HowToUseJIT.cpp 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. //===-- examples/HowToUseJIT/HowToUseJIT.cpp - An example use of the JIT --===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This small program provides an example of how to quickly build a small
  11. // module with two functions and execute it with the JIT.
  12. //
  13. // Goal:
  14. // The goal of this snippet is to create in the memory
  15. // the LLVM module consisting of two functions as follow:
  16. //
  17. // int add1(int x) {
  18. // return x+1;
  19. // }
  20. //
  21. // int foo() {
  22. // return add1(10);
  23. // }
  24. //
  25. // then compile the module via JIT, then execute the `foo'
  26. // function and return result to a driver, i.e. to a "host program".
  27. //
  28. // Some remarks and questions:
  29. //
  30. // - could we invoke some code using noname functions too?
  31. // e.g. evaluate "foo()+foo()" without fears to introduce
  32. // conflict of temporary function name with some real
  33. // existing function name?
  34. //
  35. //===----------------------------------------------------------------------===//
  36. #include "llvm/ExecutionEngine/GenericValue.h"
  37. #include "llvm/ExecutionEngine/Interpreter.h"
  38. #include "llvm/ExecutionEngine/JIT.h"
  39. #include "llvm/IR/Constants.h"
  40. #include "llvm/IR/DerivedTypes.h"
  41. #include "llvm/IR/IRBuilder.h"
  42. #include "llvm/IR/Instructions.h"
  43. #include "llvm/IR/LLVMContext.h"
  44. #include "llvm/IR/Module.h"
  45. #include "llvm/Support/ManagedStatic.h"
  46. #include "llvm/Support/TargetSelect.h"
  47. #include "llvm/Support/raw_ostream.h"
  48. using namespace llvm;
  49. int main() {
  50. InitializeNativeTarget();
  51. LLVMContext Context;
  52. // Create some module to put our function into it.
  53. Module *M = new Module("test", Context);
  54. // Create the add1 function entry and insert this entry into module M. The
  55. // function will have a return type of "int" and take an argument of "int".
  56. // The '0' terminates the list of argument types.
  57. Function *Add1F =
  58. cast<Function>(M->getOrInsertFunction("add1", Type::getInt32Ty(Context),
  59. Type::getInt32Ty(Context),
  60. (Type *)0));
  61. // Add a basic block to the function. As before, it automatically inserts
  62. // because of the last argument.
  63. BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", Add1F);
  64. // Create a basic block builder with default parameters. The builder will
  65. // automatically append instructions to the basic block `BB'.
  66. IRBuilder<> builder(BB);
  67. // Get pointers to the constant `1'.
  68. Value *One = builder.getInt32(1);
  69. // Get pointers to the integer argument of the add1 function...
  70. assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
  71. Argument *ArgX = Add1F->arg_begin(); // Get the arg
  72. ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
  73. // Create the add instruction, inserting it into the end of BB.
  74. Value *Add = builder.CreateAdd(One, ArgX);
  75. // Create the return instruction and add it to the basic block
  76. builder.CreateRet(Add);
  77. // Now, function add1 is ready.
  78. // Now we're going to create function `foo', which returns an int and takes no
  79. // arguments.
  80. Function *FooF =
  81. cast<Function>(M->getOrInsertFunction("foo", Type::getInt32Ty(Context),
  82. (Type *)0));
  83. // Add a basic block to the FooF function.
  84. BB = BasicBlock::Create(Context, "EntryBlock", FooF);
  85. // Tell the basic block builder to attach itself to the new basic block
  86. builder.SetInsertPoint(BB);
  87. // Get pointer to the constant `10'.
  88. Value *Ten = builder.getInt32(10);
  89. // Pass Ten to the call to Add1F
  90. CallInst *Add1CallRes = builder.CreateCall(Add1F, Ten);
  91. Add1CallRes->setTailCall(true);
  92. // Create the return instruction and add it to the basic block.
  93. builder.CreateRet(Add1CallRes);
  94. // Now we create the JIT.
  95. ExecutionEngine* EE = EngineBuilder(M).create();
  96. outs() << "We just constructed this LLVM module:\n\n" << *M;
  97. outs() << "\n\nRunning foo: ";
  98. outs().flush();
  99. // Call the `foo' function with no arguments:
  100. std::vector<GenericValue> noargs;
  101. GenericValue gv = EE->runFunction(FooF, noargs);
  102. // Import result of execution:
  103. outs() << "Result: " << gv.IntVal << "\n";
  104. EE->freeMachineCodeForFunction(FooF);
  105. delete EE;
  106. llvm_shutdown();
  107. return 0;
  108. }