12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669 |
- //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
- // stores that can be put together into vector-stores. Next, it attempts to
- // construct vectorizable tree using the use-def chains. If a profitable tree
- // was found, the SLP vectorizer performs vectorization on the tree.
- //
- // The pass is inspired by the work described in the paper:
- // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
- //
- //===----------------------------------------------------------------------===//
- #define SV_NAME "slp-vectorizer"
- #define DEBUG_TYPE "SLP"
- #include "llvm/Transforms/Vectorize.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <map>
- using namespace llvm;
- static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
- static cl::opt<bool>
- ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
- static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
- namespace {
- static const unsigned MinVecRegSize = 128;
- static const unsigned RecursionMaxDepth = 12;
- /// A helper class for numbering instructions in multiple blocks.
- /// Numbers start at zero for each basic block.
- struct BlockNumbering {
- BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
- BlockNumbering() : BB(0), Valid(false) {}
- void numberInstructions() {
- unsigned Loc = 0;
- InstrIdx.clear();
- InstrVec.clear();
- // Number the instructions in the block.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- InstrIdx[it] = Loc++;
- InstrVec.push_back(it);
- assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
- }
- Valid = true;
- }
- int getIndex(Instruction *I) {
- assert(I->getParent() == BB && "Invalid instruction");
- if (!Valid)
- numberInstructions();
- assert(InstrIdx.count(I) && "Unknown instruction");
- return InstrIdx[I];
- }
- Instruction *getInstruction(unsigned loc) {
- if (!Valid)
- numberInstructions();
- assert(InstrVec.size() > loc && "Invalid Index");
- return InstrVec[loc];
- }
- void forget() { Valid = false; }
- private:
- /// The block we are numbering.
- BasicBlock *BB;
- /// Is the block numbered.
- bool Valid;
- /// Maps instructions to numbers and back.
- SmallDenseMap<Instruction *, int> InstrIdx;
- /// Maps integers to Instructions.
- SmallVector<Instruction *, 32> InstrVec;
- };
- /// \returns the parent basic block if all of the instructions in \p VL
- /// are in the same block or null otherwise.
- static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return 0;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return 0;
- if (BB != I->getParent())
- return 0;
- }
- return BB;
- }
- /// \returns True if all of the values in \p VL are constants.
- static bool allConstant(ArrayRef<Value *> VL) {
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- if (!isa<Constant>(VL[i]))
- return false;
- return true;
- }
- /// \returns True if all of the values in \p VL are identical.
- static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
- }
- /// \returns The opcode if all of the Instructions in \p VL have the same
- /// opcode, or zero.
- static unsigned getSameOpcode(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return 0;
- unsigned Opcode = I0->getOpcode();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I || Opcode != I->getOpcode())
- return 0;
- }
- return Opcode;
- }
- /// \returns \p I after propagating metadata from \p VL.
- static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
- Instruction *I0 = cast<Instruction>(VL[0]);
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- I0->getAllMetadataOtherThanDebugLoc(Metadata);
- for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
- unsigned Kind = Metadata[i].first;
- MDNode *MD = Metadata[i].second;
- for (int i = 1, e = VL.size(); MD && i != e; i++) {
- Instruction *I = cast<Instruction>(VL[i]);
- MDNode *IMD = I->getMetadata(Kind);
- switch (Kind) {
- default:
- MD = 0; // Remove unknown metadata
- break;
- case LLVMContext::MD_tbaa:
- MD = MDNode::getMostGenericTBAA(MD, IMD);
- break;
- case LLVMContext::MD_fpmath:
- MD = MDNode::getMostGenericFPMath(MD, IMD);
- break;
- }
- }
- I->setMetadata(Kind, MD);
- }
- return I;
- }
- /// \returns The type that all of the values in \p VL have or null if there
- /// are different types.
- static Type* getSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return 0;
- return Ty;
- }
- /// \returns True if the ExtractElement instructions in VL can be vectorized
- /// to use the original vector.
- static bool CanReuseExtract(ArrayRef<Value *> VL) {
- assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *VL0 = VL[0];
- ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
- Value *Vec = E0->getOperand(0);
- // We have to extract from the same vector type.
- unsigned NElts = Vec->getType()->getVectorNumElements();
- if (NElts != VL.size())
- return false;
- // Check that all of the indices extract from the correct offset.
- ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
- if (!CI || CI->getZExtValue())
- return false;
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
- ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
- return false;
- }
- return true;
- }
- static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- SmallVector<Value *, 16> OrigLeft, OrigRight;
- bool AllSameOpcodeLeft = true;
- bool AllSameOpcodeRight = true;
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- Instruction *I = cast<Instruction>(VL[i]);
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- OrigLeft.push_back(V0);
- OrigRight.push_back(V1);
- Instruction *I0 = dyn_cast<Instruction>(V0);
- Instruction *I1 = dyn_cast<Instruction>(V1);
- // Check whether all operands on one side have the same opcode. In this case
- // we want to preserve the original order and not make things worse by
- // reordering.
