12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049 |
- //===- InstCombineVectorOps.cpp -------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements instcombine for ExtractElement, InsertElement and
- // ShuffleVector.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombine.h"
- #include "llvm/Support/PatternMatch.h"
- using namespace llvm;
- using namespace PatternMatch;
- /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
- /// is to leave as a vector operation. isConstant indicates whether we're
- /// extracting one known element. If false we're extracting a variable index.
- static bool CheapToScalarize(Value *V, bool isConstant) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isConstant) return true;
- // If all elts are the same, we can extract it and use any of the values.
- Constant *Op0 = C->getAggregateElement(0U);
- for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
- if (C->getAggregateElement(i) != Op0)
- return false;
- return true;
- }
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Insert element gets simplified to the inserted element or is deleted if
- // this is constant idx extract element and its a constant idx insertelt.
- if (I->getOpcode() == Instruction::InsertElement && isConstant &&
- isa<ConstantInt>(I->getOperand(2)))
- return true;
- if (I->getOpcode() == Instruction::Load && I->hasOneUse())
- return true;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
- if (BO->hasOneUse() &&
- (CheapToScalarize(BO->getOperand(0), isConstant) ||
- CheapToScalarize(BO->getOperand(1), isConstant)))
- return true;
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->hasOneUse() &&
- (CheapToScalarize(CI->getOperand(0), isConstant) ||
- CheapToScalarize(CI->getOperand(1), isConstant)))
- return true;
- return false;
- }
- /// FindScalarElement - Given a vector and an element number, see if the scalar
- /// value is already around as a register, for example if it were inserted then
- /// extracted from the vector.
- static Value *FindScalarElement(Value *V, unsigned EltNo) {
- assert(V->getType()->isVectorTy() && "Not looking at a vector?");
- VectorType *VTy = cast<VectorType>(V->getType());
- unsigned Width = VTy->getNumElements();
- if (EltNo >= Width) // Out of range access.
- return UndefValue::get(VTy->getElementType());
- if (Constant *C = dyn_cast<Constant>(V))
- return C->getAggregateElement(EltNo);
- if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert to a variable element, we don't know what it is.
- if (!isa<ConstantInt>(III->getOperand(2)))
- return 0;
- unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
- // If this is an insert to the element we are looking for, return the
- // inserted value.
- if (EltNo == IIElt)
- return III->getOperand(1);
- // Otherwise, the insertelement doesn't modify the value, recurse on its
- // vector input.
- return FindScalarElement(III->getOperand(0), EltNo);
- }
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
- unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
- int InEl = SVI->getMaskValue(EltNo);
- if (InEl < 0)
- return UndefValue::get(VTy->getElementType());
- if (InEl < (int)LHSWidth)
- return FindScalarElement(SVI->getOperand(0), InEl);
- return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
- }
- // Extract a value from a vector add operation with a constant zero.
- Value *Val = 0; Constant *Con = 0;
- if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
- if (Con->getAggregateElement(EltNo)->isNullValue())
- return FindScalarElement(Val, EltNo);
- }
- // Otherwise, we don't know.
- return 0;
- }
- // If we have a PHI node with a vector type that has only 2 uses: feed
- // itself and be an operand of extractelement at a constant location,
- // try to replace the PHI of the vector type with a PHI of a scalar type.
- Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
- // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
- if (!PN->hasNUses(2))
- return NULL;
- // If so, it's known at this point that one operand is PHI and the other is
- // an extractelement node. Find the PHI user that is not the extractelement
- // node.
- Value::use_iterator iu = PN->use_begin();
- Instruction *PHIUser = dyn_cast<Instruction>(*iu);
- if (PHIUser == cast<Instruction>(&EI))
- PHIUser = cast<Instruction>(*(++iu));
- // Verify that this PHI user has one use, which is the PHI itself,
- // and that it is a binary operation which is cheap to scalarize.
- // otherwise return NULL.
- if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
- !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
- return NULL;
- // Create a scalar PHI node that will replace the vector PHI node
- // just before the current PHI node.
- PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
- PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
- // Scalarize each PHI operand.
