123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861 |
- //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the default implementation of the Alias Analysis interface
- // that simply implements a few identities (two different globals cannot alias,
- // etc), but otherwise does no analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/ParameterAttributes.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Pass.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/ManagedStatic.h"
- #include <algorithm>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Useful predicates
- //===----------------------------------------------------------------------===//
- // Determine if an AllocationInst instruction escapes from the function it is
- // contained in. If it does not escape, there is no way for another function to
- // mod/ref it. We do this by looking at its uses and determining if the uses
- // can escape (recursively).
- static bool AddressMightEscape(const Value *V) {
- for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- const Instruction *I = cast<Instruction>(*UI);
- switch (I->getOpcode()) {
- case Instruction::Load:
- break; //next use.
- case Instruction::Store:
- if (I->getOperand(0) == V)
- return true; // Escapes if the pointer is stored.
- break; // next use.
- case Instruction::GetElementPtr:
- if (AddressMightEscape(I))
- return true;
- break; // next use.
- case Instruction::BitCast:
- if (AddressMightEscape(I))
- return true;
- break; // next use
- case Instruction::Ret:
- // If returned, the address will escape to calling functions, but no
- // callees could modify it.
- break; // next use
- case Instruction::Call:
- // If the call is to a few known safe intrinsics, we know that it does
- // not escape.
- // TODO: Eventually just check the 'nocapture' attribute.
- if (!isa<MemIntrinsic>(I))
- return true;
- break; // next use
- default:
- return true;
- }
- }
- return false;
- }
- /// getUnderlyingObject - This traverses the use chain to figure out what object
- /// the specified value points to. If the value points to, or is derived from,
- /// a unique object or an argument, return it. This returns:
- /// Arguments, GlobalVariables, Functions, Allocas, Mallocs.
- static const Value *getUnderlyingObject(const Value *V) {
- if (!isa<PointerType>(V->getType())) return V;
- // If we are at some type of object, return it. GlobalValues and Allocations
- // have unique addresses.
- if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
- return V;
- // Traverse through different addressing mechanisms...
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
- return getUnderlyingObject(I->getOperand(0));
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::GetElementPtr)
- return getUnderlyingObject(CE->getOperand(0));
- }
- return V;
- }
- static const User *isGEP(const Value *V) {
- if (isa<GetElementPtrInst>(V) ||
- (isa<ConstantExpr>(V) &&
- cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
- return cast<User>(V);
- return 0;
- }
- static const Value *GetGEPOperands(const Value *V,
- SmallVector<Value*, 16> &GEPOps){
- assert(GEPOps.empty() && "Expect empty list to populate!");
- GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
- cast<User>(V)->op_end());
- // Accumulate all of the chained indexes into the operand array
- V = cast<User>(V)->getOperand(0);
- while (const User *G = isGEP(V)) {
- if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
- !cast<Constant>(GEPOps[0])->isNullValue())
- break; // Don't handle folding arbitrary pointer offsets yet...
- GEPOps.erase(GEPOps.begin()); // Drop the zero index
- GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
- V = G->getOperand(0);
- }
- return V;
- }
- /// isIdentifiedObject - Return true if this pointer refers to a distinct and
- /// identifiable object. This returns true for:
- /// Global Variables and Functions
- /// Allocas and Mallocs
- /// ByVal and NoAlias Arguments
- ///
- static bool isIdentifiedObject(const Value *V) {
- if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
- return true;
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasNoAliasAttr() || A->hasByValAttr();
- return false;
- }
- /// isKnownNonNull - Return true if we know that the specified value is never
- /// null.
- static bool isKnownNonNull(const Value *V) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V)) return true;
-
- // A byval argument is never null.
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
- // Global values are not null unless extern weak.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return !GV->hasExternalWeakLinkage();
- return false;
- }
- /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
- /// object that never escapes from the function.
- static bool isNonEscapingLocalObject(const Value *V) {
- // If this is a local allocation, check to see if it escapes.