- AllSameOpcodeLeft = I0;
- AllSameOpcodeRight = I1;
- if (i && AllSameOpcodeLeft) {
- if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
- if(P0->getOpcode() != I0->getOpcode())
- AllSameOpcodeLeft = false;
- } else
- AllSameOpcodeLeft = false;
- }
- if (i && AllSameOpcodeRight) {
- if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
- if(P1->getOpcode() != I1->getOpcode())
- AllSameOpcodeRight = false;
- } else
- AllSameOpcodeRight = false;
- }
- // Sort two opcodes. In the code below we try to preserve the ability to use
- // broadcast of values instead of individual inserts.
- // vl1 = load
- // vl2 = phi
- // vr1 = load
- // vr2 = vr2
- // = vl1 x vr1
- // = vl2 x vr2
- // If we just sorted according to opcode we would leave the first line in
- // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
- // = vl1 x vr1
- // = vr2 x vl2
- // Because vr2 and vr1 are from the same load we loose the opportunity of a
- // broadcast for the packed right side in the backend: we have [vr1, vl2]
- // instead of [vr1, vr2=vr1].
- if (I0 && I1) {
- if(!i && I0->getOpcode() > I1->getOpcode()) {
- Left.push_back(I1);
- Right.push_back(I0);
- } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
- // Try not to destroy a broad cast for no apparent benefit.
- Left.push_back(I1);
- Right.push_back(I0);
- } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
- // Try preserve broadcasts.
- Left.push_back(I1);
- Right.push_back(I0);
- } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
- // Try preserve broadcasts.
- Left.push_back(I1);
- Right.push_back(I0);
- } else {
- Left.push_back(I0);
- Right.push_back(I1);
- }
- continue;
- }
- // One opcode, put the instruction on the right.
- if (I0) {
- Left.push_back(V1);
- Right.push_back(I0);
- continue;
- }
- Left.push_back(V0);
- Right.push_back(V1);
- }
- bool LeftBroadcast = isSplat(Left);
- bool RightBroadcast = isSplat(Right);
- // Don't reorder if the operands where good to begin with.
- if (!(LeftBroadcast || RightBroadcast) &&
- (AllSameOpcodeRight || AllSameOpcodeLeft)) {
- Left = OrigLeft;
- Right = OrigRight;
- }
- }
- /// Bottom Up SLP Vectorizer.
- class BoUpSLP {
- public:
- typedef SmallVector<Value *, 8> ValueList;
- typedef SmallVector<Instruction *, 16> InstrList;
- typedef SmallPtrSet<Value *, 16> ValueSet;
- typedef SmallVector<StoreInst *, 8> StoreList;
- BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
- TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt) :
- F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
- Builder(Se->getContext()) {
- // Setup the block numbering utility for all of the blocks in the
- // function.
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
- BasicBlock *BB = it;
- BlocksNumbers[BB] = BlockNumbering(BB);
- }
- }
- /// \brief Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots and is possibly
- /// used by a reduction of \p RdxOps.
- void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- RdxOps = 0;
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- MemBarrierIgnoreList.clear();
- }
- /// \returns true if the memory operations A and B are consecutive.
- bool isConsecutiveAccess(Value *A, Value *B);
- /// \brief Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
- private:
- struct TreeEntry;
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
- /// \returns the pointer to the vectorized value if \p VL is already
- /// vectorized, or NULL. They may happen in cycles.
- Value *alreadyVectorized(ArrayRef<Value *> VL) const;
- /// \brief Take the pointer operand from the Load/Store instruction.
- /// \returns NULL if this is not a valid Load/Store instruction.
- static Value *getPointerOperand(Value *I);
- /// \brief Take the address space operand from the Load/Store instruction.
- /// \returns -1 if this is not a valid Load/Store instruction.
- static unsigned getAddressSpaceOperand(Value *I);
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty);
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL);
- /// \returns the AA location that is being access by the instruction.
- AliasAnalysis::Location getLocation(Instruction *I);
- /// \brief Checks if it is possible to sink an instruction from
- /// \p Src to \p Dst.
- /// \returns the pointer to the barrier instruction if we can't sink.
- Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
- /// \returns the index of the last instruction in the BB from \p VL.
- int getLastIndex(ArrayRef<Value *> VL);
- /// \returns the Instruction in the bundle \p VL.
- Instruction *getLastInstruction(ArrayRef<Value *> VL);
- /// \brief Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL);
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \returns whether the VectorizableTree is fully vectoriable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree();
- struct TreeEntry {
- TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
- NeedToGather(0) {}
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- assert(VL.size() == Scalars.size() && "Invalid size");
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- }
- /// A vector of scalars.
- ValueList Scalars;
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue;
- /// The index in the basic block of the last scalar.
- int LastScalarIndex;
- /// Do we need to gather this sequence ?
- bool NeedToGather;
- };
- /// Create a new VectorizableTree entry.
- TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
- VectorizableTree.push_back(TreeEntry());
- int idx = VectorizableTree.size() - 1;
- TreeEntry *Last = &VectorizableTree[idx];
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- if (Vectorized) {
- Last->LastScalarIndex = getLastIndex(VL);
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = idx;
- }
- } else {
- Last->LastScalarIndex = 0;
- MustGather.insert(VL.begin(), VL.end());
- }
- return Last;
- }
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- std::vector<TreeEntry> VectorizableTree;
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser (Value *S, llvm::User *U, int L) :
- Scalar(S), User(U), Lane(L){};
- // Which scalar in our function.
- Value *Scalar;
- // Which user that uses the scalar.