- for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
- Value *PHIInVal = PN->getIncomingValue(i);
- BasicBlock *inBB = PN->getIncomingBlock(i);
- Value *Elt = EI.getIndexOperand();
- // If the operand is the PHI induction variable:
- if (PHIInVal == PHIUser) {
- // Scalarize the binary operation. Its first operand is the
- // scalar PHI and the second operand is extracted from the other
- // vector operand.
- BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
- unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
- Value *Op = InsertNewInstWith(
- ExtractElementInst::Create(B0->getOperand(opId), Elt,
- B0->getOperand(opId)->getName() + ".Elt"),
- *B0);
- Value *newPHIUser = InsertNewInstWith(
- BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
- scalarPHI->addIncoming(newPHIUser, inBB);
- } else {
- // Scalarize PHI input:
- Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
- // Insert the new instruction into the predecessor basic block.
- Instruction *pos = dyn_cast<Instruction>(PHIInVal);
- BasicBlock::iterator InsertPos;
- if (pos && !isa<PHINode>(pos)) {
- InsertPos = pos;
- ++InsertPos;
- } else {
- InsertPos = inBB->getFirstInsertionPt();
- }
- InsertNewInstWith(newEI, *InsertPos);
- scalarPHI->addIncoming(newEI, inBB);
- }
- }
- return ReplaceInstUsesWith(EI, scalarPHI);
- }
- Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
- // If vector val is constant with all elements the same, replace EI with
- // that element. We handle a known element # below.
- if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
- if (CheapToScalarize(C, false))
- return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- unsigned IndexVal = IdxC->getZExtValue();
- unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
- // If this is extracting an invalid index, turn this into undef, to avoid
- // crashing the code below.
- if (IndexVal >= VectorWidth)
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- // This instruction only demands the single element from the input vector.
- // If the input vector has a single use, simplify it based on this use
- // property.
- if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
- APInt UndefElts(VectorWidth, 0);
- APInt DemandedMask(VectorWidth, 0);
- DemandedMask.setBit(IndexVal);
- if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
- DemandedMask, UndefElts)) {
- EI.setOperand(0, V);
- return &EI;
- }
- }
- if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
- return ReplaceInstUsesWith(EI, Elt);
- // If the this extractelement is directly using a bitcast from a vector of
- // the same number of elements, see if we can find the source element from
- // it. In this case, we will end up needing to bitcast the scalars.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
- if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
- if (VT->getNumElements() == VectorWidth)
- if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
- return new BitCastInst(Elt, EI.getType());
- }
- // If there's a vector PHI feeding a scalar use through this extractelement
- // instruction, try to scalarize the PHI.
- if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
- Instruction *scalarPHI = scalarizePHI(EI, PN);
- if (scalarPHI)
- return scalarPHI;
- }
- }
- if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
- // Push extractelement into predecessor operation if legal and
- // profitable to do so
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- if (I->hasOneUse() &&
- CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
- Value *newEI0 =
- Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
- Value *newEI1 =
- Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
- return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
- }
- } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
- // Extracting the inserted element?
- if (IE->getOperand(2) == EI.getOperand(1))
- return ReplaceInstUsesWith(EI, IE->getOperand(1));
- // If the inserted and extracted elements are constants, they must not
- // be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
- Worklist.AddValue(EI.getOperand(0));
- EI.setOperand(0, IE->getOperand(0));
- return &EI;
- }
- } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- // If this is extracting an element from a shufflevector, figure out where
- // it came from and extract from the appropriate input element instead.
- if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
- Value *Src;
- unsigned LHSWidth =
- SVI->getOperand(0)->getType()->getVectorNumElements();
- if (SrcIdx < 0)
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- if (SrcIdx < (int)LHSWidth)
- Src = SVI->getOperand(0);
- else {
- SrcIdx -= LHSWidth;
- Src = SVI->getOperand(1);
- }
- Type *Int32Ty = Type::getInt32Ty(EI.getContext());
- return ExtractElementInst::Create(Src,
- ConstantInt::get(Int32Ty,
- SrcIdx, false));
- }
- } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
- // Canonicalize extractelement(cast) -> cast(extractelement)
- // bitcasts can change the number of vector elements and they cost nothing
- if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
- Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
- EI.getIndexOperand());
- Worklist.AddValue(EE);
- return CastInst::Create(CI->getOpcode(), EE, EI.getType());
- }
- } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
- if (SI->hasOneUse()) {
- // TODO: For a select on vectors, it might be useful to do this if it
- // has multiple extractelement uses. For vector select, that seems to
- // fight the vectorizer.
