the value is signed or not
- bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
- // If its signed, extend the sign bits
- if (isSigned)
- Val |= ~ITy->getBitMask();
- return Val;
- }
- static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
- SF.Values[V] = Val;
- }
- void Interpreter::initializeExecutionEngine() {
- TheEE = this;
- }
- //===----------------------------------------------------------------------===//
- // Binary Instruction Implementations
- //===----------------------------------------------------------------------===//
- #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
- case Type::TY##TyID: \
- Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
- break
- #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
- case Type::IntegerTyID: { \
- Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
- break; \
- }
- static void executeAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(+, Ty);
- IMPLEMENT_BINARY_OPERATOR(+, Float);
- IMPLEMENT_BINARY_OPERATOR(+, Double);
- default:
- cerr << "Unhandled type for Add instruction: " << *Ty << "\n";
- abort();
- }
- }
- static void executeSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(-, Ty);
- IMPLEMENT_BINARY_OPERATOR(-, Float);
- IMPLEMENT_BINARY_OPERATOR(-, Double);
- default:
- cerr << "Unhandled type for Sub instruction: " << *Ty << "\n";
- abort();
- }
- }
- static void executeMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(*, Ty);
- IMPLEMENT_BINARY_OPERATOR(*, Float);
- IMPLEMENT_BINARY_OPERATOR(*, Double);
- default:
- cerr << "Unhandled type for Mul instruction: " << *Ty << "\n";
- abort();
- }
- }
- static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- IMPLEMENT_BINARY_OPERATOR(/, Float);
- IMPLEMENT_BINARY_OPERATOR(/, Double);
- default:
- cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- abort();
- }
- }
- static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
- break;
- case Type::DoubleTyID:
- Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
- break;
- default:
- cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
- abort();
- }
- }
- #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
- case Type::IntegerTyID: \
- Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
- break;
- // Handle pointers specially because they must be compared with only as much
- // width as the host has. We _do not_ want to be comparing 64 bit values when
- // running on a 32-bit target, otherwise the upper 32 bits might mess up
- // comparisons if they contain garbage.
- #define IMPLEMENT_POINTER_ICMP(OP) \
- case Type::PointerTyID: \
- Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
- (void*)(intptr_t)Src2.PointerVal); \
- break;
- static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_POINTER_ICMP(==);
- default:
- cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_POINTER_ICMP(!=);
- default:
- cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_POINTER_ICMP(<);
- default:
- cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_POINTER_ICMP(>);
- default:
- cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_POINTER_ICMP(<=);
- default:
- cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_POINTER_ICMP(>=);
- default:
- cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- void Interpreter::visitICmpInst(ICmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
- case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
- default:
- cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
- abort();
- }
-
- SetValue(&I, R, SF);
- }
- #define IMPLEMENT_FCMP(OP, TY) \
- case Type::TY##TyID: \
- Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
- break
- static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(==, Float);
- IMPLEMENT_FCMP(==, Double);
- default:
- cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(!=, Float);
- IMPLEMENT_FCMP(!=, Double);
- default:
- cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<=, Float);
- IMPLEMENT_FCMP(<=, Double);
- default:
- cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>=, Float);
- IMPLEMENT_FCMP(>=, Double);
- default:
- cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(<, Float);
- IMPLEMENT_FCMP(<, Double);
- default:
- cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- switch (Ty->getTypeID()) {
- IMPLEMENT_FCMP(>, Float);
- IMPLEMENT_FCMP(>, Double);
- default:
- cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- abort();
- }
- return Dest;
- }
- #define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY == Type::FloatTy) \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- } \
- else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,true); \
- return Dest; \
- }
- static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OEQ(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_ONE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OLE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OGE(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OLT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- return executeFCMP_OGT(Src1, Src2, Ty);
- }
- static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- if (Ty == Type::FloatTy)
- Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
- Src2.FloatVal == Src2.FloatVal));
- else
- Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
- Src2.DoubleVal == Src2.DoubleVal));
- return Dest;
- }
- static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
- const Type *Ty) {
- GenericValue Dest;
- if (Ty == Type::FloatTy)
- Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
- Src2.FloatVal != Src2.FloatVal));
- else
- Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