- if (isa<AllocationInst>(V))
- return !AddressMightEscape(V);
-
- // If this is an argument that corresponds to a byval or noalias argument,
- // it can't escape either.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr() || A->hasNoAliasAttr())
- return !AddressMightEscape(V);
- return false;
- }
- /// isObjectSmallerThan - Return true if we can prove that the object specified
- /// by V is smaller than Size.
- static bool isObjectSmallerThan(const Value *V, unsigned Size,
- const TargetData &TD) {
- const Type *AccessTy = 0;
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- AccessTy = GV->getType()->getElementType();
-
- if (const AllocationInst *AI = dyn_cast<AllocationInst>(V))
- if (!AI->isArrayAllocation())
- AccessTy = AI->getType()->getElementType();
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr())
- AccessTy = cast<PointerType>(A->getType())->getElementType();
-
- if (AccessTy && AccessTy->isSized())
- return TD.getABITypeSize(AccessTy) < Size;
- return false;
- }
- //===----------------------------------------------------------------------===//
- // NoAA Pass
- //===----------------------------------------------------------------------===//
- namespace {
- /// NoAA - This class implements the -no-aa pass, which always returns "I
- /// don't know" for alias queries. NoAA is unlike other alias analysis
- /// implementations, in that it does not chain to a previous analysis. As
- /// such it doesn't follow many of the rules that other alias analyses must.
- ///
- struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
- static char ID; // Class identification, replacement for typeinfo
- NoAA() : ImmutablePass(&ID) {}
- explicit NoAA(void *PID) : ImmutablePass(PID) { }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
- }
- virtual void initializePass() {
- TD = &getAnalysis<TargetData>();
- }
- virtual AliasResult alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
- return MayAlias;
- }
- virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
- std::vector<PointerAccessInfo> *Info) {
- return UnknownModRefBehavior;
- }
- virtual void getArgumentAccesses(Function *F, CallSite CS,
- std::vector<PointerAccessInfo> &Info) {
- assert(0 && "This method may not be called on this function!");
- }
- virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
- virtual bool pointsToConstantMemory(const Value *P) { return false; }
- virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- return ModRef;
- }
- virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
- return ModRef;
- }
- virtual bool hasNoModRefInfoForCalls() const { return true; }
- virtual void deleteValue(Value *V) {}
- virtual void copyValue(Value *From, Value *To) {}
- };
- } // End of anonymous namespace
- // Register this pass...
- char NoAA::ID = 0;
- static RegisterPass<NoAA>
- U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
- // Declare that we implement the AliasAnalysis interface
- static RegisterAnalysisGroup<AliasAnalysis> V(U);
- ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
- //===----------------------------------------------------------------------===//
- // BasicAA Pass
- //===----------------------------------------------------------------------===//
- namespace {
- /// BasicAliasAnalysis - This is the default alias analysis implementation.
- /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
- /// derives from the NoAA class.
- struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
- static char ID; // Class identification, replacement for typeinfo
- BasicAliasAnalysis() : NoAA(&ID) {}
- AliasResult alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size);
- ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
- ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
- return NoAA::getModRefInfo(CS1,CS2);
- }
- /// hasNoModRefInfoForCalls - We can provide mod/ref information against
- /// non-escaping allocations.
- virtual bool hasNoModRefInfoForCalls() const { return false; }
- /// pointsToConstantMemory - Chase pointers until we find a (constant
- /// global) or not.
- bool pointsToConstantMemory(const Value *P);
- private:
- // CheckGEPInstructions - Check two GEP instructions with known
- // must-aliasing base pointers. This checks to see if the index expressions
- // preclude the pointers from aliasing...
- AliasResult
- CheckGEPInstructions(const Type* BasePtr1Ty,
- Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
- const Type *BasePtr2Ty,
- Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
- };
- } // End of anonymous namespace
- // Register this pass...
- char BasicAliasAnalysis::ID = 0;
- static RegisterPass<BasicAliasAnalysis>
- X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
- // Declare that we implement the AliasAnalysis interface
- static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
- ImmutablePass *llvm::createBasicAliasAnalysisPass() {
- return new BasicAliasAnalysis();
- }
- /// pointsToConstantMemory - Chase pointers until we find a (constant
- /// global) or not.
- bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
- if (const GlobalVariable *GV =
- dyn_cast<GlobalVariable>(getUnderlyingObject(P)))
- return GV->isConstant();
- return false;
- }
- // getModRefInfo - Check to see if the specified callsite can clobber the
- // specified memory object. Since we only look at local properties of this
- // function, we really can't say much about this query. We do, however, use
- // simple "address taken" analysis on local objects.
- //
- AliasAnalysis::ModRefResult
- BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- if (!isa<Constant>(P)) {
- const Value *Object = getUnderlyingObject(P);
-
- // If this is a tail call and P points to a stack location, we know that
- // the tail call cannot access or modify the local stack.
- // We cannot exclude byval arguments here; these belong to the caller of
- // the current function not to the current function, and a tail callee
- // may reference them.
- if (isa<AllocaInst>(Object))
- if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
- if (CI->isTailCall())
- return NoModRef;
-
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the
- // argument without capturing it.
- if (isNonEscapingLocalObject(Object)) {
- bool passedAsArg = false;
- // TODO: Eventually only check 'nocapture' arguments.
- for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
- CI != CE; ++CI)
- if (isa<PointerType>((*CI)->getType()) &&
- alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
- passedAsArg = true;
-
- if (!passedAsArg)
- return NoModRef;
- }
- }
- // The AliasAnalysis base class has some smarts, lets use them.
- return AliasAnalysis::getModRefInfo(CS, P, Size);
- }
- // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
- // as array references. Note that this function is heavily tail recursive.
- // Hopefully we have a smart C++ compiler. :)
- //
- AliasAnalysis::AliasResult
- BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
- // Strip off any constant expression casts if they exist
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
- if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
- V1 = CE->getOperand(0);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
- if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
- V2 = CE->getOperand(0);
- // Are we checking for alias of the same value?
- if (V1 == V2) return MustAlias;
- if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
- V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
- return NoAlias; // Scalars cannot alias each other
- // Strip off cast instructions...
- if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
- return alias(I->getOperand(0), V1Size, V2, V2Size);
- if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
- return alias(V1, V1Size, I->getOperand(0), V2Size);
- // Figure out what objects these things are pointing to if we can...
- const Value *O1 = getUnderlyingObject(V1);
- const Value *O2 = getUnderlyingObject(V2);
- if (O1 != O2) {
- // If V1/V2 point to two different objects we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
-
- // Incoming argument cannot alias locally allocated object!
- if ((isa<Argument>(O1) && isa<AllocationInst>(O2)) ||
- (isa<Argument>(O2) && isa<AllocationInst>(O1)))
- return NoAlias;
-
- // Most objects can't alias null.
- if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
- (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
- return NoAlias;
- }
-
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- const TargetData &TD = getTargetData();
- if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
- (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
- return NoAlias;
-
- // If one pointer is the result of a call/invoke and the other is a
- // non-escaping local object, then we know the object couldn't escape to a
- // point where the call could return it.
- if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
- isNonEscapingLocalObject(O2))
- return NoAlias;
- if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
- isNonEscapingLocalObject(O1))
- return NoAlias;
-
- // If we have two gep instructions with must-alias'ing base pointers, figure
- // out if the indexes to the GEP tell us anything about the derived pointer.
- // Note that we also handle chains of getelementptr instructions as well as
- // constant expression getelementptrs here.
- //
- if (isGEP(V1) && isGEP(V2)) {
- // Drill down into the first non-gep value, to test for must-aliasing of
- // the base pointers.
- const User *G = cast<User>(V1);
- while (isGEP(G->getOperand(0)) &&
- G->getOperand(1) ==
- Constant::getNullValue(G->getOperand(1)->getType()))
- G = cast<User>(G->getOperand(0));
- const Value *BasePtr1 = G->getOperand(0);
- G = cast<User>(V2);
- while (isGEP(G->getOperand(0)) &&
- G->getOperand(1) ==
- Constant::getNullValue(G->getOperand(1)->getType()))
- G = cast<User>(G->getOperand(0));
- const Value *BasePtr2 = G->getOperand(0);
- // Do the base pointers alias?
- AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
- if (BaseAlias == NoAlias) return NoAlias;
- if (BaseAlias == MustAlias) {
- // If the base pointers alias each other exactly, check to see if we can
- // figure out anything about the resultant pointers, to try to prove
- // non-aliasing.
- // Collect all of the chained GEP operands together into one simple place
- SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
- BasePtr1 = GetGEPOperands(V1, GEP1Ops);
- BasePtr2 = GetGEPOperands(V2, GEP2Ops);
- // If GetGEPOperands were able to fold to the same must-aliased pointer,
- // do the comparison.
- if (BasePtr1 == BasePtr2) {
- AliasResult GAlias =
- CheckGEPInstructions(BasePtr1->getType(),
- &GEP1Ops[0], GEP1Ops.size(), V1Size,
- BasePtr2->getType(),
- &GEP2Ops[0], GEP2Ops.size(), V2Size);
- if (GAlias != MayAlias)
- return GAlias;
- }
- }
- }
- // Check to see if these two pointers are related by a getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
- //
- if (isGEP(V2)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- }
- if (V1Size != ~0U && V2Size != ~0U)
- if (isGEP(V1)) {
- SmallVector<Value*, 16> GEPOperands;
- const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
- AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
- if (R == MustAlias) {
- // If there is at least one non-zero constant index, we know they cannot
- // alias.
- bool ConstantFound = false;
- bool AllZerosFound = true;
- for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
- if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
- if (!C->isNullValue()) {
- ConstantFound = true;
- AllZerosFound = false;
- break;
- }
- } else {
- AllZerosFound = false;
- }
- // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
- // the ptr, the end result is a must alias also.
- if (AllZerosFound)
- return MustAlias;
- if (ConstantFound) {
- if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
- return NoAlias;
- // Otherwise we have to check to see that the distance is more than
- // the size of the argument... build an index vector that is equal to
- // the arguments provided, except substitute 0's for any variable
- // indexes we find...
- if (cast<PointerType>(
- BasePtr->getType())->getElementType()->isSized()) {
- for (unsigned i = 0; i != GEPOperands.size(); ++i)
- if (!isa<ConstantInt>(GEPOperands[i]))
- GEPOperands[i] =
- Constant::getNullValue(GEPOperands[i]->getType());
- int64_t Offset =
- getTargetData().getIndexedOffset(BasePtr->getType(),
- &GEPOperands[0],
- GEPOperands.size());
- if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
- return NoAlias;
- }
- }
- }
- }
- return MayAlias;
- }
- // This function is used to determin if the indices of two GEP instructions are
- // equal. V1 and V2 are the indices.
- static bool IndexOperandsEqual(Value *V1, Value *V2) {
- if (V1->getType() == V2->getType())
- return V1 == V2;
- if (Constant *C1 = dyn_cast<Constant>(V1))
- if (Constant *C2 = dyn_cast<Constant>(V2)) {
- // Sign extend the constants to long types, if necessary
- if (C1->getType() != Type::Int64Ty)
- C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
- if (C2->getType() != Type::Int64Ty)
- C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
- return C1 == C2;
- }
- return false;
- }
- /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
- /// base pointers. This checks to see if the index expressions preclude the
- /// pointers from aliasing...
- AliasAnalysis::AliasResult
- BasicAliasAnalysis::CheckGEPInstructions(
- const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
- const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
- // We currently can't handle the case when the base pointers have different
- // primitive types. Since this is uncommon anyway, we are happy being
- // extremely conservative.
- if (BasePtr1Ty != BasePtr2Ty)
- return MayAlias;
- const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
- // Find the (possibly empty) initial sequence of equal values... which are not
- // necessarily constants.
- unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
- unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
- unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
- unsigned UnequalOper = 0;
- while (UnequalOper != MinOperands &&
- IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
- // Advance through the type as we go...