- llvm::User *User;
- // Which lane does the scalar belong to.
- int Lane;
- };
- typedef SmallVector<ExternalUser, 16> UserList;
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User).
- UserList ExternalUses;
- /// A list of instructions to ignore while sinking
- /// memory instructions. This map must be reset between runs of getCost.
- ValueSet MemBarrierIgnoreList;
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
- /// Numbers instructions in different blocks.
- DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
- /// Reduction operators.
- ValueSet *RdxOps;
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- DataLayout *DL;
- TargetTransformInfo *TTI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
- };
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
- deleteTree();
- RdxOps = Rdx;
- if (!getSameType(Roots))
- return;
- buildTree_rec(Roots, 0);
- // Collect the values that we need to extract from the tree.
- for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
- TreeEntry *Entry = &VectorizableTree[EIdx];
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- for (Value::use_iterator User = Scalar->use_begin(),
- UE = Scalar->use_end(); User != UE; ++User) {
- DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
- // Skip in-tree scalars that become vectors.
- if (ScalarToTreeEntry.count(*User)) {
- DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
- **User << ".\n");
- int Idx = ScalarToTreeEntry[*User]; (void) Idx;
- assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
- continue;
- }
- Instruction *UserInst = dyn_cast<Instruction>(*User);
- if (!UserInst)
- continue;
- // Ignore uses that are part of the reduction.
- if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
- continue;
- DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
- }
- }
- }
- }
- void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
- bool SameTy = getSameType(VL); (void)SameTy;
- assert(SameTy && "Invalid types!");
- if (Depth == RecursionMaxDepth) {
- DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false);
- return;
- }
- // Don't handle vectors.
- if (VL[0]->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false);
- return;
- }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
- !getSameOpcode(VL)) {
- DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false);
- return;
- }
- // We now know that this is a vector of instructions of the same type from
- // the same block.
- // Check if this is a duplicate of another entry.
- if (ScalarToTreeEntry.count(VL[0])) {
- int Idx = ScalarToTreeEntry[VL[0]];
- TreeEntry *E = &VectorizableTree[Idx];
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
- if (E->Scalars[i] != VL[i]) {
- DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
- return;
- }
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (ScalarToTreeEntry.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is already in tree.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- // If any of the scalars appears in the table OR it is marked as a value that
- // needs to stat scalar then we need to gather the scalars.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
- DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
- newTreeEntry(VL, false);
- return;
- }
- }
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- Instruction *VL0 = cast<Instruction>(VL[0]);
- int MyLastIndex = getLastIndex(VL);
- BasicBlock *BB = cast<Instruction>(VL0)->getParent();
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- Instruction *Scalar = cast<Instruction>(VL[i]);
- DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
- for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
- U != UE; ++U) {
- DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
- Instruction *User = dyn_cast<Instruction>(*U);
- if (!User) {
- DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
- newTreeEntry(VL, false);
- return;
- }
- // We don't care if the user is in a different basic block.
- BasicBlock *UserBlock = User->getParent();
- if (UserBlock != BB) {
- DEBUG(dbgs() << "SLP: User from a different basic block "
- << *User << ". \n");
- continue;
- }
- // If this is a PHINode within this basic block then we can place the
- // extract wherever we want.
- if (isa<PHINode>(*User)) {
- DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
- continue;
- }
- // Check if this is a safe in-tree user.
- if (ScalarToTreeEntry.count(User)) {
- int Idx = ScalarToTreeEntry[User];
- int VecLocation = VectorizableTree[Idx].LastScalarIndex;
- if (VecLocation <= MyLastIndex) {
- DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
- newTreeEntry(VL, false);
- return;
- }
- DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
- VecLocation << " vector value (" << *Scalar << ") at #"
- << MyLastIndex << ".\n");
- continue;
- }
- // This user is part of the reduction.
- if (RdxOps && RdxOps->count(User))
- continue;
- // Make sure that we can schedule this unknown user.
- BlockNumbering &BN = BlocksNumbers[BB];
- int UserIndex = BN.getIndex(User);
- if (UserIndex < MyLastIndex) {
- DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
- << *User << ". \n");
- newTreeEntry(VL, false);
- return;
- }
- }
- }
- // Check that every instructions appears once in this bundle.
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- for (unsigned j = i+1; j < e; ++j)
- if (VL[i] == VL[j]) {
- DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false);
- return;
- }
- // Check that instructions in this bundle don't reference other instructions.
- // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
- U != UE; ++U) {
- for (unsigned j = 0; j < e; ++j) {
- if (i != j && *U == VL[j]) {
- DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
- newTreeEntry(VL, false);
- return;
- }
- }
- }
- }
- DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- unsigned Opcode = getSameOpcode(VL);
- // Check if it is safe to sink the loads or the stores.
- if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
- Instruction *Last = getLastInstruction(VL);
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- if (VL[i] == Last)
- continue;
- Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
- if (Barrier) {
- DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
- << "\n because of " << *Barrier << ". Gathering.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- }
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
- if (Term) {
- DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
- buildTree_rec(Operands, Depth + 1);
- }
- return;
- }
- case Instruction::ExtractElement: {
- bool Reuse = CanReuseExtract(VL);
- if (Reuse) {
- DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
- }
- newTreeEntry(VL, Reuse);
- return;
- }
- case Instruction::Load: {
- // Check if the loads are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- LoadInst *L = cast<LoadInst>(VL[i]);
- if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
- Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0 ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right);
- buildTree_rec(Left, Depth + 1);
- buildTree_rec(Right, Depth + 1);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::Store: {
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- // We can ignore these values because we are sinking them down.
