123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643 |
- //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This file provides the implementation of a basic TargetTransformInfo pass
- /// predicated on the target abstractions present in the target independent
- /// code generator. It uses these (primarily TargetLowering) to model as much
- /// of the TTI query interface as possible. It is included by most targets so
- /// that they can specialize only a small subset of the query space.
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <utility>
- using namespace llvm;
- static cl::opt<unsigned>
- PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
- cl::desc("Threshold for partial unrolling"), cl::Hidden);
- #define DEBUG_TYPE "basictti"
- namespace {
- class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
- const TargetMachine *TM;
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the result needs to be inserted and/or extracted from vectors.
- unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
- /// Estimate the cost overhead of SK_Alternate shuffle.
- unsigned getAltShuffleOverhead(Type *Ty) const;
- const TargetLoweringBase *getTLI() const {
- return TM->getSubtargetImpl()->getTargetLowering();
- }
- public:
- BasicTTI() : ImmutablePass(ID), TM(nullptr) {
- llvm_unreachable("This pass cannot be directly constructed");
- }
- BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
- initializeBasicTTIPass(*PassRegistry::getPassRegistry());
- }
- void initializePass() override {
- pushTTIStack(this);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- TargetTransformInfo::getAnalysisUsage(AU);
- }
- /// Pass identification.
- static char ID;
- /// Provide necessary pointer adjustments for the two base classes.
- void *getAdjustedAnalysisPointer(const void *ID) override {
- if (ID == &TargetTransformInfo::ID)
- return (TargetTransformInfo*)this;
- return this;
- }
- bool hasBranchDivergence() const override;
- /// \name Scalar TTI Implementations
- /// @{
- bool isLegalAddImmediate(int64_t imm) const override;
- bool isLegalICmpImmediate(int64_t imm) const override;
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const override;
- int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const override;
- bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
- bool isTypeLegal(Type *Ty) const override;
- unsigned getJumpBufAlignment() const override;
- unsigned getJumpBufSize() const override;
- bool shouldBuildLookupTables() const override;
- bool haveFastSqrt(Type *Ty) const override;
- void getUnrollingPreferences(Loop *L,
- UnrollingPreferences &UP) const override;
- /// @}
- /// \name Vector TTI Implementations
- /// @{
- unsigned getNumberOfRegisters(bool Vector) const override;
- unsigned getMaximumUnrollFactor() const override;
- unsigned getRegisterBitWidth(bool Vector) const override;
- unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind) const override;
- unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
- int Index, Type *SubTp) const override;
- unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const override;
- unsigned getCFInstrCost(unsigned Opcode) const override;
- unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const override;
- unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const override;
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
- unsigned AddressSpace) const override;
- unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
- ArrayRef<Type*> Tys) const override;
- unsigned getNumberOfParts(Type *Tp) const override;
- unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
- unsigned getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwise) const override;
- /// @}
- };
- }
- INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
- "Target independent code generator's TTI", true, true, false)
- char BasicTTI::ID = 0;
- ImmutablePass *
- llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
- return new BasicTTI(TM);
- }
- bool BasicTTI::hasBranchDivergence() const { return false; }
- bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
- return getTLI()->isLegalAddImmediate(imm);
- }
- bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
- return getTLI()->isLegalICmpImmediate(imm);
- }
- bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->isLegalAddressingMode(AM, Ty);
- }
- int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) const {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->getScalingFactorCost(AM, Ty);
- }
- bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
- return getTLI()->isTruncateFree(Ty1, Ty2);
- }
- bool BasicTTI::isTypeLegal(Type *Ty) const {
- EVT T = getTLI()->getValueType(Ty);
- return getTLI()->isTypeLegal(T);
- }
- unsigned BasicTTI::getJumpBufAlignment() const {
- return getTLI()->getJumpBufAlignment();
- }
- unsigned BasicTTI::getJumpBufSize() const {
- return getTLI()->getJumpBufSize();
- }
- bool BasicTTI::shouldBuildLookupTables() const {
- const TargetLoweringBase *TLI = getTLI();
- return TLI->supportJumpTables() &&
- (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
- }
- bool BasicTTI::haveFastSqrt(Type *Ty) const {
- const TargetLoweringBase *TLI = getTLI();
- EVT VT = TLI->getValueType(Ty);
- return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
- }
- void BasicTTI::getUnrollingPreferences(Loop *L,
- UnrollingPreferences &UP) const {
- // This unrolling functionality is target independent, but to provide some
- // motivation for its intended use, for x86:
- // According to the Intel 64 and IA-32 Architectures Optimization Reference
- // Manual, Intel Core models and later have a loop stream detector
- // (and associated uop queue) that can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have no more than 4 (8 for Nehalem and later) branches
- // taken, and none of them may be calls.
- // - The loop can have no more than 18 (28 for Nehalem and later) uops.