- ++UnequalOper;
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
- BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
- else {
- // If all operands equal each other, then the derived pointers must
- // alias each other...
- BasePtr1Ty = 0;
- assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
- "Ran out of type nesting, but not out of operands?");
- return MustAlias;
- }
- }
- // If we have seen all constant operands, and run out of indexes on one of the
- // getelementptrs, check to see if the tail of the leftover one is all zeros.
- // If so, return mustalias.
- if (UnequalOper == MinOperands) {
- if (NumGEP1Ops < NumGEP2Ops) {
- std::swap(GEP1Ops, GEP2Ops);
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
- bool AllAreZeros = true;
- for (unsigned i = UnequalOper; i != MaxOperands; ++i)
- if (!isa<Constant>(GEP1Ops[i]) ||
- !cast<Constant>(GEP1Ops[i])->isNullValue()) {
- AllAreZeros = false;
- break;
- }
- if (AllAreZeros) return MustAlias;
- }
- // So now we know that the indexes derived from the base pointers,
- // which are known to alias, are different. We can still determine a
- // no-alias result if there are differing constant pairs in the index
- // chain. For example:
- // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
- //
- // We have to be careful here about array accesses. In particular, consider:
- // A[1][0] vs A[0][i]
- // In this case, we don't *know* that the array will be accessed in bounds:
- // the index could even be negative. Because of this, we have to
- // conservatively *give up* and return may alias. We disregard differing
- // array subscripts that are followed by a variable index without going
- // through a struct.
- //
- unsigned SizeMax = std::max(G1S, G2S);
- if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
- // Scan for the first operand that is constant and unequal in the
- // two getelementptrs...
- unsigned FirstConstantOper = UnequalOper;
- for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
- const Value *G1Oper = GEP1Ops[FirstConstantOper];
- const Value *G2Oper = GEP2Ops[FirstConstantOper];
- if (G1Oper != G2Oper) // Found non-equal constant indexes...
- if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
- if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
- if (G1OC->getType() != G2OC->getType()) {
- // Sign extend both operands to long.
- if (G1OC->getType() != Type::Int64Ty)
- G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
- if (G2OC->getType() != Type::Int64Ty)
- G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
- GEP1Ops[FirstConstantOper] = G1OC;
- GEP2Ops[FirstConstantOper] = G2OC;
- }
-
- if (G1OC != G2OC) {
- // Handle the "be careful" case above: if this is an array/vector
- // subscript, scan for a subsequent variable array index.
- if (isa<SequentialType>(BasePtr1Ty)) {
- const Type *NextTy =
- cast<SequentialType>(BasePtr1Ty)->getElementType();
- bool isBadCase = false;
-
- for (unsigned Idx = FirstConstantOper+1;
- Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
- const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
- if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
- isBadCase = true;
- break;
- }
- NextTy = cast<SequentialType>(NextTy)->getElementType();
- }
-
- if (isBadCase) G1OC = 0;
- }
- // Make sure they are comparable (ie, not constant expressions), and
- // make sure the GEP with the smaller leading constant is GEP1.
- if (G1OC) {
- Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
- G1OC, G2OC);
- if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
- if (CV->getZExtValue()) { // If they are comparable and G2 > G1
- std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
- break;
- }
- }
- }
- }
- BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
- }
- // No shared constant operands, and we ran out of common operands. At this
- // point, the GEP instructions have run through all of their operands, and we
- // haven't found evidence that there are any deltas between the GEP's.
- // However, one GEP may have more operands than the other. If this is the
- // case, there may still be hope. Check this now.
- if (FirstConstantOper == MinOperands) {
- // Make GEP1Ops be the longer one if there is a longer one.
- if (NumGEP1Ops < NumGEP2Ops) {
- std::swap(GEP1Ops, GEP2Ops);
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
- // Is there anything to check?