- Src2.DoubleVal != Src2.DoubleVal));
- return Dest;
- }
- void Interpreter::visitFCmpInst(FCmpInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
-
- switch (I.getPredicate()) {
- case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
- case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
- case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
- case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
- default:
- cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
- abort();
- }
-
- SetValue(&I, R, SF);
- }
- static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
- GenericValue Result;
- switch (predicate) {
- case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
- case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
- case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
- case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
- case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
- case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
- case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
- case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
- case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
- case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: {
- GenericValue Result;
- Result.IntVal = APInt(1, false);
- return Result;
- }
- case FCmpInst::FCMP_TRUE: {
- GenericValue Result;
- Result.IntVal = APInt(1, true);
- return Result;
- }
- default:
- cerr << "Unhandled Cmp predicate\n";
- abort();
- }
- }
- void Interpreter::visitBinaryOperator(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getOperand(0)->getType();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue R; // Result
- switch (I.getOpcode()) {
- case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break;
- case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break;
- case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- default:
- cerr << "Don't know how to handle this binary operator!\n-->" << I;
- abort();
- }
- SetValue(&I, R, SF);
- }
- static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3) {
- return Src1.IntVal == 0 ? Src3 : Src2;
- }
- void Interpreter::visitSelectInst(SelectInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3);
- SetValue(&I, R, SF);
- }
- //===----------------------------------------------------------------------===//
- // Terminator Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::exitCalled(GenericValue GV) {
- // runAtExitHandlers() assumes there are no stack frames, but
- // if exit() was called, then it had a stack frame. Blow away
- // the stack before interpreting atexit handlers.
- ECStack.clear ();
- runAtExitHandlers ();
- exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
- }
- /// Pop the last stack frame off of ECStack and then copy the result
- /// back into the result variable if we are not returning void. The
- /// result variable may be the ExitValue, or the Value of the calling
- /// CallInst if there was a previous stack frame. This method may
- /// invalidate any ECStack iterators you have. This method also takes
- /// care of switching to the normal destination BB, if we are returning
- /// from an invoke.
- ///
- void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
- GenericValue Result) {
- // Pop the current stack frame.
- ECStack.pop_back();
- if (ECStack.empty()) { // Finished main. Put result into exit code...
- if (RetTy && RetTy->isInteger()) { // Nonvoid return type?
- ExitValue = Result; // Capture the exit value of the program
- } else {
- memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
- }
- } else {
- // If we have a previous stack frame, and we have a previous call,
- // fill in the return value...
- ExecutionContext &CallingSF = ECStack.back();
- if (Instruction *I = CallingSF.Caller.getInstruction()) {
- if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
- SetValue(I, Result, CallingSF);
- if (InvokeInst *II = dyn_cast<InvokeInst> (I))
- SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
- CallingSF.Caller = CallSite(); // We returned from the call...
- }
- }
- }
- void Interpreter::visitReturnInst(ReturnInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *RetTy = Type::VoidTy;
- GenericValue Result;
- // Save away the return value... (if we are not 'ret void')
- if (I.getNumOperands()) {
- RetTy = I.getReturnValue()->getType();
- Result = getOperandValue(I.getReturnValue(), SF);
- }
- popStackAndReturnValueToCaller(RetTy, Result);
- }
- void Interpreter::visitUnwindInst(UnwindInst &I) {
- // Unwind stack
- Instruction *Inst;
- do {
- ECStack.pop_back ();
- if (ECStack.empty ())
- abort ();
- Inst = ECStack.back ().Caller.getInstruction ();
- } while (!(Inst && isa<InvokeInst> (Inst)));
- // Return from invoke
- ExecutionContext &InvokingSF = ECStack.back ();
- InvokingSF.Caller = CallSite ();
- // Go to exceptional destination BB of invoke instruction
- SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
- }
- void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
- abort();
- }
- void Interpreter::visitBranchInst(BranchInst &I) {
- ExecutionContext &SF = ECStack.back();
- BasicBlock *Dest;
- Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
- if (!I.isUnconditional()) {
- Value *Cond = I.getCondition();
- if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
- Dest = I.getSuccessor(1);
- }
- SwitchToNewBasicBlock(Dest, SF);
- }
- void Interpreter::visitSwitchInst(SwitchInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
- const Type *ElTy = I.getOperand(0)->getType();
- // Check to see if any of the cases match...