- MemBarrierIgnoreList.insert(VL.begin(), VL.end());
- buildTree_rec(Operands, Depth + 1);
- return;
- }
- default:
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
- }
- int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- return getGatherCost(E->Scalars);
- }
- assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
- "Invalid VL");
- Instruction *VL0 = cast<Instruction>(VL[0]);
- unsigned Opcode = VL0->getOpcode();
- switch (Opcode) {
- case Instruction::PHI: {
- return 0;
- }
- case Instruction::ExtractElement: {
- if (CanReuseExtract(VL))
- return 0;
- return getGatherCost(VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy);
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Calculate the cost of this instruction.
- int ScalarCost = 0;
- int VecCost = 0;
- if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
- Opcode == Instruction::Select) {
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- ScalarCost = VecTy->getNumElements() *
- TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
- VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
- } else {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- // Check whether all second operands are constant.
- for (unsigned i = 0; i < VL.size(); ++i)
- if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- break;
- }
- ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
- VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
- }
- return VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
- return VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
- return VecStCost - ScalarStCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
- }
- bool BoUpSLP::isFullyVectorizableTinyTree() {
- DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
- VectorizableTree.size() << " is fully vectorizable .\n");
- // We only handle trees of height 2.
- if (VectorizableTree.size() != 2)
- return false;
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
- return false;
- return true;
- }
- int BoUpSLP::getTreeCost() {
- int Cost = 0;
- DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
- VectorizableTree.size() << ".\n");
- // We only vectorize tiny trees if it is fully vectorizable.
- if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
- if (!VectorizableTree.size()) {
- assert(!ExternalUses.size() && "We should not have any external users");
- }
- return INT_MAX;
- }
- unsigned BundleWidth = VectorizableTree[0].Scalars.size();
- for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
- int C = getEntryCost(&VectorizableTree[i]);
- DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
- << *VectorizableTree[i].Scalars[0] << " .\n");
- Cost += C;
- }
- SmallSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
- I != E; ++I) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(I->Scalar))
- continue;
- VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
- ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- I->Lane);
- }
- DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
- return Cost + ExtractCost;
- }
- int BoUpSLP::getGatherCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
- }
- int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getGatherCost(VecTy);
- }
- AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return AA->getLocation(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return AA->getLocation(LI);
- return AliasAnalysis::Location();
- }
- Value *BoUpSLP::getPointerOperand(Value *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->getPointerOperand();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->getPointerOperand();
- return 0;
- }
- unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
- if (LoadInst *L = dyn_cast<LoadInst>(I))
- return L->getPointerAddressSpace();
- if (StoreInst *S = dyn_cast<StoreInst>(I))
- return S->getPointerAddressSpace();
- return -1;
- }
- bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
- Value *PtrA = getPointerOperand(A);
- Value *PtrB = getPointerOperand(B);
- unsigned ASA = getAddressSpaceOperand(A);
- unsigned ASB = getAddressSpaceOperand(B);
- // Check that the address spaces match and that the pointers are valid.
- if (!PtrA || !PtrB || (ASA != ASB))
- return false;
- // Make sure that A and B are different pointers of the same type.
- if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
- return false;
- unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
- Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
- APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
- PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
- PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
- APInt OffsetDelta = OffsetB - OffsetA;
- // Check if they are based on the same pointer. That makes the offsets
- // sufficient.
- if (PtrA == PtrB)
- return OffsetDelta == Size;
- // Compute the necessary base pointer delta to have the necessary final delta
- // equal to the size.
- APInt BaseDelta = Size - OffsetDelta;
- // Otherwise compute the distance with SCEV between the base pointers.
- const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
- const SCEV *C = SE->getConstant(BaseDelta);
- const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
- return X == PtrSCEVB;
- }
- Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
- assert(Src->getParent() == Dst->getParent() && "Not the same BB");
- BasicBlock::iterator I = Src, E = Dst;
- /// Scan all of the instruction from SRC to DST and check if
- /// the source may alias.
- for (++I; I != E; ++I) {
- // Ignore store instructions that are marked as 'ignore'.
- if (MemBarrierIgnoreList.count(I))
- continue;
- if (Src->mayWriteToMemory()) /* Write */ {
- if (!I->mayReadOrWriteMemory())
- continue;
- } else /* Read */ {
- if (!I->mayWriteToMemory())
- continue;
- }
- AliasAnalysis::Location A = getLocation(&*I);
- AliasAnalysis::Location B = getLocation(Src);
- if (!A.Ptr || !B.Ptr || AA->alias(A, B))
- return I;
- }
- return 0;
- }
- int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
- int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- return MaxIdx;
- }
- Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
- int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- Instruction *I = BN.getInstruction(MaxIdx);
- assert(I && "bad location");
- return I;
- }
- void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
- Instruction *VL0 = cast<Instruction>(VL[0]);
- Instruction *LastInst = getLastInstruction(VL);
- BasicBlock::iterator NextInst = LastInst;
- ++NextInst;
- Builder.SetInsertPoint(VL0->getParent(), NextInst);
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
- }
- Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
- // Add to our 'need-to-extract' list.