- if (NumGEP1Ops > MinOperands) {
- for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
- if (isa<ConstantInt>(GEP1Ops[i]) &&
- !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
- // Yup, there's a constant in the tail. Set all variables to
- // constants in the GEP instruction to make it suitable for
- // TargetData::getIndexedOffset.
- for (i = 0; i != MaxOperands; ++i)
- if (!isa<ConstantInt>(GEP1Ops[i]))
- GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
- // Okay, now get the offset. This is the relative offset for the full
- // instruction.
- const TargetData &TD = getTargetData();
- int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
- NumGEP1Ops);
- // Now check without any constants at the end.
- int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
- MinOperands);
- // Make sure we compare the absolute difference.
- if (Offset1 > Offset2)
- std::swap(Offset1, Offset2);
- // If the tail provided a bit enough offset, return noalias!
- if ((uint64_t)(Offset2-Offset1) >= SizeMax)
- return NoAlias;
- // Otherwise break - we don't look for another constant in the tail.
- break;
- }
- }
- // Couldn't find anything useful.
- return MayAlias;
- }
- // If there are non-equal constants arguments, then we can figure
- // out a minimum known delta between the two index expressions... at
- // this point we know that the first constant index of GEP1 is less
- // than the first constant index of GEP2.
- // Advance BasePtr[12]Ty over this first differing constant operand.
- BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
- getTypeAtIndex(GEP2Ops[FirstConstantOper]);
- BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
- getTypeAtIndex(GEP1Ops[FirstConstantOper]);
- // We are going to be using TargetData::getIndexedOffset to determine the
- // offset that each of the GEP's is reaching. To do this, we have to convert
- // all variable references to constant references. To do this, we convert the
- // initial sequence of array subscripts into constant zeros to start with.
- const Type *ZeroIdxTy = GEPPointerTy;
- for (unsigned i = 0; i != FirstConstantOper; ++i) {
- if (!isa<StructType>(ZeroIdxTy))
- GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
- if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
- ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
- }
- // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
- // Loop over the rest of the operands...
- for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
- const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
- const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
- // If they are equal, use a zero index...
- if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
- if (!isa<ConstantInt>(Op1))
- GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
- // Otherwise, just keep the constants we have.
- } else {
- if (Op1) {
- if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If this is an array index, make sure the array element is in range.
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
- if (Op1C->getZExtValue() >= AT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
- if (Op1C->getZExtValue() >= VT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- }
-
- } else {
- // GEP1 is known to produce a value less than GEP2. To be
- // conservatively correct, we must assume the largest possible
- // constant is used in this position. This cannot be the initial
- // index to the GEP instructions (because we know we have at least one
- // element before this one with the different constant arguments), so
- // we know that the current index must be into either a struct or
- // array. Because we know it's not constant, this cannot be a
- // structure index. Because of this, we can calculate the maximum
- // value possible.
- //
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
- GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
- else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
- GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
- }
- }
- if (Op2) {
- if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
- // If this is an array index, make sure the array element is in range.
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
- if (Op2C->getZExtValue() >= AT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
- if (Op2C->getZExtValue() >= VT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- }
- } else { // Conservatively assume the minimum value for this index
- GEP2Ops[i] = Constant::getNullValue(Op2->getType());
- }
- }
- }
- if (BasePtr1Ty && Op1) {
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
- BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
- else
- BasePtr1Ty = 0;
- }
- if (BasePtr2Ty && Op2) {
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
- BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
- else
- BasePtr2Ty = 0;
- }
- }
- if (GEPPointerTy->getElementType()->isSized()) {
- int64_t Offset1 =
- getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
- int64_t Offset2 =
- getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
- assert(Offset1 != Offset2 &&
- "There is at least one different constant here!");
-
- // Make sure we compare the absolute difference.
- if (Offset1 > Offset2)
- std::swap(Offset1, Offset2);
-
- if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
- //cerr << "Determined that these two GEP's don't alias ["
- // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
- return NoAlias;
- }
- }
- return MayAlias;
- }
- // Make sure that anything that uses AliasAnalysis pulls in this file...
- DEFINING_FILE_FOR(BasicAliasAnalysis)
|