- // According to the Software Optimization Guide for AMD Family 15h Processors,
- // models 30h-4fh (Steamroller and later) have a loop predictor and loop
- // buffer which can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have fewer than 16 branches
- // - The loop must have less than 40 uops in all executed loop branches
- // The number of taken branches in a loop is hard to estimate here, and
- // benchmarking has revealed that it is better not to be conservative when
- // estimating the branch count. As a result, we'll ignore the branch limits
- // until someone finds a case where it matters in practice.
- unsigned MaxOps;
- const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
- if (PartialUnrollingThreshold.getNumOccurrences() > 0)
- MaxOps = PartialUnrollingThreshold;
- else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
- MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
- else
- return;
- // Scan the loop: don't unroll loops with calls.
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I) {
- BasicBlock *BB = *I;
- for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
- if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
- ImmutableCallSite CS(J);
- if (const Function *F = CS.getCalledFunction()) {
- if (!TopTTI->isLoweredToCall(F))
- continue;
- }
- return;
- }
- }
- // Enable runtime and partial unrolling up to the specified size.
- UP.Partial = UP.Runtime = true;
- UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
- }
- //===----------------------------------------------------------------------===//
- //
- // Calls used by the vectorizers.
- //
- //===----------------------------------------------------------------------===//
- unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
- bool Extract) const {
- assert (Ty->isVectorTy() && "Can only scalarize vectors");
- unsigned Cost = 0;
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- if (Insert)
- Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- if (Extract)
- Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
- }
- unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
- return 1;
- }
- unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
- return 32;
- }
- unsigned BasicTTI::getMaximumUnrollFactor() const {
- return 1;
- }
- unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- OperandValueKind,
- OperandValueKind) const {
- // Check if any of the operands are vector operands.
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
- bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
- // Assume that floating point arithmetic operations cost twice as much as
- // integer operations.
- unsigned OpCost = (IsFloat ? 2 : 1);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2 * OpCost;
- return LT.first * 1 * OpCost;
- }
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2 * OpCost;
- }
- // Else, assume that we need to scalarize this op.
- if (Ty->isVectorTy()) {
- unsigned Num = Ty->getVectorNumElements();
- unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
- // return the cost of multiple scalar invocation plus the cost of inserting
- // and extracting the values.
- return getScalarizationOverhead(Ty, true, true) + Num * Cost;
- }
- // We don't know anything about this scalar instruction.
- return OpCost;
- }
- unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
- assert(Ty->isVectorTy() && "Can only shuffle vectors");
- unsigned Cost = 0;
- // Shuffle cost is equal to the cost of extracting element from its argument
- // plus the cost of inserting them onto the result vector.
- // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
- // 0 of first vector, index 1 of second vector,index 2 of first vector and
- // finally index 3 of second vector and insert them at index <0,1,2,3> of
- // result vector.
- for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
- Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
- }
- return Cost;
- }
- unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) const {
- if (Kind == SK_Alternate) {
- return getAltShuffleOverhead(Tp);
- }
- return 1;
- }
- unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
- std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
- // Check for NOOP conversions.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
- // Bitcast between types that are legalized to the same type are free.
- if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
- return 0;
- }
- if (Opcode == Instruction::Trunc &&
- TLI->isTruncateFree(SrcLT.second, DstLT.second))
- return 0;
- if (Opcode == Instruction::ZExt &&
- TLI->isZExtFree(SrcLT.second, DstLT.second))
- return 0;
- // If the cast is marked as legal (or promote) then assume low cost.
- if (SrcLT.first == DstLT.first &&
- TLI->isOperationLegalOrPromote(ISD, DstLT.second))
- return 1;
- // Handle scalar conversions.
- if (!Src->isVectorTy() && !Dst->isVectorTy()) {
- // Scalar bitcasts are usually free.
- if (Opcode == Instruction::BitCast)
- return 0;
- // Just check the op cost. If the operation is legal then assume it costs 1.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return 1;
- // Assume that illegal scalar instruction are expensive.
- return 4;
- }
- // Check vector-to-vector casts.
- if (Dst->isVectorTy() && Src->isVectorTy()) {
- // If the cast is between same-sized registers, then the check is simple.
- if (SrcLT.first == DstLT.first &&
- SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
- // Assume that Zext is done using AND.
- if (Opcode == Instruction::ZExt)
- return 1;
- // Assume that sext is done using SHL and SRA.
- if (Opcode == Instruction::SExt)
- return 2;
- // Just check the op cost. If the operation is legal then assume it costs
- // 1 and multiply by the type-legalization overhead.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return SrcLT.first * 1;
- }
- // If we are converting vectors and the operation is illegal, or
- // if the vectors are legalized to different types, estimate the
- // scalarization costs.
- unsigned Num = Dst->getVectorNumElements();
- unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
- Src->getScalarType());
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return getScalarizationOverhead(Dst, true, true) + Num * Cost;
- }
- // We already handled vector-to-vector and scalar-to-scalar conversions. This
- // is where we handle bitcast between vectors and scalars. We need to assume
- // that the conversion is scalarized in one way or another.
- if (Opcode == Instruction::BitCast)
- // Illegal bitcasts are done by storing and loading from a stack slot.