- if (ScalarToTreeEntry.count(VL[i])) {
- int Idx = ScalarToTreeEntry[VL[i]];
- TreeEntry *E = &VectorizableTree[Idx];
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
- return Vec;
- }
- Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
- SmallDenseMap<Value*, int>::const_iterator Entry
- = ScalarToTreeEntry.find(VL[0]);
- if (Entry != ScalarToTreeEntry.end()) {
- int Idx = Entry->second;
- const TreeEntry *En = &VectorizableTree[Idx];
- if (En->isSame(VL) && En->VectorizedValue)
- return En->VectorizedValue;
- }
- return 0;
- }
- Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
- if (ScalarToTreeEntry.count(VL[0])) {
- int Idx = ScalarToTreeEntry[VL[0]];
- TreeEntry *E = &VectorizableTree[Idx];
- if (E->isSame(VL))
- return vectorizeTree(E);
- }
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- return Gather(VL, VecTy);
- }
- Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (E->VectorizedValue) {
- DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
- Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars);
- return Gather(E->Scalars, VecTy);
- }
- unsigned Opcode = VL0->getOpcode();
- assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- E->VectorizedValue = NewPhi;
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallSet<BasicBlock*, 4> VisitedBBs;
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB)) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
- // Prepare the operand vector.
- for (unsigned j = 0; j < E->Scalars.size(); ++j)
- Operands.push_back(cast<PHINode>(E->Scalars[j])->
- getIncomingValueForBlock(IBB));
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(Operands);
- NewPhi->addIncoming(Vec, IBB);
- }
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return NewPhi;
- }
- case Instruction::ExtractElement: {
- if (CanReuseExtract(E->Scalars)) {
- Value *V = VL0->getOperand(0);
- E->VectorizedValue = V;
- return V;
- }
- return Gather(E->Scalars, VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (int i = 0, e = E->Scalars.size(); i < e; ++i)
- INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- setInsertPointAfterBundle(E->Scalars);
- Value *InVec = vectorizeTree(INVL);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- ValueList LHSV, RHSV;
- for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
- LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *L = vectorizeTree(LHSV);
- Value *R = vectorizeTree(RHSV);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (Opcode == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::Select: {
- ValueList TrueVec, FalseVec, CondVec;
- for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
- CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
- FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *Cond = vectorizeTree(CondVec);
- Value *True = vectorizeTree(TrueVec);
- Value *False = vectorizeTree(FalseVec);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- Value *V = Builder.CreateSelect(Cond, True, False);
- E->VectorizedValue = V;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
- reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
- else
- for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
- LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
- RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
- if (LHS == RHS && isa<Instruction>(LHS)) {
- assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
- }
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
- E->VectorizedValue = V;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- setInsertPointAfterBundle(E->Scalars);
- LoadInst *LI = cast<LoadInst>(VL0);
- unsigned AS = LI->getPointerAddressSpace();
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecPtr);
- LI->setAlignment(Alignment);
- E->VectorizedValue = LI;
- return propagateMetadata(LI, E->Scalars);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
- ValueList ValueOp;
- for (int i = 0, e = E->Scalars.size(); i < e; ++i)
- ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
- setInsertPointAfterBundle(E->Scalars);
- Value *VecValue = vectorizeTree(ValueOp);
- Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
- S->setAlignment(Alignment);
- E->VectorizedValue = S;
- return propagateMetadata(S, E->Scalars);
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return 0;
- }
- Value *BoUpSLP::vectorizeTree() {
- Builder.SetInsertPoint(F->getEntryBlock().begin());
- vectorizeTree(&VectorizableTree[0]);
- DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
- // Extract all of the elements with the external uses.
- for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
- it != e; ++it) {
- Value *Scalar = it->Scalar;
- llvm::User *User = it->User;
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
- Scalar->use_end())
- continue;
- assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
- int Idx = ScalarToTreeEntry[Scalar];
- TreeEntry *E = &VectorizableTree[Idx];
- assert(!E->NeedToGather && "Extracting from a gather list");
- Value *Vec = E->VectorizedValue;
- assert(Vec && "Can't find vectorizable value");
- Value *Lane = Builder.getInt32(it->Lane);
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
- Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(PN->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- } else if (isa<Instruction>(Vec)){
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(F->getEntryBlock().begin());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
- // For each vectorized value:
- for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
- TreeEntry *Entry = &VectorizableTree[EIdx];
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
- for (Value::use_iterator User = Scalar->use_begin(),
- UE = Scalar->use_end(); User != UE; ++User) {
- DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
- assert((ScalarToTreeEntry.count(*User) ||
- // It is legal to replace the reduction users by undef.
- (RdxOps && RdxOps->count(*User))) &&
- "Replacing out-of-tree value with undef");
- }
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- cast<Instruction>(Scalar)->eraseFromParent();
- }
- }
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
- BlocksNumbers[it].forget();
- }
- Builder.ClearInsertionPoint();
- return VectorizableTree[0].VectorizedValue;
- }
- class DTCmp {
- const DominatorTree *DT;
- public:
- DTCmp(const DominatorTree *DT) : DT(DT) {}
- bool operator()(const BasicBlock *A, const BasicBlock *B) const {
- return DT->properlyDominates(A, B);
- }
- };
- void BoUpSLP::optimizeGatherSequence() {
- DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
- e = GatherSeq.end(); it != e; ++it) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
- if (!Insert)
- continue;
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(Insert->getParent());
- if (!L)
- continue;
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
- Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
- if (CurrVec && L->contains(CurrVec))
- continue;
- if (NewElem && L->contains(NewElem))
- continue;
- // We can hoist this instruction. Move it to the pre-header.