- // If we are extracting an element from a vector select or a select on
- // vectors, a select on the scalars extracted from the vector arguments.
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- Value *Cond = SI->getCondition();
- if (Cond->getType()->isVectorTy()) {
- Cond = Builder->CreateExtractElement(Cond,
- EI.getIndexOperand(),
- Cond->getName() + ".elt");
- }
- Value *V1Elem
- = Builder->CreateExtractElement(TrueVal,
- EI.getIndexOperand(),
- TrueVal->getName() + ".elt");
- Value *V2Elem
- = Builder->CreateExtractElement(FalseVal,
- EI.getIndexOperand(),
- FalseVal->getName() + ".elt");
- return SelectInst::Create(Cond,
- V1Elem,
- V2Elem,
- SI->getName() + ".elt");
- }
- }
- }
- return 0;
- }
- /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
- /// elements from either LHS or RHS, return the shuffle mask and true.
- /// Otherwise, return false.
- static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
- SmallVectorImpl<Constant*> &Mask) {
- assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
- "Invalid CollectSingleShuffleElements");
- unsigned NumElts = V->getType()->getVectorNumElements();
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return true;
- }
- if (V == LHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return true;
- }
- if (V == RHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
- i+NumElts));
- return true;
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (!isa<ConstantInt>(IdxOp))
- return false;
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
- // Okay, we can handle this if the vector we are insertinting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
- return true;
- }
- } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
- if (isa<ConstantInt>(EI->getOperand(1)) &&
- EI->getOperand(0)->getType() == V->getType()) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- // This must be extracting from either LHS or RHS.
- if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
- // Okay, we can handle this if the vector we are insertinting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted value.
- if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx);
- } else {
- assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx+NumElts);
- }
- return true;
- }
- }
- }
- }
- }
- // TODO: Handle shufflevector here!
- return false;
- }
- /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
- /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
- /// that computes V and the LHS value of the shuffle.
- static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
- Value *&RHS) {
- assert(V->getType()->isVectorTy() &&
- (RHS == 0 || V->getType() == RHS->getType()) &&
- "Invalid shuffle!");
- unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return V;
- }
- if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
- return V;
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
- EI->getOperand(0)->getType() == V->getType()) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- // Either the extracted from or inserted into vector must be RHSVec,
- // otherwise we'd end up with a shuffle of three inputs.
- if (EI->getOperand(0) == RHS || RHS == 0) {
- RHS = EI->getOperand(0);
- Value *V = CollectShuffleElements(VecOp, Mask, RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- NumElts+ExtractedIdx);
- return V;
- }
- if (VecOp == RHS) {
- Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
- // Update Mask to reflect that `ScalarOp' has been inserted at
- // position `InsertedIdx' within the vector returned by IEI.
- Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
- // Everything but the extracted element is replaced with the RHS.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (i != InsertedIdx)
- Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
- NumElts+i);
- }
- return V;
- }
- // If this insertelement is a chain that comes from exactly these two
- // vectors, return the vector and the effective shuffle.
- if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
- return EI->getOperand(0);
- }
- }
- }
- // TODO: Handle shufflevector here!
- // Otherwise, can't do anything fancy. Return an identity vector.
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return V;
- }
- Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
- Value *VecOp = IE.getOperand(0);
- Value *ScalarOp = IE.getOperand(1);
- Value *IdxOp = IE.getOperand(2);
- // Inserting an undef or into an undefined place, remove this.
- if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
- ReplaceInstUsesWith(IE, VecOp);
- // If the inserted element was extracted from some other vector, and if the
- // indexes are constant, try to turn this into a shufflevector operation.