- return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
- (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
- llvm_unreachable("Unhandled cast");
- }
- unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
- // Branches are assumed to be predicted.
- return 0;
- }
- unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) const {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // Selects on vectors are actually vector selects.
- if (ISD == ISD::SELECT) {
- assert(CondTy && "CondTy must exist");
- if (CondTy->isVectorTy())
- ISD = ISD::VSELECT;
- }
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1. Multiply
- // by the type-legalization overhead.
- return LT.first * 1;
- }
- // Otherwise, assume that the cast is scalarized.
- if (ValTy->isVectorTy()) {
- unsigned Num = ValTy->getVectorNumElements();
- if (CondTy)
- CondTy = CondTy->getScalarType();
- unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
- CondTy);
- // Return the cost of multiple scalar invocation plus the cost of inserting
- // and extracting the values.
- return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
- }
- // Unknown scalar opcode.
- return 1;
- }
- unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) const {
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType());
- return LT.first;
- }
- unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const {
- assert(!Src->isVoidTy() && "Invalid type");
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
- // Assuming that all loads of legal types cost 1.
- unsigned Cost = LT.first;
- if (Src->isVectorTy() &&
- Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
- // This is a vector load that legalizes to a larger type than the vector
- // itself. Unless the corresponding extending load or truncating store is
- // legal, then this will scalarize.
- TargetLowering::LegalizeAction LA = TargetLowering::Expand;
- EVT MemVT = getTLI()->getValueType(Src, true);
- if (MemVT.isSimple() && MemVT != MVT::Other) {
- if (Opcode == Instruction::Store)
- LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
- else
- LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
- }
- if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
- // This is a vector load/store for some illegal type that is scalarized.
- // We must account for the cost of building or decomposing the vector.
- Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
- Opcode == Instruction::Store);
- }
- }
- return Cost;
- }
- unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> Tys) const {
- unsigned ISD = 0;
- switch (IID) {
- default: {
- // Assume that we need to scalarize this intrinsic.
- unsigned ScalarizationCost = 0;
- unsigned ScalarCalls = 1;
- if (RetTy->isVectorTy()) {
- ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
- ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
- }
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- if (Tys[i]->isVectorTy()) {
- ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
- ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
- }
- }
- return ScalarCalls + ScalarizationCost;
- }
- // Look for intrinsics that can be lowered directly or turned into a scalar
- // intrinsic call.
- case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
- case Intrinsic::sin: ISD = ISD::FSIN; break;
- case Intrinsic::cos: ISD = ISD::FCOS; break;
- case Intrinsic::exp: ISD = ISD::FEXP; break;
- case Intrinsic::exp2: ISD = ISD::FEXP2; break;
- case Intrinsic::log: ISD = ISD::FLOG; break;
- case Intrinsic::log10: ISD = ISD::FLOG10; break;
- case Intrinsic::log2: ISD = ISD::FLOG2; break;
- case Intrinsic::fabs: ISD = ISD::FABS; break;
- case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
- case Intrinsic::floor: ISD = ISD::FFLOOR; break;
- case Intrinsic::ceil: ISD = ISD::FCEIL; break;
- case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
- case Intrinsic::nearbyint:
- ISD = ISD::FNEARBYINT; break;
- case Intrinsic::rint: ISD = ISD::FRINT; break;
- case Intrinsic::round: ISD = ISD::FROUND; break;
- case Intrinsic::pow: ISD = ISD::FPOW; break;
- case Intrinsic::fma: ISD = ISD::FMA; break;
- case Intrinsic::fmuladd: ISD = ISD::FMA; break;
- // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return 0;
- }
- const TargetLoweringBase *TLI = getTLI();
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that thre is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return LT.first * 2;
- return LT.first * 1;
- }
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // thare the code is twice as expensive.
- return LT.first * 2;
- }
- // If we can't lower fmuladd into an FMA estimate the cost as a floating
- // point mul followed by an add.
- if (IID == Intrinsic::fmuladd)
- return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
- TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
- // Else, assume that we need to scalarize this intrinsic. For math builtins
- // this will emit a costly libcall, adding call overhead and spills. Make it
- // very expensive.
- if (RetTy->isVectorTy()) {
- unsigned Num = RetTy->getVectorNumElements();
- unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
- Tys);
- return 10 * Cost * Num;
- }
- // This is going to be turned into a library call, make it expensive.
- return 10;
- }
- unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
- std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
- return LT.first;
- }
- unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
- return 0;
- }
- unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
- bool IsPairwise) const {
- assert(Ty->isVectorTy() && "Expect a vector type");
- unsigned NumVecElts = Ty->getVectorNumElements();
- unsigned NumReduxLevels = Log2_32(NumVecElts);
- unsigned ArithCost = NumReduxLevels *
- TopTTI->getArithmeticInstrCost(Opcode, Ty);
- // Assume the pairwise shuffles add a cost.
- unsigned ShuffleCost =
- NumReduxLevels * (IsPairwise + 1) *
- TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
- return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
- }
|