- Insert->moveBefore(PreHeader->getTerminator());
- }
- // Sort blocks by domination. This ensures we visit a block after all blocks
- // dominating it are visited.
- SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
- std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
- E = CSEWorkList.end();
- I != E; ++I) {
- assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
- "Worklist not sorted properly!");
- BasicBlock *BB = *I;
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
- ve = Visited.end();
- v != ve; ++v) {
- if (In->isIdenticalTo(*v) &&
- DT->dominates((*v)->getParent(), In->getParent())) {
- In->replaceAllUsesWith(*v);
- In->eraseFromParent();
- In = 0;
- break;
- }
- }
- if (In) {
- assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
- }
- /// The SLPVectorizer Pass.
- struct SLPVectorizer : public FunctionPass {
- typedef SmallVector<StoreInst *, 8> StoreList;
- typedef MapVector<Value *, StoreList> StoreListMap;
- /// Pass identification, replacement for typeid
- static char ID;
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
- ScalarEvolution *SE;
- DataLayout *DL;
- TargetTransformInfo *TTI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- virtual bool runOnFunction(Function &F) {
- SE = &getAnalysis<ScalarEvolution>();
- DL = getAnalysisIfAvailable<DataLayout>();
- TTI = &getAnalysis<TargetTransformInfo>();
- AA = &getAnalysis<AliasAnalysis>();
- LI = &getAnalysis<LoopInfo>();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- StoreRefs.clear();
- bool Changed = false;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- // Must have DataLayout. We can't require it because some tests run w/o
- // triple.
- if (!DL)
- return false;
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
- DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
- // Use the bollom up slp vectorizer to construct chains that start with
- // he store instructions.
- BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
- // Scan the blocks in the function in post order.
- for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
- e = po_end(&F.getEntryBlock()); it != e; ++it) {
- BasicBlock *BB = *it;
- // Vectorize trees that end at stores.
- if (unsigned count = collectStores(BB, R)) {
- (void)count;
- DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
- Changed |= vectorizeStoreChains(R);
- }
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
- }
- if (Changed) {
- R.optimizeGatherSequence();
- DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- DEBUG(verifyFunction(F));
- }
- return Changed;
- }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<TargetTransformInfo>();
- AU.addRequired<LoopInfo>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfo>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.setPreservesCFG();
- }
- private:
- /// \brief Collect memory references and sort them according to their base
- /// object. We sort the stores to their base objects to reduce the cost of the
- /// quadratic search on the stores. TODO: We can further reduce this cost
- /// if we flush the chain creation every time we run into a memory barrier.
- unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
- /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
- bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
- /// \brief Try to vectorize a list of operands.
- /// \returns true if a value was vectorized.
- bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
- /// \brief Try to vectorize a chain that may start at the operands of \V;
- bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
- /// \brief Vectorize the stores that were collected in StoreRefs.
- bool vectorizeStoreChains(BoUpSLP &R);
- /// \brief Scan the basic block and look for patterns that are likely to start
- /// a vectorization chain.
- bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
- bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
- BoUpSLP &R);
- bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
- BoUpSLP &R);
- private:
- StoreListMap StoreRefs;
- };
- /// \brief Check that the Values in the slice in VL array are still existent in
- /// the WeakVH array.
- /// Vectorization of part of the VL array may cause later values in the VL array
- /// to become invalid. We track when this has happened in the WeakVH array.
- static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
- SmallVectorImpl<WeakVH> &VH,
- unsigned SliceBegin,
- unsigned SliceSize) {
- for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
- if (VH[i] != VL[i])
- return true;
- return false;
- }
- bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
- int CostThreshold, BoUpSLP &R) {
- unsigned ChainLen = Chain.size();
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
- unsigned Sz = DL->getTypeSizeInBits(StoreTy);
- unsigned VF = MinVecRegSize / Sz;
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
- // Keep track of values that were delete by vectorizing in the loop below.
- SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i < e; ++i) {
- if (i + VF > e)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
- R.buildTree(Operands);
- int Cost = R.getTreeCost();
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < CostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
- int costThreshold, BoUpSLP &R) {
- SetVector<Value *> Heads, Tails;
- SmallDenseMap<Value *, Value *> ConsecutiveChain;
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of stores that follow each other.
- for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
- for (unsigned j = 0; j < e; ++j) {
- if (i == j)
- continue;
- if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
- Tails.insert(Stores[j]);
- Heads.insert(Stores[i]);
- ConsecutiveChain[Stores[i]] = Stores[j];
- }
- }
- }
- // For stores that start but don't end a link in the chain:
- for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
- it != e; ++it) {
- if (Tails.count(*it))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- Value *I = *it;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (VectorizedStores.count(I))
- break;
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
- // Mark the vectorized stores so that we don't vectorize them again.