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
- EI->getOperand(0)->getType() == IE.getType()) {
- unsigned NumVectorElts = IE.getType()->getNumElements();
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- if (ExtractedIdx >= NumVectorElts) // Out of range extract.
- return ReplaceInstUsesWith(IE, VecOp);
- if (InsertedIdx >= NumVectorElts) // Out of range insert.
- return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
- // If we are extracting a value from a vector, then inserting it right
- // back into the same place, just use the input vector.
- if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
- return ReplaceInstUsesWith(IE, VecOp);
- // If this insertelement isn't used by some other insertelement, turn it
- // (and any insertelements it points to), into one big shuffle.
- if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
- SmallVector<Constant*, 16> Mask;
- Value *RHS = 0;
- Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
- if (RHS == 0) RHS = UndefValue::get(LHS->getType());
- // We now have a shuffle of LHS, RHS, Mask.
- return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
- }
- }
- }
- unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
- if (V != &IE)
- return ReplaceInstUsesWith(IE, V);
- return &IE;
- }
- return 0;
- }
- /// Return true if we can evaluate the specified expression tree if the vector
- /// elements were shuffled in a different order.
- static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
- unsigned Depth = 5) {
- // We can always reorder the elements of a constant.
- if (isa<Constant>(V))
- return true;
- // We won't reorder vector arguments. No IPO here.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Two users may expect different orders of the elements. Don't try it.
- if (!I->hasOneUse())
- return false;
- if (Depth == 0) return false;
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::GetElementPtr: {
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
- return false;
- }
- return true;
- }
- case Instruction::InsertElement: {
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!CI) return false;
- int ElementNumber = CI->getLimitedValue();
- // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
- // can't put an element into multiple indices.
- bool SeenOnce = false;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == ElementNumber) {
- if (SeenOnce)
- return false;
- SeenOnce = true;
- }
- }
- return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
- }
- }
- return false;
- }
- /// Rebuild a new instruction just like 'I' but with the new operands given.
- /// In the event of type mismatch, the type of the operands is correct.
- static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
- // We don't want to use the IRBuilder here because we want the replacement
- // instructions to appear next to 'I', not the builder's insertion point.
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- assert(NewOps.size() == 2 && "binary operator with #ops != 2");
- BinaryOperator *New =
- BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
- NewOps[0], NewOps[1], "", BO);
- if (isa<OverflowingBinaryOperator>(BO)) {
- New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
- New->setHasNoSignedWrap(BO->hasNoSignedWrap());
- }
- if (isa<PossiblyExactOperator>(BO)) {
- New->setIsExact(BO->isExact());
- }
- if (isa<FPMathOperator>(BO))
- New->copyFastMathFlags(I);
- return New;
- }
- case Instruction::ICmp:
- assert(NewOps.size() == 2 && "icmp with #ops != 2");
- return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::FCmp:
- assert(NewOps.size() == 2 && "fcmp with #ops != 2");
- return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt: {
- // It's possible that the mask has a different number of elements from
- // the original cast. We recompute the destination type to match the mask.
- Type *DestTy =
- VectorType::get(I->getType()->getScalarType(),
- NewOps[0]->getType()->getVectorNumElements());
- assert(NewOps.size() == 1 && "cast with #ops != 1");
- return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
- "", I);
- }
- case Instruction::GetElementPtr: {
- Value *Ptr = NewOps[0];
- ArrayRef<Value*> Idx = NewOps.slice(1);
- GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
- GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
- return GEP;
- }
- }
- llvm_unreachable("failed to rebuild vector instructions");
- }
- Value *
- InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
- // Mask.size() does not need to be equal to the number of vector elements.
- assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
- if (isa<UndefValue>(V)) {
- return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
- Mask.size()));
- }
- if (isa<ConstantAggregateZero>(V)) {
- return ConstantAggregateZero::get(
- VectorType::get(V->getType()->getScalarType(),
- Mask.size()));
- }
- if (Constant *C = dyn_cast<Constant>(V)) {
- SmallVector<Constant *, 16> MaskValues;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == -1)
- MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
- else
- MaskValues.push_back(Builder->getInt32(Mask[i]));
- }
- return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
- ConstantVector::get(MaskValues));
- }
- Instruction *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::Select:
- case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> NewOps;
- bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
- NewOps.push_back(V);
- NeedsRebuild |= (V != I->getOperand(i));
- }
- if (NeedsRebuild) {
- return BuildNew(I, NewOps);
- }
- return I;
- }
- case Instruction::InsertElement: {
- int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
- // The insertelement was inserting at Element. Figure out which element
- // that becomes after shuffling. The answer is guaranteed to be unique
- // by CanEvaluateShuffled.
- bool Found = false;
- int Index = 0;
- for (int e = Mask.size(); Index != e; ++Index) {
- if (Mask[Index] == Element) {
- Found = true;
- break;
- }
- }
- // If element is not in Mask, no need to handle the operand 1 (element to
- // be inserted). Just evaluate values in operand 0 according to Mask.
- if (!Found)
- return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
- Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
- return InsertElementInst::Create(V, I->getOperand(1),
- Builder->getInt32(Index), "", I);
- }
- }
- llvm_unreachable("failed to reorder elements of vector instruction!");
- }
- Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Value *LHS = SVI.getOperand(0);
- Value *RHS = SVI.getOperand(1);
- SmallVector<int, 16> Mask = SVI.getShuffleMask();
- bool MadeChange = false;
- // Undefined shuffle mask -> undefined value.
- if (isa<UndefValue>(SVI.getOperand(2)))
- return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
- unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
- if (V != &SVI)
- return ReplaceInstUsesWith(SVI, V);
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
- unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
- // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
- // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
- if (LHS == RHS || isa<UndefValue>(LHS)) {
- if (isa<UndefValue>(LHS) && LHS == RHS) {
- // shuffle(undef,undef,mask) -> undef.
- Value *Result = (VWidth == LHSWidth)
- ? LHS : UndefValue::get(SVI.getType());
- return ReplaceInstUsesWith(SVI, Result);
- }
- // Remap any references to RHS to use LHS.
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
- if (Mask[i] < 0) {
- Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
- continue;
- }
- if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
- (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
- Mask[i] = -1; // Turn into undef.
- Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
- } else {
- Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
- Mask[i]));
- }
- }
- SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, UndefValue::get(RHS->getType()));
- SVI.setOperand(2, ConstantVector::get(Elts));
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
- if (VWidth == LHSWidth) {
- // Analyze the shuffle, are the LHS or RHS and identity shuffles?
- bool isLHSID = true, isRHSID = true;
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] < 0) continue; // Ignore undef values.
- // Is this an identity shuffle of the LHS value?
- isLHSID &= (Mask[i] == (int)i);
- // Is this an identity shuffle of the RHS value?
- isRHSID &= (Mask[i]-e == i);
- }
- // Eliminate identity shuffles.
- if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
- if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
- }
- if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
- Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
- return ReplaceInstUsesWith(SVI, V);
- }
- // If the LHS is a shufflevector itself, see if we can combine it with this
- // one without producing an unusual shuffle.
- // Cases that might be simplified:
- // 1.
- // x1=shuffle(v1,v2,mask1)
- // x=shuffle(x1,undef,mask)
- // ==>
- // x=shuffle(v1,undef,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
- // 2.
- // x1=shuffle(v1,undef,mask1)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == mask1.size()
- // ==>
- // x=shuffle(v1,x2,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
- // 3.
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v2.size() == mask2.size()
- // ==>
- // x=shuffle(x1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
- // 4.