- BasicBlock *Dest = 0;
- for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
- if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
- .IntVal != 0) {
- Dest = cast<BasicBlock>(I.getOperand(i+1));
- break;
- }
- if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
- SwitchToNewBasicBlock(Dest, SF);
- }
- // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
- // This function handles the actual updating of block and instruction iterators
- // as well as execution of all of the PHI nodes in the destination block.
- //
- // This method does this because all of the PHI nodes must be executed
- // atomically, reading their inputs before any of the results are updated. Not
- // doing this can cause problems if the PHI nodes depend on other PHI nodes for
- // their inputs. If the input PHI node is updated before it is read, incorrect
- // results can happen. Thus we use a two phase approach.
- //
- void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
- BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
- SF.CurBB = Dest; // Update CurBB to branch destination
- SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
- if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
- // Loop over all of the PHI nodes in the current block, reading their inputs.
- std::vector<GenericValue> ResultValues;
- for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
- // Search for the value corresponding to this previous bb...
- int i = PN->getBasicBlockIndex(PrevBB);
- assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
- Value *IncomingValue = PN->getIncomingValue(i);
- // Save the incoming value for this PHI node...
- ResultValues.push_back(getOperandValue(IncomingValue, SF));
- }
- // Now loop over all of the PHI nodes setting their values...
- SF.CurInst = SF.CurBB->begin();
- for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
- PHINode *PN = cast<PHINode>(SF.CurInst);
- SetValue(PN, ResultValues[i], SF);
- }
- }
- //===----------------------------------------------------------------------===//
- // Memory Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitAllocationInst(AllocationInst &I) {
- ExecutionContext &SF = ECStack.back();
- const Type *Ty = I.getType()->getElementType(); // Type to be allocated
- // Get the number of elements being allocated by the array...
- unsigned NumElements =
- getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
- unsigned TypeSize = (size_t)TD.getABITypeSize(Ty);
- // Avoid malloc-ing zero bytes, use max()...
- unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
- // Allocate enough memory to hold the type...
- void *Memory = malloc(MemToAlloc);
- DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
- << NumElements << " (Total: " << MemToAlloc << ") at "
- << uintptr_t(Memory) << '\n';
- GenericValue Result = PTOGV(Memory);
- assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
- SetValue(&I, Result, SF);
- if (I.getOpcode() == Instruction::Alloca)
- ECStack.back().Allocas.add(Memory);
- }
- void Interpreter::visitFreeInst(FreeInst &I) {
- ExecutionContext &SF = ECStack.back();
- assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
- GenericValue Value = getOperandValue(I.getOperand(0), SF);
- // TODO: Check to make sure memory is allocated
- free(GVTOP(Value)); // Free memory
- }
- // getElementOffset - The workhorse for getelementptr.
- //
- GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E,
- ExecutionContext &SF) {
- assert(isa<PointerType>(Ptr->getType()) &&
- "Cannot getElementOffset of a nonpointer type!");
- uint64_t Total = 0;
- for (; I != E; ++I) {
- if (const StructType *STy = dyn_cast<StructType>(*I)) {
- const StructLayout *SLO = TD.getStructLayout(STy);
- const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
- unsigned Index = unsigned(CPU->getZExtValue());
- Total += SLO->getElementOffset(Index);
- } else {
- const SequentialType *ST = cast<SequentialType>(*I);
- // Get the index number for the array... which must be long type...
- GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
- int64_t Idx;
- unsigned BitWidth =
- cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
- if (BitWidth == 32)
- Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
- else if (BitWidth == 64)
- Idx = (int64_t)IdxGV.IntVal.getZExtValue();
- else
- assert(0 && "Invalid index type for getelementptr");
- Total += TD.getABITypeSize(ST->getElementType())*Idx;
- }
- }
- GenericValue Result;
- Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- DOUT << "GEP Index " << Total << " bytes.\n";
- return Result;
- }
- void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
- gep_type_begin(I), gep_type_end(I), SF), SF);
- }
- void Interpreter::visitLoadInst(LoadInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
- GenericValue Result;
- LoadValueFromMemory(Result, Ptr, I.getType());
- SetValue(&I, Result, SF);
- }
- void Interpreter::visitStoreInst(StoreInst &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Val = getOperandValue(I.getOperand(0), SF);
- GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
- StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
- I.getOperand(0)->getType());
- }
- //===----------------------------------------------------------------------===//
- // Miscellaneous Instruction Implementations
- //===----------------------------------------------------------------------===//
- void Interpreter::visitCallSite(CallSite CS) {
- ExecutionContext &SF = ECStack.back();
- // Check to see if this is an intrinsic function call...
- Function *F = CS.getCalledFunction();
- if (F && F->isDeclaration ())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- break;
- case Intrinsic::vastart: { // va_start
- GenericValue ArgIndex;
- ArgIndex.UIntPairVal.first = ECStack.size() - 1;
- ArgIndex.UIntPairVal.second = 0;
- SetValue(CS.getInstruction(), ArgIndex, SF);
- return;
- }
- case Intrinsic::vaend: // va_end is a noop for the interpreter
- return;
- case Intrinsic::vacopy: // va_copy: dest = src
- SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
- return;
- default:
- // If it is an unknown intrinsic function, use the intrinsic lowering
- // class to transform it into hopefully tasty LLVM code.
- //
- BasicBlock::iterator me(CS.getInstruction());
- BasicBlock *Parent = CS.getInstruction()->getParent();
- bool atBegin(Parent->begin() == me);
- if (!atBegin)
- --me;
- IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
- // Restore the CurInst pointer to the first instruction newly inserted, if
- // any.
- if (atBegin) {
- SF.CurInst = Parent->begin();
- } else {
- SF.CurInst = me;
- ++SF.CurInst;
- }
- return;
- }
- SF.Caller = CS;
- std::vector<GenericValue> ArgVals;
- const unsigned NumArgs = SF.Caller.arg_size();
- ArgVals.reserve(NumArgs);
- uint16_t pNum = 1;
- for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
- e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
- Value *V = *i;
- ArgVals.push_back(getOperandValue(V, SF));
- // Promote all integral types whose size is < sizeof(i32) into i32.
- // We do this by zero or sign extending the value as appropriate
- // according to the parameter attributes
- const Type *Ty = V->getType();
- if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32))
- if (CS.paramHasAttr(pNum, ParamAttr::ZExt))
- ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
- else if (CS.paramHasAttr(pNum, ParamAttr::SExt))
- ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
- }
- // To handle indirect calls, we must get the pointer value from the argument
- // and treat it as a function pointer.
- GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
- callFunction((Function*)GVTOP(SRC), ArgVals);
- }
- void Interpreter::visitShl(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitLShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
- SetValue(&I, Dest, SF);
- }
- void Interpreter::visitAShr(BinaryOperator &I) {
- ExecutionContext &SF = ECStack.back();
- GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
- GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
- GenericValue Dest;
- Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
- SetValue(&I, Dest, SF);
- }
- GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- const IntegerType *SITy = cast<IntegerType>(SrcTy);
- unsigned DBitWidth = DITy->getBitWidth();
- unsigned SBitWidth = SITy->getBitWidth();
- assert(SBitWidth > DBitWidth && "Invalid truncate");
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- const IntegerType *SITy = cast<IntegerType>(SrcTy);
- unsigned DBitWidth = DITy->getBitWidth();
- unsigned SBitWidth = SITy->getBitWidth();
- assert(SBitWidth < DBitWidth && "Invalid sign extend");
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- const IntegerType *DITy = cast<IntegerType>(DstTy);
- const IntegerType *SITy = cast<IntegerType>(SrcTy);
- unsigned DBitWidth = DITy->getBitWidth();
- unsigned SBitWidth = SITy->getBitWidth();
- assert(SBitWidth < DBitWidth && "Invalid sign extend");
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float) Src.DoubleVal;
- return Dest;
- }
- GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy &&
- "Invalid FPTrunc instruction");
- Dest.DoubleVal = (double) Src.FloatVal;
- return Dest;
- }
- GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
- return Dest;
- }
- GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
- return Dest;
- }
- GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- return Dest;
- }
- GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- const Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(isa<PointerType>(SrcTy) && "Invalid PtrToInt instruction");
- Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
- return Dest;
- }
- GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
- uint32_t PtrSize = TD.getPointerSizeInBits();
- if (PtrSize != Src.IntVal.getBitWidth())
- Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
- Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
- return Dest;
- }
- GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
- ExecutionContext &SF) {
-
- const Type *SrcTy = SrcVal->getType();
- GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (isa<PointerType>(DstTy)) {
- assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isInteger()) {
- if (SrcTy == Type::FloatTy) {
- Dest.IntVal.zext(sizeof(Src.FloatVal) * 8);
- Dest.IntVal.floatToBits(Src.FloatVal);
- } else if (SrcTy == Type::DoubleTy) {
- Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8);
- Dest.IntVal.doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isInteger()) {
- Dest.IntVal = Src.IntVal;
- } else
- assert(0 && "Invalid BitCast");
- } else if (DstTy == Type::FloatTy) {
- if (SrcTy->isInteger())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else
- Dest.FloatVal = Src.FloatVal;
- } else if (DstTy == Type::DoubleTy) {
- if (SrcTy->isInteger())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else
- Dest.DoubleVal = Src.DoubleVal;
- } else
- assert(0 && "Invalid Bitcast");
- return Dest;
- }
- void Interpreter::visitTruncInst(TruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSExtInst(SExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitZExtInst(ZExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPTruncInst(FPTruncInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPExtInst(FPExtInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitUIToFPInst(UIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitSIToFPInst(SIToFPInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToUIInst(FPToUIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitFPToSIInst(FPToSIInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
- }
- void Interpreter::visitBitCastInst(BitCastInst &I) {
- ExecutionContext &SF = ECStack.back();
- SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
- }
- #define IMPLEMENT_VAARG(TY) \
- case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
- void Interpreter::visitVAArgInst(VAArgInst &I) {
- ExecutionContext &SF = ECStack.back();
- // Get the incoming valist parameter. LLI treats the valist as a
- // (ec-stack-depth var-arg-index) pair.
- GenericValue VAList = getOperandValue(I.getOperand(0), SF);
- GenericValue Dest;
- GenericValue Src = ECStack[VAList.UIntPairVal.first]
- .VarArgs[VAList.UIntPairVal.second];
- const Type *Ty = I.getType();
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
- IMPLEMENT_VAARG(Pointer);
- IMPLEMENT_VAARG(Float);
- IMPLEMENT_VAARG(Double);
- default:
- cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- abort();
- }
- // Set the Value of this Instruction.
- SetValue(&I, Dest, SF);
- // Move the pointer to the next vararg.