- if (Vectorized)
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed |= Vectorized;
- }
- return Changed;
- }
- unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
- unsigned count = 0;
- StoreRefs.clear();
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- StoreInst *SI = dyn_cast<StoreInst>(it);
- if (!SI)
- continue;
- // Don't touch volatile stores.
- if (!SI->isSimple())
- continue;
- // Check that the pointer points to scalars.
- Type *Ty = SI->getValueOperand()->getType();
- if (Ty->isAggregateType() || Ty->isVectorTy())
- return 0;
- // Find the base pointer.
- Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
- // Save the store locations.
- StoreRefs[Ptr].push_back(SI);
- count++;
- }
- return count;
- }
- bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R);
- }
- bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
- if (VL.size() < 2)
- return false;
- DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
- // Check that all of the parts are scalar instructions of the same type.
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- unsigned Opcode0 = I0->getOpcode();
- Type *Ty0 = I0->getType();
- unsigned Sz = DL->getTypeSizeInBits(Ty0);
- unsigned VF = MinVecRegSize / Sz;
- for (int i = 0, e = VL.size(); i < e; ++i) {
- Type *Ty = VL[i]->getType();
- if (Ty->isAggregateType() || Ty->isVectorTy())
- return false;
- Instruction *Inst = dyn_cast<Instruction>(VL[i]);
- if (!Inst || Inst->getOpcode() != Opcode0)
- return false;
- }
- bool Changed = false;
- // Keep track of values that were delete by vectorizing in the loop below.
- SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- unsigned OpsWidth = 0;
- if (i + VF > e)
- OpsWidth = e - i;
- else
- OpsWidth = VF;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
- R.buildTree(Ops);
- int Cost = R.getTreeCost();
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
- if (!V)
- return false;
- // Try to vectorize V.
- if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
- return true;
- BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
- BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
- // Try to skip B.
- if (B && B->hasOneUse()) {
- BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (tryToVectorizePair(A, B0, R)) {
- B->moveBefore(V);
- return true;
- }
- if (tryToVectorizePair(A, B1, R)) {
- B->moveBefore(V);
- return true;
- }
- }
- // Try to skip A.
- if (A && A->hasOneUse()) {
- BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (tryToVectorizePair(A0, B, R)) {
- A->moveBefore(V);
- return true;
- }
- if (tryToVectorizePair(A1, B, R)) {
- A->moveBefore(V);
- return true;
- }
- }
- return 0;
- }
- /// \brief Generate a shuffle mask to be used in a reduction tree.
- ///
- /// \param VecLen The length of the vector to be reduced.
- /// \param NumEltsToRdx The number of elements that should be reduced in the
- /// vector.
- /// \param IsPairwise Whether the reduction is a pairwise or splitting
- /// reduction. A pairwise reduction will generate a mask of
- /// <0,2,...> or <1,3,..> while a splitting reduction will generate
- /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
- /// \param IsLeft True will generate a mask of even elements, odd otherwise.
- static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
- return ConstantVector::get(ShuffleMask);
- }
- /// Model horizontal reductions.
- ///
- /// A horizontal reduction is a tree of reduction operations (currently add and
- /// fadd) that has operations that can be put into a vector as its leaf.
- /// For example, this tree:
- ///
- /// mul mul mul mul
- /// \ / \ /
- /// + +
- /// \ /
- /// +
- /// This tree has "mul" as its reduced values and "+" as its reduction
- /// operations. A reduction might be feeding into a store or a binary operation
- /// feeding a phi.
- /// ...
- /// \ /
- /// +
- /// |
- /// phi +=
- ///
- /// Or:
- /// ...
- /// \ /
- /// +
- /// |
- /// *p =
- ///
- class HorizontalReduction {
- SmallPtrSet<Value *, 16> ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- BinaryOperator *ReductionRoot;
- PHINode *ReductionPHI;
- /// The opcode of the reduction.
- unsigned ReductionOpcode;
- /// The opcode of the values we perform a reduction on.
- unsigned ReducedValueOpcode;
- /// The width of one full horizontal reduction operation.
- unsigned ReduxWidth;
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction;
- public:
- HorizontalReduction()
- : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
- ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
- /// \brief Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
- DataLayout *DL) {
- assert((!Phi ||
- std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
- "Thi phi needs to use the binary operator");
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (B->getOperand(0) == Phi) {
- Phi = 0;
- B = dyn_cast<BinaryOperator>(B->getOperand(1));
- } else if (B->getOperand(1) == Phi) {
- Phi = 0;
- B = dyn_cast<BinaryOperator>(B->getOperand(0));
- }
- }
- if (!B)
- return false;
- Type *Ty = B->getType();
- if (Ty->isVectorTy())
- return false;
- ReductionOpcode = B->getOpcode();
- ReducedValueOpcode = 0;
- ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
- ReductionRoot = B;
- ReductionPHI = Phi;
- if (ReduxWidth < 4)
- return false;
- // We currently only support adds.
- if (ReductionOpcode != Instruction::Add &&
- ReductionOpcode != Instruction::FAdd)
- return false;
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators.
- SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, 0));
- while (!Stack.empty()) {
- BinaryOperator *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
- // Only handle trees in the current basic block.
- if (TreeN->getParent() != B->getParent())
- return false;
- // Each tree node needs to have one user except for the ultimate
- // reduction.