- // x1=shuffle(v1,undef,mask1)
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == v2.size()
- // ==>
- // x=shuffle(v1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
- //
- // Here we are really conservative:
- // we are absolutely afraid of producing a shuffle mask not in the input
- // program, because the code gen may not be smart enough to turn a merged
- // shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is either a splat or one of the
- // input shuffle masks. In this case, merging the shuffles just removes
- // one instruction, which we know is safe. This is good for things like
- // turning: (splat(splat)) -> splat, or
- // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
- ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
- ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
- if (LHSShuffle)
- if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
- LHSShuffle = NULL;
- if (RHSShuffle)
- if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
- RHSShuffle = NULL;
- if (!LHSShuffle && !RHSShuffle)
- return MadeChange ? &SVI : 0;
- Value* LHSOp0 = NULL;
- Value* LHSOp1 = NULL;
- Value* RHSOp0 = NULL;
- unsigned LHSOp0Width = 0;
- unsigned RHSOp0Width = 0;
- if (LHSShuffle) {
- LHSOp0 = LHSShuffle->getOperand(0);
- LHSOp1 = LHSShuffle->getOperand(1);
- LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
- }
- if (RHSShuffle) {
- RHSOp0 = RHSShuffle->getOperand(0);
- RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
- }
- Value* newLHS = LHS;
- Value* newRHS = RHS;
- if (LHSShuffle) {
- // case 1
- if (isa<UndefValue>(RHS)) {
- newLHS = LHSOp0;
- newRHS = LHSOp1;
- }
- // case 2 or 4
- else if (LHSOp0Width == LHSWidth) {
- newLHS = LHSOp0;
- }
- }
- // case 3 or 4
- if (RHSShuffle && RHSOp0Width == LHSWidth) {
- newRHS = RHSOp0;
- }
- // case 4
- if (LHSOp0 == RHSOp0) {
- newLHS = LHSOp0;
- newRHS = NULL;
- }
- if (newLHS == LHS && newRHS == RHS)
- return MadeChange ? &SVI : 0;
- SmallVector<int, 16> LHSMask;
- SmallVector<int, 16> RHSMask;
- if (newLHS != LHS)
- LHSMask = LHSShuffle->getShuffleMask();
- if (RHSShuffle && newRHS != RHS)
- RHSMask = RHSShuffle->getShuffleMask();
- unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
- SmallVector<int, 16> newMask;
- bool isSplat = true;
- int SplatElt = -1;
- // Create a new mask for the new ShuffleVectorInst so that the new
- // ShuffleVectorInst is equivalent to the original one.
- for (unsigned i = 0; i < VWidth; ++i) {
- int eltMask;
- if (Mask[i] < 0) {
- // This element is an undef value.
- eltMask = -1;
- } else if (Mask[i] < (int)LHSWidth) {
- // This element is from left hand side vector operand.
- //
- // If LHS is going to be replaced (case 1, 2, or 4), calculate the
- // new mask value for the element.
- if (newLHS != LHS) {
- eltMask = LHSMask[Mask[i]];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
- eltMask = -1;
- } else
- eltMask = Mask[i];
- } else {
- // This element is from right hand side vector operand
- //
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value. (case 1)
- if (isa<UndefValue>(RHS))
- eltMask = -1;
- // If RHS is going to be replaced (case 3 or 4), calculate the
- // new mask value for the element.
- else if (newRHS != RHS) {
- eltMask = RHSMask[Mask[i]-LHSWidth];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)RHSOp0Width) {
- assert(isa<UndefValue>(RHSShuffle->getOperand(1))
- && "should have been check above");
- eltMask = -1;
- }
- } else
- eltMask = Mask[i]-LHSWidth;
- // If LHS's width is changed, shift the mask value accordingly.
- // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
- // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
- // If newRHS == newLHS, we want to remap any references from newRHS to
- // newLHS so that we can properly identify splats that may occur due to
- // obfuscation across the two vectors.
- if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
- eltMask += newLHSWidth;
- }
- // Check if this could still be a splat.
- if (eltMask >= 0) {
- if (SplatElt >= 0 && SplatElt != eltMask)
- isSplat = false;
- SplatElt = eltMask;
- }
- newMask.push_back(eltMask);
- }
- // If the result mask is equal to one of the original shuffle masks,
- // or is a splat, do the replacement.
- if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
- SmallVector<Constant*, 16> Elts;
- Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
- for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
- if (newMask[i] < 0) {
- Elts.push_back(UndefValue::get(Int32Ty));
- } else {
- Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
- }
- }
- if (newRHS == NULL)
- newRHS = UndefValue::get(newLHS->getType());
- return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
- }
- return MadeChange ? &SVI : 0;
- }
|