- ++VAList.UIntPairVal.second;
- }
- GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
- ExecutionContext &SF) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::ZExt:
- return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SExt:
- return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPTrunc:
- return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPExt:
- return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::UIToFP:
- return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::SIToFP:
- return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToUI:
- return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::FPToSI:
- return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::PtrToInt:
- return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::IntToPtr:
- return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::BitCast:
- return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
- case Instruction::GetElementPtr:
- return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
- gep_type_end(CE), SF);
- case Instruction::FCmp:
- case Instruction::ICmp:
- return executeCmpInst(CE->getPredicate(),
- getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- CE->getOperand(0)->getType());
- case Instruction::Select:
- return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
- getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF));
- default :
- break;
- }
- // The cases below here require a GenericValue parameter for the result
- // so we initialize one, compute it and then return it.
- GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
- GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
- GenericValue Dest;
- const Type * Ty = CE->getOperand(0)->getType();
- switch (CE->getOpcode()) {
- case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break;
- case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break;
- case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break;
- case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
- case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
- case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
- case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
- case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
- case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break;
- case Instruction::Shl:
- Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
- break;
- case Instruction::LShr:
- Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
- break;
- case Instruction::AShr:
- Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
- break;
- default:
- cerr << "Unhandled ConstantExpr: " << *CE << "\n";
- abort();
- return GenericValue();
- }
- return Dest;
- }
- GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- return getConstantExprValue(CE, SF);
- } else if (Constant *CPV = dyn_cast<Constant>(V)) {
- return getConstantValue(CPV);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- return PTOGV(getPointerToGlobal(GV));
- } else {
- return SF.Values[V];
- }
- }
- //===----------------------------------------------------------------------===//
- // Dispatch and Execution Code
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // callFunction - Execute the specified function...
- //
- void Interpreter::callFunction(Function *F,
- const std::vector<GenericValue> &ArgVals) {
- assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
- ECStack.back().Caller.arg_size() == ArgVals.size()) &&
- "Incorrect number of arguments passed into function call!");
- // Make a new stack frame... and fill it in.
- ECStack.push_back(ExecutionContext());
- ExecutionContext &StackFrame = ECStack.back();
- StackFrame.CurFunction = F;
- // Special handling for external functions.
- if (F->isDeclaration()) {
- GenericValue Result = callExternalFunction (F, ArgVals);
- // Simulate a 'ret' instruction of the appropriate type.
- popStackAndReturnValueToCaller (F->getReturnType (), Result);
- return;
- }
- // Get pointers to first LLVM BB & Instruction in function.
- StackFrame.CurBB = F->begin();
- StackFrame.CurInst = StackFrame.CurBB->begin();
- // Run through the function arguments and initialize their values...
- assert((ArgVals.size() == F->arg_size() ||
- (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
- "Invalid number of values passed to function invocation!");
- // Handle non-varargs arguments...
- unsigned i = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++i)
- SetValue(AI, ArgVals[i], StackFrame);
- // Handle varargs arguments...
- StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
- }
- void Interpreter::run() {
- while (!ECStack.empty()) {
- // Interpret a single instruction & increment the "PC".
- ExecutionContext &SF = ECStack.back(); // Current stack frame
- Instruction &I = *SF.CurInst++; // Increment before execute
- // Track the number of dynamic instructions executed.
- ++NumDynamicInsts;
- DOUT << "About to interpret: " << I;
- visit(I); // Dispatch to one of the visit* methods...
- #if 0
- // This is not safe, as visiting the instruction could lower it and free I.
- #ifndef NDEBUG
- if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
- I.getType() != Type::VoidTy) {
- DOUT << " --> ";
- const GenericValue &Val = SF.Values[&I];
- switch (I.getType()->getTypeID()) {
- default: assert(0 && "Invalid GenericValue Type");
- case Type::VoidTyID: DOUT << "void"; break;
- case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
- case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
- case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal);
- break;
- case Type::IntegerTyID:
- DOUT << "i" << Val.IntVal.getBitWidth() << " "
- << Val.IntVal.toStringUnsigned(10)
- << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
- break;
- }
- }
- #endif
- #endif
- }
- }
|