- if (!TreeN->hasOneUse() && TreeN != B)
- return false;
- // Postorder vist.
- if (EdgeToVist == 2 || IsReducedValue) {
- if (IsReducedValue) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- if (!ReducedValueOpcode)
- ReducedValueOpcode = TreeN->getOpcode();
- else if (ReducedValueOpcode != TreeN->getOpcode())
- return false;
- ReducedVals.push_back(TreeN);
- } else {
- // We need to be able to reassociate the adds.
- if (!TreeN->isAssociative())
- return false;
- ReductionOps.insert(TreeN);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
- if (Next)
- Stack.push_back(std::make_pair(Next, 0));
- else if (NextV != Phi)
- return false;
- }
- return true;
- }
- /// \brief Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < ReduxWidth)
- return false;
- Value *VectorizedTree = 0;
- IRBuilder<> Builder(ReductionRoot);
- FastMathFlags Unsafe;
- Unsafe.setUnsafeAlgebra();
- Builder.SetFastMathFlags(Unsafe);
- unsigned i = 0;
- for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
- ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
- V.buildTree(ValsToReduce, &ReductionOps);
- // Estimate cost.
- int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
- if (Cost >= -SLPCostThreshold)
- break;
- DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
- << ". (HorRdx)\n");
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree();
- // Emit a reduction.
- Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
- ReducedSubTree, "bin.rdx");
- } else
- VectorizedTree = ReducedSubTree;
- }
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- Builder.SetCurrentDebugLocation(
- cast<Instruction>(ReducedVals[i])->getDebugLoc());
- VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
- ReducedVals[i]);
- }
- // Update users.
- if (ReductionPHI) {
- assert(ReductionRoot != NULL && "Need a reduction operation");
- ReductionRoot->setOperand(0, VectorizedTree);
- ReductionRoot->setOperand(1, ReductionPHI);
- } else
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != 0;
- }
- private:
- /// \brief Calcuate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
- int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
- int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
- int ScalarReduxCost =
- ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
- DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
- return VecReduxCost - ScalarReduxCost;
- }
- static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
- Value *R, const Twine &Name = "") {
- if (Opcode == Instruction::FAdd)
- return Builder.CreateFAdd(L, R, Name);
- return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
- }
- /// \brief Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
- Value *TmpVec = ValToReduce;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- if (IsPairwiseReduction) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
- "bin.rdx");
- } else {
- Value *UpperHalf =
- createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
- Value *Shuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
- TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
- }
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- };
- /// \brief Recognize construction of vectors like
- /// %ra = insertelement <4 x float> undef, float %s0, i32 0
- /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
- /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
- /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
- ///
- /// Returns true if it matches
- ///
- static bool findBuildVector(InsertElementInst *IE,
- SmallVectorImpl<Value *> &Ops) {
- if (!isa<UndefValue>(IE->getOperand(0)))
- return false;
- while (true) {
- Ops.push_back(IE->getOperand(1));
- if (IE->use_empty())
- return false;
- InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
- if (!NextUse)
- return true;
- // If this isn't the final use, make sure the next insertelement is the only
- // use. It's OK if the final constructed vector is used multiple times
- if (!IE->hasOneUse())
- return false;
- IE = NextUse;
- }
- return false;
- }
- static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
- }
- bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallSet<Value *, 16> VisitedInstrs;
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
- ++instr) {
- PHINode *P = dyn_cast<PHINode>(instr);
- if (!P)
- break;
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
- // Sort by type.
- std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
- if (NumElts > 1 &&
- tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
- VisitedInstrs.clear();
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(it))
- continue;
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
- Value *Rdx =
- (P->getIncomingBlock(0) == BB
- ? (P->getIncomingValue(0))
- : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
- // Check if this is a Binary Operator.
- BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
- if (!BI)
- continue;
- // Try to match and vectorize a horizontal reduction.
- HorizontalReduction HorRdx;
- if (ShouldVectorizeHor &&
- HorRdx.matchAssociativeReduction(P, BI, DL) &&
- HorRdx.tryToReduce(R, TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- Value *Inst = BI->getOperand(0);
- if (Inst == P)
- Inst = BI->getOperand(1);
- if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
- // Try to vectorize horizontal reductions feeding into a store.
- if (ShouldStartVectorizeHorAtStore)
- if (StoreInst *SI = dyn_cast<StoreInst>(it))
- if (BinaryOperator *BinOp =
- dyn_cast<BinaryOperator>(SI->getValueOperand())) {
- HorizontalReduction HorRdx;
- if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
- HorRdx.tryToReduce(R, TTI)) ||
- tryToVectorize(BinOp, R))) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- // Try to vectorize trees that start at compare instructions.
- if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- continue;
- }
- for (int i = 0; i < 2; ++i) {
- if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
- if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- }
- }
- }
- continue;
- }
- // Try to vectorize trees that start at insertelement instructions.
- if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
- SmallVector<Value *, 8> Ops;
- if (!findBuildVector(IE, Ops))
- continue;
- if (tryToVectorizeList(Ops, R)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
- it != e; ++it) {
- if (it->second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
- // Process the stores in chunks of 16.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
- Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
- }
- }
- return Changed;
- }
- } // end anonymous namespace
- char SLPVectorizer::ID = 0;
- static const char lv_name[] = "SLP Vectorizer";
- INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
- }
|